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ABSTRACT

The exponentially weighted moving average (EWMA) chart X for monitoring a process

mean was introduced by Roberts[1]. Various authors have studied this chart. Shamma

and Shamma[17] introduced an EWMA of an EWMA chart, referred to as the double

EWMA chart. Since then the EWMA of the EWMA of the EWMA (triple EWMA) chart

and the EWMA of the EWMA of the EWMA of the EWMA (quadruple EWMA) charts

have been introduced into the literature. Their claims are that the double EWMA X chart

outperformed the EWMA chart for the monitoring the process mean. Further it was claimed

that the triple EWMA X chart outperformed the double EWMA X chart and the quadruple

EWMA chart outperformed the triple EWMA X chart. We demonstrate that an EWMA X

chart can be designed that outperforms the double EWMA X chart. We show this using

simulation. The EWMA X has been used to predict the change point. We provide a method

using the likelihood function to predict the change point. A comparison is made with the

Shewhart X chart.
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CHAPTER 1

INTRODUCTION

Walter A. Shewhart introduced the quality control chart in the early 1920’s. Shewart [18]

introduced the concepts of a production process being in a state of in control and out of

control in terms of types of variability found in the process. In Chapter 2, we discuss our

model for a process being statistically in and out of control with respect to the Normal

distribution. Chapter 3 discusses various non Normal distributions that one could use to

study the robustness of a control chart to the assumption of the Normal distribution.

In Chapter 4, the exponentially weighted moving average (EWMA) X is discussed.

Integral equations are derived that are useful in determining properties of the run length

distribution. The double, triple, quadruple, etc. EWMA X are discussed in Chapter 5.

These charts are referred to as the EWMA(k) X charts for k = 2, 3, 4, . . .. A method is

given of obtaining an EWMA X that outperforms an EWMA(k) X chart for k = 2, 3, 4.

Control charts have been used for predicting a change point in a production process.

We discuss in Chapter 6 the use of the Shewhart X chart (an EWMA X chart with smooth-

ing parameter r = 1) in predicting the change point using the likelihood function both with

in-control parameters known and estimated. Further, we derived the likelihood function

associated with the EWMA X chart and derive a method for predicting the change point

with parameters known and estimated.

We give some concluding remarks along with some areas for futher research in our

last chapter. References are given. This is followed by an Appendix containing some R

programs used in this research.
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CHAPTER 2

MODEL AND SAMPLING METHOD

2.1 INTRODUCTION

Duncan[3] point out three uses of control charts. (1) As an aid in removing initial assignable

causes of variability. (2) As an aid in defining the meaning of the process being a state of

statistical in control. (3) Monitoring for a change in the process. Both (1) and (2) are are

performed in what is called a Phase I analysis of the process. We provide some estimation

methods used in a Phase I analysis of the process. The monitoring phase is referred to as

Phase II. Our interest is the use of control charts in the monitoring phase.

Most statistical methods are constructed assumimg a model for the data. Quality con-

trol charts are statistical methods. We discuss in this chapter our data model we will refer to

as the independent Normal model. A commonly used simple model for the process being

in-control and out-of-control is discussed. The sampling method we will use follows the

method found in Shewhart[18] which he referred to as periodic sampling.

2.2 PROCESS MODEL

We assume that the quality measurement X has a Normal distribution with mean µ and

variance σ2. We will use a simple model for the process being in a state of statistical in and

out of control. The process is assumed to be in statistical in control µ = µ0 and σ2 = σ2
0 or

σ = σ0, where µ0 and σ2
0 are possible values of µ and σ2. If µ ̸= µ0 and/or σ2 ̸= σ2

0 , then

the process is in a state of statistical out of control. Typically, the parameters µ0 and σ2
0 are

unknown and will be estimated from a preliminary set of samples generated by the process

when in a state of statistical in control. We assume the quality measurements taken on
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items from the process are independent. We refer to our model as the independent Normal

model.

The standard Normal distribution was first described by Abraham de Moivre in 1733.

The more general family of Normal distributions was first described by the German mathe-

matician Carl Friedrich Gauss (1777-1885). Often a Normal distribution is referred to as a

Gaussian distribution. The probability density function describing a member of the family

of Normal distributions has the form

f (x |µ, σ ) = 1√
2πσ

e−
1
2(

x−µ
σ )

2

,

where µ is the mean of the distribution and σ > 0 (σ2) is the standard deviation (variance)

of the distribution. The Normal distribution with µ = 0 and σ2 = 1 is called the standard

Normal distribution. Its probability density ϕ (z) and cumulative distribution function Φ (z)

describe the distribution of the transformation Z =
(
X−µ
σ

)2
. They have the forms

ϕ (z) =
1√
2π

e−
1
2
z2 and Φ (z) =

∫ z

−∞
ϕ (t) dt.

Walter A. Shewhart developed the quality control chart as a statistical method. Shewhart[18]

discusses the concepts of “natural” and “assignable” causes variability relative to an indus-

trial process. A natural cause of variability is a cause of variability in a quality measure-

ment(s) that have been designed into the process. Such a cause of variability can only be

removed by redesigning the process. A process is said to be in control if it is operating

with only natural causes of variability. Under our Normal model, we assume the process

is a statistically in control state if µ = µ0 and σ = σ0. The in control values µ0 and σ0,

respectively, are possible values of the process mean and process standard deviation that

may or may not be known. An assignable cause of variability is a removable cause of vari-

ability in the process. When this is the case, we say the process is out of control. Under
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our model, we say the process is statistically out of control if µ ̸= µ0 and/or σ ̸= σ0 when

an assignable cause is present in the process. In what is to follow, we assume the process

is out-of-control only with respect to the process mean.

2.3 SAMPLING METHOD

In the Phase I of the process, we assume that the practitioner will have available m indepen-

dent random samples each of size n from the output of an in control process. We represent

the X measurements to be taken on these items by Xi,1, . . . , Xi,n for i = 1, . . . ,m. We

assume the practitioner will use µ̂0 and σ̂2
0 , respectively, as estimators of µ0 and σ2

0 defined

by

µ̂0 = X0 =
1

m

∑m

i=1
X i and σ̂2

0 = V 0 =
1

m

∑m

i=1
S2
i ,

where X i and S2
i are respectively the mean and variance of the ith sample. Under our

independent Normal model with X ∼ N (µ0, σ
2
0), the sampling distributions of µ̂0 = X0

and σ̂2
0 = V 0 are determined as follows. Observe that X i ∼ N (µ0, σ

2
0/n) and µ̂0 = X0 is

a linear combination of the X i’s. It is well known that a linear combination of independent

Normal random variables has a Normal distribution with mean

E
(
X0

)
= E

(
1

m

∑m

l=1
X i

)
=

1

m

∑m

l=1
E
(
X i

)
=

1

m

∑m

l=1
µ0 = µ0 and

V
(
X0

)
= V

(
1

m

∑m

l=1
X i

)
=

1

m2

∑m

l=1
V
(
X i

)
=

1

m2

∑m

l=1

σ2
0

n
=

σ2
0

mn
.

The distribution of σ̂2
0 = V 0 is obtained by observing that

V 0 =
1

m (n− 1)

∑m

l=1
(n− 1)S2

i =
σ2
0

m (n− 1)

∑m

l=1

(n− 1)S2
i

σ2
0

=
σ2
0

m (n− 1)

∑m

l=1
χ2
i,n−1,
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It is well known that

χ2
i,n−1 =

(n− 1)S2
i

σ2
0

∼ χ2
n−1

and the sum of independent Chi square random variables is a Chi square distribution with

degrees of freedom the sum of the degrees of freedom of the addends, then

V 0 ∼
σ2
0

m (n− 1)

∑m

l=1
χ2
i,n−1 =

σ2
0

m (n− 1)
χ2
m(n−1) or

m (n− 1)V 0

σ2
0

∼ χ2
m(n−1).

Also note that the statistics X0 and V 0 are independent under our model.

In Phase II, the practitioner will periodically at time t (sample stage number) take the

X measurements Xt,1, . . . , Xt,n on a sample of size n from the output of the process, for

t = 1, 2, 3, . . .. The mean of the sample to be taken at time t (sampling stage t) is denoted

by X t. It is assumed the samples are independent random samples, for t = 1, 2, 3, . . ..

Under our independent Normal model, we have X t ∼ N (µ, σ2/n) are independent for

t = 1, 2, 3, . . .. If the process is statisticlly in control, then X t ∼ N (µ0, σ
2
0/n) for t =

1, 2, 3, . . ..

2.4 CONCLUSION

Our process model and sampling methods has been discussed under which we will study

the EWMA X and the EWMA(k) X charts. This includes our change point analysis.
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CHAPTER 3

SOME NON-NORMAL DISTRIBUTIONS

3.1 INTRODUCTION

The EWMA X will be designed under the independent Normal model. In this chapter, we

examine some non-Normal distributions to be used to study the robustness of the EWMA

X . These include the Uniform, Triangular, Gamma, and t-distributions. The Uniform and

t-distributions and a sub family of the family of Triangular distributions are symetric about

their mean. In the case of the Uniform and t-distributions, the tails of the distribution

are higher than the Normal. The family of Gamma distributions and sub families of the

Triangular distributions are skewed. The Gamma is skewed in the positive direction while

a Triangular distribution can be selected to be skewed in either the positive or negative

directions. Mixtured distributions are also discussed. A short discussion of each of these

distributions is given in what follows.

3.2 FAMILY OF UNIFORM DISTRIBUTIONS

A random variable X has a Uniform distribution on the interval (a, b) with a < b (or

X ∼ UNIFORM (a, b)) if the probability density and cumulative distribution functions

are given by

fX (x |a, b) = 1

b− a
I(a,b) (x) and

FX (x |a, b) = x− a

b− a
I(a,b) (x) + I[b,∞) (x) .

The indicator function IA (x) = 1 if x ∈ A and zero otherwise. A well known special

case sets a = 0 and b = 1. The mean µX , variance σ2
X , and standard deviation σX of the
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distribution of X are

µX =
a+ b

2
, σ2

X =
(b− a)2

12
, and σX =

b− a√
12

.

The 100 (1− α)th percentile xα is xα = a+ (b− a) (1− α).

Theorem 3.1: The transformation

U =
X − a

b− a
∼ UNIFORM (0, 1) or

X = a+ (b− a) ∼ UNIFORM (a, b) .

Proof:

FU (u) = P (U ≤ u) I(0,1) (u) = P

(
X − a

b− a
≤ u

)
I(0,1) (u)

= P (X ≤ a+ (b− a)u) I(0,1) (u)

= uI(0,1) (u) + I[1,∞) (u) .

This is the cumulative distributon of a random variable with a Uniform distribution on the

interval (0, 1).

Suppose that U1, . . . , Un are independent with a common Uniform distribution on the

interval (0, 1), then the distribution of the sample mean Un has probability density function

fUn
(u) =

∑n−1

k=0

n

(n− 1)!

(∑k

j=0
(−1)j

(
n

j

)
(nu− j)n−1

)
I(k/n,(k+1)/n] (u) .

These results can be found in Mood, Graybill, and Boes (1974). The mean and variance of

Un are

µUn
=

a+ b

2
and σ2

Un
=

(b− a)2 /12

n
.

Suppose that X1, . . . , Xn are independent with a common Uniform distribution on the in-

terval (a, b), then

Un = a+ (b− a)Xn or Xn =
Un − a

b− a
,
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where

Un =
1

n

∑n

i=1
Ui and Xn =

1

n

∑n

i=1
Xi

with Ui = (Xi − a) / (b− a). Thus, we have Xn = a + (b− a)Un. It follows that the

probability density function describing the distribution of Xn is

fXn
(x |a, b, n)

=
1

b− a

∑n−1

k=0

n

(n− 1)!

[∑k

j=0
(−1)j

(
n

j

)
(n (x− a) / (b− a)− j)n−1

]
× I(a+(b−a)k/n,a+(b−a)(k+1)/n] (x) ,

by observing that

k/n < u ≤ (k + 1) /n or

a+ (b− a) k/n < a+ (b− a)u ≤ a+ (b− a) (k + 1) /n or

a+ (b− a) k/n < x ≤ a+ (b− a) (k + 1) /n.

Several pseudo Uniform random number generators have been developed. Hull and

Dobell[21] list references that discuss the statistical tests that have been used to test random

number generators. In the R language, the pseudo Uniform random number generator is

runif (n, a, b). It generates n pseudo Uniform random numbers in the interval (a, b).

3.3 FAMILY OF TRIANGULAR DISTRIBUTIONS

A simple nonnormal distribution is the triangular distribution. The general form of the

probability density function is

fX (x |a, b, c) =
(

2 (x− a)

(b− a) (c− a)

)I(a,b](x)
(

2 (c− x)

(c− a) (c− b)

)I(b,c)(x)

I(a,c) (x)
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for a < b and a ≤ b ≤ c. It is easy to see that (1) fX (x |a, b, c) ≥ 0 for all real numbers x

and (2)

∫∞
−∞fX (x |a, b, c) dx =

∫ b

a

2 (x− a)

(b− a) (c− a)
dx+

∫ c

b

2 (c− x)

(c− a) (c− b)
dx = 1.

For convenience, we write X ∼ TRI (a, b, c).

The cumulative distribution function FX (x |a, b, c) has the form

FX (x |a, b, c) =

(
(x− a)2

(b− a) (c− a)

)I[a,b](x)

+

(
1− (c− x)2

(c− a) (c− b)

)I[b,c](x)

+ I[c,∞) (x) .

It is shown in Bain and Engelhardt (1992) that U = FX (X |a, b, c) has Uniform distri-

bution on the interval (0, 1). If U has a Uniform distribution on the interval (0, 1), then

F−1
X (U |a, b, c) has the same distribution as X . The inverse of FX is

U = F−1
X (X |a, b, c) =

(
a+

√
(b− a) (c− a)U

)I(0,(b−a)/(c−a)](u)

+
(
c−

√
(c− a) (c− b) (1− U)

)I((b−a)/(c−a),1)(u)

.

Hence, the random variable F−1
X (U |a, b, c) has the same distribution as X if U is Uniform

on the interval (0, 1).

3.4 FAMILY OF GAMMA DISTRIBUTIONS

A random variable X has a Gamma distribution with parameters α > 0 and β > 0 (X ∼

GAM (α, β)) if the distribution of X is described by the density function

f (x |α, β ) = 1

Γ (α) βα
xα−1e−x/βI(0,∞) (x)

Consider the transformation Y = 2X/β. It is not difficult to show that Y ∼ χ2
2α. For a

given α and β, one can use a random number generator that generates a Chi squared random
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variable χ2
2α. The random variable X = βχ2

2α/2 ∼ GAM (α, β). It is not difficult to

show that if X1, . . . , Xn are independent with a common GAM (α, β) distribution, then the

distribution of the sample mean Xn is a GAM
(
αβ, αβ

2

n

)
distribution. Using the previous

results, we have that the sample Xn = αβ2χ2
2αβ/ (2n) allowing one to generate a sample

mean of n independent random variables each having a GAM (α, β) distribution. The R

function rgamma(n, α, β) generates n random variables from a GAM (α, β) distribution.

3.5 FAMILY OF STUDENT’S t-DISTRIBUTIONS

Suppose that the measurements X1, . . . , Xn are independent with a common N (µ, σ2)

distribution. The mean X and variance S2 of the sample are defined by

X =
1

n

∑n

i=1
Xi and S2 =

1

n− 1

∑n

i=1

(
Xi −X

)2
.

The random variable

T =
X

S/
√
n
=

(
X − µ

)
/ (σ/

√
n) +

√
nµ/σ√

(n−1)S2

σ2 / (n− 1)
=

Z + θ√
χ2
n−1/ (n− 1)

is said to have a noncentral t-distribution with n− 1 degrees of freedom and noncentrality

parameter θ =
√
nµ/σ, where Z ∼ N (0, 1) and W ∼ χ2

n−1 are independent. If θ = 0, the

distribution of T is said to have a central t-distribution with n− 1 degrees of freedom. The

mean and variance of the distribution of the noncentral T distribution are

µT = θ

√
n− 1

2

Γ
(
n−2
2

)
Γ
(
n−1
2

)and σ2
T =

(n− 1) (1 + θ2)

n− 3
− (n− 1) θ2

2

(
Γ
(
n−2
2

)
Γ
(
n−1
2

))2

.

The R language function rt (n, df, ncp) can be used to generate n random variates

from a non-central t-distribution with df degrees of freedom and non-centrality parameters

found in the numeric vector ncp.
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3.6 A FAMILY OF MIXTURES OF NORMAL DISTRIBUTIONS

Let fX1 (x) , . . . , fXn (x) and FX1 (x) , . . . , FXn (x) be, respectfully, the probability density

and cumulative distribution functions of the independent random variables X1, . . . , Xn.

Define fY (x) the probability density funtion describing the distribution of Y by

fY (y) =
∑n

i=1
pifXi

(y) ,

where

pi ≥ 0 and
∑n

i=1
pi = 1.

The distribution of Y is called a finite mixture distribution. Note that fY (x) ≥ 0 for all

values of x and∫ ∞

−∞
fY (y) dx =

∫ ∞

−∞

∑n

i=1
pifXi

(y) dy =
∑n

i=1
pi

∫ ∞

−∞
fXi

(y) dy

=
∑n

i=1
pi

∫ ∞

−∞
fXi

(y) dy =
∑n

i=1
pi = 1,

if at least one of the pi’s is greater than zero. Hence, the function fY (y) meets the first

two requirements to be a probability density function. If it describes the distribution of

a random variable Y , then it is a density function. The cumulative distribution function

FY (y) is given by

FY (y) =

∫ y

−∞
fY (t) dt =

∑n

i=1
pi

∫ y

−∞
fXi

(t) dt =
∑n

i=1
piFXi

(y) .

It follows that

U = FY (Y ) =
∑n

i=1
piFXi

(Y ) =
∑n

i=1
piUi ∼ UNIFORM (0, 1)

with Ui = FXi
(Y ) ∼ UNIFORM (0, 1).
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Suppose that X1 ∼ N (µ1, σ
2
1) , . . . , Xn ∼ N (µn, σ

2
n) are independent. We have that

fY (y) =
∑n

i=1
pi

1√
2πσi

e
− 1

2

(
y−µi
σi

)2
.

For the case in which n = 2, we have

fY (y) = p
1√
2πσ1

e
− 1

2

(
y−µ1
σ1

)2
+ (1− p)

1√
2πσ2

e
− 1

2

(
y−µ2
σ2

)2

= pfN(µ1,σ2
1)
(y) + (1− p) fN(µ2,σ2

2)
(y) and

FY (y) = p

∫ y

−∞

1√
2πσ1

e
− 1

2

(
t−µ1
σ1

)2
dt+ (1− p)

∫ y

−∞

1√
2πσ2

e
− 1

2

(
t−µ2
σ2

)2
dt

= pFN(µ1,σ2
1)
(y) + (1− p)FN(µ2,σ2

2)
(y) .

It follows that

U = FY (Y ) = pFN(µ1,σ2
1)
(Y ) + (1− p)FN(µ2,σ2

2)
(Y )

= pU1 + (1− p)U2 ∼ UNIFORM (0, 1) .

3.7 CONCLUSION

Many statistical method are constructed under the assumption that a measurement follows

a Normal distribution. We have discussed various non Normal distributions that can be

used in the study of the robustness of a statistical method to the Normal model.
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CHAPTER 4

EXPONENTIALLY WEIGHTED MOVING AVERAGE X CONTROL CHART

4.1 INTRODUCTION

Roberts[1]introduced the exponentially weighted moving average (EWMA) chart as the

Geometric Moving Average (GMA) chart. The chart was designed to monitor for a change

in the process mean µ of a quality measurement X . The EWMA chart has been discussed

by a variety of authors(see Montgomery[15])). Champ,Woodal and Mohsen[8] define

a family of cumulative sum type charts that include the family of EWMA charts.Jones,

Champ, and Rigdon[10] studied the EWMA X chart with estimated parameters.

In the next section, the EWMA X chart is defined. A standardized version of the chart

is defined that is useful in analyzing the run length distribution of the chart. In Section 3,

integral equations are derived that are useful in analyzing the run length distribution of the

chart.

4.2 SHEWHART X CHART

In the monitoring phase (Phase II), a Shewhart X chart is a plot of the points with coordi-

nates
(
t,X t

)
for t = 1, 2, 3, . . ., where X t is the mean of the tth sample. It is not difficult to

show under our model that E
(
X t

)
= µ and V

(
X t

)
= σ2/n. If the in-control parameters

are known, then the lower and upper control limits for the chart are

LCL = µ0 − h
σ0√
n

and UCL = µ0 + h
σ0√
n

,

where h > 0. The chart signal a potential out-of-control process at sampling stage t if

X t ≤ LCL or X t ≥ UCL.
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For the case in which the in-control process parameters µ0 and σ0 are estimated with,

respectively, X0 and V
1/2

0 /c4,m,n, the control limits are

LCL = X0 − h
V

1/2

0 /c4,m√
n

and UCL = X0 + h
V

1/2

0 /c4,m√
n

.

where

c4,m =

√
2Γ
(

m(n−1)+1
2

)
√
m (n− 1)Γ

(
m(n−1)

2

) .

The control limits LCL and UCL are unbiased estimators of the control limits in the in-

control parameters known case since E
(
X0

)
= µ0 and E

(
V

1/2

0 /c4,m

)
= σ0.

The run length of the chart is defined as the sample number T at which the chart first

signals. In the parameters known case, the run length T has a Geometric distribution with

parameter p, where

p = 1− P
(
LCL < X t < UCL

)
.

We have assuming σ = σ0

p = 1− P

(
µ0 − h

σ0√
n
< X t < µ0 + h

σ0√
n

)
= 1− P

(
−h <

X t − µ0

σ0/
√
n

< h

)
= 1− P

(
−h <

X t − µ+ µ− µ0

σ0/
√
n

< h

)
= 1− P

(
−h <

X t − µ

σ0/
√
n
+

µ− µ0

σ0/
√
n
< h

)
= 1− P (−h < Zt + δ < h) = 1− P (−h− δ < Zt < h− δ)

= 1− Φ (h− δ) + Φ (−h− δ) = p (h, δ) ,

where Φ is the cumulative distribution function of a standard Normal distribution,

Zt =
X t − µ

σ0/
√
n

∼ N (0, 1) and δ =
µ− µ0

σ0/
√
n

.

Hence, the average run length (ARL) and standard deviation of the run length (SRL) are

ARL = E (T ) =
1

p (h, δ)
and SRL =

√
V (T ) =

√
1− p (h, δ)

p (h, δ)
.
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For a given value of k, the in-control ARL and SRL are ARL = E (T ) = 1/p (h, 0) and

SRL =
√

V (T ) =
√

1− p (h, 0)/p (h, 0). For example for h = 3, we have

p (3, 0) = 1− Φ (3) + Φ (−3) = 0.0026999344.

It follows that the in-control ARL and SRL are

ARL =
1

0.0026999344
= 370.3793692 and

SRL =

√
1− 0.0026999344

0.0026999344
= 369.8790313

The run length distribution is a function of the random variables X0 and V
1/2

0 (see

Chapter 2 for their definitions) as well as k, m, n, and δ. We have

P
(
T = t

∣∣∣h,m, n, δ,X0, V 0

)
= 1−P

(
X0 − h

V
1/2

0 /c4,m√
n

< X t < X0 + h
V

1/2

0 /c4,m√
n

)
.

Note that assuming that σ = σ0, we have

X t −X0(
V

1/2

0 /c4,m

)
/
√
n
=

c4,m

V
1/2

0 /σ0

(
X t − µ

σ0/
√
n
+

µ− µ0

σ0/
√
n
− X0 − µ0

σ0/
√
mn

/
√
m

)

=
c4,m

W
1/2

0 /σ0

(
Zt + δ − Z0/

√
m
)

,

where

Zt =
X t − µ0

σ0/
√
n

∼ N (0, 1) , δ =
µ− µ0

σ0/
√
n

, Z0 =
X0 − µ0

σ0/
√
mn

∼ N (0, 1) , and

W 0 =
V 0

σ2
0

∼ χ2
m(n−1)/ [m (n− 1)] .
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We see that

P
(
T = t

∣∣∣h,m, n, δ,X0, V 0

)
1− P

−h <
X t −X0(

V
1/2

0 /c4

)
/
√
n
< h

∣∣∣X0, V 0


= 1− P

(
−h <

c4,m

W
1/2

0 /σ0

(
Zt + δ − Z0/

√
m
)
< h

∣∣∣X0, V 0

)

= 1− P

 −c−1
4,mW

1/2

0 h− δ + Z0/
√
m < Zt

< c−1
4,mW

1/2

0 h− δ + Z0/
√
m
∣∣∣X0, V 0


= 1− Φ

(
c−1
4,mW

1/2

0 h− δ + Z0/
√
m
)
− Φ

(
−c−1

4,mW
1/2

0 h− δ + Z0/
√
m
)

= P
(
T = t

∣∣h,m, n, δ, Z0,W 0

)
.

The conditional ARL and SRL given Z0 and W 0 are

ARL
(
h,m, n, δ

∣∣Z0,W 0

)
=

1

P
(
T = t

∣∣h,m, n, δ, Z0,W 0

) and

SRL
(
h,m, n, δ

∣∣Z0,W 0

)
=

√
1− P

(
T = t

∣∣h,m, n, δ, Z0,W 0

)
P
(
T = t

∣∣h,m, n, δ, Z0,W 0

) .

The unconditional probability P
(
T = t

∣∣h,m, n, δ, Z0,W 0

)
of a signal at any time t

is

P (T = t |h,m, n, δ ) =

∫ ∞

0

∫ ∞

−∞
P (T = t |h,m, n, δ, z0, w0 ) fZ0

(z0) fW 0
(w0) dz0dw0.

The unconditional ARL and SRL are determined as follows.

ARL (h,m, n, δ) =

∫ ∞

0

∫ ∞

−∞

1

p (h,m, n, δ, z0, w0)
fZ0

(z0) fW 0
(w0) dz0dw0 and

SRL (h,m, n, δ) =

∫ ∞

0

∫ ∞

−∞

√
1− p (h,m, n, δ, z0, w0)

p (h,m, n, δ, z0, w0)
fZ0

(z0) fW 0
(w0) dz0dw0.
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Numerical integration can be used to determine the unconditional P (T = t |h,m, n, δ ),

ARL (h,m, n, δ), and SRL (h,m, n, δ). These values are not equal to their counterparts in

the parameters known case.

4.3 EWMA X CHART FOR MONITORING THE PROCESS MEAN

Under our model, the process is in-control if µ = µ0 and σ = σ0. First, we introduce

the EWMA X chart under the assumption that µ0 and σ0 are known. In this case, the

exponentially weighted moving average (EWMA) statistic Ut is defined as

U0 = µ0 and Ut = (1− r)Ut−1 + rX t,

where 0 < r ≤ 1 for t = 0, 1, 2, 3, . . .. The EWMA X chart is a plot of the points with

coordinates (t, Ut) for t = 1, 2, 3, . . .. The chart signals a potential out-of-control process

at time t if Ut ≤ LCL or Ut ≥ UCL, where LCL and UCL are known respectively as the

lower and upper control limits.

Theorem 4.3.1. If 0 < r < 1, then for each positive integer t,

Ut = (1− r)t µ0 + r
∑t

i=1
(1− r)t−i X i.

Proof: For t = 1, we have

U1 = (1− r)U0 + rX1 = (1− r)µ0 + rX1

= (1− r)1 µ0 + r
∑1

i=1
(1− r)1−iX i.
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Hence, the theorem is true for t = 1. Assume for t > 1 the theorem is true. We have

Ut+1 = (1− r)Ut + rX t+1

= (1− r)
[
(1− r)t µ0 + r

∑t

i=1
(1− r)t−i X i

]
+ rX t+1

= (1− r)t+1 µ0 + r
∑t

i=1
(1− r)t+1−i X i + rX t+1

= (1− r)t+1 µ0 + r
∑t+1

i=1
(1− r)t+1−i X i.

Hence, the theorem is true for t+ 1. By the Axiom of Induction, the theorem is true for all

positive integers t.

Using the results of Theorem 4.3.1, the mean of the distribution of Ut is

E (Ut) = (1− r)t µ0 + r
∑t

i=1
(1− r)t−i E

(
X i

)
= µ+ (1− r)t (µ− µ0) .

If the process is in-control, then E (Ut) = µ0. The variance of the distribution of Ut is

given by

V (Ut) = r2
∑t

i=1
(1− r)2(t−i) V

(
X i

)
= r2

[∑t

i=1
(1− r)2(t−i)

] σ2

n

=
r2
[
1− (1− r)2t

]
1− (1− r)2

σ2

n
=

r
[
1− (1− r)2t

]
2− r

σ2

n
.

If σ = σ0, then

V (Ut) =
r2
[
1− (1− r)2t

]
1− (1− r)2

σ2
0

n
=

r
[
1− (1− r)2t

]
2− r

σ2
0

n
.

Using these results, the variable control limits are defined by

LCL = LCLt = µ0 − h

√
r
[
1− (1− r)2t

]
2− r

σ0√
n

and

UCL = UCLt = µ0 + h

√
r
[
1− (1− r)2t

]
2− r

σ0√
n

,
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where r and h are chart parameters Note that the control limits dependent on t.

Control limits that do not depend on t are known as fixed control limits. Note that

lim
t→∞

r2
[
1− (1− r)2t

]
1− (1− r)2

=
r2

1− (1− r)2
=

r

2− r
.

We use these results to define fixed limits by

LCL = µ0 − h

√
r

2− r

σ0√
n

and UCL = µ0 + h

√
r

2− r

σ0√
n

.

It follows that there are two types of EWMA charts. Those with variable limits that depend

on t and those that have fixed limits that do not depend on t.

Theorem 4.3.2: If r = 1, then the EWMA X chart is a Shewhart X chart both in the in-

control parameters known and estimated in-control parameters cases with chart parameter

h.

Proof: We see that for r = 1, Ut = (1− 1)Ut−1 + 1X t = X t. Since the EWMA X chart

is a plot of the points with coordinates (t, Ut) =
(
t,X t

)
, then we have a Shewhart X chart

with chart parameter h.

Consider the transformation

U∗
t =

Ut − µ0

σ0/
√
n

.
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It follows that

U∗
0 =

U0 − µ0

σ0/
√
n

=
µ0 − µ0

σ0/
√
n

= 0 and

U∗
t =

(1− r)Ut−1 + rX t − (1− r)µ0 − rµ0

σ0/
√
n

=
(1− r) (Ut−1 − µ0) + r

(
X t − µ0

)
σ0/

√
n

= (1− r)
Ut−1 − µ0

σ0/
√
n

+ r
X t − µ0

σ0/
√
n

= (1− r)U∗
t−1 + r

X t − µ0

σ0/
√
n

,

for t > 0. Assuming σ = σ0, observe that

X t − µ0

σ0/
√
n

=
X t − µ+ µ− µ0

σ0/
√
n

=
X t − µ

σ0/
√
n
+

µ− µ0

σ0/
√
n
= Zt + δ,

where

Zt =
X t − µ

σ0/
√
n

∼ N (0, 1) and δ =
µ− µ0

σ0/
√
n

.

Note that the process is in a state of statistical in control with respect to the process mean

µ if µ = µ0 or δ = 0. We then see that the stochastic behavior of the EWMA under our

independent Normal model is described by the sequence of EWMA statistic U∗
t defined by

U∗
0 = 0 and U∗

t = (1− r)U∗
t−1 + r (Zt + δ) .

The chart signals at time t if U∗
t ≤ LCL∗ or U∗

t ≥ UCL∗, where the variable control limits

are

LCL∗ = LCL∗
t = −h

√
r
[
1− (1− r)2t

]
2− r

and

UCL∗ = UCL∗
t = h

√
r
[
1− (1− r)2t

]
2− r
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or with fixed control limits

LCL∗ = −h

√
r

2− r
and UCL∗ = h

√
r

2− r
.

The EWMA chart that is a plot of the points with coordinates (t, U∗
t ) cannot be observed.

However, this chart is equivalent to EWMA chart that plots the points with coordinates

(t, Ut) in the sense that either both charts signal or both charts do not signal at time t. The

chart based on the EWMA statistics U∗
t is useful in determining run length properties of

the chart.

An estimated parameters version of the EWMA X chart plots the points with coordi-

nates (t, Ut) with

U0 = X0 and Ut = (1− r)Ut−1 + rX t.

The variable control limits for this chart are

LCLt = X0 − h

√
r
[
1− (1− r)2t

]
2− r

V
1/2

0 /c4√
n

and

UCLt = X0 + h

√
r
[
1− (1− r)2t

]
2− r

V
1/2

0 /c4√
n

.

The fixed control limits are

LCL = X0 − h

√
r

2− r

V
1/2

0 /c4√
n

and UCL = X0 + h

√
r

2− r

V
1/2

0 /c4√
n

.

These limits are unbiased estimators of the control limits for the in-control parameters

known case.

Consider the transformation

U∗
t =

Ut −X0(
V 0/c4,m

)
/
√
n

.
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We see that

U∗
t = (1− r)

Ut−1 −X0(
V 0/c4

)
/
√
n
+ r

X t −X0(
V 0/c4

)
/
√
n

.

Defining

Y ∗
t =

cm,n

c4,m

X t −X0(
V 0/c4,m

)
/
√
n
= cm,n

X t −X0

V 0/
√
n

,

where

cm,n =

√
2Γ
(

m(n−1)
2

)
√

m (n− 1)Γ
(

m(n−1)−1
2

) .

Note that the conditional expectation of Y ∗
t given X t is

E
(
Y ∗
t

∣∣X t

)
= E

(
cm,n

X t −X0

V 0/
√
n

∣∣X t

)
=

X t − µ0

σ0/
√
n

.

To see this, observe that

E

(
X t −X0

V
1/2

0 /
√
n

∣∣X t

)
=

√
nE
(
X t −X0

)
E
(
V

−1/2

0

)
=

√
n
(
X t − µ0

)
E
(
V

−1/2

0

)
.

Recall that

V 0 ∼
σ2
0

m (n− 1)
χ2
m(n−1) or V

−1/2

0 ∼
√
m (n− 1)

σ0

(
χ2
m(n−1)

)−1 .
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We have

E
(
V

−1/2

0

)
=

√
m (n− 1)

σ0

E
[(
χ2
m(n−1)

)−1
]

=

√
m (n− 1)

σ0

∫ ∞

0

w−1/2 1

Γ
(

m(n−1)
2

)
2m(n−1)/2

wm(n−1)/2−1e−w/2dw

=

√
m (n− 1)Γ

(
m(n−1)−1

2

)
2[m(n−1)−1]/2

Γ
(

m(n−1)
2

)
2m(n−1)/2

σ−1
0

×
∫ ∞

0

1

Γ
(

m(n−1)−1
2

)
2[m(n−1)−1]/2

w[m(n−1)−1]/2−1e−w/2dw

=

√
m (n− 1)Γ

(
m(n−1)−1

2

)
√
2Γ
(

m(n−1)
2

) σ−1
0 = c−1

m,nσ
−1
0 .

Hence,

E

(
X t −X0

V
1/2

0 /
√
n

∣∣X t

)
=

√
n
(
X t − µ0

)
c−1
m,nσ

−1
0 = c−1

m,n

X t − µ0

σ0/
√
n

or

E
(
Y ∗
t

∣∣X t

)
=

X t − µ0

σ0/
√
n

.

An estimated parameters version of the chart plots the points with coordinates (t, U∗
t )

with U∗
0 = 0 and

U∗
t = (1− r)U∗

t−1 + rY ∗
t .

The chart signals at sampling stage t if U∗
t ≤ LCL∗ or U∗

t ≥ UCL∗, where the variable

control limits for this chart are

LCL∗
t = −h

√
r
[
1− (1− r)2t

]
2− r

and UCL∗
t = h

√
r
[
1− (1− r)2t

]
2− r

.

The fixed control limits are

LCL∗ = −h

√
r

2− r
and UCL∗ = X0 + h

√
r

2− r
.
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Assuming σ = σ0, note that Y ∗
t can be expressed as

Y ∗
t =

cm,n

V
1/2

0 /σ0

[
X t − µ

σ0/
√
n
+

µ− µ0

σ0/
√
n
− X0 − µ0

σ0/
√
mn

/
√
m

]

= cm,nW
−1/2

0

(
Zt + δ − Z0/

√
m
)

,

where

W 0 =
V 0

σ2
0

∼ χ2
m(n−1)/ [m (n− 1)] , Zt =

X t − µ

σ0/
√
n

∼ N (0, 1) ,

δ =
µ− µ0

σ0/
√
n

, and Z0 =
X0 − µ0

σ0/
√
mn

∼ N (0, 1) .

In summary, we have U∗
0 = 0 and

U∗
t = (1− r)U∗

t−1 + rcm,nW
−1/2

0

(
Zt + δ − Z0/

√
m
)

.

4.4 AN INTEGRAL EQUATION APPROACH TO THE RUN LENGTH AND ITS

DISTRIBUTION

The run length T is the number of the Phase II sample in which the chart first signals. The

run length is a discrete random variable with support the positive integers. Suppose in the

in-control parameters known case, we give the EWMA X chart based on U∗
t a head-start

such that

U∗
0 = u and U∗

t = (1− r)U∗
t−1 + r (Zt + δ) ,

with variable control limits

LCLt = −h

√
r
[
1− (1− r)2t

]
2− r

and

UCLt = h

√
r
[
1− (1− r)2t

]
2− r

,
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where −h
√
r < u < h

√
r. Define the function pr∗ (t |u) by

pr∗ (t |u) = P (T = t |U∗
0 = u) .

This is the probability mass function that describes the run length distribution of the chart

based on U∗
t with a head-start u (see Lucas and Saccucci[12])

Note that for t = 1,

LCL1 = −h
√
r and UCL1 = h

√
r.

Observe that

pr∗ (1 |u)

= P (T = 1 |U∗
0 = u)

= 1− P
(
−h

√
r < U∗

1 < h
√
r |U∗

0 = u
)

= 1− P
(
−h

√
r < (1− r)u+ r (Z1 + δ) < h

√
r
)

= 1− P

(
−h

√
r − (1− r)u− rδ

r
< Z1 <

h
√
r − (1− r)u− rδ

r

)
= 1− Φ

(
h
√
r − (1− r)u− rδ

r

)
+ Φ

(
−h

√
r − (1− r)u− rδ

r

)
.
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For t > 1, we have

pr∗ (t |u) = P (T = 1 |U∗
0 = u)

= P
(
T = t,−h

√
r < U∗

1 < h
√
r |U∗

0 = u
)

= P
(
T = t

∣∣U∗
0 = u,−h

√
r < U∗

1 < h
√
r
)

× P
(
−h

√
r < U∗

1 < h
√
r |U∗

0 = u
)

=

∫ h
√
r

−h
√
r

P (T − 1 = t− 1 |U∗
0 = u, U∗

1 = u∗
1 )

× fU∗
1 |U∗

0
(u∗

1 |u) du∗
1

=

∫ h
√
r

−h
√
r

pr∗ (t− 1 |u∗
1 ) fU∗

1 |U∗
0
(u∗

1 |u) du∗
1.

Note that the distribution of T − 1 is the same as the distribution of T if U∗
0 = u∗

1.

Observe that

FU∗
1 |U∗

0=u (u∗
1 |u) = P (U∗

1 ≤ u∗
1 |U∗

0 = u) = P ((1− r)u+ r (Z1 + δ) ≤ u∗
1)

= P

(
Z1 ≤

u∗
1 − (1− r)u− rδ

r

)
= Φ

(
u∗
1 − (1− r)u− rδ

r

)
,

where Φ (z) is the cumulative distribution function of the standard Normal distribution. It

follows that

fU∗
1 |U∗

0=u (u∗
1 |u) =

1

r
ϕ

(
u∗
1 − (1− r)u− rδ

λr

)
,

where ϕ (z) is the probability density function of the standard Normal distribution. Hence,

pr∗ (t |u) =
∫ h

√
r

−h
√
r

pr∗ (t− 1 |u∗
1 )

1

r
ϕ

(
u∗
1 − (1− r)u− rδ

r

)
du∗

1.

In summary, we have

pr∗ (t |u) =


1− Φ

(
h
√
r−(1−r)u−rδ

λr

)
+ Φ

(
−h

√
r−(1−r)u−rδ

λr

)
, for t = 1;∫ h

√
r

−h
√
r

pr∗ (t− 1 |u∗
1 )

1
λr
ϕ
(

u∗
1−(1−r)u−rδ

λr

)
du∗

1, for t > 1.
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Note that pr∗ (t |u) is also a function of δ and λ. We now has an interative method for

obtaining the run length distribution. A numerical method would be used to evaluate for

each t pr∗ (t |u). Errors can accumulate using this method.Woodal[19] gives a method for

approximating the tail distribution of a cumulative sum (CUSUM) X chart. This method

can be applied to the EWMA X chart. Woodall’s method is also useful for obtaining

percentiles of the run length distribution.

The average run length (ARL) is a function of u, δ, and λ. It can be expressed as

ARL (δ, λ, u) =
∑∞

t=1
tpr∗ (t |δ, λ, u)

= pr∗ (1 |δ, λ, u) +
∑∞

t=2
tpr∗ (t |δ, λ, u)

= 1− Φ

(
h
√
r − (1− r)u− rδ

λr

)
+ Φ

(
−h

√
r − (1− r)u− rδ

λr

)
+
∑∞

t=2
t

∫ h
√
r

−h
√
r

pr∗ (t− 1 |u∗
1 )

1

λr
ϕ

(
u∗
1 − (1− r)u− rδ

λr

)
du∗

1

= 1− Φ

(
h
√
r − (1− r)u− rδ

λr

)
+ Φ

(
−h

√
r − (1− r)u− rδ

λr

)
+

∫ h
√
r

−h
√
r

[∑∞

t=1
(1 + t) pr∗ (t |u∗

1 )
] 1

λr
ϕ

(
u∗
1 − (1− r)u− rδ

λr

)
du∗

1

= 1− Φ

(
h
√
r − (1− r)u− rδ

λr

)
+ Φ

(
−h

√
r − (1− r)u− rδ

λr

)
+

∫ h
√
r

−h
√
r

[∑∞

t=1
(1 + t) pr∗ (t |u∗

1 )
] 1

λr
ϕ

(
u∗
1 − (1− r)u− rδ

λr

)
du∗

1

Noting that

∑∞

t=1
(1 + t) pr∗ (t |u∗

1 ) =
∑∞

t=1
pr∗ (t |u∗

1 ) +
∑∞

t=1
tpr∗ (t |u∗

1 )

= 1 + ARL (δ, λ, u∗
1) ,
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we have

ARL (δ, u) = 1− Φ

(
h
√
r − (1− r)u− rδ

r

)
+ Φ

(
−h

√
r − (1− r)u− rδ

r

)
+

∫ h
√
r

−h
√
r

[1 + ARL (δ, u∗
1)]

1

r
ϕ

(
u∗
1 − (1− r)u− rδ

r

)
du∗

1

= 1− Φ

(
h
√
r − (1− r)u− rδ

r

)
+ Φ

(
−h

√
r − (1− r)u− rδ

λr

)
+ Φ

(
h
√
r − (1− r)u− rδ

r

)
− Φ

(
−h

√
r − (1− r)u− rδ

r

)
+

∫ h
√
r

−h
√
r

ARL (δ, u∗
1)

1

r
ϕ

(
u∗
1 − (1− r)u− rδ

r

)
du∗

1

= 1 +

∫ h
√
r

−h
√
r

ARL (δ, u∗
1)

1

r
ϕ

(
u∗
1 − (1− r)u− rδ

r

)
du∗

1.

Consider the transformation u∗
1 = h

√
ry. We have∫ h

√
r

−h
√
r

ARL (δ, u∗
1)

1

r
ϕ

(
u∗
1 − (1− r)u− rδ

r

)
du∗

1

=

∫ 1

−1

ARL
(
δ, h

√
ry
) h√r

r
ϕ

(
h
√
ry − (1− r)u− rδ

r

)
dy.

A Gaussian numerical integration method using Legendre polynomials can now be used to

obtain the numeric value of the integral∫ 1

−1

ARL (δ, h1y)
h
√
r

r
ϕ

(
h
√
ry − (1− r)u− rδ

r

)
dy

≈
∑η

j=1
ARL (δ, h1yj)

h
√
r

r
ϕ

(
h
√
ryj − (1− r)u− rδ

r

)
wi

with nodes and weights (yi, wi) for i = 1, . . . , η. This gives us a system of approximate

equations

ARL (δ, yi) ≈ 1 +
∑η

j=1
ARL (δ, λ, h1yj)

h
√
r

λr
ϕ

(
h
√
ryj − (1− r) yi − rδ

λr

)
wi

for i = 1, . . . , η. This system can be expressed using matrix notation by

m = 1+Qm or m = (I−Q)−1 1,
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where I is the η × η identity matrix,

m =



ARL (δ, y1)

ARL (δ, y2)

...

ARL (δ, yη)


, 1 =



1

1

...

1


,

Q =



Q11 Q12 . . . Q1η

Q21 Q22 . . . Q2η

...
... . . . ...

Qη1 Qη2 . . . Qηη


, and

Qij =
1

r
ϕ

(
uj − (1− r)ui − rδ

r

)
wj .

The variance of V RL (δ, u) of the run length distribution can be determined by

V RL (δ, u) =
∑∞

t=1
(t− ARL (δ, u))2 pr∗ (t |δ, u)

=
∑∞

t=1
t2pr∗ (t |δ, u)− [ARL (δ, u)]2

= E
(
T 2 |δ, u

)
− [ARL (δ, u)]2 .
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Observe that

E
(
T 2 |δ, u

)
=
∑∞

t=1
t2pr∗ (t |δ, λ, u)

= pr∗ (1 |δ, u) +
∑∞

t=2
t2pr∗ (t |δ, u)

= pr∗ (1 |δ, u) +
∑∞

t=1
(1 + t)2 pr∗ (1 + t |δ, u)

= pr∗ (1 |δ, u) +
∑∞

t=1

(
1 + 2t+ t2

)
pr∗ (1 + t |δ, u)

= pr∗ (1 |δ, u) +
∑∞

t=2
pr∗ (t |δ, u)

+ 2
∑∞

t=1
tpr∗ (1 + t |δ, u) +

∑∞

t=1
t2pr∗ (1 + t |δ, u)

= 1 + 2
∑∞

t=1
t

∫ h
√
r

−h
√
r

pr∗ (t |δ, u∗
1 )

1

λr
ϕ

(
u∗
1 − (1− r)u− rδ

r

)
du∗

1

+
∑∞

t=1
t2
∫ h

√
r

−h
√
r

pr∗ (t |δ, u∗
1 )

1

r
ϕ

(
u∗
1 − (1− r)u− rδ

r

)
du∗

1

= 1 + 2

∫ h
√
r

−h
√
r

∑∞

t=1
tpr∗ (t |δ, u∗

1 )
1

λr
ϕ

(
u∗
1 − (1− r)u− rδ

r

)
du∗

1

+

∫ h
√
r

−h
√
r

∑∞

t=1
t2pr∗ (t |δ, u∗

1 )
1

λr
ϕ

(
u∗
1 − (1− r)u− rδ

r

)
du∗

1

= 1 + 2

∫ h
√
r

−h
√
r

ARL (δ, u∗
1)

1

λr
ϕ

(
u∗
1 − (1− r)u− rδ

r

)
du∗

1

+

∫ h
√
r

−h
√
r

E
(
T 2 |δ, u∗

1

) 1

λr
ϕ

(
u∗
1 − (1− r)u− rδ

r

)
du∗

1.

In summary, we have

E
(
T 2 |δ, u

)
= 1 + 2

∫ h
√
r

−h
√
r

ARL (δ, u∗
1)

1

λr
ϕ

(
u∗
1 − (1− r)u− rδ

r

)
du∗

1

+

∫ h
√
r

−h
√
r

E
(
T 2 |δ, u∗

1

) 1

λr
ϕ

(
u∗
1 − (1− r)u− rδ

r

)
du∗

1.

In the parameters estimated case, we define

pr∗ (t |u, z0, v0 ) = P
(
T = t

∣∣U∗
0 = u, Z0 = z0, V 0 = v0

)
.
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It is not difficult to show that

pr∗ (1 |u, z0, v0 ) = 1− Φ

(
w

1/2
0

h
√
r − (1− r)u− rδ + z0/

√
m

rcm,n

)
+ Φ

(
−h

√
r − (1− r)u− rδ + z0/

√
m

rcm,nw
−1/2
0

)
.

For t > 1, one can show that

pr∗ (t |u, z0, v0 ) =
∫ h

√
r

−h
√
r

pr∗ (t− 1 |u∗
1, z0, v0 )

× fU∗
1 |U∗

0
(u∗

1 |u, z0, v0 ) du∗
1,

with

fU∗
1 |U∗

0
(u∗

1 |u) =
1

r
ϕ

(
w

1/2
0

u∗
1 − (1− r)u− rδ + z0/

√
m

rcm,n

)
.

In summary, we have

pr∗ (t |u, z0, v0 ) =



1− Φ
(
w

1/2
0

h
√
r−(1−r)u−rδ+z0/

√
m

rcm,n

)
+Φ

(
−h

√
r−(1−r)u−rδ+z0/

√
m

rcm,nw
−1/2
0

)
,

for t = 1;∫ h
√
r

−h
√
r

pr∗ (t− 1 |u∗
1, z0, v0 )

×1
r
ϕ
(
w

1/2
0

u∗
1−(1−r)u−rδ+z0/

√
m

rcm,n

)
du∗

1,

for t > 1.

The conditional ARL is the exact solutions to the integral equation

ARL (δ, u, z0, v0) = 1 +

∫ h
√
r

−h
√
r

ARL (δ, u∗
1, z0, v0)

× 1

r
ϕ

(
w

1/2
0

u∗
1 − (1− r)u− rδ + z0/

√
m

rcm,n

)
du∗

1.

The conditional variance of the run length distribution

V RL (δ, u, z0, v0) = E
(
T 2 |δ, u, z0, v0

)
− [ARL (δ, u, z0, v0)]

2 .
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The unconditional probability mass function, average run length, and variance of the

run length are determined as follows. We have

pr∗ (t |u) =
∫ ∞

0

∫ ∞

−∞
pr∗ (t |u, z0, v0 ) fZ0,W 0

(z0, w0) dz0dw0;

ARL (δ, u) =

∫ ∞

0

∫ ∞

−∞
ARL (δ, u, z0, v0) fZ0,W 0

(z0, w0) dz0dw0; and

V RL (δ, u) =

∫ ∞

0

∫ ∞

−∞
V RL (δ, u, z0, v0) fZ0,W 0

(z0, w0) dz0dw0,

where fZ0,W 0
(z0, w0) = fZ0

(z0) fW 0
(w0) since Z0 and W 0 are independent under our

model. Note these values are not equal to their counterparts in the parameters known case.

4.5 ROBUSTNESS OF THE EWMA X CHART

George Box is known for making the statement that “All models are wrong, some mod-

els are useful.” The study of robustness of a statistical model has been reported in the

literature in particular that of the Normal model when used with control charts. Burr[7]

discussed the robustness of control chart limits and found them to be robust to the Nor-

mal model. He suggested that unless the distribution of the quality measurement is ex-

tremely non-Normal control limits based on the Normal model may be used. Other authors,

including Schilling and Nelson[16],Chan,Hapuarachchi and Macpherson[9]and Yourtone

and Zimmer[20], have studied and reported the effect of non Normality on control charts.

The non Normal models they employed have been discussed in Chapter 3 along with oth-

ers. Also, Schilling and Nelson[16] made use of the a mixture of two Normal distributions.

Their study indicated that sample of size 4 or 5 were sufficient to insure reasonable of the

Normal assumption.Montgomery [14] discusses the robustness of the EWMA X chart. He

found that the chart is robust to the assumption the quality measurement follows a Normal

distribution.
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4.6 CONCLUSION

The exponentially weighted moving average (EWMA) X chart has been outlined. The

control limits, variable and fixed, for the in-control parameters known and estimated cases

were given. Integral equations useful in describing the performance of the chart have been

given. A discuss was given about the study of the robustness of control charts including the

EWMA X chart.
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CHAPTER 5

EWMA(K) X CHARTS

5.1 INTRODUCTION

Shamma and Shamma[17] introduced the double EWMA X chart.Alevizakos,Chatterjee

and Koukouvinos[5] introduced the triple EWMA X chart and Alevizakos,Chatterjee and

Koukouvinos[6] introduced the quadruple EWMA X chart. In the next section, we given a

general description of the EWMA(k) X chart in which the smoothing parameters (r1, . . . , rk)

are not necessarily equal. The aforementions EWMA(k) X charts are special cases in which

r1 = . . . = rk for k = 2, 3, 4.

The EWMA(k) X chart is discussed in Section 3. According to Shamma and Shamma[17],

the double EWMA X chart (EWMA(2) X chart) has better out-of-control average run

lengths (ARL) for small to moderate shifts in the process mean than the EWMA X chart

for r1 = r2. The double EWMA X chart (or EWMA(2) X chart) is discussed in Section

4.Mahmoud[13] concluded that “the DEWMA (λ) performs better than the EWMA (λ)

chart only when a large value of λ is used to design both charts and the process means

shifts are smaller than the process standard deviation.” Here λ is the smoothing parameter

for the chart. Rigdon using simulations showed that the the optimal double EWMA X

chart is the optimal EWMA X chart.

Alevizakos,Chatterjee and Koukouvinos[5] argue the triple EWMA X chart has better

out-of-control ARL performance for small to moderate shifts in the mean than the double

EWMA X chart for r1 = r2 = r3. The triple EWMA X chart (or EWMA(3) X chart)

is discussed in Section 5. Alevizakos,Chatterjee and Koukouvinos[6] argue the quadruple

EWMA X chart (or EWMA(4) X chart) has a better out-of-control ARL performance for
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small to moderate shifts in the mean than the triple EWMA X chart for r1 = r2 = r3 = r4.

The EWMA(4) X chart is discussed in Section 6.

Methods are given in Section 7 for designing the EWMA X chart that has better

out-of-control ARL performance for small to moderate shifts in the mean than a given

EWMA(k) X chart. We will discuss how the results obtained by Rigdon for the double

EWMA X chart can be extended to the triple EWMA X chart. Some conclusions are

drawn in Section 8.

5.2 EWMA(k) X CHART WITH KNOWN PARAMETERS

The EWMA(k) X chart with known in-control process parameters is a plot of the points

with coordinates
(
t, U

(k,r1,...,rk)
t

)
for t = 1, 2, 3, . . ., where

U
(1,r1)
0 = µ0, U (1,r1)

t = (1− r1)U
(1,r1)
t−1 + r1X t;

U
(2,r1,r2)
0 = µ0, U (2,r1,r2)

t = (1− r2)U
(2,r1,r2)
t−1 + r2U

(1,r1)
t ;

...

U
(k,r1,...,rk)
0 = µ0, U (k,r1,...,rk)

t = (1− rk)U
(k,r1,...,rk)
t−1 + rkU

(k−1,r1,...,rk−1)
t .

The chart signals at the first sampling stage t in which U
(k)
t ≤ LCL

(k)
t or U (k)

t ≥ UCL
(k)
t ,

where

LCL
(k,r1,...,rk)
t = E

(
U

(k,r1,...,rk)
t

)
− h

√
V
(
U

(k,r1,...,rk)
t

)
and

UCL
(k,r1,...,rk)
t = E

(
U

(k,r1,...,rk)
t

)
+ h

√
V
(
U

(k,r1,...,rk)
t

)
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with the expectation and variance determined under the assumption the process is in-

control. Typically these limits depend on t. The fixed limits for these charts are

LCL
(k,r1,...,rk)
t = E

(
U

(k,r1,...,rk)
t

)
− h

√
lim
t→∞

V
(
U

(k,r1,...,rk)
t

)
and

UCL
(k,r1,...,rk)
t = E

(
U

(k,r1,...,rk)
t

)
+ h

√
lim
t→∞

V
(
U

(k,r1,...,rk)
t

)
.

The chart parameters r1, . . . , rk are called smoothing parameters with 0 < ri ≤ 1 for

i = 1, . . . , k. The chart parameter h is a positive real number. Setting k = 2 results in the

double EWMA X chart of Shamma and Shamma[17] with r1 = r2. Setting k = 3, we have

the triple EWMA X chart of Alevizakos,Chatterjee and Koukouvinos[5] with r1 = r2 = r3,

and k = 4 the quadruple EWMA X chart of Alevizakos,Chatterjee and Koukouvinos[6]

with r1 = r2 = r3 = r4. These authors have demonstrated via simulation that EWMA(k)

X chart outperforms the EWMA X chart with smoothing parameter 0 < r1 ≤ 1.

The following theorems give some general results for the EWMA(k) X chart. The

proof of these theorems makes use of the Axiom of Induction and the Principle of Double

Induction.

Theorem 5.2.1. For k ≥ 1and t ≥ 1,

U
(k,r1,...,rk)
0 = µ0 and

U
(k,r1,...,rk)
t = (1− rk)

t µ0 + rk
∑t

i=1
(1− rk)

t−i U
(k−1,r1,...,rk−1)
i ,

where U
(0)
i = X i.

Proof of Theorem 5.2.1. For k = 1 and t = 1, we have

U
(1,r1)
1 = (1− r1)

1 µ0 + r1
∑1

i=1
(1− r1)

1−i U
(1−1)
i .

Hence, the theorem is true for k = 1 and t = 1. Suppose the theorem is true for any
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arbtrary k > 1 and t = 1. It follows that

U
(k+1,r1,...,rk+1)
1 = (1− rk+1)

1 µ0 + rk+1

∑1

i=1
(1− rk+1)

1−i U
(k,r1,...,rk)
i .

Thus, the theorem is true for k + 1 and t = 1. Suppose the theorem is true for any arbtrary

k > 1 and arbtrary t > 1. We have

U
(k,r1,...,rk)
t+1 = (1− rk)U

(k,r1,...,rk)
t + rkU

(k−1,r1,...,rk−1)
t+1

= (1− rk)

 (1− rk)
t µ0

+rk
∑t

i=1 (1− rk)
t−i U

(k−1,r1,...,rk−1)
i


+ rkU

(k−1,r1,...,rk−1)
t+1

= (1− rk)
t+1 µ0 + rk

∑t

i=1
(1− rk)

t+1−i U
(k−1,r1,...,rk−1)
i

+ rkU
(k−1,r1,...,rk−1)
t+1

= (1− rk)
t+1 µ0 + rk

∑t+1

i=1
(1− rk)

t+1−i U
(k−1,r1,...,rk−1)
i .

Hence, the theorem is true for any arbitrary k > 1 and t + 1. Therefore, by the Principle

of Double Induction the theorem holds for all positive integers k ≥ 1 and positive integers

t ≥ 1.

Theorem 5.2.2. Suppose r1 = . . . = rk−1 = 1, then for k ≥ 2

U
(k,1,...,1,rk)
0 = µ0, U

(k,1,...,1,rk)
t = (1− rk)U

(k,1,...,1,rk)
t−1 + rkX t.

Hence, it follows that EWMA(k,1,...,1,rk) X chart is an EWMA X chart with smoothing

parameter rk.

Proof of Theorem 5.2.2. By definition of U (k,1,...,1,rk)
0 , we have U

(k,1,...,1,rk)
0 = µ0. We have

shown in Theorem 4.3.2 the theorem is true for k = 1. Suppose the theorem is true for an
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arbtrary k > 1. We have

U
(k+1,1,...,1,rk+1)
1 = (1− rk+1)U

(k+1,1,...,1,rk+1)
0 + rk+1U

(k,1,...,1,rk)
1

= (1− rk+1)µ0 + rk+1U
(k,1,...,1,rk)
1

= (1− rk+1)µ0 + rk+1X1.

Hence, the theorem is true for k + 1. Suppose the theorem is true for an arbtrary positive

integer k > 1 and arbtrary positive integer t > 1. We have

U
(k,1,...,1,rk)
t+1 = (1− rk)U

(k,1,...,1,rk)
t + rkX t+1.

Hence, the theorem is true for an arbtrary k > 1 and t + 1. Therefore, by the Principle of

Double Induction the theorem is true for all positive integers k and positive integers t.

To conveniently study the EWMA(k) X chart, we introduce a standardized version of

the in-control parameters known chart by defining U
(i)∗
t as

U
(i)∗
t =

U
(i)
t − µ0

σ0/
√
n

,

for i = 2, 3, . . . , k. It follows that

U
(i)∗
0 = 0 and U

(i)∗
t = (1− ri)U

(i)∗
t−1 + riU

(i−1)∗
t ,

with U
(1)∗
i = Zi + δ, where

Zt =
X t − µ

σ0/
√
n

∼ N (0, 1) and δ =
µ− µ0

σ0/
√
n

.

The process is in a state of statistical in control if δ = 0. We will refer to this chart as the

EWMA(k)∗ Z chart. The EWMA(k)∗ Z chart with known in-control process parameters is
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a plot of the points with coordinates
(
t, U

(k)∗
t

)
for t = 1, 2, 3, . . ., where

U
(1)∗
0 = 0, U (1)∗

t = (1− r1)U
(1)∗
t−1 + r1 (Zt + δ) ;

U
(2)∗
0 = 0, U (2)∗

t = (1− r2)U
(2)∗
t−1 + r2U

(1)∗
t ;

...

U
(k)∗
0 = 0, U (k)∗

t = (1− rk)U
(k)∗
t−1 + rkU

(k−1)∗
t .

The chart signals at the first sampling stage t in which U
(k)∗
t ≤ LCL

(k)∗
t or U

(k)∗
t ≥

UCL
(k)∗
t , where the variable control limits are

LCL
(k)∗
t = −h

√
V
(
U

(k)∗
t

)
and UCL

(k)∗
t = h

√
V
(
U

(k)∗
t

)
with the variance determined under the assumption the process is in-control. The fixed

control limits are

LCL(k)∗ = −h

√
lim
t→∞

V
(
U

(k)∗
t

)
and UCL(k)∗ = h

√
lim
t→∞

V
(
U

(k)∗
t

)
.

The chart smoothing parameters r1, . . . , rk and the chart parameter h are the same as the

chart parameters for the EWMA(k) X chart. The unobservable EWMA(k)∗ Z chart is equiv-

alent to the EWMA(k) X chart in the sense that at time t both charts signal or both charts

do not signal.

In the parameters estimated case, we define for i = 1, 2, 3, . . . and t = 1, 2, 3, . . .

U
(i)∗
t = cm,n

U
(i)
t −X0

V 0/
√
n

,

where

cm,n =

√
2Γ
(

m(n−1)
2

)
√

m (n− 1)Γ
(

m(n−1)−1
2

) .
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The value cm,n is what one might refer to as a unbiasing contant in the sense that

E
(
U

(i)∗
t

∣∣∣U (i)
t

)
=

U
(i)
t − µ0

σ0/
√
n

.

The variable control limits for this chart are

LCL
(k)∗
t = −h

√
V
(
U

(k)∗
t

)
and UCL

(k)∗
t = h

√
V
(
U

(k)∗
t

)
with the variance determined under the assumption the process is in-control. The fixed

control limits are

LCL(k)∗ = −h

√
lim
t→∞

V
(
U

(k)∗
t

)
and UCL(k)∗ = h

√
lim
t→∞

V
(
U

(k)∗
t

)
.

5.3 EWMA(2) OR DOUBLE EWMA X CHART

Shamma and Shamma[17] introduced the double EWMA chart with equal smoothing pa-

rameters. We extend their definition of a double EWMA chart to unequal smoothing param-

eters. The double EWMA X chart (or EWMA(2) X chart) with known in-control process

parameters is a plot of the points with coordinates
(
t, U

(2,r1,r2)
t

)
for t = 1, 2, 3, . . ., where

U
(1,r1)
0 = µ0, U

(1,r1)
t = (1− r1)U

(1,r1)
t−1 + r1X t;

U
(2,r1,r2)
0 = µ0, U

(2,r1,r2)
t = (1− r2)U

(2,r1,r2)
t−1 + r2U

(1,r1)
t .

The chart signals at the first sampling stage t in which U
(2)
t ≤ LCL

(2)
t or U (2)

t ≥ UCL
(2)
t ,

where

LCL
(2,r1,r2)
t = E

(
U

(2,r1,r2)
t

)
− h

√
V
(
U

(2,r1,r2)
t

)
and

UCL
(2)
t = E

(
U

(2,r1,r2)
t

)
+ h

√
V
(
U

(2,r1,r2)
t

)
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with the expectation and variance determined under the assumption the process is in-

control. The following theorems are useful in analyzing the chart.

Theorem 5.3.1. U (2,r1,r2)
t and U

(2,r1,r2)∗
t can be expressed as

U
(2,r1,r2)
t =



[
(1− r1) r2B

(2)
t−1 + (1− r2)

t
]
µ0

+r1r2
∑t

i=1 B
(2)
t−iX i, if r1 ̸= r2; and

(1 + tr2) (1− r2)
t µ0

+r22
∑t

i=1 (t+ 1− i) (1− r2)
t−i X i,

if r1 = r2;

U
(2,r1,r2)∗
t =


r1r2

∑t
i=1 B

(2)
t−i (Zi + δ) , if r1 ̸= r2;

r22
∑t

i=1 (t+ 1− i) (1− r2)
t−i (Zi + δ) ,

if r1 = r2;

,

where

B
(2)
t−i =

∑t−i

j=0
(1− r1)

t−i−j (1− r2)
j

with B
(2)
t−i = 1 for i = t for t = 1, 2, 3, . . ..

Proof of Theorem 5.3.1. For t = 1 and r1 ̸= r2, we have

U
(2,r1,r2)
1 = (1− r2)µ0 + r2U

(1,r1)
1 = (1− r2)µ0 + r2

[
(1− r1)µ0 + r1X1

]
= [(1− r1) r2 + (1− r2)]µ0 + r1r2X1

=
[
(1− r1) r2B

(2)
1−1 + (1− r2)

]
µ0 + r1r2

∑1

i=1
B

(2)
1−iX i.

Hence, the theorem is true for t = 1 and r1 ̸= r2. Suppose the theorem is true for an
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arbtrary t > 1 and r1 ̸= r2. It follows that

U
(2,r1,r2)
t+1 = (1− r2)U

(2,r1,r2)
t + r2U

(1,r1)
t+1

= (1− r2)


[
(1− r1) r2B

(2)
t−1 + (1− r2)

t
]
µ0

+r1r2
∑t

i=1B
(2)
t−iX i


+ r2

[
(1− r1)

t+1 µ0 + r1
∑t+1

i=1
(1− r1)

t+1−i X i

]
=
[
(1− r1) r2

[
(1− r1)

t + (1− r2)B
(2)
t−1

]
+ (1− r2)

t+1
]
µ0

+ r1r2

[∑t

i=1

[
B

(2)
t−i (1− r2) + (1− r1)

t+1−i
]
X i +X t+1

]
.

Observe that

(1− r1)
t + (1− r2)B

(2)
t−1

= (1− r1)
t (1− r2)

0 +
∑t−1

j=0
(1− r1)

t−1−j (1− r2)
j+1

= (1− r1)
t (1− r2)

0 + (1− r1)
t−1 (1− r2)

1

+ . . .+ (1− r1)
0 (1− r2)

t

=
∑t+1−1

j=0
(1− r1)

t+1−1−j (1− r2)
j = B

(2)
t+1−1.

Further observe that

B
(2)
t−i (1− r2) + (1− r1)

t+1−i

=
∑t−i

j=0
(1− r1)

t−i−j (1− r2)
j+1 + (1− r1)

t+1−i

= (1− r1)
t+1−i (1− r2)

0 + (1− r1)
t−i (1− r2)

1

+ (1− r1)
t−i−1 (1− r2)

2 + . . .+ (1− r1)
0 (1− r2)

t−i+1

=
∑t+1−i

j=0
(1− r1)

t+1−i−j (1− r2)
j = B

(2)
t+1−i.

Therefore,

U
(2,r1,r2)
t+1 =

[
(1− r1) r2B

(2)
t+1−1 + (1− r2)

t+1
]
µ0 + r1r2

∑t+1

i=1
B

(2)
t+1−iX i.
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It follows by the Axiom of Induction that the theorem is true for all positive integers t ≥ 1.

For the case in which t = 1 and r1 = r2, we have

U
(2,r2,r2)
1 = (1− r2)µ0 + r2U

(1,r2)
1

= (1− r2)µ0 + r2
[
(1− r2)µ0 + r2X1

]
= (1 + 1r2) (1− r2)µ0

+ r22
∑1

i=1
(1 + 1− i) (1− r2)

1−i X i

= [(1− r1) r2 + (1− r2)]µ0 + r1r2X1.

Hence the theorem is true for t = 1 and r1 = r2. Suppose the theorem is true for an arbtrary

t > 1. We have

U
(2,r2,r2)
t+1 = (1− r2)U

(2,r2,r2)
t + r2U

(1,r2)
t+1

= (1 + tr2) (1− r2)
t+1 µ0

+ r22
∑t

i=1
(t+ 1− i) (1− r2)

t+1−i X i

+ r2

[
(1− r2)

t+1 µ0 + r2
∑t+1

i=1
(1− r2)

t+1−i X i

]
= (1 + (t+ 1) r2) (1− r2)

t+1 µ0

+ r22
∑t+1

i=1
((t+ 1) + 1− i) (1− r2)

t+1−i X i.

Thus, the theorem is true for t + 1. Therefore, by the Axiom of Induction, the theorem is

true for all positive integers t.

The variance of U (2,r1,r2)
t for r1 ̸= r2 is determined as follows.

V
(
U

(2,r1,r2)
t

)
= r21r

2
2

∑t

i=1

(
B

(2)
t−i

)2 σ2

n
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Observe that we can write

B
(2)
t−i =

∑t−i

j=0
(1− r1)

t−i−j (1− r2)
j

= (1− r1)
t−i
∑t−i

j=0

(
1− r2
1− r1

)j

= (1− r1)
t−i

(
1−r2
1−r1

)
−
(

1−r2
1−r1

)t−i+1

1− 1−r2
1−r1

= (1− r1)
t−i

1−
(

1−r2
1−r1

)t−i

1−r1
1−r2

− 1

=
(1− r2)

r2 − r1

[
(1− r1)

t−i − (1− r2)
t−i
]

.

It follows that

(
B

(2)
t−i

)2
=

(1− r2)
2

(r2 − r1)
2

[
(1− r1)

t−i − (1− r2)
t−i
]2

=
(1− r2)

2

(r2 − r1)
2

 (1− r1)
2(t−i) + (1− r2)

2(t−i)

−2 (1− r1)
t−i (1− r2)

t−i

 .

Using these results, we have that

V
(
U

(2,r1,r2)
t

)
= r21r

2
2

(1− r2)
2

(r2 − r1)
2

 ∑t
i=1 (1− r1)

2(t−i) +
∑t

i=1 (1− r2)
2(t−i)

−2
∑t

i=1 (1− r1)
t−i (1− r2)

t−i

 σ2

n
.
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Observe that

∑t

i=1
(1− r1)

2(t−i)

= (1− r1)
2t
∑t

i=1

[
(1− r1)

−2]i
= (1− r1)

2t (1− r1)
−2 − (1− r1)

−2(t+1)

1− (1− r1)
−2

= (1− r1)
2t 1− (1− r1)

−2t

(1− r1)
2 − 1

=
(1− r1)

2t − 1

(1− r1)
2 − 1

=
1− (1− r1)

2t

1− (1− r1)
2 .

Similarly, we have ∑t

i=1
(1− r2)

2(t−i) =
1− (1− r2)

2t

1− (1− r2)
2 .

Next observe that

∑t

i=1
(1− r1)

t−i (1− r2)
t−i

= (1− r1)
t (1− r2)

t
∑t

i=1

(
[(1− r1) (1− r2)]

−1)i
= (1− r1)

t (1− r2)
t [(1− r1) (1− r2)]

−1 − [(1− r1) (1− r2)]
−(t+1)

1− [(1− r1) (1− r2)]
−1

= (1− r1)
t (1− r2)

t 1− [(1− r1) (1− r2)]
−t

[(1− r1) (1− r2)]− 1

=
1− [(1− r1) (1− r2)]

t

1− [(1− r1) (1− r2)]
.

It follows that

V
(
U

(2,r1,r2)
t

)
= r21r

2
2

(1− r2)
2

(r2 − r1)
2

 1−(1−r1)
2t

1−(1−r1)
2 + 1−(1−r2)

2t

1−(1−r2)
2

−21−(1−r1)
t(1−r2)

t

1−(1−r1)(1−r2)

 σ2

n
.
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Theorem 5.3.2. The variance of U (2,r1,r2)
t is

V
(
U

(2,r1,r2)
t

)
=



r21r
2
2

(r2−r1)
2

 (1−r1)
2[1−(1−r1)

2t]
1−(1−r1)

2 +
(1−r2)

2[1−(1−r2)
2t]

1−(1−r2)
2

−2
(1−r1)(1−r2)[1−(1−r1)

t(1−r2)
t]

1−(1−r1)(1−r2)

 σ2

n
,

if r1 ̸= r2;
r2

(2−r2)
3



(2r2 + 2r22t) (1− r2)
2t

+2−

 4r22t
2 − 4r32t

2 + r42t
2

+4r2t+ r22


× (1− r2)

2t

+r22 − 2r2 + 2 (1− r2)
2t




σ2

n
,

if r1 = r2;

for t = 1, 2, 3, . . . and

lim
t→∞

V
(
U

(2,r1,r2)
t

)
=



r21r
2
2

(r2−r1)
2

(
(1−r1)

2

1−(1−r1)
2 +

(1−r2)
2

1−(1−r2)
2 − 2 (1−r1)(1−r2)

1−(1−r1)(1−r2)

)
σ2

n
,

if r1 ̸= r2;
r2(2−2r2+r22)

(2−r2)
3

σ2

n
,

if r1 = r2.

Also,

V
(
U

(2,r1,r2)∗
t

)
=

V
(
U

(2)
t

)
σ2/n

and lim
t→∞

V
(
U

(2)∗
t

)
=

limt→∞ V
(
U

(2)
t

)
σ2/n

.

r2 (2− 2r2 + r22)

(2− r2)
3 =

r2 [1 + (1− 2r2 + r22)]

(2− r2)
3

It follow that (1) the variable and (2) fixed control limits for the double EWMA X chart
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are

(1) LCL
(2,r1,r2)
t = µ0 − h

√
V
(
U

(2,r1,r2)
t

)
and

UCL
(2,r1,r2)
t = µ0 + h

√
V
(
U

(2,r1,r2)
t

)
;

(2) LCL
(2,r1,r2)
t = µ0 − h

√
lim
t→∞

V
(
U

(2,r1,r2)
t

)
and

UCL
(2,r1,r2)
t = µ0 + h

√
lim
t→∞

V
(
U

(2,r1,r2)
t

)
,

where the variance is determined when the process is in a state of statistical in control. The

(3) variable and (4) fixed control limits for the double EWMA(2) Z chart are

(3) LCL
(2,r1,r2)∗
t = −h

√
V
(
U

(2,r1,r2)∗
t

)
and UCL

(2)∗
t = h

√
V
(
U

(2,r1,r2)∗
t

)
and

(4) LCL
(2,r1,r2)∗
t = −h

√
lim
t→∞

V
(
U

(2,r1,r2)∗
t

)
and UCL

(2)∗
t = h

√
lim
t→∞

V
(
U

(2,r1,r2)∗
t

)
,

where the variance is determined when the process is in-control. These results are presented

in Shamma and Shamma.

5.4 TRIPLE EWMA X CHART

Alevizakos,Chatterjee and Koukouvinos[5] introduced the triple EWMA X chart. The

triple EWMA X chart (or EWMA(3) X chart) with known in-control process parameters is

a plot of the points with coordinates
(
t, U

(3,r1,r2,r3)
t

)
for t = 1, 2, 3, . . ., where

U
(1,r1)
0 = µ0, U

(1,r1)
t = (1− r1)U

(1,r1)
t−1 + r1X t;

U
(2,r1,r2)
0 = µ0, U

(2,r1,r2)
t = (1− r2)U

(2,r1,r2)
t−1 + r2U

(1,r1)
t ;

U
(3,r1,r2,r3)
0 = µ0, U

(3,r1,r2,r3)
t = (1− r3)U

(3,r1,r2,r3)
t−1 + r3U

(2,r1,r2)
t .
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The chart signals at the first sampling stage t in which U
(3)
t ≤ LCL

(3)
t or U (3)

t ≥ UCL
(3)
t ,

where the variable limits are

LCL
(3,r1,r2,r3)
t = E

(
U

(3,r1,r2,r3)
t

)
− h

√
V
(
U

(3,r1,r2,r3)
t

)
;

UCL
(3,r1,r2,r3)
t = E

(
U

(3,r1,r2,r3)
t

)
+ h

√
V
(
U

(3,r1,r2,r3)
t

)
and fixed limits

LCL
(3,r1,r2,r3)
t = E

(
U

(3,r1,r2,r3)
t

)
− h

√
lim
t→∞

V
(
U

(3,r1,r2,r3)
t

)
;

UCL
(3,r1,r2,r3)
t = E

(
U

(3,r1,r2,r3)
t

)
+ h

√
lim
t→∞

V
(
U

(3,r1,r2,r3)
t

)
with the expectation and variance determined under the assumption the process is in-

control.

There are five possible senerios for the smoothing parameters r1, r2, and r3. They are

(1) r1 ̸= r2 r1 ̸= r3 r2 ̸= r3

(2) r1 ̸= r2 r1 ̸= r3 r2 = r3

(3) r1 ̸= r2 r1 = r3 r2 ̸= r3

(4) r1 = r2 r1 ̸= r3 r2 ̸= r3

(5) r1 = r2 r1 = r3 r2 = r3


.

We will only examine cases (1) and (5) leaving the others for future research. We plan to

use a simulation method similar to the one used by Rigdon to investigate our conjecture

that the optimal triple EWMA X chart is the optimal EWMA X chart.
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The variance of U (3,r1,r2,r3)
t can be determined by

lim
t→∞

V
(
U

(3,r1,r2,r3)
t

)
=



r21r
2
2r

2
3[

(1−r1)
4

(r1−r2)
2(r1−r3)

2

+ (1−r2)
4

(r1−r2)
2(r3−r2)

2

+ (1−r3)
4

(r1−r3)
2(r3−r2)

2[1−(1−r3)
2]

−2 (1−r1)
2(1−r2)

2

(r1−r2)
2(r1−r3)(r3−r2)[1−(1−r1)

2(1−r2)
2]

−2 (1−r1)
2(1−r2)

2

(r1−r2)
2(r1−r3)(r3−r2)[1−(1−r1)

2(1−r2)
2]

+2 (1−r1)
2(1−r3)

2

(r1−r2)(r1−r3)
2(r3−r2)[1−(1−r1)

2(1−r2)
2]
]σ

2

n

if r1 ̸= r2; r1 ̸= r3; and r2 ̸= r3;

r63

 6(1−r3)
6r3

(2−r3)
5 +

12(1−r3)
4r23

(2−r3)
4

+
7(1−r3)

2r33
(2−r3)

4 +
r43

(2−r3)
42

 σ2

n

if r1 = r2 = r3.

.

These results are presented in Alevizakos,Chatterjee and Koukouvinos[5].

The triple EWMA X chart (or EWMA(3) X chart) with estimated in-control process

parameters is a plot of the points with coordinates
(
t, U

(3)
t

)
for t = 1, 2, 3, . . ., where

U
(1,r1)
0 = X0, U

(1,r1)
t = (1− r1)U

(1,r1)
t−1 + r1X t;

U
(2,r1,r2)
0 = X0, U

(2,r1,r2)
t = (1− r2)U

(2,r1,r2)
t−1 + r2U

(1,r1)
t ;

U
(3,r1,r2,r3)
0 = X0, U

(3,r1,r2,r3)
t = (1− r3)U

(3,r1,r2,r3)
t−1 + r3U

(2,r1,r2)
t .

The chart signals at the first sampling stage t in which U
(3)
t ≤ LCL

(3)
t or U (3)

t ≥ UCL
(3)
t ,
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where

LCL
(3,r1,r2,r3)
t = E

(
U

(3,r1,r2,r3)
t

)
− h

√√√√V
(
U

(3,r1,r2,r3)
t

)
σ2/n

V
1/2

0 /c4,m√
n

and

UCL
(3,r1,r2,r3)
t = E

(
U

(3,r1,r2,r3)
t

)
+ h

√√√√V
(
U

(3,r1,r2,r3)
t

)
σ2/n

V
1/2

0 /c4,m√
n

with the expectation and variance determined under the assumption the process is in-

control.

5.5 QUADRUPLE EWMA X CHART

Alevizakos,Chatterjee and Koukouvinos[6] introduced the quadruple EWMA X chart. The

quadruple EWMA X chart (or EWMA(4) X chart) with known in-control process parame-

ters is a plot of the points with coordinates
(
t, U

(4)
t

)
for t = 1, 2, 3, . . ., where

U
(1,r1)
0 = µ0, U

(1,r1)
t = (1− r1)U

(1,r1)
t−1 + r1X t;

U
(2,r1,r2)
0 = µ0, U

(2,r1,r2)
t = (1− r2)U

(2,r1,r2)
t−1

+ r2U
(1,r1)
t ;

U
(3,r1,r2,r3)
0 = µ0, U

(3,r1,r2,r3)
t = (1− r3)U

(3,r1,r2,r3)
t−1

+ r3U
(2,r1,r2)
t ;

U
(4,r1,r2,r3,r4)
0 = µ0, U (4,r1,r2,r3,r4)

t = (1− r4)U
(4,r1,r2,r3,r4)
t−1

+ r4U
(3,r1,r2,r3)
t .
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The variable limits chart signals at the first sampling stage t in which U
(4,r1,r2,r3,r4)
t ≤

LCL
(4,r1,r2,r3,r4)
t or U (4,r1,r2,r3,r4)

t ≥ UCL
(4,r1,r2,r3,r4)
t , where

LCL
(4)
t = E

(
U

(4,r1,r2,r3,r4)
t

)
− h

√
V
(
U

(4,r1,r2,r3,r4)
t

)
and

UCL
(4)
t = E

(
U

(4,r1,r2,r3,r4)
t

)
+ h

√
V
(
U

(4,r1,r2,r3,r4)
t

)
with the expectation and variance determined under the assumption the process is in a state

of statistical in control. One can show that when the process is in-control E
(
U

(4,r1,r2,r3,r4)
t

)
=

µ0. The fixed limits chart uses the control limits

LCL(4,r1,r2,r3,r4) = µ0 − h

√
lim
t→∞

V
(
U

(4,r1,r2,r3,r4)
t

)
and

UCL(4,r1,r2,r3,r4) = µ0 + h

√
lim
t→∞

V
(
U

(4,r1,r2,r3,r4)
t

)
.

If r1 = r2 = r3 = r4, then according to [6]

lim
t→∞

V
(
U

(4)
t

)
=

r84
36

 720d5

(1−d)7
+ 2520d4

(1−d)6
+ 3312d3

(1−d)5

+ 1980d2

(1−d)4
+ 50d

(1−d)3
+ 36

(1−d)2

 σ2

n
,

where d = (1− r4)
2. Observe that

lim
t→∞

V
(
U

(4)
t

)

=
r84
36


720(1−r4)

10

(1−(1−r4)
2)

7 +
2520(1−r4)

8

(1−(1−r4)
2)

6 +
3312(1−r4)

6

(1−(1−r4)
2)

5

+ 1980(1−r4)
4

(1−(1−r4)
2)

4 +
50(1−r4)

2

(1−(1−r4)
2)

3 +
36

(1−(1−r4)
2)

2

 σ2

n
.

5.6 DESIGN METHODS

We examine three methods for designing the EWMA X chart for comparison with the

EWMA(k) X chart. The first methods sets the smoothing parameter r of the EWMA X
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chart equal to the product of the smoothing parameters of the EWMA(k) X chart (r =

r1 · · · rk). The method can be used whether the variable or fixed control limits are used.

A second method chooses r such that the variance the chart statistic Ut of the EWMA X

chart is equal to the variance of the EWMA(k) X chart statistic U
(k,r1,...,rk)
t . This method

was studied by Knoth[11]. The value of r for the EWMA X chart is the solution to the

equation
r

2− r
= lim

t→∞
V
(
U

(2,rk,...,rk)
t

)
.

It follows that

r =
2 limt→∞ V

(
U

(2,rk,...,rk)
t

)
1 + limt→∞ V

(
U

(2,rk,...,rk)
t

) .

The r for the EWMA X chart as a function of the smoothing parameters for the double

(r1 = r2), triple (r1 = r2 = r3), and quadruple (r1 = r2 = r3 = r4) EWMA X charts using

methods (1) and (2) are given below .

EWMA Method 1 Method 2

Double r = r1r2 r =
2r2(2−2r2+r22)

(2−r2)
3+r2(2−2r2+r22)

Triple r = r1r2r3
r =

6(1−r3)
6r63

(2−r3)
5 +

12(1−r3)
4r83

(2−r3)
4

+
7(1−r3)

2r93
(2−r3)

4 +
r103

(2−r3)
42

Quadruple r = r1r2r3r4 r =
r84
36


720(1−r4)

10

(1−(1−r4)
2)

7 +
2520(1−r4)

8

(1−(1−r4)
2)

6

+ 3312(1−r4)
6

(1−(1−r4)
2)

5 +
1980(1−r4)

4

(1−(1−r4)
2)

4

+ 50(1−r4)
2

(1−(1−r4)
2)

3 +
36

(1−(1−r4)
2)

2




We first look at some examples for k = 2 when r1 ̸= r2. Simulation was used to

estimate the ARL’s the double EWMA X chart with variable control limits having chart

parameters r1 = 0.2, r2 = 0.4, and h(2) = 2.44 for δ = 0.0, 0.1, ..., 1.0. The in-control
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ARL of the chart was estimated to be 198.11. The ARL’s of the the EWMA X chart with

variable control limits having chart parameters r = r1 ∗ r2 = 0.08 and h = 2.415 with

estimated in-control ARL of 199.10. For both charts, fifty thousand (50, 000) simulations

were used. The ARL’s are given in the following table, where δ = (µ− µ0) / (σ0/
√
n).

δ EWMA - ARL, r = 0.08, h = 2.415 DEWMA - ARL, r1 = 0.2, r2 = 0.4

0.0 199.10 198.11

0.1 139.13 154.42

0.2 74.19 91.13

0.3 42.57 53.49

0.4 27.24 33.63

0.5 19.11 22.97

0.6 14.21 16.49

0.7 11.00 12.58

0.8 8.89 9.93

0.9 7.35 8.11

1.0 6.18 6.78

Table 5.1: Comparison of EWMA and DEWMA X Charts

As one can see from the table the EWMA X chart with variable control limits having

chart parameters r = r1r2 = 0.08 and h = 2.415 outperforms the double EWMA X chart

with variable control limits having chart parameters r1 = 0.2, r2 = 0.4, and h = 2.44 for

values of δ ≤ 1.

Similarly, simulation was used to estimate the ARL’s the double EWMA X chart
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with variable control limits having chart parameters r1 = 0.4, r2 = 0.2, and h = 2.385 for

δ = 0.0, 0.1, ..., 1.0. The in-control ARL of the chart was estimated to be 197.96. For both

charts, fifty thousand (50, 000) simulations were used.

The ARL’s are given in the table that follows. The EWMA X chart with r = r1r2 can

be designed to have better run length performance than the DEWMA chart.

δ EWMA - ARL, r = 0.08, h = 2.415 DEWMA - ARL, r1 = 0.4, r2 = 0.2

0.0 199.10 197.96

0.1 139.13 153.84

0.2 74.19 90.50

0.3 42.57 53.70

0.4 27.24 33.69

0.5 19.11 21.78

0.6 14.21 16.54

0.7 11.00 12.58

0.8 8.89 9.92

0.9 7.35 8.06

1.0 6.18 6.76

Table 5.2: Comparison of EWMA and DEWMA X Charts
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Using Method 1, we further see from the following table that the EWMA X Chart

performs better than the DEWMA X Chart.

δ EWMA - ARL, r = 0.04, h = 2.16 DEWMA - ARL, r1 = 0.2, r2 = 0.2

0.0 199.36 199.04

0.1 148.76 192.20

0.2 82.94 170.80

0.3 48.98 134.03

0.4 32.46 92.87

0.5 23.70 59.95

0.6 18.56 39.07

0.7 15.15 27.65

0.8 12.86 20.85

0.9 11.15 16.56

1.0 9.90 13.79

Table 5.3: Comparison of EWMA and DEWMA X Charts
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Using Method 2, using simulation we give a comparison of the EWMA X chart and

the DEWMA X chart for shifts δ = 0.0, . . . , 1.0 in the following table. For all shifts listed

the EWMA X chart outperforms the DEWMA X chart.

δ EWMA - ARL, r = 0.1065, h = 2.505 DEWMA - ARL, r1 = 0.2, r2 = 0.2

0.0 199.50 199.04

0.1 155.04 192.20

0.2 89.44 170.80

0.3 52.64 134.03

0.4 34.44 92.87

0.5 24.59 59.95

0.6 18.86 39.07

0.7 15.24 27.65

0.8 12.72 20.85

0.9 10.94 16.56

1.0 9.62 13.79

Table 5.4: Comparison of EWMA and DEWMA X Charts

Rigdon (2023) via simulation has shown that the optimal double EWMA (EWMA (2))

X chart is the optimal EWMA X chart. We conjecture that his method could be used to

show that the optimal triple EWMA (EWMA (3)) X chart is the optimal EWMA X chart.

This would require a sizeable amount of simulations. Similarly, we conjecture that the

optimal quadruple EWMA (EWMA (4)) X chart is the optimal EWMA X chart.
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5.7 CONCLUSION

We have shown that ad hoc double EWMA X chart does not perform as well as the EWMA

X chart for small to moderate shifts in the process mean. Hence, the extra computations

necessary to compute the plotted statistic as well as the extra work in setting up the control

limits provide the practitioner no advantage. While not shown here, we do not believe

that the triple, quadruple, etc. EWMA X charts will outperform the EWMA X chart for

small to moderate shifts in the process mean. These charts would be even more difficult to

manage by the practitioner than the double EWMA X chart.
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CHAPTER 6

CHANGE POINT ANALYSIS

6.1 INTRODUCTION

When a production process has changed via one or more process parameters, it is desirable

to know when this change has occurred or a least a prediction of when the change occurred.

Our change point model assumes that the process changes from an in-control process after

sampling stage τ but before sampling stage τ + 1, where 0 ≤ τ < t with t the number of

the sample in Phase II when the chart signals a potential out-of-control process. We will

examine the likelihood method for the Shewhart and EWMA X charts to detect the change

point of a production process. We assume the independent Normal model in Phase II. In the

next section, we examine the likelihood function of associated with the Shewhart X both

when the in-control parameters are known and when they are estimated. A method was

derived for predicting the change point τ . In Section 3, we derive the likelihood function

associated with the EWMA X chart in the parameters known case and the parameters

estimated case. The method for predicting the change point τ is derived. This is followed

by a section in which comparisons are made. In the last section, conclusions are given.

6.2 PREDICTING THE CHANGE POINT USING A SHEWHART X CHART

Walter A. Shewhart introduced the quality control chart in the early 1920’s.The Shewhart

X chart is a plot of the points
(
t,X t

)
with control limits

LCL = µ0 − k
σ0√
n

and UCL = µ0 + k
σ0√
n

.
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The Shewhart X chart is a member of the family of EWMA X charts in which r = 1. The

chart does not signal at time i if

µ0 − k
σ0√
n
< X i < µ0 + k

σ0√
n

or

−k <
X i − µ0

σ0/
√
n

< k or − k < Yt < k,

where

Yi =
X i − µ0

σ0/
√
n

.

The chart that plots the points with coordinates (i, Yi) with control limits

LCL = −k and UCL = k

is equivalent to the Shewhart X chart in the sense that either both charts signal or both

charts do not signal at time t. The value of k for an in-control averge run length of ARL0

must statisfy the equation

1

2 [1− Φ (k)]
= ARL0 or k = Φ−1

(
ARL0 − 0.5

ARL0

)
.

For example, if we desire an in-control average run length of 200, we would select k =

2.807033768.

Assuming the process is in-control (µ = µ0 and σ = σ0) for 0 ≤ i ≤ τ and the process

is out-of-control with respect to the mean (µ ̸= µ0 and σ = σ0) for τ < i ≤ t, then we have

that

Yi ∼

 N (0, 1) , for 0 ≤ i ≤ τ ;

N (δ, 1) , for τ < i ≤ t,

where

δ =
µ− µ0

σ0/
√
n

.
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The likelihood function is the joint distribution of the Yt’s and is given by

L (δ, τ |Y, k, t) = fY (Y |δ, τ, k, t) =
∏t

i=1
fYi

(Yi |δ, τ, k, t) ,

where Y = [Y1, Y2, . . . , Yt]
T. Under the independent Normal model with the process in-

control for 0 ≤ i ≤ τ and out-of-control for τ < i < t, we have

L (δ, τ |Y, k, t) = fY (Y |δ, τ, k, t)

=
∏τ

i=1

1

(2π)1/2
e−

1
2
Y 2
i

∏t

i=τ+1

1

(2π)1/2
e−

1
2
(Yi−δ)2

=
1

(2π)t/2
e−

1
2

∑τ
i=1 Y

2
i e−

1
2

∑t
i=τ+1(Yi−δ)2

=
1

(2π)t/2
e−

1
2

∑τ
i=1 Y

2
i − 1

2

∑t
i=τ+1(Y 2

i −2δyi+δ2)

=
1

(2π)t/2
e−

1
2

∑t
i=1 Y

2
i +δ

∑t
i=τ+1 Yi− 1

2
(t−τ)δ2 .

The log-likelihood function is given by

l (δ, τ |Y, k, t) = − t

2
ln (2π)− 1

2

∑t

i=1
Y 2
i + δ

∑t

i=τ+1
Yi −

1

2
(t− τ) δ2.

A method for predicting the change-point τ first uses the likelihood function to obtain

the maximum likelihood estimator δ̂ of δ. Taking the partial derivatives of l (δ, τ |Y, k, t)

with respect to δ, we have

∂l

∂δ
=
∑t

i=τ+1
yi − (t− τ) δ.

The maximum likelihood estimator δ̂ of δ is the solution to the equation

0 =
∑t

i=τ+1
Yi − (t− τ) δ̂.

It follows that

δ̂ =
1

t− τ

∑T

i=τ+1
Yi = Y t−τ .
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We see that

l
(
δ̂, τ |Y, k, t

)
= − t

2
ln (2π)− 1

2

∑T

i=1
Y 2
i + (t− τ)Y

2

T−τ −
1

2
(t− τ)Y

2

t−τ

= − t

2
ln (2π)− 1

2

∑T

i=1
Y 2
i +

1

2
(t− τ)Y

2

t−τ .

The maximum likelihood predictor τ̂ of τ is the value of τ that maximizes

(t− τ)Y
2

t−τ ,

for τ = 0, 1, . . . , t− 1.

In the following table, we have the change point predictions when in-control parame-

ters are known using simulation based on 10, 000 simulated values for τ = 20, 40, 60 and

δ = 0.1, . . . , 1.0. Note that in all cases the predicted values of τ fell between τ and τ + 1.
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τ = 20

δ τ sτ

0.1 20.394 0.490

0.2 20.395 0.490

0.3 20.389 0.489

0.4 20.433 0.497

0.5 20.429 0.496

0.6 20.397 0.491

0.7 20.349 0.477

0.8 20.396 0.491

0.9 20.439 0.498

1.0 20.455 0.499

τ = 40

δ τ sτ

0.1 40.375 0.486

0.2 40.430 0.496

0.3 40.410 0.493

0.4 40.387 0.489

0.5 40.441 0.498

0.6 40.395 0.490

0.7 40.401 0.492

0.8 40.365 0.483

0.9 40.416 0.494

1.0 40.315 0.465

τ = 60

δ τ sτ

0.1 60.352 0.479

0.2 60.383 0.487

0.3 60.409 0.492

0.4 60.398 0.491

0.5 60.395 0.490

0.6 60.431 0.497

0.7 60.416 0.494

0.8 60.433 0.497

0.9 60.453 0.498

1.0 60.452 0.499

Table 6.1: In-control Known Paramters Case, ARL0 equal to 200

The estimated parameter version of the chart plots the points with coordinates (i, Y ∗
i )

with control limits LCL = −k and UCL = k, where

Y ∗
i = cm,n

X i −X0

V
1/2

0 /
√
n

.

The value of cm,n is a function of m and n, where

cm,n =

√
2Γ
(

m(n−1)
2

)
√

m (n− 1)Γ
(

m(n−1)−1
2

) .

The value of cm,n is selected so that E
(
Y ∗
i

∣∣X i

)
=
(
X i − µ0

)
/ (σ0/

√
n). Hence,

Y ∗
i = cm,n

X i −X0

V
1/2

0 /
√
n
=

√
2Γ
(

m(n−1)
2

)
√

m (n− 1)Γ
(

m(n−1)−1
2

) X i −X0

V
1/2

0 /
√
n

.
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Note that we can write Y ∗
i as

Y ∗
i =

cm,n

V
1/2

0 /σ0

(
X i − µ

σ0/
√
n
+

µ− µ0

σ0/
√
n
− X0 − µ0

σ0/
√
mn

/
√
m

)

=
cm,n

W
1/2

0

(
Zi + δ − Z0/

√
m
)
= cm,nW

−1/2

0

(
Zi + δ − Z0/

√
m
)

,

where

Zi =
X i − µ

σ0/
√
n

∼ N (0, 1) , W 0 = V 0/σ
2
0 ∼ 1

m (n− 1)
χ2
m(n−1),

δ =
µ− µ0

σ0/
√
n

, and Z0 =
X0 − µ0

σ0/
√
mn

∼ N (0, 1) .

The conditional distribution of Y ∗
i given the statistics Z0 and W 0 is

Y ∗
i

∣∣Z0,W 0 ∼

 N
(
−cm,nZ0W

−1/2

0 /
√
m, c2W

−1

0

)
, 0 ≤ i ≤ τ ;

N
(
δ − cm,nZ0W

−1/2

0 /
√
m, c2W

−1

0

)
, τ < i ≤ t,

The conditional likelihood function is

L
(
δ, τ
∣∣Y∗,Z0,W 0, k, t

)
=
∏τ

i=1

1

(2π)1/2 cm,nW
−1/2

0

e
− 1

2

(
Y ∗
i +cZ0W

−1/2
0 /

√
m

cW
−1/2
0

)2

×
∏t

i=τ+1

1

(2π)1/2 cm,nW
−1/2

0

e
− 1

2

(
Y ∗
i −δ+cZ0W

−1/2
0 /

√
m

cW
−1/2
0

)2

=
1

(2π)t/2W
−t/2

0 ctm,n

e
− 1

2
c−2
m,nW 0

∑τ
i=1

(
Y ∗
i +cZ0W

−1/2
0 /

√
m
)2

× e
− 1

2
c−2
m,nW 0

∑t
i=τ+1

(
Y ∗
i +cZ0W

−1/2
0 /

√
m−δ

)2
,

where Y∗ = [Y ∗
1 , . . . , Y

∗
t ]

T. Observe that(
Y ∗
i − δ + cm,nZ0W

−1/2

0 /
√
m
)2

=
(
Y ∗
i + cm,nZ0W

−1/2

0 /
√
m− δ

)2
=
(
Y ∗
i + cm,nZ0W

−1/2

0 /
√
m
)2

− 2
(
Y ∗
i + cm,nZ0W

−1/2

0 /
√
m
)
δ + δ2.
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Thus,

L
(
δ, τ
∣∣Y∗,Z0,W 0, k, t

)
=

1

(2π)t/2 ctm,nW
−t/2

0

e
− 1

2
c−2
m,nW 0

∑t
i=1

(
Y ∗
i +cm,nZ0W

−1/2
0 /

√
m
)2

× e
c−2
m,nW 0

∑t
i=τ+1

(
Y ∗
i +cm,nZ0W

−1/2
0 /

√
m
)
δ− 1

2
c−2
m,nW 0

∑T
i=τ+1(t−τ)δ2 .

We can now write the conditional log-likelihood function as

l
(
δ, τ
∣∣Y∗,Z0,W 0, k, t

)
= − t

2
ln (2π)− t ln (cm,n) +

t

2
ln
(
W 0

)
− 1

2
c−2
m,nW 0

∑t

i=1

(
Y ∗
i + cm,nZ0W

−1/2

0 /
√
m
)2

+ c−2
m,nW 0

∑t

i=τ+1

(
Y ∗
i + cm,nZ0W

−1/2

0 /
√
m
)
δ

− 1

2
c−2
m,nW 0 (t− τ) δ2.

Observe that

∂l

∂δ
= c−2

m,nW 0

∑t

i=τ+1

(
Y ∗
i + cm,nZ0W

−1/2

0 /
√
m
)
− (t− τ) c−2

m,nW 0δ.

The maximum likelihood estimator δ̂ of δ is the solution to the equation

c−2
m,nW 0

∑t

i=τ+1

(
Y ∗
i + cm,nZ0W

−1/2

0 /
√
m
)
−(t− τ) c−2

m,nW 0δ = 0.or δ̂ = Y
∗
t−τ+cm,nZ0W

−1/2

0 /
√
m.
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The conditional log-likelihood function evaluated at δ̂ yields

l
(
δ̂, τ

∣∣Y∗,Z0,W 0, k, t
)
= − t

2
ln (2π)− t ln (cm,n)

+
t

2
ln
(
W 0

)
− 1

2
c−2
m,nW 0

∑T

i=1

(
Y ∗
i + cm,nZ0W

−1/2

0 /
√
m
)2

+ c−2W 0 (t− τ)
(
Y

∗
t−τ + cm,nZ0W

−1/2

0 /
√
m
)2

− 1

2
c−2
m,nW 0 (t− τ)

(
Y

∗
t−τ + cm,nZ0W

−1/2

0 /
√
m
)2

= − t

2
ln (2π)− t ln (cm,n)

+
t

2
ln
(
W 0

)
− 1

2
c−2
m,nW 0

∑t

i=1

(
Y ∗
i + cm,nZ0W

−1/2

0 /
√
m
)2

+
1

2
c−2
m,nW 0 (t− τ)

(
Y

∗
t−τ + cm,nZ0W

−1/2

0 /
√
m
)2

.

The maximum likelihood predictor τ̂ of τ is the value of τ that maximizes

(t− τ)
(
Y

∗
t−τ + cm,nZ0W

−1/2

0 /
√
m
)2

.

Note that if cm,n = 1, Z0 = 0, and W 0 = 1, yields the method for obtaining the maximum

likelihood predictor τ̂ of τ when the in-control parameters are given.

In the following table, we have the change point predictions when in-control param-

eters are estimated using simulation based on 10, 000 simulated values for τ = 20, 40, 60

and δ = 0.1, . . . , 1.0. The values for m and n were set to 4 and 6, respectively. Note that

in all cases the predicted values of τ fell between τ and τ + 1. Also in a comparison with

the known parameters case, the predicted values are a bit larger with more variability.
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τ = 20

δ τ sτ

0.1 20.520 0.500

0.2 20.515 0.501

0.3 20.493 0.500

0.4 20.580 0.494

0.5 20.500 0.501

0.6 20.585 0.493

0.7 20.616 0.487

0.8 20.667 0.472

0.9 20.698 0.460

1.0 20.706 0.457

τ = 40

δ τ sτ

0.1 40.515 0.500

0.2 40.501 0.501

0.3 40.526 0.499

0.4 40.563 0.497

0.5 40.547 0.498

0.6 40.577 0.495

0.7 40.659 0.475

0.8 40.607 0.489

0.9 40.683 0.466

1.0 40.664 0.473

τ = 60

δ τ sτ

0.1 60.459 0.498

0.2 60.505 0.501

0.3 60.489 0.500

0.4 60.541 0.499

0.5 60.551 0.498

0.6 60.607 0.489

0.7 60.580 0.494

0.8 60.664 0.473

0.9 60.687 0.464

1.0 60.662 0.474

Table 6.2: In-control Estimated Parameters Case, ARL0 equal to 200

6.3 CHANGE POINT PREDICTION USING A EWMA X CHART

In the parameters known case, the t × 1 vector U of EWMA statistics can in general be

expressed as

U =

 Uτ

Ut−τ

 =

 Lτ 0

J Lt−τ


 Zτ

Zt−τ

+ δ

 0τ

bt−τ


∼ Nt

µU = δ

 0τ

bt−τ

 ,ΣU =

 Lτ 0

J Lt−τ


 Lτ 0

J Lt−τ


T
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where Uτ = [U1, . . . , Uτ ]
T, Ut−τ = [Uτ+1, . . . , Ut]

T,

Lτ =



r 0 . . . 0

(1− r) r r . . . 0

...
... . . . ...

(1− r)τ−1 r (1− r)τ−2 r . . . r



τ×τ

,

J =



(1− r)τ r (1− r)τ−1 r . . . (1− r)1 r

(1− r)τ+1 r (1− r)τ r . . . (1− r)2 r

...
... . . . ...

(1− r)τ+t−τ−1 r (1− r)τ+t−τ−2 r . . . (1− r)t−τ r



(t−τ)×τ

,

Lt−τ =



r 0 . . . 0

(1− r) r r . . . 0

...
... . . . ...

(1− r)t−1 r (1− r)t−2 r . . . r



(t−τ)×(t−τ)

,

and bt−τ =



1− (1− r)1

1− (1− r)2

...

1− (1− r)t−τ


.

The likelihood function L (δ, τ |U, r, h, t) as a function of δ and τ is

L (δ, τ |U, r, h, t) = fU (U |δ, τ, r, h, t) = 1

(2π)t/2 |ΣU|1/2
e−

1
2
(U−µU)TΣ−1

U (U−µU)

=
1

(2π)t/2 rt
e−

1
2
(U−µU)TΣ−1

U (U−µU) =
1

(2π)t/2 rt
e−

1
2
ZTZ and

l (δ, τ |U, r, h, t) = − t

2
ln (2π)− t ln (r)− 1

2
ZTZ,
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where

(U− µU)
T Σ−1

U (U− µU) = ZTZ,

with

Z =

 Zτ

Zt−τ


=

 Lτ 0

J Lt−τ


−1

 Uτ

Ut−τ

− δ

 0τ

bt−τ




=

 L−1
τ 0

K L−1
t−τ


 Uτ

Ut−τ

− δ

 L−1
τ 0

K L−1
t−τ


 0τ

bt−τ


=

 L−1
τ 0

K L−1
t−τ


 Uτ

Ut−τ

− δ

 0τ

1t−τ


=

 L−1
τ Uτ

KUτ + L−1
t−τUt−τ − δ1t−τ

 =

 G

H− δ1t−τ


G = L−1

τ Uτ , H = KUτ + L−1
t−τUt−τ and

K =



0 . . . 0 −1−r
r

0 . . . 0 0

... . . . ...
...

0 . . . 0 0


.
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It follows that

−1

2
ZTZ = −1

2

 G

H− δ1t−τ


T  G

H− δ1t−τ


= −1

2
GTG−1

2
(H− δ1t−τ )

T (H− δ1t−τ )

= −1

2

(
GTG+HTH

)
+HT1t−τδ −

1

2
1T
t−τ1t−τδ

2

= −1

2

(
GTG+HTH

)
+HT1t−τδ −

1

2
(t− τ) δ2.

Hence, we can write the log-likelihood function as

l (δ, τ |U, r, h, t) = − t

2
ln (2π)− t ln (r)− 1

2

(
GTG+HTH

)
+HT1t−τδ−

1

2
(t− τ) δ2.

The maximum likelihood estimator δ̂ of δ is the solution to the equation

∂l

∂δ
= HT1t−τ − (t− τ) δ = 0 or δ̂ =

HT1t−τ

t− τ
.

Recall that H = KUτ + L−1
t−τUt−τ , thus

HT1t−τ =
(
KUτ + L−1

t−τUt−τ

)
T1t−τ

= UT
τ K

T1t−τ +UT
t−τ

(
L−1

t−τ

)
T1t−τ

= (t− τ)

[
1

t− τ

∑t−1

i=τ
Ui +

1

r

(
Ut − Uτ

t− τ

)]
= (t− τ)

[
1

t− τ

∑t−1

i=τ
Ui +

1

r

(
Ut − Uτ

t− τ

)]
.

It follows that the likelihood function can be expressed as

L (δ, τ |U, r, h, t) =
1

(2π)t/2 rt/2
eA+Bδ− 1

2
(t−τ)δ2 .

Hence, the log-likelihood function can be expressed as

l (δ, τ |U, r, h, t) = − t

2
ln (2π)− t

2
ln (r) + A+Bδ − 1

2
(t− τ) δ2.
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The maximum likelihood estimator δ̂ of δ is the solution to the equation

∂l

∂δ
= B − (t− τ) δ = 0 or

δ̂ =
1

t− τ
B =

1

t− τ

(
1T
t−τKUτ + 1T

t−τL
−1
t−τUt−τ

)
=

1

t− τ

(
−1− r

r
Uτ +

∑t

i=τ+1
Ui +

1− r

r
Ut

)
=

1

t− τ

[∑t

i=τ+1
Ui +

1− r

r
(Ut − Uτ )

]
= U t−τ +

1− r

r

(
Ut − Uτ

t− τ

)
.

Evaluating the log-likelihood function at δ̂, we have

l
(
δ̂, τ |U, r, h, t

)
= − t

2
ln (2π)− t

2
ln (r)+A+

1

2
(t− τ)

[
U t−τ +

1− r

r

(
Ut − Uτ

t− τ

)]2
.

l
(
δ̂, τ |U, r, h, t

)
= − t

2
ln (2π)− t

2
ln (r) + A

+
1

2
(t− τ)

[
U t−τ +

1− r

r

(
Ut − Uτ

t− τ

)]2
.

The maximum likelihood predictor τ̂ for τ is the value of τ that maximizes

(t− τ)

(
U t−τ +

1− r

r

Ut − Uτ

t− τ

)2

for τ = 0, 1, . . . , t− 1.

In the following table, we have the change point predictions when in-control param-

eters are estimated using simulation based on 10, 000 simulated values for τ = 20, 40, 60

and δ = 0.1, . . . , 1.0. The values for m and n were set to 4 and 6, respectively. Note that in

all cases the predicted values of τ fell between τ and τ + 1. Also in a comparison with the

Shewhart X chart with known in-control parameters, the predicted values are a bit larger

with more variability.
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τ = 20

δ τ sτ

0.1 20.607 0.489

0.2 20.603 0.489

0.3 20.657 0.475

0.4 20.671 0.470

0.5 20.703 0.457

0.6 20.738 0.440

0.7 20.757 0.429

0.8 20.798 0.402

0.9 20.832 0.374

1.0 20.860 0.347

τ = 40

δ τ sτ

0.1 40.617 0.487

0.2 40.618 0.486

0.3 40.643 0.479

0.4 40.672 0.469

0.5 40.698 0.459

0.6 40.730 0.444

0.7 40.776 0.417

0.8 40.810 0.393

0.9 40.845 0.362

1.0 40.852 0.355

τ = 60

δ τ sτ

0.1 60.576 0.485

0.2 60.630 0.483

0.3 60.637 0.481

0.4 60.681 0.466

0.5 60.704 0.457

0.6 60.732 0.443

0.7 60.762 0.426

0.8 60.806 0.395

0.9 60.837 0.370

1.0 60.864 0.342

Table 6.3: In-control Known Parameters Case, ARL0 equal to 200

In the estimated parameters case, the t × 1 vector U of EWMA statistics can be ex-

pressed as

U∗ =

 U∗
τ

U∗
t−τ

 = c2m,nW
−1

0

 Lτ 0

J Lt−τ


 Zτ

Zt−τ


− cm,nZ0W

−1/2

0√
m

 aτ

at−τ

+ cm,nZ0W
−1/2

0 δ

 0τ

bt−τ

 ,

where

aτ×1
τ = [1, 2, . . . , τ ]T , a(t−τ)×1

t−τ = [τ + 1, τ + 2, . . . , t]T , and

b
(t−τ)×1
t−τ = [1, 2, . . . , t− τ ]T .
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Here we are defining U∗ in terms of

Y ∗
i = cm,n

X i −X0

V
1/2

0 /
√
n
= cm,nW

−1/2

0

(
Zi + δ − Z0/

√
m
)

.

Under our model, it follows that

U∗ =

 U∗
τ

U∗
t−τ

 ∼ Nt (µU,ΣU) ,

where

µU = −Z0W
−1/2

0√
m

 aτ

at−τ

+ δ

 0τ

bt−τ

 and

ΣU = W
−1

0

 Lτ 0

J Lt−τ


 Lτ 0

J Lt−τ


T

.

The likelihood function associated with the distribution of U is

L
(
δ, τ
∣∣U∗, Z0,W 0, r, h, t

)
=

1

(2π)t/2 rt/2
e−

1
2
(U−µU)TΣ−1

U (U−µU)

with log-likelihood function

l
(
δ, τ
∣∣U∗, Z0,W 0, r, h, t

)
= − t

2
ln (2π)− t

2
ln (r)− 1

2
(U− µU)

T Σ−1
U (U− µU)

= − t

2
ln (2π)− t

2
ln (r)− 1

2
ZTZ,

where  Zτ

Zt−τ

 =

 W
1/2

0 L−1
τ Uτ +

Z0√
m
1τ

W
1/2

0 KUτ +W
1/2

0 L−1
t−τUt−τ +

Z0√
m
1t−τ − δ1t−τ


=

 G

H− δ1t−τ

 ,
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with

G = W
1/2

0 L−1
τ Uτ +

Z0√
m
1τ and H = W

1/2

0 KUτ +W
1/2

0 L−1
t−τUt−τ +

Z0√
m
1t−τ .

It follows that

−1

2
ZTZ = −1

2

 G

H− δ1t−τ


T  G

H− δ1t−τ


= −1

2
GTG− 1

2
(H− δ1t−τ )

T (H− δ1t−τ )

= −1

2
GTG− 1

2

(
HT − δ1T

t−τ

)
(H− δ1t−τ )

= −1

2
GTG− 1

2

(
HTH− 2δHT1T

t−τ1t−τ + δ21T
t−τ1t−τ

)
= −1

2
GTG− 1

2
HTH+ δHT1T

t−τ1t−τ −
1

2
δ21T

t−τ1t−τ .

Hence, the log-likelihood function can be expressed as

l
(
δ, τ
∣∣U∗, Z0,W 0, r, h, t

)
= − t

2
ln (2π)− t

2
ln (r)

− 1

2
GTG− 1

2
HTH+ δHT1t−τ −

1

2
δ21T

t−τ1t−τ .

It follows that
∂l

∂δ
= HT1t−τ − δ1T

t−τ1t−τ = HT1t−τ − δ (t− τ) .

The maximum likelihood estimator δ̂ of δ is the solution to the equation

HT1t−τ − δ̂ (t− τ) = 0 or δ̂ =
1

t− τ
HT1t−τ .
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We see that

HT1t−τ = W
1/2

0

(
KUτ + L−1

t−τUt−τ

)T
1t−τ

= W
1/2

0

(
UT

τ K
T +UT

t−τ

(
L−1

t−τ

)T)
1t−τ

= W
1/2

0

(
UT

τ K
T1t−τ +UT

t−τ

(
L−1

t−τ

)T
1t−τ

)
= W

1/2

0

(
−1− r

r
Uτ +

1

r

∑t

i=1
Ui −

1− r

r

∑t

i=2
Ui

)
= W

1/2

0

(
−1− r

r
Uτ +

1

r

∑t

i=τ+1
Ui −

1− r

r

∑t

i=τ+1
Ui +

1− r

r
Uτ+1

)
= W

1/2

0

(
−1− r

r
Uτ +

∑t

i=τ+1

(
1

r
− 1− r

r

)
Ui +

1− r

r
Uτ+1

)
= W

1/2

0

(∑t

i=τ+1
Ui +

1− r

r
(Uτ+1 − Uτ )

)
.

Hence,

δ̂ = W
1/2

0

(
1

t− τ

∑t

i=τ+1
Ui +

1− r

r

Uτ+1 − Uτ

t− τ

)
.

Evaluating l
(
δ, τ
∣∣U∗, Z0,W 0, r, h, t

)
at δ̂, we have

l
(
δ̂, τ

∣∣U∗, Z0,W 0, r, h, t
)
= − t

2
ln (2π)− t

2
ln (r)− 1

2
GTG− 1

2
HTH

+W 0

(
1

t− τ

∑t

i=τ+1
Ui +

1− r

r

Uτ+1 − Uτ

t− τ

)2

(t− τ)

− 1

2
W 0

(
1

t− τ

∑t

i=τ+1
Ui +

1− r

r

Uτ+1 − Uτ

t− τ

)2

(t− τ)

= − t

2
ln (2π)− t

2
ln (r)− 1

2
GTG− 1

2
HTH

+
1

2
W 0

(
U t−τ +

1− r

r

Uτ+1 − Uτ

t− τ

)2

(t− τ) .

It follows that the maximum likelihood prediction for τ is the observed value of

(t− τ)W 0

(
U t−τ +

1− r

r

Uτ+1 − Uτ

t− τ

)2
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for τ = 0, 1, . . . , t − 1. Note that the method depends on the chart parameter r. Note that

if we set W 0 = 1, we have the method for prediction of τ when the in-control process

parameters are known.

In the following table, we have the change point predictions when in-control param-

eters are estimated using simulation based on 10, 000 simulated values for τ = 20, 40, 60

and δ = 0.1, . . . , 1.0. The values for m and n were set to 4 and 6, respectively. Note that

in all cases the predicted values of τ fell between τ and τ + 1. Also in a comparison with

the Shewhart X chart with estimated in-control parameters, the predicted values are a bit

larger with more variability.

τ = 20

δ τ sτ

0.1 20.528 0.499

0.2 20.499 0.500

0.3 20.502 0.501

0.4 20.513 0.500

0.5 20.516 0.500

0.6 20.520 0.499

0.7 20.496 0.500

0.8 20.498 0.500

0.9 20.509 0.500

1.0 20.504 0.500

τ = 40

δ τ sτ

0.1 40.507 0.500

0.2 40.510 0.500

0.3 40.506 0.500

0.4 40.496 0.500

0.5 40.498 0.500

0.6 40.502 0.500

0.7 40.505 0.500

0.8 40.499 0.500

0.9 40.505 0.500

1.0 40.524 0.499

τ = 60

δ τ sτ

0.1 60.528 0.499

0.2 60.518 0.500

0.3 60.516 0.500

0.4 60.501 0.500

0.5 60.510 0.500

0.6 60.513 0.501

0.7 60.498 0.500

0.8 60.502 0.500

0.9 60.490 0.500

1.0 60.493 0.500

Table 6.4: In-control Estimated Parameters Case, ARL0 equal to 200
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6.4 CONCLUSION

A method to detect the change point based on the likelihood function was given both when

the in-control process parameters are known and when they are estimated. Change point

methods were given for the Shewhart X and the EWMA X charts. Some comparisons

were given.
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CHAPTER 7

CONCLUSIONS

7.1 GENERAL CONCLUSIONS

We have studied the exponentially weighted moving average (EWMA) X chart and the ad

hoc EWMA(k) X charts. Integral equation were given that a useful in studying the the run

length performance of the EWMA X chart. Simulation results were presented to showing

that an EWMA X chart could be designed that outperforms the EWMA(2) X charts. We

presented a chapter on various non-normal families of distribution that would be used to

study the robustness of the charts as well as other statistical methods.

A method is given for studying the change point is a production process with respect

to a step-change in the process mean. Simulation was used to study compare these methods

for the Shewhart X chart and the EWMA X chart.

7.2 AREAS FOR FURTHER RESEARCH

We are interested in studying the robustness of the EWMA X and EWMA(k) X charts.

Rigdon using simulation that the optimal double EWMA X chart is the optimal EWMA

X chart. Our interest is to use simulation to see if the optimal triple EWMA X chart is an

optimal EWMA X chart. The difficulties in performing these simulations is determining

the formulas that given the variance of the triple EWMA X chart. Further we conjec-

ture that the double EWMA X chart outperforms the triple EWMA X chart and the triple

EWMA X chart outperforms the quadruple EWMA X chart.

It is often recommended that the practitioner monitor for both a change in the process

mean and process variance or standard deviation. We are interest in studing the change
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point with respect to a change in the process standard deviation as well as the process

mean.

We are interested in developing integral equations that can be used to study the per-

formance of the EWMA(k) X charts.
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