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COMPARISON OF MARKER-BASED AND MARKERLESS MOTION CAPTURE SYSTEMS IN 

GAIT BIOMECHANICS DURING RUNNING 

 

by 

HUI TANG 

(Under the Direction of LI LI) 

 

ABSTRACT  

 

Background: Markerless (ML) motion capture systems have recently become available for biomechanics 

applications. Evidence has indicated the potential feasibility of using an ML system to analyze lower 

extremity kinematics. However, no research examined ML systems’ estimation of the lower extremity 

joint moments and powers. Objectives: This study primarily aimed to compare lower extremity joint 

moments and powers estimated by marker-based (MB) and ML motion capture systems during treadmill 

running. The secondary purpose was to investigate if movement’s speed would affect the ML’s 

performance. Methods: Sixteen volunteers ran on a treadmill for 120 s for each trial at the speed of 2.24, 

2.91, and 3.58 m/s, respectively. The kinematic data were simultaneously recorded by 8 infrared cameras 

and 8 high-resolution video cameras. The force data were recorded via an instrumented treadmill. Results: 

Compared to the MB system, the ML system estimated greater increased hip and knee joint kinetics with 

faster speeds during the swing phase. Additionally, increased greater ankle joint moments with speed 

estimated by the ML system were observed at the early swing phase. In contrast, the greater ankle joint 

powers occurred at the initial stance phase. Conclusions: These observations indicated that inconsistent 

segment pose estimations (mainly the center of mass estimated by ML was farther away from the relevant 

distal joint center) might lead to systematic differences in joint moments and powers estimated by MB 

and ML systems. Despite the promising applications of the ML system in clinical settings, systematic ML 

overestimation requires extra attention.   

 

INDEX WORDS: Markerless motion capture system, Gait analysis, Joint moment, Joint power, 

Treadmill running. 

 

 

 



  

COMPARISON OF MARKER-BASED AND MARKERLESS MOTION CAPTURE SYSTEMS IN 

GAIT BIOMECHANICS DURING RUNNING  

by 

HUI TANG 

B.S., Central China Normal University, P.R. China, 2015 

M. Ed., Central China Normal University, P.R. China, 2019 

 

A Thesis Submitted to the Graduate Faculty of Georgia Southern University 

in Partial Fulfillment of the Requirements for the Degree 

 

MASTER OF SCIENCE 

WATER COLLEGE OF HEALTH PROFESSIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2023  

HUI TANG 

 All Rights Reserved 



1 
 

 

THIS IS AN EXAMPLE SHOWING HOW TO FORMAT THE ETD APPROVAL PAGE  

by  

HUI TANG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Major Professor:   Li Li   

 Committee:   Barry Munkasy 

    Barry Joyner 

 

 

 

Electronic Version Approved:  

July 2023 

 

 

 

 

 



2 
 

 

DEDICATION 

 

I dedicate this project and process to my family back in China and my mother rested in peace for their 

unconditional love, support, patience, encouragement, and motivation. Without their supports, I would 

not have had the strength to persevere and accomplish all that I have. I also would like to make a special 

dedication to my friend, Dr. Hang Qu. Without his influence, I would not establish interests in science, 

nor have the brevity to continue my academic life in the United States. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

 

ACKNOWLEDGMENTS 

 

 

I would like to thank my advisor Dr. Li Li, for his guidance, support, hard work and encouragement 

throughout the graduate program. I could not have wished for a better supervisor to guide me to learn 

biomechanics from scratch. His advice, patience, and support has contributed greatly not only to my 

professional development, but also to my life. The three projects I have conducted under his guidance 

helped me gradually fall in love with movement science. Also, due to these projects, I gained precious 

experience in different fields of kinesiology. Additionally, I would also like to thank my committee 

members, Dr. Barry Munkasy and Dr. Barry Joyner who have invested considerable time, effort and 

expertise to enable me to further understand this project.  

 

I would like to thank my dearest friends, Dr. Qu Hang and Jiahao Pan. Dr. Qu has helped me to have a 

better understanding of the mechanisms of the equipment. Jiahao has contributed a lot to data processing. 

Without their help, I could not finish this without being stressed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

 

TABLE OF CONTENTS 

      

      

       Page  

 

ACKNOWLEDGMENTS.......................................................................................................................3  

LIST OF TABLES...................................................................................................................................5 

LIST OF FIGURES.................................................................................................................................6 

CHAPTER 

1 COMPARISON OF LOWER EXTREMITY JOINT MOMENT AND JOINT POWER 

ESTIMATED BY MARKERLESS AND MARKER-BASED SYSTEMS DURING 

TREADMILL RUNNING ……………………………….........................................................7 

Introduction ………………………………………………........................................... 7 

Methods……………………………………………….................................................. 9 

Results………………………………………………................................................... 14 

Discussion………………………………………………..............................................23 

Conclusion……………………………………………….............................................28 

2 RUNNING SPEED EXACERBATES LOWER EXTREMITY JOINT MOMENT AND 

POWER ESTIMATED BY MARKERLESS AND MARKER-BASED SYSTEM DURING 

TREADMILL RUNNING……………………………………………………….……………32 

Introduction……………………………………………………….…………………...33 

Methods……………………………………………………….……………………….35 

Results……………………………………………………….………………………...39 

Discussion……………………………………………………….…………………….41 

Conclusion ....................................................................................................................46 

APPENDICES  

 Appendix A: EXTENDED INTRODUCTION………………………….…………………...57 

  Marker-based Motion Capture Systems………………………………………………58 

  Markerless Motion Capture Systems………………………………………………….62 

  Running Biomechanics………………………………………………………………..67 

 Appendix B: EXTENDED DISCUSSION ……………..........................................................78 

  Pose Estimation Affect Joint Kinetics...........................................................................78 

  Injury Prediction and Accommodation..........................................................................82 

  Usability of ML in the Clinical Settings........................................................................87 

  Limitations.....................................................................................................................88 

  Directions for Future Research......................................................................................89 

Reference List................................................................................................................91 

 Appendix C: STATISTICAL ANALYSIS INFORMATION 

Discrete Measurements Statistical Analysis Details ...................................................102 

  Spatial Parameter Mapping Statistical Analysis Details……………………….….....292 

 Appendix D: INSTITUTIONAL REVIEW BOARD………………………………...…....297 

 

 

 

 

 



5 
 

 

LIST OF TABLES 

 

                                                                                                                                    Page  

 

Table 1: Body mass scaled peak magnitude for joint moments and powers (3.58m/s)…………....19 

Table 2: Relative Time to Peak for Joint moments and Powers……………………………………21 

Table 3: Body mass scaled peak magnitude for joint moments and powers (3 speeds)....................48 

Table 4: Relative Time to Peak for Joint moments and Powers........................................................49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

 

LIST OF FIGURES 

 

 Page  

 

Figure 1: Illustration of critical events of the lower extremity joint moments................................13  

Figure 2: Illustration of critical events of the lower extremity joint powers……….......................14  

Figure 3: Ensemble curve of lower extremity joint position differences........................................17 

Figure 4: Ensemble curve of lower extremity segment center of mass differences…………........18 

Figure 5: Ensemble curve of lower extremity joint angle differences….........................................22 

Figure 6: SPM analyses and ensembled curves of ankle joint kinetics under three speeds……….51 

Figure 7: SPM analyses and ensembled curves of knee joint kinetics under three speeds……......52 

Figure 8: SPM analyses and ensembled curves of hip joint kinetics under three speeds…………53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

 

CHAPTER 1 

 

COMPARSIONS OF LOWER EXTREMITY JOINT MOMENT AND POWERS 

ESTIMATED BY MARKERLESS AND MARKER-BASED SYSTEMS DURING 

TREADMILL RUNNING 

 

Abstract: Background: Markerless (ML) motion capture systems have recently become available 

for biomechanics applications. Evidence has indicated the potential feasibility of using an ML system 

to analyze lower extremity kinematics. However, no research examined ML systems’ estimation of 

the lower extremity joint moments and powers. This study aimed to compare lower extremity joint 

moments and powers estimated by marker-based (MB) and ML motion capture systems. Methods: 

Sixteen volunteers ran on a treadmill for 120 s at 3.58 m/s. The kinematic data were simultaneously 

recorded by 8 infrared cameras and 8 high-resolution video cameras. The force data were recorded 

via an instrumented treadmill. Results: Greater peak magnitudes for hip extension and flexion 

moments, knee flexion moment, and ankle plantarflexion moment, along with their joint powers, 

were observed in the ML system compared to an MB system (p<0.0001). Additionally, the ML 

system’s estimations resulted in significantly smaller peak magnitudes for knee extension moment, 

along with the knee production power (p<0.0001). Conclusions: These observations indicate that 

inconsistent estimates of joint center position and segment center of mass between the two systems 

may cause differences in the lower extremity joint moments and powers. However, with the 

progression of pose estimation in the markerless system, future applications can be promising.  

Keywords: Markerless motion capture system; Gait analysis; Joint moment; Joint power 

 

1. Introduction 

Inverse dynamics analysis is a fundamental tool widely used for biomechanical studies to 

understand human movement. The inverse dynamics method combines kinematic and kinetic data 

with anthropometric parameters and can estimate joint moments and powers (Winter 2009). The 

evaluation of joint moments and powers is critical in clinical decision-making, such as gait retraining 
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(Tate and Milner 2010), treatment with insoles or orthoses (Shaw, Charlton et al. 2018), and even 

surgery (Hart, Culvenor et al. 2016). Despite its widespread use, the inaccuracy of inverse dynamic 

analysis stemming from kinematic/kinetic/anthropometric data is well recognized (Riemer, Hsiao-

Wecksler et al. 2008). Currently, most kinematic data are provided by marker-based (MB) motion 

capture systems (McLean, Walker et al. 2005). However, inaccuracies derived from marker 

placements, including the center of mass locations (Pearsall and Costigan 1999, Ganley and Powers 

2004), joint centers (Schwartz and Rozumalski 2005), the noise due to surface marker movement 

(Richards 1999), and skin artifacts (Cappozzo, Catani et al. 1995, Stagni, Fantozzi et al. 2005), can 

be significant barriers. Using marker-based systems requires highly trained personnel (Simon 2004), 

intensive time commitment for marker placements, and a controlled environment (Buckley, Alcock 

et al. 2019), which can be challenging in some clinical settings with clinical populations (Whittle 

1996). 

As a critical advancement in vision-based motion capture, a markerless (ML) system offers an 

alternative approach to measuring kinematic data. Studies have shown the applicability of the deep 

learning algorithm-based markerless system in gait analysis. Kanko et al. reported excellent 

agreement with the MB system on spatial parameters (e.g., step length, stride width, and gait speed) 

and slight differences in temporal parameters (swing time and double support time) (Kanko, Laende 

et al. 2021). In two follow-up studies, they assessed the lower extremity joint center positions and 

joint angles. One study emphasized the inter-session variability of joint angles. They reported that 

the average inter-session variability across all joint angles was 2.8°in the ML system, which is less 

than all previously reported values (3.0-3.6°) for the MB system (Kanko, Laende et al. 2021). Their 

other study presented the average systematic root-mean-square joint center differences of 2.5 cm 

except for the hip joint, which was 3.6 cm. The average systematic root-mean-square for all segment 

angle differences was 5.5°, except for the rotation angle about the longitudinal axis (Kanko, Laende 

et al. 2021). These strong results are approaching or superior to the accuracy of MB systems. 
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However, we did not find any lower extremity joint moments and powers in comparison between the 

two types of systems in the literature. 

Due to marker-based systems’ weakness, markerless systems might introduce new possibilities 

for inverse dynamic analysis. Therefore, the purpose of the current study was to compare inverse 

dynamic outcomes of lower extremity joint moments and powers based on ML and MB motion 

capture systems. 

2. Materials and Methods 

2.1. Participants 

Recreationally active young adults were recruited for the current study. Inclusion criteria were: 

(Hanavan) free of musculoskeletal injuries and operations of the lower extremity at least 6 months 

before the data collection and (2) experience with treadmill running. Participants were asked to be 

free from any intensive exercise within the 24 hours before data collection. Participants signed 

consent forms approved by the Ethics Committee of Georgia Southern University (Approval 

Number: H22327) before data collection. 

2.2. Experimental setup and Procedure 

Two camera systems were used in the motion capture procedure: 8 infrared cameras (Vicon 

Bonita, Oxford, UK) for the MB system to record marker trajectories; and 8 high-resolution video 

cameras (Vicon Vue, Oxford, UK) for the ML system to record movements. The resolutions of 

Bonita and Vue cameras are 1 megapixel (1024×1024) and 2.1 megapixels (1920×1080). Cameras 

were aimed at the instrumented treadmill (AMTI force-sensing tandem treadmill, MA, USA) within 

a 15.5 m long by 7.6 m wide by 2.4 m tall laboratory space. Camera systems and the instrumented 

treadmill were synchronized using Vicon Lock+ (Vicon, Oxford, UK), where kinematics were 

recorded at 100 Hz, and the ground reaction forces were recorded at 1000 Hz. 

Before data collection, the cameras were calibrated using an Active Wand (V1, Oxford, UK). 

Calibration for the Bonita cameras of the MB system and the Vue cameras of the ML system included 

more than 1000 frames of valid wand data and 600 frames of valid wand data, respectively. The 
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tolerance of image error for MB and ML systems was set as 0.2 and 0.4, respectively. The three-

marker option, with an origin marker and two markers for the X- and Y-axis, was used to set the MB 

system’s global coordinate system (GCS). An MTD-3 device and CalTester software (CalTester, 

Motion Lab Systems Inc., Baton Rouge, USA) were used to examine the spatial synchronization 

between the force plates and cameras, following the manufacturer’s recommended protocol. 

When participants arrived at the laboratory, each was introduced to the test protocol. Then each 

participant changed into tight shirts and shorts provided by the lab and wore their running shoes. The 

investigator measured their heights and body mass. Five-minute warm-up exercise and 

familiarization with treadmill running followed. Following standard VICON procedure, twenty-six 

14 mm retro-reflective markers were attached to the participant’s anterior superior iliac spine, 

posterior superior iliac spine, most lateral prominence of the greater trochanter, lateral prominence 

of the lateral femoral epicondyle, medial prominence of the medial femoral epicondyle, proximal tip 

of the head of the fibula, anterior border of the tibial tuberosity, lateral prominence of the lateral 

malleolus, medial prominence of the medial malleolus, dorsal margin of the first, second and fifth 

metatarsal head, and aspect of the Achilles tendon insertion on the calcaneus at both sides. A static 

trial for the MB system was recorded in advance while the participants stood on the treadmill with 

an anatomical posture. Each participant started walking at an initial speed of 1.12 m/s and then 

gradually transitioned to running at the target speed of 3.58 m/s. The participants ran on the treadmill 

for 120 seconds at 3.58 m/s, and the last 30 s running were recorded for further analysis.  

2.3. Data analysis  

2.3.1. Pre-processing 

Raw marker trajectories were interpolated using Woltring gap filling (Woltring 1991) by Nexus 

(Vicon Nexus, Oxford, UK). Raw markerless video data were pre-processed by Theia3D 

(Theia3Dv2022.1.0.2309, Theia Markerless, Inc., Kingston, ON, Canada), where the default IK 

solution was used to estimate the 3-D pose (Kanko, Laende et al. 2021). The lower body kinematic 

chain has six degree-of-freedom (DOF) at the pelvis, three DOF at the hip, three DOF at the knee, 
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and six DOF at the ankle. The kinematic and ground reaction force data were filtered through Nexus 

using a low-pass, zero-lag, 4-order Butterworth filter with cut-off frequencies of 10 Hz and 50 Hz 

(Gruber, Zhang et al. 2021), respectively.  

2.3.2. Visual3D analyses 

The pre-processed right lower extremity data were further analyzed using Visual3D (Preview 

v2022.06.02, C-Motion, Inc., Germantown, MD, USA).  

The same Visual3D 6DOF algorithms and IK constraints for segments were adapted for both 

systems. IK constraints were set as six DOF at the pelvis, three at the hip, three at the knee, and six 

at the ankle. For the MB data, the human body was modeled by four linked segments (foot, leg, thigh, 

pelvis), in which a second kinematic-only foot was created as a virtual foot for kinematic estimations 

(Documentation 2020). The segment mass estimations were based on Dempster’s regression 

equation (Dempster 1955), and inertia properties were computed based on segments as geometrical 

shapes (Hanavan 1964). The hip joint center was estimated using the method proposed by Bell et al. 

(Bell, Brand et al. 1989). Still, the knee and ankle joint centers were estimated using midpoints 

between external landmarks of the corresponding segment. The anatomical coordinate systems of 

segments were determined from the static calibration trial. The vertical axis was defined in the 

direction from distal to proximal joint center, while the anterior-posterior axis was defined 

perpendicular to the vertical axis with no mediolateral component. The third axis was the cross 

product of the vertical and anterior-posterior axis (Kristianslund, Krosshaug et al. 2012). The model 

was automatically created for the ML data based on the deep learning algorithm and segment 

properties such as segment mass, location of the center of mass, and joint center positions were 

generated accordingly (Kanko, Laende et al. 2021). 

Resolved into the proximal coordinate system for both MB and ML data, joint angles and kinetic 

parameters in the extension/flexion plane were further calculated. The proximal segment was used 

as the reference when calculating joint moment and power. Internal joint moments and powers were 

obtained by applying Newton-Euler methods (Winter 2009, Robertson, Caldwell et al. 2013), where 
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hip and knee extensor and ankle plantar-flexor moments were assigned to be positive. Positive power 

values indicated energy production through concentric muscular contractions (Winter 2009). 

Force-based gait events were used to identify stride cycles, in which the force threshold was set 

at 50 N (Zhang, Pan et al. 2018). The stride cycle was defined as two consecutive right heel contacts. 

The duration of each stride cycle was scaled to 101 data points.  

2.3.3. Discrete measurements 

The dependent variables were extracted from the last 10 strides from both MB and ML systems. 

Within each stride, various positive and negative peak values (depending on joint action) in the 

extension/flexion plane were identified on moment and power profiles of the hip, knee, and ankle 

joints, and the relative times to the peak values were included. Presented in Fig.1, peak moments of 

the hip (top panel) were: extension moment in the early stance phase (HM1), flexion moment in the 

stance-swing transition phase (HM2), and extension moment at the end of the swing phase (HM3); 

for the knee (middle panel), extension moment in the early stance phase (KM1), and flexion moment 

at the end of the swing phase (KM2); for the ankle (bottom panel), extension moment in the stance 

phase (AM1). Presented in Fig 2., peak powers of the hip (top panel) were: absorption power in the 

middle of the stance phase (HP1), the production powers in the early swing phase (HP2), and at the 

end of the swing phase (HP3); for the knee (middle panel), absorption powers in the early stance 

phase (KP1), in the early swing phase (KP3), and at the end of the swing phase (KP4), and production 

power in the middle of the stance phase (KP2); for the ankle (bottom panel), absorption power in the 

early stance phase (AP1), and the production power at the end of the stance phase (AP2). 

2.4. Statistical analysis   

Means and standard deviations of the differences in kinematic parameters were estimated based 

on individual measurements between systems. All dependent variables were assessed for normality 

using a one-sample Kolmogorov-Smirnov test (α=0.05). Two-tailed paired t-test was used to test the 

differences between the two systems. The effect size was assessed using Cohen’s d (Cohen 2013). 

An alpha level of 0.05 was used for statistical analysis. SPSS (22.0, IBM Inc.; Chicago, IL, USA) 
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was used to conduct all statistical analyses. The alpha level was adjusted by 30 dependent variables 

using the Bonferroni correction to reduce the chances of type I error (α = 0.05/30 = 0.0017). 

  

Figure 1. Illustration of critical events of the lower extremity joint moments of the hip (top panel), 

knee (middle panel), and ankle (bottom panel) (denoted under the ensemble moment curve measured 

by marker-based (MB) (red) and markerless (ML) (green) motion capture systems. Joint moments 

were normalized to participants’ body mass. 
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Figure 2. Illustration of critical events of the lower extremity joint powers of the hip (top panel), knee 

(middle panel), and ankle (bottom panel) (denoted under the ensemble power curve measured by 

marker-based (MB) (red) and markerless (ML) (green) motion capture systems). Joint powers were 

normalized to participants’ body mass. 

3. Results 

Sixteen participants (9 males and 7 females) participated. The participants’ ages, body mass, 

and height were 23.44±2.31 years, 69.72±9.82 kg, and 1.73±0.08 m, respectively. 

3.1. Lower extremity joint moments and powers 

Ensemble curves of lower extremity extension/flexion plane moments and powers estimated 

using MB and ML are presented in Figs. 1 and 2, respectively. Scaled (by body mass) peak 

magnitudes and relative timing to the peak are presented in Tables 1 and 2, respectively. 
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Compared to the MB system, the ML system showed significantly greater peak joint moment 

magnitudes at HM2 (ML: -1.73±0.27, MB: -1.38±0.29), HM3 (ML: 2.27±0.45, MB: 1.42±0.29), KM2 

(ML: -1.17±0.24, MB: -0.74±0.13), and AM1 (ML: 3.32±0.55, MB: 3.14±0.51), but less peak 

magnitude at KM1 (ML: 1.28±0.32, MB: 1.40±0.42). For the joint powers, significantly less peak 

magnitudes were at KP1 (ML: -4.05±1.79, MB: -5.0±2.77), KP2 (ML: 2.64±1.09, MB: 3.15±1.41), 

but greater at HP2 (ML: 8.07±2.11, MB: 4.29±1.14), HP3 (ML: 5.68±2.71, MB: 3.99±2.13), KP3 

(ML: -5.42±1.61, MB: -3.45±1.29), KP4 (ML: -9.65±2.10, MB: -7.15±1.83), AP1 (ML: -9.44±1.81, 

MB:-8.38±2.48), as well as AP2 (ML: 18.40±4.91, MB: 16.07±3.60). In addition, the relative timing 

to the peak was detected to be significantly different between the MB and ML systems. To be 

specific, ML system took longer than the MB system to reach the HM1 (ML: 6.74±3.40, MB: 

5.16±1.27), HM2 (ML: 43.59±7.00, MB: 40.26±6.90), HM3 (ML: 92.73±3.00, MB: 90.58±3.39), 

KM1 (ML: 13.53±3.89, MB: 12.98±2.18), KM2 (ML: 92.19±2.51, MB: 90.93±2.21), HP1 (ML: 

28.30±3.68, MB: 26.16±4.45), and KP1 (ML: 8.73±3.01, MB: 8.19±2.21). Besides, the ML system 

took less time than the MB system to reach the HP3 (ML: 89.63±4.15, MB: 91.23±3.47). See Tables 

1 and 2 for more details. 

3.2. Lower extremity joint center and segment center of mass  

Joint moments could be significantly affected by joint center position and segment center of 

mass. Figs 3 and 4 demonstrated the ensemble curves of differences in joint center positions (hip, 

knee, ankle) and segment center of mass (thigh, leg, foot) between MB and ML. 

In the mediolateral direction (Fig. 3 top panel), the ankle (left) and knee (middle) joints center 

were biased toward the lateral direction in the ML than the MB throughout the stride cycle. The hip 

joint center showed the same trend except during initial contact and the late swing phase. In the 

anterior-posterior direction (Fig 3 middle panel), ML showed a posterior biased hip joint center 

during the stride cycle, whereas the ankle and knee joint centers varied within the stride cycle. The 

ML was posteriorly biased compared to the MB at initial contact for both ankle and knee joints. For 

the rest of the stance phase, the ML for the ankle joint was slightly more posterior, and the knee was 
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more anterior. While the ML for the ankle joint continued in the posterior direction in the swing 

phase, the ML knee continued in the anterior direction in the early swing phase but turned to the 

posterior direction for the rest of the swing phase. In the vertical direction (Fig.3 bottom panel), the 

ML of the ankle varied during the stride cycle. In the early stance and mid-swing phase, the estimated 

bias was toward the superior direction, while in the mid-stance and early swing, it turned to the 

inferior direction. The ML showed inferior biased knee and hip joint center in the early stance. When 

the ML knee joint turned to the superior direction for the rest of the stride cycle, the hip joint showed 

superior in the mid-stance and early swing phase but toward the inferior direction in the rest of the 

swing phase. See figure 3 for more details. 

In the mediolateral direction (Fig. 4 top panel), the center of mass of the foot, leg, and thigh was 

more lateral in the ML than in the MB systems throughout the stride cycle. In the anterior-posterior 

direction (Fig. 4 middle panel), the foot center of mass was more anterior in the ML than in the MB 

system during the stride cycle. For the leg center of mass, ML showed posterior biases than MB 

during the stance and swing phases except in different directions at the end of the swing phase. The 

thigh center of mass was mainly posterior throughout the stride cycle but briefly anterior in the 

swing-stance transition phase. In the vertical direction, the foot center of mass showed a higher 

position in the ML than in the MB system during most stance and late swing phases but lower during 

the stance-swing transition and early swing phase. For the leg center of mass, the ML demonstrated 

lower than the MB system during about 85% of the stride cycle but briefly higher during the early 

swing phase. The thigh center of mass from the ML showed a higher position than the MB system 

over the whole stride cycle. 
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Figure 3. Ensemble curve of lower extremity joint position differences between marker-based and 

markerless motion capture systems across the average 10 stride cycles for 16 participants. 

Differences were estimated as markerless (ML) joint position – marker-based joint (MB) position. 
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Figure 4. Ensemble curve of lower extremity segment center of mass differences between marker-

based and markerless motion capture systems across the average 10 stride cycles for 16 participants. 

Differences were estimated as markerless (ML) center of mass position – marker-based (MB) center 

of mass position. 
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Table 1. Body mass scaled peak magnitude (Mean, SD) for joint moments and powers for the marker-based (MB) and Markerless (ML) 

systems. 

 
  

Parameters 
MB ML  

T & P-value 
 
 Cohen’s d 

 Mean SD Mean SD 

M
o
m

en
t 

(N
m

/k
g
) 

 Hip first 
peak 

2.09 0.66 2.05 0.73 t159= -1.42, p< 0.2832 
0.1 

 Hip second 
peak 

-1.38 0.23 -1.73 0.27 t159= -22.99, p< 0.0001* 
1.8 

 Hip third 
peak  

1.42 0.29 2.27 0.45 t159= 39.612, p< 0.0001 
3.1 

 Knee first 
peak 

1.40 0.42 1.28 0.32 t159= 5.907, p< 0.0001* 
0.5 

 Knee second 
peak 

-0.74 0.13 -1.17 0.24 t159= 40.804, p< 0.0001* 
3.2 

 Ankle first 
peak  

3.14 0.51 3.32 0.55 t159= 10.450, p< 0.0001* 
0.8 

P
o

w
er

 (
W

/k
g

) 

 Hip first 
peak 

-5.02 2.60 -4.80 2.37 t159= -1.570, p= 0.118 
0.1 

 Hip second 
peak 

4.29 1.14 8.07 2.11 t159= -27.082, p< 0.0001* 
2.1 

 Hip third 
peak  

3.99 2.13 5.68 2.71   t159= -13.049, p< 0.0001* 
1.0 

 Knee first 
peak 

-5.00 2.77 -4.08 1.79 t159= -6.138, p= 0.0229 
0.5 

 Knee 
second peak 

3.15 1.41 2.64 1.09 t159= 6.628, p< 0.0001* 
0.5 

 Knee third 
peak 

-3.45 1.29 -5.42 1.61   t159= 21.188, p< 0.0001* 
1.7 

 Knee forth 
peak 

-7.15 1.83 -9.65 2.10   t159= 31.515, p< 0.0001* 
2.5 
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 Ankle first 
peak 

-8.38 2.48 -9.44 1.81 t159= 7.295, p= 0.6656 
0.6 

 Ankle 
second peak 

16.07 3.60 18.40 4.91 t159= -10.726, p= 0.2426 
0.9 

*Indicate significant difference; Bold indicates the event was observed within the stance phase; italic with underline indicates the event 

was observed during the stance-swing transition; rest of the parameters were observed within the swing phase. For joint moment data, “+” 

represents the extension (ankle plantar flexion) and “-” represents the flexion (ankle dorsiflexion). For joint power data, “+” represents 

energy production, and “-” represents energy absorption. 
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Table 2. Relative Time to Peak as %Stride Cycle (Mean, SD) for Joint Moments and Powers for Marker-based (MB) and Markerless (ML) 

Systems. 

 
 
Parameters 

MB ML  
T & P-value 

 
Cohen’s d 

Mean SD Mean SD 

M
o
m

en
t 

(%
st

ri
d
e 

C
y
cl

e)
 

Hip first peak 5.16 1.27 6.74 3.40 t159= -5.946, p< 0.0001* 0.5 

Hip second peak 40.26 6.90 43.59 7.00 t159= -7.179, p < 0.0001* 0.6 

Hip third peak  90.58 3.39 92.73 3.00 t159= -8.637, p < 0.0001* 0.7 

Knee first peak 12.98 2.18 13.53 3.89 t159= -2.008, p= 0.0015* 0.2 

Knee second peak 90.93 2.21 92.19 2.51 t159= -10.031, p < 0.0001* 0.8 

Ankle first peak  18.29 1.90 18.33 1.82 t159= -.569, p= 0.57 0.0 

P
o

w
er

 
(%

S
tr

id
e 

C
y
cl

e)
 

Hip first peak 26.61 4.45 28.30 3.68 t159= -6.983, p < 0.0001* 0.6 

Hip second peak 51.89 3.90 52.36 4.37 t159= -1.243, p= 0.216 0.1 

Hip third peak  91.23 3.47 89.63 4.15 t159= 4.458, p < 0.0001* 0.4 

Knee first peak 8.19 2.21 8.73 3.01 t159= -2.380, p= 0.0006* 0.2 

Knee second peak 19.45 3.09 21.17 3.51 t159= -6.606, p < 0.0001* 0.5 

Knee third peak 49.31 2.77 49.06 3.30 t159= .860, p= 0.391 0.1 

Knee forth peak 86.59 2.18 86.83 2.31 t159= -1.740, p= 0.084 0.1 

Ankle first peak 10.58 2.20 10.82 2.22 t159= -1.794, p= 0.075 0.6 

Ankle second peak 24.10 2.32 24.21 2.08 t159= -.943, p= 0.347 0.1 

*Indicate significant difference; Bold indicates the event was observed within the stance phase; italic with underline indicates the event 

was observed during the stance-swing transition; rest of the parameters were observed within the swing phase. 
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3.3. Lower extremity joint angles  

Ensemble curves of the difference in lower extremity joint angles (hip, knee, ankle joints) in the 

extension/flexion plane between the systems are illustrated in Fig. 5.  

The hip (top panel) and knee (middle panel) joint angles were biased toward the extension in 

the ML than MB throughout the stride cycle except briefly for the early swing phase for the hip joint, 

and early stance phase for the knee joint, respectively. On the other hand, ML showed a dorsiflexion-

biased ankle joint angle (bottom panel) throughout the stride cycle.  
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Figure 5. Ensemble curve of lower extremity joint angle differences in the flexion/extension plane 

between marker-based (MB) and markerless (ML) motion capture systems across the average 10 

stride cycles for 16 participants. Differences were estimated as ML joint angles of each joint– MB 

joint angles of each joint. 

4. Discussion 

This study compared MB and ML systems estimated lower extremity joint moments and powers 

during treadmill running. Significant differences were detected in the peak magnitudes for joint 

moments and powers and relative timings to peak estimated by the two systems. Greater peak 

magnitudes for hip extension and flexion moments, knee flexion moments, and ankle plantarflexion 

moments, along with their joint powers, were observed in the ML system. Meanwhile, significantly 

smaller peak magnitudes for knee extension moments coincide with knee production power were 

observed. 

We focused on the extension/flexion plane’s joint angles, moments, and powers since running 

is primarily a extension/flexion plane movement (Dugan and Bhat 2005). We observed greater hip 

and knee flexion angles and smaller ankle dorsiflexion angles in the MB system than in the ML 

system. The tendency was partly consistent with Kanko et al.’s study (Kanko, Laende et al. 2021), 

showing that the MB system’s estimation resulted in greater flexion in all three joints. One possible 

explanation may be the model of the virtual foot. Visual3D introduces three methods to build the 

virtual foot, which may affect the ankle joint angles. When we chose the heel and toe targets to define 

the proximal and distal ends of the foot, there was no disclosure for Kanko et al.’s foot model. 

Different from Kanko et al.’s results, we observed larger magnitudes of systematic differences in the 

knee and ankle joint angles but smaller magnitudes in the hip joint. Compared to walking in Kanko 

et al., running in the current project is related to greater lower extremity joint motion (Novacheck 

1998). With greater joint motion, soft tissue artifacts can also be larger, leading to an additional 3° 

error in the joint angles. Also, inconsistent marker placement can contribute to a 5° error in the joint 

angles (Schwartz, Trost et al. 2004, Gorton, Hebert et al. 2009). 
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Compared to the MB system, the ML system’s estimation resulted in greater magnitudes of 

peak hip flexion (MB: -1.38 vs. ML: -1.73 Nm/kg) moment in the stance-swing transition phase and 

extension (MB: 1.42 vs. ML: 2.27 Nm/kg) moment in the late swing phase, knee flexion moment 

(MB: -0.74 vs. ML: -1.17 nm/kg) in the late swing phase, and ankle plantarflexion moments (MB: 

3.32 vs. ML: 3.16 Nm/kg) in the early stance phase, but smaller knee extension moments (MB: 1.40 

vs. ML: 1.28 Nm/kg) in the early stance phase. Previous studies presented similar patterns of lower 

extremity joint moments during running estimated by MB systems. Schache et al. (2011) and Fukuchi 

et al. (2017) reported lower extremity joint moments at the speed of 3.5 m/s during overground and 

treadmill running, respectively (Schache, Blanch et al. 2011, Fukuchi, Fukuchi et al. 2017). Their 

results showed similar peak magnitudes of hip flexion and extension moments of -1.09 and 0.91 

Nm/kg (overground) and -1.15 and 1.37 Nm/kg (treadmill); knee flexion moments of -0.53 Nm/kg 

(overground); as well as the ankle plantarflexion moment with the value of 2.94 Nm/kg (overground) 

and 2.23 Nm/kg (treadmill). Besides, they reported similar knee extension moments with the values 

of 3.12 Nm/kg (overground) and 3.18 Nm/kg (treadmill). Consequently, joint powers also showed 

the same tendency. Despite the differences between overground and treadmill running, Schache et 

al.’s results revealed similar systematic differences in the present study. Compared to the MB system, 

the estimations from the ML system may result in greater hip moments and powers in the stance-

swing transition and swing phase, knee moments and powers in the swing phase, as well as the ankle 

moment in the early stance phase, but less in the knee moment and power in the early stance phase. 

The anthropometric model affects the results of the joint moments and powers. Once rigid body 

equations are set, the joint centers and moment of inertia about the center of mass eventually govern 

the relationships between kinetics and kinematics (Derrick, van den Bogert et al. 2020). The 

systematic differences can be further explained by the variations of joint centers and segment mass 

centers.  

It has been well recognized that differences in hip joint center location can propagate to hip and 

knee kinematic and kinetic quantities, especially the hip moments concerning flexion/extension 
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(Stagni, Leardini et al. 2000). Besides, the propagation of flexion/extension moments is particularly 

sensitive to the anteroposterior hip joint center location. We observed that hip joint centers in the ML 

system were about 2 cm posterior to the MB system in the stance-swing transition and late swing 

phase. In addition, the sensitivity of hip moments to inertial properties variations can be up to 40% 

(Pearsall and Costigan 1999). Supported by our results, the thigh center of mass locations was about 

2 cm superior in the ML than the MB system in the stance-swing transition phase. Similar to a 

previous study, greater changes occurred in the swing phase (Pearsall and Costigan 1999), and the 

ML system showed a biased posterior (about 2 cm) and anterior (about 1 cm) center of mass. For the 

knee joint, joint moments are sensitive to the differences in knee joint center locations (Holden and 

Stanhope 1998). Previous studies have reported that tibia surface movements affected the knee joint 

center by 1.1 cm and resulted in the most prominent joint moment in the stance phase (Holden and 

Stanhope 1998). Our results exhibited that knee joint centers differed around 1 cm in all directions 

and greater disparities in the leg center of mass in the early stance phase, which may explain the 

greater knee extension moment in the MB system. Moreover, our results exhibited a greater leg center 

of mass in the late swing phase, which may induce greater knee flexion moments. For the ankle joint, 

we observed less than 1 cm differences in all three directions. Previous studies indicated that average 

ankle joint position differences were less than 1 cm in the anteroposterior and mediolateral direction 

and around 2 cm in the vertical direction (Kanko, Laende et al. 2021). Plus, the foot center of mass 

locations varied greatly. The ML system showed slightly biased in the lateral direction (<1 cm) with 

greater bias in the anterior and superior directions (almost 3 cm). Such difference may be induced by 

the marker placements of the first and fifth metatarsal heads. While the MB system reads the markers 

on the side of the first and fifth metatarsal heads, the markerless system might locate the foot center 

of mass based on the contour of the shoe. The different joint centers could affect moment arms, and 

the segment center of mass could affect the estimation of the moment of inertia. Together, they could 

lead to greater differences in the joint moments and powers. 
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The methodology differences between ML and MB systems that determine the estimation of 

poses (body segment positions and orientations) need further attention. The present study has 

guaranteed consistency in the computational algorithms for segments and inverse dynamic solutions 

for both systems in the Visual3D. However, the MB system depends heavily on physical marker 

placements over external/internal anatomical landmarks (hardware), and the ML system relies on 

deep learning-based algorithms to estimate joint center locations (software). The deep learning pose 

estimation algorithms learn to identify joint centers from the training data. ML in the current study 

includes over 500,000 manually labeled digital images of human body and employs biomechanically 

applicable training data that can identify 51 salient features of human body (Kanko, Laende et al. 

2021, Kanko, Laende et al. 2021, Kanko, Laende et al. 2021). The optimization methods examined 

the distance between the manually labeled training data and the estimated joint centers to reduce 

errors. This process is repeated with the entire training data until improvements between each 

iteration become negligible. The pose estimation algorithm is then tested on the new image and 

compared to the training dataset (Wade, Needham et al. 2022). However, any omissions or biases 

implicit within training datasets could propagate to situations where the training was weak [19]. Note 

that the inverse dynamic method is very sensitive to joint center locations because the estimation of 

the net joint moments includes the cross product of forces and their moment arms, where the length 

of moment arms is largely affected by joint center locations [37]. A previous marker-based study has 

reported that 2 cm superior and 2 cm lateral placement of the hip joint center can decrease the moment 

of arms of the hip joint by about 28% [38]. Supported by our results, systematic differences in joint 

center positions have been observed, which might affect moment arms and lead to disparities in joint 

moments and powers. However, it remains unclear if the differences are caused by marker-based 

joint center errors induced by soft tissue artifacts (Cappozzo, Catani et al. 1995) or propagations from 

a weak training dataset. 

While the ML system may still be considered in its infancy, evidence from previous studies 

demonstrated its potential for clinical applications. Since pose estimation algorithms are not 
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dependent on markers attached to the skin, soft tissue artifact errors can be eliminated (Reinschmidt, 

van den Bogert et al. 1997), making human errors possible. Studies also presented that the markerless 

system can extract new information from old datasets (Kidziński, Yang et al. 2020, Shin, Yu et al. 

2021). Therefore, the ML system can be beneficial in the streamlined monitoring of changes in 

disease progression (Kidziński, Yang et al. 2020), rehabilitation (Cronin, Rantalainen et al. 2019), 

athletic training, and competitive sports (Evans, Colyer et al. 2018). In addition, the Theia3D 

markerless system has shown strong results in the inter-session joint angles variability during 

walking with loose clothing conditions (Kanko, Laende et al. 2021). More importantly, data 

collection can be completed much shorter than the MB systems (Kanko, Laende et al. 2021). Such 

benefits could facilitate data collection in a more convenient area with less effect on people’s gait 

(Robles-García, Corral-Bergantiños et al. 2015), when time is limited, and wearing more comfortable 

clothing.  

However, the differences observed here could have significant implications. For example, 

previous studies have shown that the values of hip extension and knee flexion moments in the initial 

stance and late swing phase were important factors in discussing hamstrings injuries during sprinting 

(Liu, Garrett et al. 2012, Sun, Wei et al. 2015). The greater hip extension and knee flexion moments 

observed in the late swing with the ML system could impact the hamstring injury-related discussions. 

Like hamstrings, the biarticular rectus femoris plays an important role in the energy transfer between 

the hip and knee joints. Greater rectus femoris stress is associated with greater hip flexion and knee 

extension moments. We have observed, with the ML in comparison with the MB system, greater hip 

flexion moment in the stance to swing transition phase, greater hip power absorption in the late stance 

phase, and greater hip joint power production in the early swing phase, which could lead to a greater 

rectus femoris contraction estimation during the stance-swing transition. A previous study showed 

that greater rectus femoris contraction could lead to greater patellar tendon tension, a risk factor for 

patellofemoral pain during running (Lenhart, Thelen et al. 2014). Thus, joint moment/power 

estimated by the ML system can lead to different assessments for the risk factors of hamstring 
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injuries, patellofemoral pain, and maybe other relevant discussions compared to the MB system. 

With different risk factor analyses based on the MB or ML systems, clinicians, coaches, and athletes 

could lead to different decisions in their practices.  

The following limitations of the current work should be noted. First, our participants’ pool was 

limited to recreationally active young adults. Different population groups may have anatomical 

deformities, affecting the comparison between the systems. Second, we analyzed treadmill running, 

where the treadmill settings may constrain the speed. Additionally, the hardware and the marker 

placements are unique to each lab. Despite our updated VICON high-resolution video cameras 

employed for markerless data, the Vicon Bonita series infrared cameras used here do not provide us 

with the highest resolution available on the market. Lower camera resolution may cause trajectory 

errors in the identifications of landmarks (Zago, Luzzago et al. 2020). Therefore, future studies 

should attempt to replicate the results in different populations using different speeds and hardware 

settings. 

5. Conclusions 

This study is the first to compare the inverse dynamic outcomes of lower extremity kinetics 

estimated by the marker-based and markerless systems. We have observed differences in joint 

moments and powers between the two systems, which could be partially related to the estimations of 

joint centers and segment center of mass (pose estimations). Although the accuracy and precision of 

pose estimations between the two systems require further testing, the strengths of the markerless 

system are apparent. The significantly less data collection and processing time contribute greatly to 

a more versatile application. With the progression of pose estimation software, the markerless system 

can be further employed in clinical biomechanics and sports medicine. 
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CHAPTER 2 

 

RUNNING SPEED EXACERBATES LOWER EXTREMITY JOINT MOMENT AND 

POWER ESTIMATED BY MARKERLESS AND MARKER-BASED SYSTEM DURING 

TREADMILL RUNNING 

 

Abstract 

The development of computer vision technology has enabled the use of Markerless (ML) 

movement tracking for biomechanical analysis. Recent research has reported the reliability of 

ML in motion analysis but has not yet further explored the clinical potential and limitations. The 

purpose of this study was to investigate the effects of speed on the comparison of estimated lower 

extremity joint moments and powers between ML and marker-based (MB) technologies during 

treadmill running. Kinematic data of both MB/ML and ground reaction force data were collected 

from 16 recreational young adults running on an instrumented treadmill for 120 s at three speeds: 

2.24 m/s, 2.91 m/s, and 3.58 m/s. Three-dimensional moments and powers of the hip, knee, and 

ankle were calculated. Compared to the MB, ML estimated greater increased hip and knee joint 

kinetics with faster speeds during the swing. Additionally, increased greater ankle joint moments 

with increased speeds estimated by ML were observed during early swing. In contrast, greater 

ankle joint power occurred during the initial stance. Despite the promising application of ML 

technology in clinical settings, systematic ML overestimation requires extra attention. These 

observations may indicate that inconsistent segment pose estimations (mainly the center of mass 

estimated by ML being farther away from the relevant distal joint center) might lead to systematic 

differences in joint moments and powers estimated by MB versus ML. 
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1. Introduction 

Human motion analysis plays an important role in clinical biomechanics and sports medicine 

for identifying, preventing and rehabilitating diseases, disabilities, and injuries (Wade, Needham, 

McGuigan, & Bilzon, 2022). The most frequently used biomechanical tool for three-dimensional 

motion analysis is the marker-based motion capture system (MB) (Mündermann, Corazza, & 

Andriacchi, 2006). Despite MB receiving high validity and repeatability (Collins, Ghoussayni, 

Ewins, & Kent, 2009), limitations including skin artifacts (Cappozzo, Catani, Della Croce, & 

Leardini, 1995; Fuller, Liu, Murphy, & Mann, 1997), controlled environment, human errors, and 

time-intensive have been summarized as shortfalls (Cappozzo, Della Croce, Leardini, & Chiari, 

2005; Chiari, Croce, Leardini, & Cappozzo, 2005; Leardini, Chiari, Croce, & Cappozzo, 2005). 

Markerless motion capture systems (ML) that use standard video and often leverage deep-

learning-based software have been slowly applied in biomechanics (Tang, Pan, Munkasy, Duffy, 

& Li, 2022). ML offers an attractive solution to problems associated with MB. 

Supporting evidence has shown the feasibility of ML for gait analysis. For example, Kanko 

et al. (2021c) have concurrently compared the gait kinematics from MB/ML during treadmill 

walking. They reported that the average root mean square distance between corresponding lower 

extremity joint centers was less than 2.5 cm, except for the hip joint (3.6 cm). Differences of 

lower extremity joint angles for flexion/extension and abduction/adduction were from 2.6°-11° 

(ankle to hip), and rotation about longitudinal axis were 6.9°-13.2° (Kanko, Laende, Davis, 

Selbie, & Deluzio, 2021). Their pose estimation (position and orientation) results indicated that 

ML can be a suitable technology in kinematics studies. More recently, Tang et al. (2022) 
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compared lower extremity kinetics estimated by MB/ML during treadmill running. Results 

indicate overall significantly greater peak magnitudes of joint moments and powers estimated by 

ML than MB (Tang et al., 2022). Joint moments and powers are classically assessed using inverse 

dynamics. The accuracy of these calculations can be highly affected by the pose estimations of 

the body segment inertial parameters (BSIPs) expressed in the local coordinate systems (LCS), 

the segment kinematics, and joint center position (Valentina Camomilla et al., 2017; Timothy R. 

Derrick et al., 2020). Hence, Tang et al. (2022) suggested that inconsistent joint centers 

estimation and segment center of mass (COM) position between MB/ML might produce the joint 

moments and powers differences observed (Tang et al., 2022). 

Noticeably, Theia3D ML used in the aforementioned studies utilizes pose estimation 

algorithms that can identify over 51 keypoints (joint centers and other anatomical features) 

(Kanko, Laende, Davis, et al., 2021). It exceeds other ML such as OpenPose (25 keypoints) using 

deep learning based algorithms (Wade et al., 2022). Previous studies have indicated that 

OpenPose pose estimation accuracy can be affected by movement speed (Nakano et al., 2020; 

Zago et al., 2020). As Theia3D ML is promoted as appropriate for clinical and sports settings, it 

is critical to investigate the effects of speed on pose estimation and further on other calculated 

biomechanical parameters. 

Running has received accumulative attention from researchers due to its relationships to 

sports performance and injury (Novacheck, 1998). Effects of speed on running biomechanics 

have long been reported (Arampatzis, Brüggemann, & Metzler, 1999; Belli, Kyröläinen, & 

Komi, 2002; Dugan & Bhat, 2005; Anthony G Schache et al., 2011; Simpson & Bates, 1990; 

Swanson & Caldwell, 2000). For instance, Sun et al. (2015) reported that peak hip and knee joint 
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torques during late swing might increase hamstring injuries in sprinting (Sun et al., 2015). It is 

noteworthy lower extremity joint kinetics, estimated using MB, increase with running speed 

during swing (Arampatzis et al., 1999; Sun et al., 2015). This increase could be related to the 

estimation the effects of the inertial terms, which are greatly influenced by COM location 

estimations, dominate the moment calculation during swing (Ganley & Powers, 2004). Recalling 

our previous comparison study, the ensembled curves of lower extremity COM between MB/ML 

showed obvious differences during swing. In particular, the thigh COM locations were about 2 

cm more superior and posterior while the positions of leg COM were biased inferior and posterior 

in ML compared to MB. These explained the significantly greater HJM and KJM and HJP and 

KJP estimated by ML observed during swing (Tang et al., 2022). Taken together, it is important 

to investigate the speed effects on the differential joint kinetic parameters estimated by MB/ML. 

Therefore, the objective of this study was to investigate how running speed affects lower 

extremity joint moments and powers estimated by MB/ML. It was hypothesized that: (1) faster 

speed would generate greater differences in ML estimations of joint moments and powers 

compared to MB estimations; (2) the systematic differences would mostly appear during running 

swing phase. 

2. Materials and Methods 

2.1. Participants 

Sixteen recreationally active college students consented (IRB Approval Number: H22327) 

to act as participants. Inclusion criteria were: (1) free from neuromuscular or musculoskeletal 

impairments that could prevent their running performance and (2) have treadmill running 
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experience. Participants were advised to be free from any intensive exercise 24 hours before data 

collection. 

2.2. Experimental Setup and Protocols 

Experiments were carried out using the MB/ML and an instrumented treadmill (AMTI 

force-sensing tandem treadmill, MA, USA). MB included eight infrared cameras (Vicon Bonita, 

Oxford, UK). ML included 8 video cameras (Vicon Vue, Oxford, UK). Data collection from the 

camera systems (100 Hz) and the instrumented treadmill (1000 Hz) was internally synchronized 

using Vicon Lock+ (Vicon, Oxford, UK). Before data collection, the cameras were calibrated 

and temporally and spatially synchronized following the manufacturer's recommended protocol. 

This study used a four-segment, hierarchical, biomechanical model (pelvis, thigh, leg, and 

foot) to capture MB data with twenty-six 14 mm retro-reflective markers (See Tang et al 2022 

for more details [9]). 

For testing, participants were oriented to the running protocol before they changed into lab 

provided tight shirts and shorts. Participant wore their own running shoes. A five-minute warm-

up and treadmill running familiarization followed. Participant height and body mass were 

recorded before markers were placed on the participant MB static and dynamic calibration was 

recorded. Participants started walking at an initial speed of 1.12 m/s and then gradually 

transitioned to running. Participants performed three running trials at 2.24, 2.91, and 3.58 m/s 

with fixed order (Anthony G Schache et al., 2011). Each running trial lasted 120 s with 2 min 

rest in between, and the last 30 s was recorded for further analysis. 

2.3. Data analysis 
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The kinematic and ground reaction force data were filtered through Nexus using a low-pass, 

zero-lag, 4th-order Butterworth filter with cut-off frequencies of 10 Hz and 50 Hz (Zhang, Pan, 

& Li, 2018), respectively. 

Data were first processed through Nexus (Vicon Nexus, Oxford, UK), where marker 

trajectories were interpolated using Woltring gap filling (Woltring, 1986). ML video data were 

pre-processed by Theia3D (Theia3Dv2022.1.0.2309, Theia Markerless, Inc., Kingston, ON, 

Canada), where the inverse kinematic (IK) solution was used to estimate the 3-dimension pose 

in space. The lower body kinematic chain has six degrees of freedom (DOF) at the pelvis, three 

at the hip, three at the knee, and six at the ankle (Kanko, Laende, Selbie, & Deluzio, 2021). Both 

MB/ML data were then exported as 4×4 pose matrices for each frame of data for the second-

level data analysis in Visual3D (Preview v2022.06.02, C-Motion, Inc., Germantown, MD, USA) 

(Kanko, Laende, Davis, et al., 2021). 

To build the anthropometric model for MB data, the body segment inertial parameters 

(BSIPs) and joint centers were determined. Specifically, Dempster’s regression equation for 

segment mass (Dempster, 1955), and segments were computed as geometrical shapes (Hanavan, 

1964). The hip joint center was estimated using the method proposed by Bell et al. (Alexander 

L. Bell, Brand, & Pedersen, 1989). The knee and ankle joint centers were estimated using 

midpoints between external landmarks of the corresponding segment. The local coordinate 

system (LCS) was determined from the static calibration trial. The vertical axis was defined from 

distal to the proximal joint center, while the anterior-posterior axis was defined perpendicular to 

the vertical axis with no mediolateral component. The third axis was the cross-product of the 

vertical and anterior-posterior axis (Kristianslund, Krosshaug, & van den Bogert, 2012). On the 
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other hand, the model was automatically created for ML data based on the deep learning 

algorithms. BSIPs and joint center positions were generated accordingly (Kanko, Laende, Davis, 

et al., 2021). 

Resolved into the proximal coordinate system for both MB/ML data, lower extremity joint 

moments and powers in the extension/flexion plane were calculated using the proximal segment 

as the reference and applying Newton-Euler methods (Robertson, Caldwell, Hamill, Kamen, & 

Whittlesey, 2013; David A Winter, 2009). The hip and knee extensor and ankle plantar-flexor 

moments were assigned to be positive. Positive power values indicated energy production 

through concentric muscular contractions (David A Winter, 2009). 

A force threshold of 50 N were used to identify stride cycles (Zhang et al., 2018) defined as 

two consecutive right heel contacts. The duration of each stride cycle was scaled to 101 (0 to 

100%) data points. 

Discrete variables were extracted from the last 10 strides of each speed for MB/ML. Tables 

3 and 4, supported by figure 6-8 present the details for the identified peaks. 

2.4. Statistical Analysis 

Means and standard deviations of the lower extremity joint moments and powers at 2.24, 

2.91, and 3.58 m/s were calculated based on individual measurements between systems. 

2.4.1. Discrete parameters analysis 

All discrete variables were assessed for normality using a one-sample Kolmogorov-Smirnov 

test (α=.05). Two-way (system×speed) within-subject repeated measure ANOVA was used to 

examine the outcome variables. The alpha level for all statistical tests was .05. SPSS (IBM Inc., 

Chicago, IL, USA) was used to perform all statistical analyses. 
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2.4.2. Spatial Parametric Mapping 

   Spatial parametric mapping (SPM) is an n-dimensional methodology for the topological 

analysis of smooth continuum changes associated with an experimental intervention (Pataky, 

2012). SPM can present statistical results directly in the original sampling space and omit the 

assumptions regarding the spatiotemporal foci of signals (Pataky, 2010). Thus, SPM analyses 

were applied to 1D extension/flexion plane lower extremity joint moments and powers estimated 

by MB/ML under three speeds. A built-in function in SPM assessed the normality of data 

(spm1d.stats.normality.anova1rm.m). For data that followed the normal distribution, a 2×3 

repeated measures ANOVA (system×speed) was performed using the built-in function 

(spm1d.stats.anova2rm) to compare system pairs. Then a simple linear regression was performed 

using speeds as the predictor variable and the difference between systems as the dependent 

variable. The difference between systems was calculated using MB minus ML data. The SPM 

built-in regression function was employed (spm1d.stats.regress). 

All SPM analyses were conducted in MATLAB (The MathWorks Inc., Natick, M.A., 

2022a) using the open-source package SPM1d version 0.4 (http://www.spm1d.org/) (Pataky, 

Robinson, & Vanrenterghem, 2013). The alpha level for all statistical tests was .05. 

3. Results 

Data from all 16 participants were included in the analysis. Average age, body mass, and 

height were 23.44±2.31 years, 69.72±9.82 kg, and 1.73±0.08 m, respectively. The discrete 

measurement results are presented in Tables 1 and 2 as support for the SPM results (See the table 

for more details). 

3.1. Hip Joint 
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In the SPM analyses, a continuous portion of a 1D continuum can be referred to as a region-

of-interest (ROI). According to the first level repeated measure ANOVA SPM analysis, 

significant interactions between speed and system for the HJM (F=7.908, p<.001) and HJP 

(F=7.667, p<.001) (top panel of Fig 6) were observed. The interactions for HJM ROIs were 

during the 42-52% and 88-96% of the stride cycle (Fig 6 top-left). The ROI of the HJP was 

around 44-62% (Fig 6 top-right). The second level SPM analysis with simple linear regression 

showed linear correlations between speed and differences of HJM and HJP estimated by MB/ML 

(p<.05). Correlation coefficients were presented in the second panel of Fig 6. In addition, the 

ensembled curves of HJM and HJP with running speed were presented in the bottom three panels 

of Fig 6. We observed that the ROIs of HJM at approximately 42-52% and 88-96% during early 

and late swing, respectively. Compared to MB estimation of HJM, ML estimation showed greater 

increases in the flexion HJM during early swing and extension HJM during late swing. The ROI 

of HJP centered around 45-62% of the stride cycle, where ML-estimated HJP production 

increased much faster than that of MB-estimated during early swing. 

3.2. Knee Joint 

The first-level SPM analysis results showed significant interactions between speed and 

system for KJM (F=7.512, p<.05) and KJP (F=7.689, p<.05). The ROIs of KJM were 41-60%, 

68-76%, and 88-90% of stride cycle (Fig 7 top-left). The ROIs of the KJP were approximately 

40-45%, 53-58%, and 68-78% of the stride cycle (Fig 7 top-right). Results from the second level 

SPM analysis of differences of KJM and KJP estimated by MB and ML revealed the consistency 

of ROIs of KJM and KJP (see second panels of Fig 7). Observed from the ensembled curves of 

KJM (bottom three panels of Fig 7), three ROIs of KJM showed that ML estimations changed 
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with speed more than MB estimations. In addition, among the three ROIs of KJP, ML-estimated 

KJP showed an earlier and faster turn to power absorption than MB estimations in the middle of 

swing. 

3.3. Ankle Joint 

For the AJM, the first level SPM analysis revealed the statistically significant interactions at 

the ROI of 42-52% (F=7.627, p<.05) (Fig 3 top-left). Accordingly, the AJP, ROI was shown 

around 10-18% of early stance (F=7.908, p<.05) (Fig 8 top-right). The second level SPM analysis 

showed a significant association between speeds and differences of AJM and AJP estimated by 

MB/ML (p<.05). The corresponding correlation coefficients are shown in the second panel of 

Fig 8. The significant ROI of AJM was consistent with the first-level SPM analysis. Combined 

with ensembled curves of AJM (bottom three panels of Fig 8), we observed that ML estimated 

plantar flexion AJM did not increase (albeit very small) with speed as much as MB estimated 

during early swing. However, the ROIs of the AJP of second-level SPM analysis were detected 

at 10-18%, 36-42%, and 55-62% of the stride cycle (second panel of Fig 8 on the right). Observed 

from the ensembled curves of AJP under three speeds, the speed-related increase of plantar 

flexion AJM caused a faster and earlier ending of the power absorption with MB-estimated AJP 

but not ML-estimated. 

4. Discussion 

We have investigated the differential effects of running speed on lower extremity joint 

moments and powers estimated by marker-based (MB) and markerless (ML) systems. Time 

series (SPM) results, supported by discrete measurements, showed that greater increases of lower 

extremity joint moments and powers with running speed were observed in ML than MB, hip and 
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knee joints at both ends of swing. Additionally, the plantarflexion AJM during stance-

swing transition and the ankle absorption power during early stance were also detected 

with greater increases in ML with speed. These observations support our hypotheses. 

Lower extremity joint kinetics increase with running speed (Belli et al., 2002; Fukuchi, Fukuchi, 

& Duarte, 2017; Petersen, Nielsen, Rasmussen, & Sørensen, 2014; Anthony G Schache et al., 

2011), especially during swing (Elizabeth S. Chumanov, Heiderscheit, & Thelen, 2007; Elizabeth 

S Chumanov, Heiderscheit, & Thelen, 2011; Dorn, Schache, & Pandy, 2012; Fukuchi et al., 2017; 

Anthony G Schache et al., 2011; Sun et al., 2015). Estimation of HJM and KJM plays an 

important role in clinical evaluation of running related injuries (Elizabeth S. Chumanov et al., 

2007; Elizabeth S Chumanov et al., 2011; Sun et al., 2015). Greater magnitude of HJM and KJM 

during swing would lead to an increased hamstring injury-risks (Li & Wang, 2017). Increased 

HJM and KJM could be associated with greater muscle eccentric contraction speed during swing, 

which leads to excessive hamstring stretch and loading (Elizabeth S Chumanov et al., 2011). 

Meanwhile, biceps femoris loading increases more than other hamstring muscles when 

performing a high-speed running (Thelen et al., 2005). Hence, the runners with weak biceps 

femoris would have a higher risk of hamstring injuries during high-speed running. In addition, 

Sun et al. (2015) supported the hamstrings’ maximal lengthening as injury-risk during the late 

swing using inter-segmental analysis. They showed that the motion dependent moments 

contributed significantly to the HJM and KJM at the end of swing during running. So tremendous 

loads on hamstring muscles are needed to counterbalance the passive torques and control rapid 

limb rotation during swing. Due to the large passive torques at both the knee and hip acted to 
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lengthen hamstrings, the largest extension HJM and flexion KJM occurred at the same time and 

can be used as indicators for hamstring strain injuries at the end of swing phase (Sun et al., 2015). 

Joint kinetics during swing are mainly determined by gravity and body segment inertia 

(Verheul, Sueda, & Yeo, 2022).The effects of inertial properties changes with speed on joint 

kinetics during swing then should be highlighted. It is noted that inertial property changes are 

not independent, changes in the center of mass (COM) should affect the moment of inertia based 

on the parallel axis theorem as well as segment mass [41]. The sensitivity of HJM to inertial 

property variations of thigh and leg can be up to 40%, especially during swing (Pearsall & 

Costigan, 1999). Supported by our previous report, greater ML estimations of HJM and KJM 

increased with speed during running can be explained by differences in segment COM (Tang et 

al., 2022). In the current study, SPM results showed the region of interest (ROI) for HJM affected 

by speeds during the late swing (88%-96%), which could be a direct result of leg COM 

estimation. We have observed that the ML estimated the leg COM were 2 cm inferior then that 

of the MB during late swing (Tang et al., 2022). The increased distance would increase the 

estimated leg inertial load on the knee joint, which can then explain the greater KJM induced by 

increased inertial loads during late swing. It has been reported that motion dependent moments, 

especially the moment due to leg acceleration, were main contributors to HJM and KJM during 

late swing. Greater amount of the estimated hamstring muscle loading is needed to 

counterbalance such motion dependent moments and control the rapid limb rotation with faster 

speed (Sun et al., 2015). Increased inertial loads with speed puts the lengthened hamstring 

muscles at risk for injury during sprinting (Elizabeth S. Chumanov et al., 2007; Elizabeth S 

Chumanov et al., 2011; Sun et al., 2015). 
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Further, it is important to note that segment COM position and components of the inertia 

matrix are calculated by using segment lengths which are defined by segment endpoints (Bhrigu 

Kumar Lahkar, Chaumeil, Dumas, Muller, & Robert, 2022). Our previously observed joint center 

differences during swing also help to explain the current results. The hip joint center differences 

in the anterior-posterior direction were particularly propagated to the extension/flexion HJM 

(Stagni, Leardini, Cappozzo, Grazia Benedetti, & Cappello, 2000). Reinforced by our earlier 

results, the hip joint center positions estimated by ML during swing were approximately 3 cm 

more posterior (Tang et al., 2022). It is noteworthy that gait cycles showing differences in 

segment center of mass and joint center matched with the current significant ROIs of HJM, KJM, 

HJP, and KJP. While our previous study only presented discrete single events, the current SPM 

results supports that such observations are aligned through temporal shifting (Honert & Pataky, 

2021). Taken together, systematic differences in joint kinetics induced by inconsistent 

estimations of segment center of mass and joint centers can be exacerbated by the increased 

running speeds. 

The systematic differences observed from MB/ML need to be addressed to avoid 

repercussions for future clinical applications. It is a common practice to apply biomechanical 

factors to predict running-related injury and then modify with targeted interventions (Ceyssens, 

Vanelderen, Barton, Malliaras, & Dingenen, 2019). For instance, researchers would use the 

moments, powers and work done at hip and knee joints during late swing as references to indicate 

hamstring muscles injuries (Elizabeth S. Chumanov et al., 2007; Elizabeth S Chumanov et al., 

2011; Dorn et al., 2012; Anthony G Schache et al., 2011; Sun et al., 2015). Since we reported 

greater increased HJM and KJM estimation by ML, it may lead to an increased injury-risk 
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estimation for both parallel and cross-sectional hamstring injuries (Li & Wang, 2017). Similarly, 

patellofemoral pain occurs at the knee joint due to excessive hip motion and overloading during 

running (Souza & Powers, 2009). Rectus femoris, another biarticular muscle is associated with 

flexion HJM and extension KJM. It has been reported that greater inertial loads to the rectus 

femoris during the early swing phase increased the patellar tension, leading to patellofemoral 

pain risks in running (Bryan C Heiderscheit, Chumanov, Michalski, Wille, & Ryan, 2011). 

Another example would be chronic exertional compartment syndrome induced by tibialis anterior 

overload (Franklyn-Miller, Roberts, Hulse, & Foster, 2014), the previous varied foot COM 

estimation together with the current overestimation of ankle and knee joint kinetics may result in 

over injury estimation. Therefore, the results from the current study indicate the overestimation 

from ML could be exacerbated by speeds, and could lead to over-estimated running-related injury 

risks if used in sports biomechanics. 

ML remains worthwhile for the clinical and sports settings despite the differences between 

MB/ML we observed here. Advantages of ML are prominent, especially for the clinical settings. 

First, short preparation time is more convenient. Without putting markers on participants, less 

operator differences would occur. The differences caused by loose clothing reported in the 

spatiotemporal parameters, which were lower than typical marker placement-related differences, 

were smaller than the minimal changes in movement-related pathologies such as multiple 

sclerosis and cerebral palsy (Keller, Outerleys, Kanko, Laende, & Deluzio, 2022). Second, 

movements , such as, underwater running (Cronin, Rantalainen, Ahtiainen, Hynynen, & Waller, 

2019), counter movement jump (Drazan, Phillips, Seethapathi, Hullfish, & Baxter, 2021), and 

ball throwing (Nakano et al., 2020), will not be restricted by markers. Moreover, Theia3D ML 
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has shown to be reliable comparing inter-session joint angles during walking (Kanko, Laende, 

Selbie, et al., 2021). Demonstrating it can be an unobtrusive method to monitor patients in their 

daily lives. Prior studies have demonstrated that using monocular ML to examine gait parameters 

of Parkinson’s disease patients can provide clinicians with an overview of disease progression 

and detect the minor gait disturbances that can be unnoticed by clinicians (Mathis et al., 2018; 

Shin et al., 2021). 

The current study has several limitations. First, we only investigated the speed effects of 

treadmill running, and it remains unclear if ML overestimations of joint moments and powers 

would apply to other movements. Second, the interactions detected, using SPM, between AJM 

during early swing and AJP during initial stance, were not consistent with the results of discrete 

measurements. Further ankle joint investigations are needed to explain such inconsistency. In 

addition, the current study focused on joint kinetics in the extension/flexion plane. However, 

many lower extremity muscles have specific actions that are not limited to a single plane. For 

example, rectus femoris and bicep femoris muscles induce frontal hip motion (Hunter, Thelen, 

& Dhaher, 2009). Lower extremity motion in other planes needs to be further investigated using 

ML. 

5. Conclusion 

We have observed the differences in lower extremity joint moments and power estimated by 

maker-based (MB) and markerless (ML) systems during treadmill running increased with speed. 

Differences in joint center and center of mass estimations between the systems could partially 

explain the observed differences. ML is beneficial in the clinical and sports settings, it is critical 
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to consider the overestimation issue induced by the pose estimation algorithms, especially when 

analyzing high speed movements. 
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Table 3. Body mass scaled peak magnitude (Mean±SD) for joint moments and powers for the marker-based system (MB) and Markerless system 

(ML). 

Parameters 

MB ML Significant 

Interaction 

Main Effect 

2.24 m/s 2.91 m/s 3.58 m/s 2.24 m/s 2.91 m/s 3.58 m/s Speed System 

 Moment (Nm/kg)    

Hip first peak -1.39±0.48 -1.75±0.49 -2.21±0.65 -1.35±0.43 -1.61±0.49 -2.04±0.69  p<.05  

Hip second peak 0.82±0.19 1.01±0.23 1.44±0.23 1.06±0.17 1.23±0.29 1.76±0.24  p<.05 p<.05 

Hip third peak  -0.89±0.19 -1.12±0.23 -1.42±0.29 -1.50±0.30 -1.73±0.46 -2.14±0.78  p<.05 p<.05 

Knee first peak 1.59±0.33 1.64±0.43 1.51±0.44 1.43±0.21 1.49±0.37 1.28±0.27   p<.05 

Knee second peak -0.50±0.09 -0.61±0.10 -0.74±0.13 -0.78±0.14 -0.95±0.16 -1.17±0.23 p<.05   

Ankle first peak -2.60±0.66 -3.04±0.76 -3.41±0.85 -2.47±0.41 -2.93±0.52 -3.27±0.62  p<.05  

 Power (W/kg)     

Hip first peak -2.22±1.05 -3.44±1.56 -5.59±3.30 -2.11±0.99 -3.55±1.63 -5.38±1.96  p<.05  

Hip second peak 1.59±0.41 2.70±0.62 4.49±1.27 3.45±0.73 5.06±1.05 8.20±1.78 p<.05   

Hip third peak 1.33±0.50 2.24±0.94 3.96±2.26 2.27±0.85 3.43±1.21 5.65±2.54 p<.05   

Knee first peak -4.95±1.77 -5.56±2.12 -5.15±2.50 -4.34±1.64 -4.85±2.03 -3.98±1.69   p<.05 
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Knee second peak 3.17±1.45 3.56±1.65 3.34±1.36 2.27±1.09 2.79±1.50 2.64±0.90   p<.05 

Knee third peak -1.15±0.32 -2.18±0.60 -3.71±1.23 -2.21±0.49 -3.48±1.03 -5.46±1.54  p<.05 p<.05 

Knee forth peak -3.37±0.70 -5.05±1.13 -7.36±1.95 -4.70±0.94 -6.69±1.23 -9.60±2.34 p<.05   

Ankle first peak -5.15±2.12 -6.82±2.76 -9.14±3.26 -4.90±1.26 -7.12±1.61 -9.40±1.54  p<.05  

Ankle second peak 9.61±3.05 13.24±4.01  17.28±4.66 9.37±2.60 13.96±3.39 18.34±4.82  p<.05  

Bold indicates the event was observed within the stance phase; italic with underline indicates the event was observed during the stance-swing transition; 

otherwise, parameters were observed within the swing phase. 

 

Table 4 Relative Time to Peak as %Stride Cycle (Mean±SD) for Joint moments and Powers for Marker-based system (MB) and Markerless system 

(ML). 

Parameters 

MB ML Significant 

Interaction 

Main Effect 

2.24 m/s 2.91 m/s 3.58 m/s 2.24 m/s 2.91 m/s 3.58 m/s Speed System 

 Moment (Nm/kg)    

Hip first peak 5.21±1.84 3.41±0.39 3.33±0.61 3.63±0.55 4.88±2.00 4.59±1.65  p<.05  

Hip second peak 27.31±4.85 28.29±5.65 26.02±3.88 34.55±4.67 32.00±4.80 27.91±3.46 p<.05   
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Hip third peak 68.11±6.32 64.52±6.53 59.74±6.72 69.12±5.88 65.64±5.96 60.22±5.94  p<.05  

Knee first peak 10.38±1.54 9.48±1.24 9.55±3.33 10.81±1.85 9.89±1.72 9.44±2.13    

Knee second peak 68.05±6.08 64.39±6.09 59.95±6.45 68.41±5.85 65.03±5.94 60.73±6.15  p<.05 p<.05 

Ankle first peak 14.82±1.15 13.34±1.42 12.00±1.33 14.89±1.33 13.54±1.45 12.11±1.48  p<.05  

 Power (W/kg)    

Hip first peak 19.30±3.83 18.18±3.66 17.56±4.31 23.28±2.84 20.91±2.90 18.76±2.67 p<.05   

Hip second peak 38.58±4.57 36.86±4.25 34.09±5.16 38.94±3.79 37.06±4.02 34.74±4.03  p<.05  

Hip third peak 65.31±5.65 63.87±6.22 59.93±6.14 62.75±4.24 59.57±4.37 58.83±5.12  p<.05 p<.05 

Knee first peak 6.78±1.25 5.63±1.42 5.35±0.84 6.67±1.87 5.89±1.01 5.82±1.31  p<.05  

Knee second peak 14.72±1.93 13.84±2.03 12.79±1.59 14.92±1.88 14.43±1.88 13.88±1.73    

Knee third peak 39.16±3.00 37.08±3.24 34.48±3.88 38.63±1.88 36.14±2.79 34.21±4.00  p<.05  

Knee forth peak 63.90±5.56 60.84±5.70 55.96±5.94 63.54±5.33 60.74±5.70 56.89±5.89  p<.05  

Ankle first peak 8.05±1.48 7.62±1.38 7.38±2.57 8.73±1.30 7.89±1.33 7.28±1.53  p<.05  

Ankle second peak 19.87±1.72 17.78±1.66 15.80±1.94 19.96±1.53 17.83±1.58 15.91±1.60  p<.05  

Bold indicates the event was observed within the stance phase; italic with underline indicates the event was observed during the stance-swing transition; 

otherwise, parameters were observed within the swing phase. 
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Figure 6. SPM analyses and ensembled curves of hip joint moments (left) and powers (right) under 

three speeds. The top panel shows the repeated measure ANOVA trajectory (SPM-F), where the 

horizontal red dotted line indicates the critical Random Field Theory threshold for significance 

(p<.05). The second panel shows the squared correlation coefficients corresponding to the SPM 

simple linear regression analysis of differences in hip joint moments and powers estimated by MB 

and ML changed with speeds. The significant squared correlation coefficient threshold was set at 

R2=.25. The bottom three panels are the ensembled curves of hip joint moments and powers estimated 

by MB (red) and ML (green). The dotted rectangle regions represented the region of interests (ROIs). 
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Figure 7. SPM analyses and ensembled curves of knee joint moments (left) and powers (right) under 

three speeds. The top panel shows the repeated measure ANOVA trajectory (SPM-F), where the 

horizontal red dotted line indicates the critical Random Field Theory threshold for significance 

(p<.05). The second panel shows the squared correlation coefficients corresponding to the results of 

SPM simple linear regression analysis of differences of knee joint moments and powers estimated 

by MB and ML and speeds. The significant squared correlation coefficient threshold was set at 

R2=.25. The bottom three panels are the ensembled curves of knee joint moments and powers 

estimated by MB (red) and ML (green). The dotted rectangle regions represent the region of interests 

(ROIs). 
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Figure 8. SPM analyses and ensembled curves of ankle joint moments (left) and powers (right) under 

three speeds. The top panel shows the repeated measure ANOVA trajectory (SPM-F), where the 

horizontal red dotted line indicates the critical Random Field Theory threshold for significance 

(p<.05). The second panel shows the squared correlation coefficients corresponding to the SPM 

simple linear regression analysis of differences of ankle joint moments and powers estimated by MB 

and ML and speeds. The significant squared correlation coefficient threshold was set at R2=.25. The 

bottom three panels are the ensembled curves of ankle joint moments and powers estimated by MB 

(red) and ML (green). The dotted rectangle regions represent the region of interests (ROIs). 

 

 

 



54 
 

References: 

Arampatzis, A., Brüggemann, G.-P., & Metzler, V., 1999. The effect of speed on leg stiffness and 

joint kinetics in human running. Journal of Biomechanics, 32 (12), 1349-1353.  

Bell, A. L., Brand, R. A., & Pedersen, D. R., 1989. Prediction of hip joint centre location from 

external landmarks. Human Movement Science, 8 (1), 3-16.  

Belli, A., Kyröläinen, H., & Komi, P. V., 2002. Moment and Power of Lower Limb Joints in 

Running. Int J Sports Med, 23 (02), 136-141.  

Camomilla, V., Cereatti, A., Cutti, A. G., Fantozzi, S., Stagni, R., & Vannozzi, G., 2017. 

Methodological factors affecting joint moments estimation in clinical gait analysis: a 

systematic review. BioMedical Engineering OnLine, 16 (1), 106.  

Cappozzo, A., Catani, F., Della Croce, U., & Leardini, A., 1995. Position and orientation in space of 

bones during movement: anatomical frame definition and determination. Clinical 

Biomechanics, 10 (4), 171-178.  

Cappozzo, A., Della Croce, U., Leardini, A., & Chiari, L., 2005. Human movement analysis using 

stereophotogrammetry: Part 1: theoretical background. Gait & Posture, 21 (2), 186-196.  

Ceyssens, L., Vanelderen, R., Barton, C., Malliaras, P., & Dingenen, B., 2019. Biomechanical Risk 

Factors Associated with Running-Related Injuries: A Systematic Review. Sports Medicine, 

49 (7), 1095-1115.  

Chiari, L., Croce, U. D., Leardini, A., & Cappozzo, A., 2005. Human movement analysis using 

stereophotogrammetry: Part 2: Instrumental errors. Gait & Posture, 21 (2), 197-211.  

Chumanov, E. S., Heiderscheit, B. C., & Thelen, D. G., 2007. The effect of speed and influence of 

individual muscles on hamstring mechanics during the swing phase of sprinting. Journal of 

Biomechanics, 40 (16), 3555-3562.  

Chumanov, E. S., Heiderscheit, B. C., & Thelen, D. G., 2011. Hamstring musculotendon dynamics 

during stance and swing phases of high speed running. Medicine and science in sports and 

exercise, 43 (3), 525.  

Collins, T. D., Ghoussayni, S. N., Ewins, D. J., & Kent, J. A., 2009. A six degrees-of-freedom marker 

set for gait analysis: Repeatability and comparison with a modified Helen Hayes set. Gait & 

Posture, 30 (2), 173-180.  

Cronin, N. J., Rantalainen, T., Ahtiainen, J. P., Hynynen, E., & Waller, B., 2019. Markerless 2D 

kinematic analysis of underwater running: A deep learning approach. Journal of 

Biomechanics, 87, 75-82.  

Dempster, W. T. 1955. Space requirements of the seated operator, geometrical, kinematic, and 

mechanical aspects of the body with special reference to the limbs. Michigan State Univ East 

Lansing.  

Derrick, T. R., van den Bogert, A. J., Cereatti, A., Dumas, R., Fantozzi, S., & Leardini, A., 2020. 

ISB recommendations on the reporting of intersegmental forces and moments during human 

motion analysis. Journal of Biomechanics, 99, 109533.  

Dorn, T. W., Schache, A. G., & Pandy, M. G., 2012. Muscular strategy shift in human running: 

dependence of running speed on hip and ankle muscle performance. Journal of Experimental 

Biology, 215 (11), 1944-1956.  

Drazan, J. F., Phillips, W. T., Seethapathi, N., Hullfish, T. J., & Baxter, J. R., 2021. Moving outside 

the lab: Markerless motion capture accurately quantifies extension/flexion plane kinematics 

during the vertical jump. Journal of Biomechanics, 125, 110547.  

Dugan, S. A., & Bhat, K. P., 2005. Biomechanics and Analysis of Running Gait. Physical Medicine 

and Rehabilitation Clinics, 16 (3), 603-621.  

Franklyn-Miller, A., Roberts, A., Hulse, D., & Foster, J., 2014. Biomechanical overload syndrome: 

defining a new diagnosis. British Journal of Sports Medicine, 48 (6), 415.  

Fukuchi, R. K., Fukuchi, C. A., & Duarte, M., 2017. A public dataset of running biomechanics and 

the effects of running speed on lower extremity kinematics and kinetics. PeerJ, 5, e3298.  



55 
 

Fuller, J., Liu, L.-J., Murphy, M., & Mann, R., 1997. A comparison of lower-extremity skeletal 

kinematics measured using skin-and pin-mounted markers. Human Movement Science, 16 

(2-3), 219-242.  

Ganley, K. J., & Powers, C. M., 2004. Determination of lower extremity anthropometric parameters 

using dual energy X-ray absorptiometry: the influence on net joint moments during gait. 

Clinical Biomechanics, 19 (1), 50-56.  

Hanavan, E. P., 1964. A Mathematical Model of the Human Body. AMRL Technical Report, 64-

102.  

Heiderscheit, B. C., Chumanov, E. S., Michalski, M. P., Wille, C. M., & Ryan, M. B., 2011. Effects 

of step rate manipulation on joint mechanics during running. Medicine and science in sports 

and exercise, 43 (2), 296.  

Honert, E. C., & Pataky, T. C., 2021. Timing of gait events affects whole trajectory analyses: A 

statistical parametric mapping sensitivity analysis of lower limb biomechanics. Journal of 

Biomechanics, 119, 110329.  

Hunter, B. V., Thelen, D. G., & Dhaher, Y. Y., 2009. A three-dimensional biomechanical evaluation 

of quadriceps and hamstrings function using electrical stimulation. IEEE Transactions on 

Neural Systems and Rehabilitation Engineering, 17 (2), 167-175.  

Kanko, R. M., Laende, E., Selbie, W. S., & Deluzio, K. J., 2021. Inter-session repeatability of 

markerless motion capture gait kinematics. Journal of Biomechanics, 121, 110422.  

Kanko, R. M., Laende, E. K., Davis, E. M., Selbie, W. S., & Deluzio, K. J., 2021. Concurrent 

assessment of gait kinematics using marker-based and markerless motion capture. Journal 

of Biomechanics, 127, 110665.  

Keller, V. T., Outerleys, J. B., Kanko, R. M., Laende, E. K., & Deluzio, K. J., 2022. Clothing 

condition does not affect meaningful clinical interpretation in markerless motion capture. 

Journal of Biomechanics, 141, 111182.  

Kristianslund, E., Krosshaug, T., & van den Bogert, A. J., 2012. Effect of low pass filtering on joint 

moments from inverse dynamics: Implications for injury prevention. Journal of 

Biomechanics, 45 (4), 666-671.  

Lahkar, B. K., Chaumeil, A., Dumas, R., Muller, A., & Robert, T., 2022. Description, Development 

and Dissemination of Two Consistent Marker-based and Markerless Multibody Models. 

bioRxiv, 2022.2011.2008.515577.  

Leardini, A., Chiari, L., Croce, U. D., & Cappozzo, A., 2005. Human movement analysis using 

stereophotogrammetry: Part 3. Soft tissue artifact assessment and compensation. Gait & 

Posture, 21 (2), 212-225.  

Li, L., & Wang, D., 2017. Parallel and cross-sectional hamstring injuries in sprint running. Journal 

of sport and health science, 6 (2), 141.  

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge, M., 

2018. DeepLabCut: markerless pose estimation of user-defined body parts with deep 

learning. Nature Neuroscience, 21 (9), 1281-1289.  

Mündermann, L., Corazza, S., & Andriacchi, T. P., 2006. The evolution of methods for the capture 

of human movement leading to markerless motion capture for biomechanical applications. 

Journal of NeuroEngineering and Rehabilitation, 3 (1), 6.  

Nakano, N., Sakura, T., Ueda, K., Omura, L., Kimura, A., Iino, Y., Fukashiro, S., & Yoshioka, S., 

2020. Evaluation of 3D markerless motion capture accuracy using OpenPose with multiple 

video cameras. Frontiers in sports and active living, 2, 50.  

Novacheck, T. F., 1998. The biomechanics of running. Gait & Posture, 7 (1), 77-95.  

Pataky, T. C., 2010. Generalized n-dimensional biomechanical field analysis using statistical 

parametric mapping. Journal of Biomechanics, 43 (10), 1976-1982.  

Pataky, T. C., 2012. One-dimensional statistical parametric mapping in Python. Computer Methods 

in Biomechanics and Biomedical Engineering, 15 (3), 295-301.  



56 
 

Pataky, T. C., Robinson, M. A., & Vanrenterghem, J., 2013. Vector field statistical analysis of 

kinematic and force trajectories. Journal of Biomechanics, 46 (14), 2394-2401.  

Pearsall, D. J., & Costigan, P. A., 1999. The effect of segment parameter error on gait analysis results. 

Gait & Posture, 9 (3), 173-183.  

Petersen, J., Nielsen, R. O., Rasmussen, S., & Sørensen, H., 2014. Comparisons of increases in knee 

and ankle joint moments following an increase in running speed from 8 to 12 to 16km·h−1. 

Clinical Biomechanics, 29 (9), 959-964.  

Robertson, D. G. E., Caldwell, G. E., Hamill, J., Kamen, G., & Whittlesey, S. 2013. Research 

methods in biomechanics. Human kinetics.  

Schache, A. G., Blanch, P. D., Dorn, T. W., Brown, N., Rosemond, D., & Pandy, M. G. J. M. S. S. 

E., 2011. Effect of running speed on lower limb joint kinetics. 43 (7), 1260-1271.  

Shin, J. H., Yu, R., Ong, J. N., Lee, C. Y., Jeon, S. H., Park, H., Kim, H.-J., Lee, J., & Jeon, B., 2021. 

Quantitative Gait Analysis Using a Pose-Estimation Algorithm with a Single 2D-Video of 

Parkinson’s Disease Patients. Journal of Parkinson's Disease, 11, 1271-1283.  

Simpson, K. J., & Bates, B. T., 1990. The Effects of Running Speed on Lower Extremity Joint 

Moments Generated during the Support Phase. International Journal of Sport Biomechanics, 

6 (3), 309-324.  

Souza, R. B., & Powers, C. M., 2009. Differences in Hip Kinematics, Muscle Strength, and Muscle 

Activation Between Subjects With and Without Patellofemoral Pain. Journal of Orthopaedic 

& Sports Physical Therapy, 39 (1), 12-19.  

Stagni, R., Leardini, A., Cappozzo, A., Grazia Benedetti, M., & Cappello, A., 2000. Effects of hip 

joint centre mislocation on gait analysis results. Journal of Biomechanics, 33 (11), 1479-

1487.  

Sun, Y., Wei, S., Zhong, Y., Fu, W., Li, L., & Liu, Y., 2015. How joint torques affect hamstring 

injury risk in sprinting swing-stance transition. Medicine and science in sports and exercise, 

47 (2), 373-380.  

Swanson, S. C., & Caldwell, G. E., 2000. An integrated biomechanical analysis of high speed incline 

and level treadmill running. Medicine and science in sports and exercise, 32 (6), 1146-1155.  

Tang, H., Pan, J., Munkasy, B., Duffy, K., & Li, L., 2022. Comparison of Lower Extremity Joint 

Moment and Power Estimated by Markerless and Marker-Based Systems during Treadmill 

Running. Bioengineering, 9 (10).  

Thelen, D. G., Chumanov, E. S., Hoerth, D. M., Best, T. M., Swanson, S. C., Li, L., Young, M., & 

Heiderscheit, B. C., 2005. Hamstring muscle kinematics during treadmill sprinting. Med Sci 

Sports Exerc, 37 (1), 108-114.  

Verheul, J., Sueda, S., & Yeo, S.-H., 2022. Muscle Inertia During Running: A Massive Change of 

Moments? ISBS Proceedings Archive, 40 (1), 732.  

Wade, L., Needham, L., McGuigan, P., & Bilzon, J., 2022. Applications and limitations of current 

markerless motion capture methods for clinical gait biomechanics. PeerJ, 10, e12995.  

Winter, D. A. 2009. Biomechanics and motor control of human movement. John Wiley & Sons.  

Woltring, H. J., 1986. A Fortran package for generalized, cross-validatory spline smoothing and 

differentiation. Advances in Engineering Software (1978), 8 (2), 104-113.  

Zago, M., Luzzago, M., Marangoni, T., De Cecco, M., Tarabini, M., & Galli, M., 2020. 3D tracking 

of human motion using visual skeletonization and stereoscopic vision. Frontiers in 

bioengineering and biotechnology, 8, 181.  

Zhang, S., Pan, J., & Li, L., 2018. Non-linear changes of lower extremity kinetics prior to gait 

transition. Journal of Biomechanics, 77, 48-54.  

 

 

 

 



57 
 

 



58 
 

APPENDIX A 

 

EXTENDED INTRODUCTION 

 

Understanding human motion plays an important role in clinical applications and sports. 

Movement analysis may assist with injury prevention, identification, rehabilitation treatment and 

adherence in the clinical settings (Knippenberg et al., 2017). It is also important in guiding 

athletes’ tactics and performance. (Wade et al., 2022). Analytic methods underpinned such 

subjects varied from traditional human observation and self-report to wearable devices, to the 

vision-based 3D motion capture systems. Measures that rely on observers’ experiences are 

subjective and prone to errors (Wade et al., 2022). Wearable devices such as inertial measurement 

units (IMU) are portable and affordable, and can provide rich information for real-time gait 

analysis in both indoor and outdoor environments (Chen, Lach, Lo, & Yang, 2016). However, 

these devices restricted to magnetic field effects such as those generated by laboratory treadmills 

(de Vries, Veeger, Baten, & van der Helm, 2009) and exceed in reporting quantities such as 

accelerations and angular rates instead of intersegmental measures, which are beyond this thesis’s 

scope. 

Alternatively, vision-based 3D motion capture approaches are more beneficial for more 

biomechanical applications.  

The vision-based motion analysis can be traced back to the late nineteenth century when 

Eadweard Muybridge developed techniques to capture image sequences of equine gait 

(Cappozzo, Marchetti, & Tosi, 1992). Motion analysis has evolved significantly since then in 

order in parallel with major technological improvements and the growing demand of more 

sophisticated techniques to capture movement. At present, the most common methods for 
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accurate capture of 3D human movement require controlled labatory environment and the 

attachment of markers fixture on the body segments (Mündermann et al., 2006). Although bi-

planar videoradiography methods such as MRI and X-ray can provide direct skeletal movements 

with high accuracy, these methods impede natural patterns of movements and are usually 

expensive to conduct (Kessler et al., 2019). The marker-based (MB) systems, on the other hand, 

allow errors only in the large motions such as flexion and extensions. Although the wide use of 

MB motion capture system in the biomechanics, there is a need for motion capture methods that 

are less time intensive, simpler to operate, and less impacted by human errors and marker-based 

errors. The markerless (ML) motion capture system that also uses videos to record human 

movement but relies on software to estimate poses can possibly achieve the goal.  

1. Marker-based Systems  

Automatic optoelectronic systems or marker-based system are the most commonly used for 

the study of human movement. Most of MB systems use multiple cameras emitting invisible 

infrared light, and passive markers that reflect this infrared back to the cameras to deduce their 

3D position (Colyer, Evans, Cosker, & Salo, 2018).  Commercial systems such as Vicon Motion 

Systems, Qualisys Motion Capture Systems, OptiTrack, and other leading motion capture 

companies, tracks the position of small spherical retro-reflective markers. The primary principle 

is that several points of interest are located in sequential images, converted to real-space 

coordinates and infer 3D pose of underlying skeleton. At least three non-colinear markers must 

be affixed to each segment to specify six DOF. Previous studies have evaluated the accuracies of 

some commercial MB systems. They reported that the root mean square errors were less than 2 
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mm when measuring the fully visible moving markers, and 1mm when measuring the stationary 

markers (Richards, 1999).  

Noticeably, previous studies also addressed different marker sets and their influences on 

kinematic and kinetics assessments. For example, Cappozzo et al. (1997) presented that 

compared to the convenient markers, surface-marker cluster design not only minimized the error 

propagation from marker coordinates to bone-embedded frame position and orientation but also 

dealt with skin artifacts movements (Cappozzo, Cappello, Croce, & Pensalfini, 1997). Their 

study showed the mean radius of the cluster greater than ten times the assessed standard deviation 

of experimental errors. Collins et al. (2009) compared the modified Helen Hayes set and a six-

degrees of freedom marker set. Although high repeatability was acquired, they still observed that 

kinematical differences of the lower extremity. The hip rotations showed clear differences 

between the two sets with indications in support of the 6DOF set. Knee coronal angles showed 

evidence of cross-talk in the conventional set, highlighting difficulties with anatomical 

identification despite control measures such as a foot alignment template. Knee transverse angles 

showed inconsistent patterns for both sets. At the ankle the conventional set only allowed true 

measurement in two planes so with high repeatability the 6DOF set is preferable (Collins et al., 

2009). Ferrari et al. (2008) reported that joint flexion/extension had better correlations and 

smaller biases among different marker sets but not the out-of-extension/flexion rotations, 

especially the knee joint (Ferrari et al., 2008). A more recent study compared the six different 

marker sets, namely plug-in gait, ridged marker set with cluster and without cluster, six-degree 

of freedom, Helen Hayes, and functional approach. The authors reported the differences of 

kinematic and kinetics of the knee joint during landing. To be specific, the knee joint angles 
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showed partially contradictory results in the transverse and frontal plane when using different 

marker sets, especially after initial ground contact. In addition, though the direction of joint 

moments were consistent, the amplitudes varied among different marker sets. The results of 

Helen Hayes and plug-in-gait differed most from the other three marker sets. This difference is 

once again smallest in the extension/flexion plane (Kerkhoff, Wagner, & Peikenkamp, 2020).   

Although different marker sets may affect the gait analysis, the high correlations made the 

slight differences negligible. The needs for different technologies to be promoted in the 

biomechanical studies actually derived from the following inconvenience and shortcomings.   

It is difficult to ensure that the precise marker placements on anatomical landmarks can 

directly correspond to 3D joint positions. Errors can come from various sources, including inter-

operator and inter-session variability, marker placement, and skin movement artifacts (Della 

Croce, Leardini, Chiari, & Cappozzo, 2005; Gorton, Hebert, & Gannotti, 2009; Peters, Galna, 

Sangeux, Morris, & Baker, 2010). As the most prominent error source, soft tissue artefact errors 

as muscle, fat and skin beneath markers cause them to move independently from bone 

(Camomilla, Bonci, & Cappozzo, 2017; Cappozzo et al., 1995). A review reported that soft tissue 

artifacts reached the magnitudes of greater than 30 mm on the thigh, and up to 15 mm on the leg 

(Peters et al., 2010). Among reported studies, the range of soft tissue artifacts can be greater than 

25 mm in some cases. To alleviate such soft tissue artifacts, different methods have been 

employed. For example, by using the cluster placed on each segment, the skin movement artifacts 

can be compensated by optimal weighting of the markers according to their degree of 

deformation (T. P. Andriacchi, Alexander, Toney, Dyrby, & Sum, 1998; Mündermann et al., 

2006). Researchers have also tried to expand the rigid body model, imposing joint constraints 
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and a global error compensation scheme to reduce the non-rigid body movement (Lu & O’Connor, 

1999). However, these methods usually induced new limitations, leaving soft tissue errors the 

primary inaccuracy caused by MB systems.   

In addition, optoelectronic systems are sensitive to the capture environment. In particular, 

sunlight, which includes a strong infrared component, can introduce undesirable noise into the 

measurements (Colyer et al., 2018). The MB systems are usually setup in the lab environment 

where lightning can be stringently controlled. Away from clinics and natural environment, the 

biomechanical evaluations conducted in the lab have limited utilization for treatment and 

intervention of movement related pathologies (Baker, 2006; Keller et al., 2022). Plus, 

preparations for the MB systems such as changing to tight clothes, and marker placements are 

time-consuming.  

More than motion capture setup, the MB data processing can be labor and time intensive. 

Gap filling is a common procedure to obtain the position information and to perform subsequent 

analysis in the MB system due to the occlusion from all scenarios (Camargo, Ramanathan, 

Csomay-Shanklin, & Young, 2020; G. Liu & McMillan, 2006). Traditional methods of gap-

filling MB data are time-intensive since the user must visually inspect each gap and decide the 

type of interpolation to use as well as how it should be filled with interpolation (Howarth & 

Callaghan, 2010). Camargo et al. proposed the automated gap-filling method that uses inverse 

kinematics to close the loop of an iterative process to minimize errors (Camargo et al., 2020). 

Although they reported that a 21% reduction in the worst-case gap-filling error and an 80% 

reduction in completion time, the proposed method was run through OpenSim and required the 

users to have some coding skills.  
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Taken together, although the MB system enables sub-millimeter accuracy for joint positions 

and joint angles calculation, limitations of MB systems would propel the advancement towards 

marker free motion capture technology era.  

2.  Markerless Systems 

The investigation of using ML systems in the biomechanical studies have sprung up since 

the early 21st century. Markerless systems are based on four components, including a camera 

system (camera configuration), a body model, the image features used, and the algorithms to 

estimate the pose of the model (Colyer et al., 2018). Employed configurations typically range 

from single camera to multiple cameras (Mündermann et al., 2006). 

Two major camera systems can be used for markerless motion captures, i.e., RGB-Depth 

camera, and standard video cameras. Compared to the standard video cameras, the RGB camera 

systems can be beneficial for the imperfect lightning or background condition and are more 

affordable. However, since in-depth camera uses technologies (time-of-flight or structured light) 

that have noises and trade off depth accuracy and spatial resolution (Sarbolandi, Lefloch, & Kolb, 

2015), performances reported by the most common in depth camera systems were not precise 

enough. Microsoft Kinect is the most common in depth camera, however, based on the disclaimer 

by Clark et al. (Clark, Mentiplay, Hough, & Pua, 2019), the kinematic analysis required carefully 

chosen and validated for specific uses cases (Mentiplay et al., 2015). The validity for most of the 

kinematic gait parameters was restricted (r<0.75) (Springer & Yogev Seligmann, 2016; Tanaka, 

Takimoto, Yamasaki, & Higashi, 2018), as well as the substantial errors were reported as RMS 

error > 10°or Bland-Altman limits of agreement > 10° (Vafadar et al., 2021). Considering the 

limitations of in-depth camera system in capture rate, capture volume, inoperability in bright sun 
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light, and interference between multiple sensors (Colyer et al., 2018), standard video camera 

systems may be better fit on markerless systems for biomechanical research.  

The rapid development of artificial intelligence algorithms enabled a variety of algorithms 

to estimate human motion. Earlier algorithms usually relied on shape-from silhouettes and tried 

to match a detailed kinematic model (Slembrouck et al., 2020). More recently, deep learning-

based pose estimation algorithms have become popular. Algorithms based on deep learning are 

the most powerful as measured by performance on human pose benchmarks (Cao, Simon, Wei, 

& Sheikh, 2017). The deep learning based pose estimation can often intuitively be understood as 

a system of an encoder that extracts important (visual) features from the frame, which are then 

used by the decoder to predict the body parts of interests along with their location in the image 

frame (Mathis, Schneider, Lauer, & Mathis, 2020). 

Prior studies have examined both open sources and commercial algorithms systems. 

OpenPose is one of the most popular open-source pose estimation technologies (Cao et al., 2017) 

and is deemed easy to use for biomechanics applications. Several studies have examined multi-

camera ML systems using the OpenPose algorithm. Nakano et al. compared the OpenPose based 

ML with the MB system during walking, countermovement jumping, and ball throwing tasks. 

The results demonstrated that ML system can correctly reproduce movements, but some manual 

adjustments were required when OpenPose incorrectly detected joints. The mean absolute errors 

of 47% joint positions were <20 mm, and 80% of them were <30 mm, and 10% of them were >40 

mm (Nakano et al., 2020). The authors also observed that slower movements (walking) had better 

results compared to the fast movements (jumping and throwing). Slembrouck et al. used 2D joint 

detections per view from OpenPose to estimate their corresponding 3D positions while tackling 
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the people association problem in the process to allow the tracking of multiple persons at the 

same time (Slembrouck et al., 2020). They reported that the differences between multi-view 3D 

human pose estimation and MB system were 6.6 mm- 21.3 mm. Additionally, clinical 

applications of the OpenPose based ML systems in patients with Parkinson’s diseases have also 

been reported. Although Martinez et al. failed to use DARI system (ML) with OpenPose to 

discriminate between Off and On states of deep brain stimulation in patients with Parkinson’s 

disease, the results of gait items showing strong negative correlations to the MDS-Unified 

Parkinson’s Disease Rating Scale. Plus, their kinematic data obtained by ML system can 

discriminate between patients with Parkinson’s Disease and healthy controls (Martinez, Garcia-

Sarreon, Camara-Lemarroy, Salazar, & Guerrero-González, 2018). Further, another study 

emphasized the temporospatial measures (step length, walking velocity, step cadence) analyzed 

by OpenPose algorithms in Parkinson’s patients also reported excellent agreement with 

GAITRite (ICC>0.9) (Shin et al., 2021). 

Another popular open source ML algorithm is the DeepLabCut, which allows researchers 

to assemble a set of labeled training images and train a neural network to automatically track the 

position of user selected, manually identified landmarks throughout a video (Mathis et al., 2018). 

Flexibility is the major strength of DeepLabCut. Rather than tracking a predetermined list of 

external features or landmarks, it can track any feature of interest. The application of DeepLabCut 

in kinematic data has been reported in the underwater running study. The authors detected that 

high test–retest reliability of mean stride data, with between-session correlation coefficients of 

0.90–0.97, indicating this method can be broadly applied in different fields (Cronin et al., 2019). 

Drazan et al. compared the DeepLabCut based-ML lower extremity extension/flexion kinematics 
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during a counter movement jump with the MB system (Drazan et al., 2021). They reported that 

strong agreement between the ML and MB systems, with the coefficient of multiple correlations 

(CMC) >0.991, and root mean square errors <3.22°. Though the hip’s CMC (0.853±0.23) was 

lower than the knee and foot, the results still indicated the DeepLabCut based- ML system has 

the potential for biomechanical research in the non-lab environment.   

However, due to the requirements of advanced coding skills and in-depth computer science 

knowledge, commercial systems have developed, and enabled clinicians and researchers use this 

technology easier. To data, several commercial systems have been tested, including Captury, 

SIMI Reality, Organic Motion, and Theia3D markerless motion systems. The former three ML 

systems identify the silhouette of a person, which are beyond this study’s scope. The Theia3D 

markerless, on the other hand, leverages on deep learning algorithms to estimate joint centers.  

Theia3D markerless motion capture system, as a deep-learning algorithm based commercial 

software has been examined from different aspects. Kanko et al. reported that ML system showed 

excellent agreement with MB system and pressure-sensitive gait mat in spatiotemporal gait 

parameters. Specifically, no bias or statistical difference were observed for walking spatial 

measures (e.g., step length, step width, velocity) and a small difference in temporal measures 

(e.g., swing time and double support time) (Kanko, Laende, Strutzenberger, et al., 2021). The 

authors later examined the inter-session repeatability of the ML system during treadmill walking. 

The kinematics results have demonstrated that the average inter-session variability across all joint 

angles was 2.8° using the ML system, which is smaller than all previously reported values (3.0-

3.6°) using the MB system (Kanko, Laende, Selbie, et al., 2021). The inter-trial joint angle 

variability (on average 2.5°) was larger than previously reported from the MB system (1.0°-
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2.4°)(Caravaggi, Benedetti, Berti, & Leardini, 2011; Schwartz, Trost, & Wervey, 2004) but with 

small margins and consistency between sessions. In addition, the variability ratios were smaller 

than any previously reported (on average 1.1), indicating that Theia3D ML system can be reliably 

when measuring gait kinematics. Furthermore, a follow-up concurrent comparison study using 

the same data detected that the average root mean square distance between corresponding lower 

extremity joint centers (ML’s joint positions – MB’s joint position) throughout the stride across 

thirty participants was less than 2.5 cm, except for the hip joint (3.6 cm). Differences of lower 

extremity joint angles for flexion/extension and abduction/adduction were from 2.6°-11° (ankle 

to hip), and rotation about longitudinal axis were 6.9°-13.2°(Kanko, Laende, Davis, et al., 2021). 

More recently, Lahkar et al. (2022) analyzed the upper extremity kinematics during boxing using 

the same ML system. Compared to MB system, ML in their study showed higher differences in 

3D joint centers at the elbow (more than 3 cm) compared to the shoulder and wrist (<2.5 cm). 

They also reported relatively weaker agreement was observed along internal/external joint angle 

rotation but better performance in overall segment velocities (Bhrigu K. Lahkar, Muller, Dumas, 

Reveret, & Robert, 2022). These strong results further indicated that Theia3D ML system can be 

a powerful motion capture system in the kinematical studies. Furthermore, one recent study 

stressed on the clothing conditions for ML system. They observed that the mean differences of 

segment lengths for the whole body between gym clothing and causal clothing ranged from 0.2 

cm to 0.9 cm, which below the typical marker errors (1-2 cm). Although significances between 

clothing conditions were reported in the spatiotemporal parameters in seven out nine cases, these 

differences were much smaller than the minimal changes in movement-related pathologies such 

as multiple sclerosis and cerebral palsy (Keller et al., 2022). Thus, Theia3D ML system has the 
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potential to be employed in the clinical settings without significantly alter the interpretations of 

results.  

Theia3D ML system, which leverages deep-learning algorithms, has exceeded the current 

ML systems in the market due to its outstanding performance. It has been reported that Theia3D 

have labelled their own biomechanically applicable data set which identifies 51 keypoints on the 

body (Kanko, Laende, Davis, et al., 2021; Kanko, Laende, Strutzenberger, et al., 2021), which is 

superior to other deep learning-based ML systems such as OpenPose that has 25 keypoints. 

However, the broad application of Theia3D ML system requires more than kinematical 

examinations. Kinetics that employed the inverse dynamic analysis remain to be tested so that 

ML systems can further be promoted in the clinical and sports fields.  

3. Running Biomechanics 

The present study chose running to investigate for its popularity in biomechanical 

applications and specialty in gait analysis. Running, as one of the most worldwide popular 

aerobic exercise, has shown a variety of benefits. It can establish enriched cardiovascular, 

strength, and endurance fitness (Willick & Hansen, 2001), improve bone density, and have a 

positive effect on mood (Schneider et al., 2009) and cognition (Rolland, van Kan, & Vellas, 

2010). However, running can also induce lower extremity injuries, such as patellofemoral pain 

(T. A. Dierks, Manal, Hamill, & Davis, 2008), iliotibial band syndrome (Orchard, Fricker, Abud, 

& Mason, 1996), and Achilles tendinopathy (Munteanu & Barton, 2011). A variety of intrinsic 

and extrinsic factors have been blamed for the development of running-related injuries 

(Novacheck, 1998). The extensive literature has assured that greater understanding of 

biomechanics and its applications can improve the diagnosis and counselling, rehabilitation and 
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prevention. In addition, knowledge regarding the biomechanical function of the lower extremity 

across different running speeds is important in human high performance, aiding athletic training 

(Anthony G Schache et al., 2011). Limitations of MB motion capture have reduced the running 

gait analysis in applications of predicting injuries, informing interventions and improving 

performances. ML has fewer marker-induced problems, which might provide new insights to 

running gait analysis.  

3.1. Running Gait 

Running gait can be separated into two phases, the stance and swing phases. Subdivisions 

of the stance and swing phases are different among researchers. In general, the stance phase is 

divided into three stages (initial contact, mid support, and take-off phase) and the swing phase is 

divided by initial swing, mid swing and terminal swing phase (Novacheck, 1998; Õunpuu, 1994). 

However, during running, there are alternate periods of acceleration and deceleration occur and 

referred as absorption and generation. Several researchers also categorized them into the stance 

phase (Õunpuu, 1994). Between stance and swing phase, the transition phase is the conjunction. 

The stance phase accounts for less than 40% of the gait cycle and the swing phase is taken more 

than 60% in the running. As the running speed increases, the stance phase time decreases and 

swing phase increases (Dicharry, 2010). It is reported that world class sprinters toe off as early 

as 22% of the gait cycle (R. A. Mann & Hagy, 1980). 

The primary biomechanical functions of the stance phase during running are to provide 

stability, and shock absorption (Perry & Burnfield, 2010). At the beginning of the foot strike, the 

muscle, tendon, bone, and joints of foot and lower leg function to absorb the impact of the landing 

(Loudon & Reiman, 2012). When the foot is flat on the ground, the mid support is reached. The 



70 
 

lower extremity muscles reverse proximal to distal during push off, the foot begins to move from 

pronation to supination to prepare for take-off (Perry, 1983). The body moves forward over the 

stance limb represents the generation phase. The body keeps propelling forward until the foot 

lifts off of the ground, which signifies the take-off. During the swing phase, two double float 

periods occur. The first double float marks the beginning of the swing phase, which occurs 

immediately after the take-off (Loudon & Reiman, 2012). Once the foot leaves the ground 

backward momentum drives the leg posteriorly. The initial swing is achieved when the leg 

reaches its most posterior position and the knee reaches its maximum flexion angle. Then the 

limb is reversed and muscles such as rectus femoris contract to pull leg anteriorly initiating the 

forward swing. Finally, once the limb reaches an optimal position it descends the foot to prepare 

for initial foot contact, also known as the terminal swing phase. At the end of the swing phase 

and just prior to initial foot contact is when the second double float period occurs. Then a gait 

cycle begins when the initial foot contact occurs (Nicola & Jewison, 2012).  

3.2. Lower Extremity Kinematics 

 Novacheck summarized that patterns of movement from the graphic kinematic variables are 

important while the peak values depend on athlete’s level of training and speed are less important 

(Novacheck, 1998). Although motion in all three planes should be considered, the greatest degree 

of movement occurs within the extension/flexion plane at the lower extremity joints during 

running. To discern movements during running it is best to analyze kinematics by each individual 

joint.  

Hip Joint. Extension/flexion plane hip motion is in flexed position upon the initial contact, which 

can be up to 65° and then extends throughout the stance phase (Õunpuu, 1994). Entering in the 
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swing phase, the hip reaches maximum extension of 20°, which at roughly 75% of the gait cycle, 

then immediately the hip flexes to place the leg in position for initial contact (Õunpuu, 1994). A 

maximum hip flexion angle of 65° is achieved towards the end of mid swing, and then 25° of 

extension while the foot is ready to contact the ground again.  

Knee Joint. At the initial foot contact, the knee flexes at 15° to 25°. The knee keeps flexing during 

the absorption stance phase and reaches the peak at mid-stance, however, sprinting takes shorter 

absorption period and less knee flexion (Novacheck, 1998). From midstance the knee extends 

through the propulsive phase of stance until peaking at 20°. During the swing phase, the knee 

flexes and reaches the maximum around 75% of the gait cycle before extends during terminal 

swing, reaching maximum extension just prior to ground contact (Novacheck, 1998; Õunpuu, 

1994). The average maximum knee flexion is about 90°, highly trained athletes can move to 130° 

to increase energy efficiency. 

Ankle Joint.  (Dicharry, 2010; Novacheck, 1998). The dorsiflexion of the ankle continues until 

the end of the absorption phase when it reaches its peak (Langley, 2015). At toe-off, the ankle is 

in approximately 25°of plantarflexion. During swing phase, the ankle moves from plantarflexion 

to dorsiflexion in the mid swing phase, and then back to plantar flexion at the end of terminal 

swing and right before the next foot contact (Õunpuu, 1994). Compared to walking, net ankle 

mobility is higher in running.  

3.3. Inverse Dynamics Analysis 

Although kinematics can explain how the human move and assist the clinical research, they 

cannot explain the cause of the movement. Kinetics reflect the cause of movement, and therefore 

the forces, power and energy that affect the manner in which an individual moves. Moments 
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acting at the skeletal joints, as correspond to resultant muscle forces and loading of passive 

structures (Kristianslund et al., 2012), are used as the primary measure for effort, strain, and 

overall healthiness of human motion (Zell & Rosenhahn, 2020). Joint power indicates the 

velocity of the joint moment, or the rate of the work exhibited by the muscles. Inverse dynamics 

is an established tool to infer joint moments from an observed motion that has been widely used 

in the biomechanical community. In the standard inverse dynamic method, net joint moments 

and powers are calculated by combining joint kinematics with measured ground reaction force 

(David A Winter, 2009).  

Noted that the quality of inverse dynamic calculations is greatly affected by not only the 

biomechanical model but also the input of kinematic data (Silva & Ambrósio, 2002). The 

kinematic data depend on the chosen anthropometric model parameters, namely body segmental 

joint parameters (joint positions and orientations) and inertial parameters (masses, mass centers, 

and moment inertia). Variations in joint and inertial parameters’ values as well as kinematic data 

noise alter the results of inverse dynamics analyses of gait (Reinbolt, Haftka, Chmielewski, & 

Fregly, 2007). Joint and inertial parameter values used in the literature are mainly based on 

anatomic landmarks methods from cadaver studies (Alexander L Bell, Pedersen, & Brand, 1990; 

Dempster, 1955; Inman, 1976). Another method is optimization methods for inertial parameter 

values but with limited success for plantar models of running, jumping and kicking motions 

(Vaughan, Andrews, & Hay, 1982). Riemer et al. presented a comprehensive analysis of the 

uncertainties in joint moment estimates derived through inverse dynamics (Riemer, Hsiao-

Wecksler, & Zhang, 2008). Their results suggested that variations of joint and inertial parameter 

values in joint moments estimates derived through inverse dynamics can be substantial, with the 
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magnitude from 2% to 232%. The more distal joints contribute smaller magnitudes. For the lower 

extremity, the hip exposes the most variations of joint and inertial parameter values since the 

anatomic landmark of hip is non-palpable. The hip joint center location errors distort the 

estimates of angles and resultant moments at the hip and knee joints (Stagni et al., 2000). Prior 

study detected the 2 cm superolateral placement of hip joint center decreased the moment arms 

of hip abductor muscles by 28% (Delp, Wixson, Komattu, & Kocmond, 1996). The 3 cm anterior 

hip joint center placement resulted in the largest propagation errors in hip flexion/extension 

moments with a mean of -22% (Stagni et al., 2000). Therefore, kinematic data the necessary for 

inverse dynamic analysis can be greatly affected by the anthropometrical model parameters. 

Additionally, kinematic constraints need to be considered due to the independence of 

kinematic data acquisition from the biomechanical model implemented. However, in the clinical 

settings, three markers must be used to define each segment so that the rigid body can be 

considered. Six degrees of freedom in each segment can omit the kinematic constraints to model 

joints (Ojeda, Martínez-Reina, & Mayo, 2016). Such practice has been widely accepted in the 

commercial code (e.g. VICON) (Davis, Õunpuu, Tyburski, & Gage, 1991) and by many 

researchers, which also induce the similar joint dislocation errors due to the lack of modelling 

joint articulations.  

Admittedly, main sources of kinematic data inaccuracies derived from the marker-based 

systems. The skin motion artifacts are interdependently caused by inertial effects, skin 

deformations from muscle contractions (Cappozzo et al., 1995). Efforts have been made to 

minimize the skin artifacts, including using corrective methods such as least squares methods 

(Alexander & Andriacchi, 2001; Söderkvist & Wedin, 1993) or cluster methods (Alexander & 
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Andriacchi, 2001). However, skin motion artifacts will remain a challenging in the inverse 

dynamic calculation unless the markers are no longer needed or the markers are attached to the 

bone directly or bone pin (Andersen, Benoit, Damsgaard, Ramsey, & Rasmussen, 2010).  

Furthermore, the filtering is necessary before conducting the inverse dynamic analysis. The 

acquisition of kinematic data and ground reaction forces can induce signal noise, operator 

imprecision and finite precision of equipment (Silva & Ambrósio, 2002). Previous studies have 

shown the most common used filtering methods were Butterworth filters (David A Winter, 2009) 

and Fourier series with optimal regularization (Giakas & Baltzopoulos, 1997). Despite the 

selection of filtering remains questioning, the low-pass filter that removes random noise in the 

position data has been demonstrated (Chiari et al., 2005). Kristianslund et al. (2011) calculated 

knee and hip joint moments with four different combinations of cut off frequency for signal 

filtering. They used movement 10 Hz, force 10 Hz; movement 10 Hz, force 50 Hz, movement 15 

Hz, force 15 Hz; and movement 15 Hz, force 50 Hz combinations. They reported the statistically 

differences of knee abduction moments and hip moments among different combinations 

(Kristianslund et al., 2012). Thus, filtering choice requires caution in the inverse dynamic 

analysis. 

3.4. Lower Extremity Kinetics 

Although kinematics can explain how the human move and assist the clinical research, they 

cannot explain the cause of the movement. Kinetics reflect the cause of movement, and therefore 

the forces, power and energy that affect the manner in which an individual moves. Moments 

acting at the skeletal joints, as correspond to resultant muscle forces and loading of passive 

structures (Kristianslund et al., 2012), are used as the primary measure for effort, strain, and 
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overall healthiness of human motion (Zell & Rosenhahn, 2020). Joint power indicates the 

velocity of the joint moment, or the rate of the work exhibited by the muscles. 

During running, the hip extensors are dominant at the initial foot contact. The hip extensors 

continue to generate power through the first half of stance phase. Then hip flexes to and 

decelerate backward rotating thigh in preparation of swing phase. Hip flexors continue for the 

first half of the swing phase. Peak hip flexion occurs in the second half of swing in both running 

and sprinting. After peak flexion occurs the hip extensors contract concentrically to extend the 

hip in preparation for initial contact.   

The knee flexes following the initial contact, and quadriceps contract eccentrically to absorb 

the power. Then the knee extends in the second half of stance phase while the quadriceps 

concentrically contract to generate the power in preparation of toe-off. In the swing phase, the 

knee muscles need to absorb the power in order to control the swinging leg. The rectus femoris 

contracts eccentrically to control the knee flexion at the early swing, followed by the eccentric 

contraction of hamstrings during the late swing to prevent knee’s hyperextension (Novacheck, 

1998).  

Noticeably, with each step taken during running, the lower leg and the knee can experience 

forces up to 11 time of the body weight. The magnitude of knee forces and moments contributes 

greatly to the running injuries (Scott). It has been reported that approximately 50% of running 

injuries occur at the knee with nearly half of those involving the patellofemoral joint (Hreljac & 

Ferber, 2006). The patella plays a large role in running, as its main function is to increase the 

mechanical advantage of the knee extensor muscles. The patella displaces the quadriceps tendon 

line of action away from the joint, increasing the moment arm of the quadriceps force, allowing 
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the muscles to generate a larger torque for a given amount of muscle force (Fox, Wanivenhaus, 

& Rodeo, 2012). Studies have been reported that patellofemoral joint pain syndrome can be 

aggregated if the external knee flexion moment is increased. This moment during the stance 

phase must be balanced by the quadriceps to avoid the direct increase in tension in the quadriceps 

tendon and patellar ligament (T. Andriacchi, 1985). 

The patterns of ankle moments during walking and running are similar. Initial contact is 

with the heel. The forefoot is lowered to the ground under the control of eccentric contraction of 

the anterior tibial muscles. The onset of the ankle plantarflexion moment occurs at 5–10% of the 

running gait cycle (Novacheck, 1998). During midstance, the ankle dorsiflexes and the ground 

reaction force is anterior to the ankle joint line. The GRF is imposing an external torque trying 

to dorsiflex the ankle, while the runner activates the plantar flexors to generate an equal and 

opposite internal joint torque to maintain position of the ankle at that particular point in time. 

Ankle plantar-flexors generate the power during the stance phase for forward propulsion. The 

magnitude of the ankle power generation is directly related to the athlete’s speed. 

 It is noteworthy that lower extremity kinetics can be used to understand the muscle functions 

during running. The role of ankle and knee extensors is to create high joint stiffness before and 

during contact phase, while the hip extensors are the primary forward movers to the body (Belli 

et al., 2002).   

4. Significances of the Study 

 It is noteworthy that ML motion capture methods could be invaluable to the clinical and 

sports biomechanical applications. The convenience of ML systems is undeniable from many 

aspects. For example, ML systems requires less preparation time for participants and for the 
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motion capture, less clothing and controlled environment restrictions. Promoting the ML systems 

to a wider usage would benefit more than just researchers and clinicians. It is then necessary to 

investigate the reliability and validity of ML system under different conditions. Although 

previous studies have underlined kinematic parameters using ML systems, the gap between 

kinematic and kinetics would be filled by the current study. Furthermore, the current study would 

investigate the possible reasons that contribute to the differences if any.  

5. Summary and Thesis Aims 

 The evidence presented within this chapter highlights the dearth of information regarding: 

• The development of vision-based motion capture systems.  

• The lower extremity kinematics during running.  

• The inverse dynamic analysis and lower extremity kinetics. 

• The paucity of information relating to these areas brings into question that how markerless 

systems perform in lower extremity kinetic parameters during running. The application of 

different running speed can further investigate the relationship of movement speed and 

motion capture performance.  

   In order to address these gaps within the current literature the aims of this thesis are; 

Overarching aim: 

• To compare lower extremity gait biomechanics estimated by marker-based and 

markerless motion capture systems during treadmill running.  

 Secondary aims: 

• To investigate how movement speed affect the performance of markerless motion 

capture system. 
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The work undertaken in line with the aims of this thesis will further develop the 

methodological approach for investigating lower extremity joint moments and powers estimated 

by marker-based and markerless systems during running. The information gathered from the 

comparison will supplement the current understandings of the newly proposed markerless motion 

capture system. The findings of the work will provide more information for clinicians and 

coaches if they choose to use markerless systems for injury diagnosis, prevention, and 

rehabilitation. Furthermore, the findings of the work undertaken to achieve the secondary aim 

can be advisory when the application of markerless system in the fast movement. 
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APPENDIX B 

 

EXTENDED DISCUSSION 

 

The purpose of this study was to compare lower extremity joint kinetics estimated by MB 

and ML systems during treadmill running. Overall, we first observed the significant differences 

in the peak magnitudes for joint moments and powers and relative timings to peak estimated by 

MB/ML. We then further verified the differences estimated by two systems were systematic as 

the running speed altered. To be specific, discrete measurements and time series (SPM) results 

showed that greater increases of lower extremity joint moments and powers with running speed 

were observed in the ML than the MB system during the swing phase. The prominent differences 

were mainly presented at hip and knee joints at both ends of the swing phase. Additionally, the 

ankle plantarflexion moments in the stance-swing transition phase and the ankle absorption 

power during the early stance phase were also detected the greater increases in the ML system 

with speed.  

1. Pose Estimations Affect Joint Kinetics  

Noted that segment kinetics are derived from these rigid body equations, where their 

computation requires the estimation of segment mass, the position of center of mass (COM), and 

its inertia tensor (moments and products of inertia) (Timothy R. Derrick et al., 2020). In most 

cases, the body segment inertial parameters (BSIPs) estimations using regression equations, 

where the COM position is consequently dependent on the estimation of joint center (JC) 

positions (Timothy R. Derrick et al., 2020; Wu et al., 2002).   
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Given JCs usually defined by regression methods from palpated external anatomical 

landmarks, using functional approaches or multiple body kinematic optimization techniques, the 

errors of segment endpoints would greatly affect the segment lengths and later contribute to errors 

on more than BSIPs (Valentina Camomilla et al., 2017; Timothy R. Derrick et al., 2020). 

Examples of JCs induced differences in joint kinetics are numerous. Hip JC is the most critical 

lower extremity joint because of the large distance from the palpable pelvic landmark (Timothy 

R. Derrick et al., 2020). Kirkwood et al. (1999) compared four non-invasive measures to 

radiographic systems to locate hip JC and investigated the effects of hip joint moments. 

According to their study, the most accurate hip JC was to take midpoint of a line connecting the 

antero-superior iliac spine and the symphysis pubis and moving inferiorly 2 cm, which resulted 

in minimal discrepancies of hip joint moments in the frontal and transverse planes in comparison 

to the X-ray measured true location and (Kirkwood, Culham, & Costigan, 1999). Additionally, 

they noticed that displacing hip JC too far laterally affected both the measures in the frontal and 

transverse planes, with 16%-34 % higher than those generated by using standard radiography. 

When displacing the hip JC too far superiorly, it would affect extension/flexion and frontal plane 

hip moments but not transverse plane (Kirkwood et al., 1999). Another representative study 

further addressed the effects of hip JC mislocations on propagation to the gait analysis. In their 

study, they added a constant mislocation error to the nominal hip JC local position and estimated 

hip and knee joint angles and moment components (Stagni et al., 2000). The results showed that 

hip JC did not affect hip joint angles significantly but most affected the extension/flexion plane 

hip joint moments, particularly with a delay of zero crossing of 26.5% when the hip JC was 3 cm 

posteriorly mislocated (Stagni et al., 2000). 
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Recalling JC variations we observed in Chapter 2 (refer to Figure 3), hip JCs differences of 

three axes between ML and MB were more obvious than the knee and ankle, especially in the 

anterio-posterior direction. Considering the aforementioned evidence from MB system, it is 

reasonable to induce the differences of JC estimation from MB/ML make contributions to the 

estimated joint kinetics’ distinctions. In addition, recent comparison studies also accumulate 

indirect evidence to this idea. For example, Kanko et al. (2023) reported that the root mean square 

distance of JC between MB and ML were smaller than 3 cm of all joints, where the hip joint had 

the biggest variation. They also demonstrated the partially consistent results of the lower 

extremity joint moments during treadmill running with ours, however, their study did not explain 

any relationship between JC and joint kinetics (Kanko, Outerleys, Laende, Selbie, & Deluzio, 

2023).  

To date, no other studies using Theia3D compared the pose estimations, joint kinetics and 

their relationships, however, OpenPose as an open source shared similar algorithm principles as 

Theia3D has been well-studied. For example, Nakano et al. (2020) evaluated the joint positions 

estimated by OpenPose ML and MB in walking, countermovement jumping and ball throwing 

tasks (Nakano et al., 2020). They detected that differences of joint positions estimated by two 

system were presented by mean of errors, where 47% were smaller than 20 mm, and 80% were 

less than 30 mm. They suggested that faster movement would increase the distinctions of joint 

positions. Van Hoorah et al. (2023) added credits to their indications by providing differences of 

running kinematics at 2.78 and 3.33 m/s. They reported that OpenPose showed no statistical 

differences at 2.78 m/s but statistically smaller knee flexion angle during the mid-late stance 

phase than MB system at 3.33 m/s (Van Hooren, Pecasse, Meijer, & Essers, 2023). Additionally, 
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Needham et al. (2021) revealed the accuracy of 3D joint centers estimated by ML (OpenPose, 

AlphaPose and DeepLab) and MB systems. Their results further emphasized the largest 

systematic JC difference occurred at the hip joint during running with a mean differences of 29 

mm (Needham et al., 2021). Besides, the wider range of limb configurations and segment 

velocities potentially caused the lower pose estimation performance during running. Noted that 

their results showed systematic JC differences among three ML systems, possible reason is 

attributed to the training datasets exist mislocation issue then supervised learning techniques only 

enlarge the mislabeled locations (Needham et al., 2021).  

Due to the variations of JC positions, the segment endpoints would vary, directly leading to 

the differences of segment COM positions. Besides, not only individual BSIP component would 

affect joint kinetics, the relationship between components also contributes to the accuracy of 

inverse dynamic calculation (Rao, Amarantini, Berton, & Favier, 2006). Although different 

statistical techniques or modeling the segments as geometric solids of known density also need 

to be considered as fundamental factors when underlining the BSIPs (Valentina Camomilla et 

al., 2017), these are strictly controlled in the comparison studies. Supported evidence came from 

Wesseling et al. (2014), who examined the BSPs perturbations (±40%) on joint moments. They 

not only investigated the effects of single component but also integrated compartments of BSIPs. 

The results showed that the single leg COM perturbation greatly influenced the hip flexion 

moment within the maximal -7.81 Nm, especially the COM changes occurred at the distal 

direction  (Wesseling, de Groote, & Jonkers, 2014).  In addition, Nguyen and Reynolds (2013) 

used Monte Carlo methods to simulate the effects of BISP variations on joint moments. They 

highlighted the swing phase even during slow movements such as walking, stating that variations 
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of BISPs significantly affected the hip and knee joint moments (Nguyen & Reynolds, 2014). 

Recall our observed differences of segment COMs estimated by ML and MB (refer to Chapter 

2, figure 4), all three segments had larger variations during the swing phase. Given the segment 

inertial loads dominate the swing phase, it is then reasonable to state that BSIPs also may elicit 

distinctions of joint kinetics estimated by the two systems. 

2.  Injury Prediction and Accommodation Indication 

Systematic differences observed in the current study could have significant implications. 

Given that joint kinetics are useful indicators of various physical stress related placed on 

neuromuscular system (David A. Winter, 1983), it is pivotal to use such indirect mechanism to 

study injury and indicate accommodation strategies during running.  

Hamstring muscle strain injury is common and highly prevalent especially during fast 

running or sprinting. Previous studies have disputed about the timing of hamstring injury 

occurrence. Some studies have argued that the hamstrings are more likely to be injured during 

the stance phase. For example, Mann and Sprague (1980) firstly reported the maximum knee 

flexion and hip extension moment during the early stance phase during overground sprinting, 

indicating the potential hamstring muscle strain injury (R. Mann & Sprague, 1980). Supported 

by Liu et al. (2017), they used intersegmental dynamic analysis and highlighted the early stance 

phase is hazardous for hamstring injury (Y. Liu, Sun, Zhu, & Yu, 2017). They observed that the 

dominant passive torque switched to external contact torque in the transition from late swing to 

initial stance phase. Hamstring muscles served to counterbalance the ground reaction forces 

(GRFs) that have passed anteriorly to the knee and hip and generated large knee extension and 

hip flexion torques. Such enormous torques are almost 8 times of the subject’s body weights, 
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making it more susceptible to injure. Additionally, Yu et al. (2008) examined the hamstring 

muscle-tendon kinematics and muscle activation during overground sprinting (Yu et al., 2008) 

and observed both late stance and late swing phase were potential for hamstring muscle strain 

injury. Their results showed that hamstring muscles exhibited eccentric contraction during the 

late stance, where peak eccentric contraction speeds were lower than late swing but hamstring 

muscle-tendon lengths at the peak eccentric contraction speed were greater. The hamstring 

muscle elongation velocity was higher during the late stance phase, indicating the strain injury 

may be more likely occur at the hamstring muscle-tendon junction during the late stance (Best, 

McElhaney, Garrett, & Myers, 1995). Noticeably, Yu et al.’s suggestions of hamstring injury 

was based on eccentric contraction, the function of muscle strain (Lieber & Friden, 1993). 

However, the results of Mann and Sprague’s suggested the muscle forces were the indicators.  

On the other hand, more studies have addressed the swing phase. For example, Thelen et al. 

(2005) conducted the hamstring kinematics exploration during treadmill sprinting and 

emphasized the maximum hamstring lengths occurred during the late swing before foot contact 

(Thelen et al., 2005). To be specific, they measured the muscle-tendon stretch, relative to muscle-

tendon lengths among bicep femoris semitendinosus and semimembranosus muscles. The 

observed peak hamstring lengths occurred when the hip is highly flexed and knee is slightly 

flexed during the late swing phase. The greater hip flexion caused the greater lengthening of 

semitendinosus and bicep femoris while the slight knee flexion contributed to reduction in overall 

length of biarticular hamstrings. The combined effects would lead to greater stretch of bicep 

femoris is in need during sprinting, also inducing higher potential injury rate at the long head 

bicep femoris. Noted that Thelen et al. did not observe any significant changes of peak hamstring 



85 
 

lengths as running speed increased, however, another study later reported that lateral hamstring 

loading increased significantly with speed (Elizabeth S Chumanov et al., 2011). Chumanov et al. 

(2011) used the whole body musculoskeletal modeling as well as EMG activities to stress on late 

swing phase is more hazardous to hamstring strain injury than the stance phase. In particular, 

their results showed that the hamstring musculotendons lengthened, with the negative work done 

only during swing phase. They also observed two distinct loading peaks for the hamstrings at 

late swing and early stance phases, however, only the peak musculotendon force during swing 

increased significantly with the speed. Consistent with many other studies, their results further 

corroborated the opinion that inertial loads put the lengthening hamstrings at risk for injury 

during high speed running (Elizabeth S. Chumanov et al., 2007; Bryan C. Heiderscheit et al., 

2005; Anthony G. Schache, Wrigley, Baker, & Pandy, 2009).  

In addition, Schache et al. (2009) underlined the biomechanical response to prior to and 

immediate after right hamstring strain (Anthony G. Schache et al., 2009). In their study, the pre-

injury trial results showed that the increased knee extension, greater hamstring muscle tendon 

unit length and earlier occurrence during terminal swing. This may have resulted in larger right 

hamstring muscle fiber strains, the magnitude of which has been shown to relate to muscle 

damage (Lieber & Friden, 1993). They also reported that significant biomechanical reactions on 

the right hamstring strain during the proceeding swing phase in the injury trial, especially the 

substantial reductions in the right hip and knee joint torques and powers. Hamstrings appear to 

be most biomechanically exposed during the terminal swing phase. Except for the 

gastrocnemius’s capability to stabilize the swinging leg (Li, Landin, Grodesky, & Myers, 2002), 

hamstrings bear the most inertial loads acting at the knee joint during the swing phase.  
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Recall our comparison results from Chapter 2 and 3, ML estimated greater hip and knee 

joint moments during the swing phase as the running speed increased, it may lead to an increased 

injury-risk estimation for both parallel and cross-sectional hamstring injuries (Li & Wang, 2017). 

Besides hamstring injury, patellofemoral pain is another common running injury. Although 

a majority of studies have focused on lower extremity biomechanical responses in the frontal and 

transverse planes, some studies underpinned the changes of the hip and knee joints in the 

extension/flexion plane. (Timothy R Derrick, Dereu, & McLean, 2002; T. A. Dierks et al., 2008; 

Souza & Powers, 2009). In particular, Souza and Powers (2009) compared the differences of hip 

kinematics, hip muscle strength and hip muscle activation patterns in female with PFP and 

controls (Souza & Powers, 2009). They demonstrated that female with PFP showed greater hip 

internal rotation was accompanied by significant decrease in hip extension strength. They also 

observed that a 16% decrease in hip extensor torque production in PFP subjects, which might 

contribute to the increased hip internal rotation (Souza & Powers, 2009). Additionally, Dierks et 

al. (2011) compared the patellofemoral pain (PFP) runners and controls during the prolonged 

treadmill running. Compared to the control group, individuals with PFP exhibited reduced peak 

knee flexion, peak hip adduction, and eversion excursion, as well as slower peak knee flexion 

velocity, peak hip adduction velocity, and peak hip internal rotation velocity. Notably, there was 

a significant overall increase in most kinematic variables towards the end of the running task (T. 

Dierks, Manal, & Hamill, 2011). The reduction of knee flexion may be a protective mechanism 

against knee pain in PFP runners (Powers, Chen, Reischl, & Perry, 2002; Powers, Heino, Rao, 

& Perry, 1999). Noted that knee joint is sensitive to changes in step rate, studies have suggested 

that increasing step rate could reduce the magnitude of knee joint loading and hence to relieve 
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the PFP pain (R. L. Lenhart, Thelen, Wille, Chumanov, & Heiderscheit, 2014). Specifically, as 

step rate increased, there was a simultaneous rise in the maximum loads experienced by the rectus 

femoris and hamstring muscles during early and late swing, respectively. Furthermore, the peak 

knee flexion during the stance phase decreased with higher step rates and was identified as the 

most significant predictor of the decrease in patellofemoral joint loading (R. L. Lenhart et al., 

2014). Notably, rectus femoris as another biarticular muscle, is associated with hip flexion and 

knee extension moments. When greater inertial loads act to the rectus femoris during the early 

swing phase, the patellar tension would subsequently increase (R. Lenhart, Thelen, & 

Heiderscheit, 2014).   

Recall our results showing greater hip and knee joint moments estimated by ML system 

during the swing phase, it would contribute to misinterpretations of potential patellofemoral pain. 

In addition, accommodation strategies such as increase the step rate is correlated to the decreased 

knee flexions during the stance phase. However, estimation of such knee flexion during stance 

from ML system (Chapter 2. Figure 1-middle panel) actually showed smaller magnitudes than 

MB. If coaches and clinicians use ML estimations as judgmental criteria, it would obfuscate the 

underlying issue that further jeopardize athletes’ patellofemoral problems. 

Last but not least, overloading issues regarding ankle and knee joint also requires some 

attention. Ankle plantarflexion is critical to knee and ankle stability, restrained forward rotation 

of the tibia on the talus during the stance phase (Gabel & Manoli, 1994).  Additionally, 

plantarflexion moments at the ankle joint have been shown to be related to Achilles tendon 

loading (Fukashiro, Komi, Järvinen, & Miyashita, 1993). Greater ankle plantarflexion would 
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indicate more Achilles tendon loading, which may contribute to Achilles tendon overuse injuries 

(Mahieu, Witvrouw, Stevens, Van Tiggelen, & Roget, 2006). 

To sum up, the results from the current study indicate the overestimation from ML 

exacerbated by speeds could lead to over-estimated running-related injury risks if used in sports 

biomechanics. With different injury risk levels estimated by MB or ML systems, it would be 

challenging for clinicians to make rehabilitation plans, and for coaches and athletes to design 

accommodation strategies.  

3. Usability of ML in the Clinical Settings 

While the ML system may still be considered in its infancy, it remains worthwhile for the 

clinical and sports settings despite the differences between MB/ML we observed here. 

Advantages of ML are prominent, especially for the clinical settings. First, short preparation time 

is more convenient. Since pose estimation algorithms are not dependent on markers attached to 

the skin, soft tissue artifact errors and human errors usually induced by the MB systems can be 

eliminated [134]. The differences caused by loose clothing reported in the spatiotemporal 

parameters, which were lower than typical marker placement-related differences, were smaller 

than the minimal changes in movement-related pathologies such as multiple sclerosis and 

cerebral palsy (Keller et al., 2022). Second, movements, such as, underwater running (Cronin et 

al., 2019), counter movement jump (Drazan et al., 2021; Song, Hullfish, Silva, Silbernagel, & 

Baxter, 2023), and ball throwing (Nakano et al., 2020), will not be restricted by markers. 

Moreover, the Theia3D ML system has shown strong results in the inter-session joint angles 

variability during walking (Kanko, Laende, Selbie, et al., 2021), demonstrating it can be an 

unobtrusive method to monitor patients in their daily lives. For example, using ML system to 
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monitor gait of patients with Parkinson’s disease is potential. Prior studies have demonstrated 

that using monocular ML system to examine gait parameters of Parkinson’s disease patients can 

provide clinicians with overview of disease progression and detect the minor gait disturbances 

that can be unnoticed by clinicians (Mathis et al., 2018; Shin et al., 2021). 

Additionally, studies also presented that the markerless system can extract new information 

from old datasets (Kidziński et al., 2020; Shin et al., 2021). The development of pose estimation 

software may enable future ML systems to integrate both phone camera and processor to provide 

compact and affordable ML motion capture methods (Steinert et al., 2020). Therefore, the 

potential of ML system in the clinical settings is promising.   

4. Limitations 

The following limitations of this work should be addressed. First, our participants’ pool was 

limited to recreationally active young adults. Different population groups may have anatomical 

deformities, affecting the comparison between the systems. For example, more recent studies 

have applied ML on overground walking gait of children with cerebral palsy and adults with 

chronic stroke. They reported root mean square values of joint angle variables were acceptable 

for ML system compared to MB (E. A. Steffensen, Magalhães, Knarr, & Kingston, 2023). 

However, similar drawbacks as ours. Their participants’ amount was even smaller than ours.  

        Second, hardware constraints such as treadmill settings, cameras resolutions, and marker 

placements. To be specific, we analyzed treadmill running, where the treadmill settings may 

constrain the speed. The treadmill settings could result in altered gait mechanics that do not 

accurately reflect the subject's true gait, which can compromise the accuracy of the gait analysis. 

Additionally, despite our updated Vicon high-resolution video cameras employed for markerless 
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data, the Vicon Bonita series infrared cameras used here do not provide us with the highest 

resolution available on the market. Lower camera resolution may cause trajectory errors in the 

identifications of landmarks (Zago et al., 2020). Marker placements could be distinguished in 

each lab, which could further affect the joint kinetics during running (Osis, Hettinga, Macdonald, 

& Ferber, 2016).  

Moreover, we only investigated the speed effects of treadmill running, and hence it remains 

unclear if the ML overestimations of joint moments and powers would apply to other movements. 

Within our experimental design, we observed interactions at the ankle joint moment during the 

early swing phase and ankle joint power during the initial stance phase, however, these 

observations were not consistent with the results of discrete measurements. Further investigations 

on ankle joint are needed to explain such inconsistency. In addition, the current study stressed on 

joint kinetics in the extension/flexion plane which primarily attributes to running movements. 

However, many lower extremity muscles have specific actions that are not limited to a single 

plane. For example, rectus femoris and bicep femoris muscles induce frontal hip motion (Hunter 

et al., 2009), functioning as stabilizers during running (Novacheck, 1998). Therefore, to predict 

running injuries, improve running performance, lower extremity motion in other planes may need 

further investigation using the ML system.  

5. Direction for Future Research 

Future research is recommended to address the aforementioned limitations. The current 

study used SPM statistical analysis and incorporated with traditional ones, however, the ankle 

joint moments results mismatched. Given the Spatial Parameter Mapping analysis is a time 

continuous analysis, the timing variability exhibited in healthy populations can disrupt timing of 
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biomechanical events (Honert & Pataky, 2021). Honert and Pataky (2021) demonstrated that 

multiple SPM tests can be performed to determine if statistical outcomes are due to temporal 

shifting or differences in magnitude (Honert & Pataky, 2021). Therefore, future works also need 

to be cautious about methodology for statistics.  

Repeating the work undertaken within this thesis but expanding the scope of the study to 

include different movements would advance markerless (ML)’s feasibility in more 

biomechanical applications. Besides the lower extremity kinematic and kinetic measurements, 

upper extremity also requires further exploration given its importance in various sports. 

Additionally, future work could explore the two systems in different populations such as patients 

with abnormal gaits to verify the clinical adaptability. Till now, a few studies have focused on 

kinematics of children with cerebral palsy or adults with chronic strokes (M. Steffensen, 

Magalhaes PhD, Knarr PhD, & Kingston PhD, 2023). One study also discussed the participants 

with lower limb amputation (Song et al., 2023) but with only four men participants. Although 

these recent studies have reported positive results of ML in kinematic gaits, due to their small 

participant’s pool and the lack of kinetic performance, future work remains needed.  
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APPENDIX C 

 

STATISTICAL ANALYSIS INFORMATION 

 

◼ Discrete Measurements Statistical Analysis Details 

Paired Sample t-test 

Two-way (system × speed) within-subject repeated measure ANOVA 

◼ Spatial Parameter Mapping Statistical Analysis Details 

Two-way Repeated Measure ANOVA 

Simple Linear Regression 
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Two-way Repeated Measure ANOVA Results 

Speeds: 1—5mph; 2---6.5mph; 3---8mph 

Systems: 1—marker; 2--- markerless 

Ankle Joint 
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Spatial Parameter Mapping Results of Two-way Repeated Measure ANOVA 

MATLAB Codes:  

Two-way repeated measure ANOVA 

clear;  clc 
Y = xlsread("Hip power.xlsx"); 
A = xlsread("Systems.xlsx"); 
B = xlsread("Speeds.xlsx"); 
SUBJ = xlsread("SUBJ.xlsx"); 
 
%(1) Conduct SPM analysis: 
spmlist   = spm1d.stats.anova2onerm(Y, A, B, SUBJ); 
spmilist  = spmlist.inference(0.05); 
disp_summ(spmilist) 
close all 
spmilist.plot(); 
 
%(2) Plot: 
close all 
spmilist.plot('plot_threshold_label',false, 'plot_p_values',true, 'autoset_ylim',true); 
 

Simple linear regression: 
%simple linear regression analysis; 
clear;  clc 
y = xlsread("leg COM&hip moment.xlsx"); 
x = xlsread("Parameters.xlsx"); 
 
% %(0a) Create region(s) of interest (ROI): 
% roi = false( 1, size(y,2) ); 
% roi(40:56) = true; 
 
 
%(1) Conduct test using spm1d: 
spm = spm1d.stats.regress(y,x); 
spmi = spm.inference(0.05, 'two_tailed', true); 
% disp(spmi) 
% r = spm.r 
% r2 = spm.r.^2; 
% r=r'; 
% r2=r2'; 
 
%(2) Plot: 
close all 
spmi.plot(); 
spmi.plot_threshold_label(); 
spmi.plot_p_values(); 
 
% filename = 'Ankle joint moment_r.xlsx'; 
% xlrange1 = 'A1:A101'; 
% xlrange2 = 'B1:B101'; 
% xlswrite(filename, r, xlrange1); 
% xlswrite(filename, r2, xlrange2); 

SPM MATLAB codes sources for different statistical analysis came 

from:https://spm1d.org/Downloads.html 
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Figure 1. SPM results of repeated measure ANOVA of ankle joint moment 

 

 

Figure 2. SPM results of repeated measure ANOVA of ankle joint power 

 

 

Figure 3. SPM results of repeated measure ANOVA of knee joint moment 



294 
 

 

  

Figure 4. SPM results of repeated measure ANOVA of knee joint power 

 

 

Figure 5. SPM results of repeated measure ANOVA of hip moment 

 

 

Figure 6. SPM results of repeated measure ANOVA of hip power 
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Figure 7. SPM results of simple linear regression of ankle joint moment 

 

Figure 8. SPM results of simple linear regression of ankle joint power 

 

Figure 9. SPM results of simple linear regression of knee joint moment 
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Figure 10. SPM results of simple linear regression of knee joint power 

 

Figure 11. SPM results of simple linear regression of hip joint moment 

 

Figure 12. SPM results of simple linear regression of hip joint power 
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APPENDIX D 

 

INSTITUTIONAL REVIEW BOARD 

 

 

Institutional Review Board (IRB) 
Application for Research Approval – Expedited/Full Board 

 

 
Please submit this protocol to IRB@georgiasouthern.edu in a single email; scanned signatures and official Adobe electronic 

signatures are accepted.  Applications may also be submitted via mail to the Research Integrity office, PO Box 8005.   

 

Principal Investigator 

PI’s Name: Hui Tang  Phone: 912-582-1607 

Email: ht01253@georgiasouthern.edu 
(Note: Georgia Southern email addresses will be used for all 

correspondence.) 

Department: Health Sciences & Kinesiology 

College: WCHPWCHP 

Primary Campus:   ☒ Statesboro Campus          ☐ Armstrong Campus          ☐  Liberty Campus 

☐  Faculty           ☐  Doctoral          ☐  Specialist          ☒ Masters          ☐ Undergraduate          ☐ Other:  

Georgia Southern Co-Investigator(s) 

Co-I’s Name(s): Benjamin Paquette (M), Petra Kis (M),  Li Li 

(F) 
(By each name indicate: F(Faculty), D(Doctoral), S(Specialist), M(Masters), 

U(Undergraduate), O(Other)) 

Email: bp11854@georgiasouthern.edu; 

pk03815@georgiasouthern.edu; lili@georgiasouthern.edu 
(Note: Georgia Southern email addresses will be used for all correspondence.) 

Personnel and/or Institutions Outside of Georgia Southern University involved in this research: 

 ☐  Training Attached  ☐  IRB Approval Attached  ☐ intent to rely on GS 

 ☐  Training Attached  ☐  IRB Approval Attached  ☐ intent to rely on GS 

 

Project Information 

Title: Concurrent Assessment of Gait Biomechanics Using Markerless and Marker-based Motion Capture Systems 

Number of Subjects (Maximum) : 40  

Will you be using monetary incentives (cash and/or gift cards)?  ☐  Yes    X  No       

☒ Self-funded/non-funded 

 

☐ Internal Georgia Southern 

Internal Source:  

☐ External Funding (You are responsible for duplicate or additional approval submissions required by 

funders.) 

Funding Source: ☐ Federal          ☐ State            ☐ Private           ☐ Contract              

Funding Agency:      

Grant Number: 39G                                     

Grant Title: ☐ Same as above      Enter here:  

☐ Funding application scope of work attached                                                   

Compliance Information 

Do you or any investigator on this project have a financial interest in the subjects, study outcome, or project sponsor?  (A disclosed conflict 

of interest will not preclude approval.  An undisclosed conflict of interest will result in disciplinary action.).  ☐  Yes   ☒  No   (If yes attach disclosure form) 

 

Certifications 

For Office Use Only: Protocol ID ______________ 

mailto:bp11854@georgiasouthern.edu
mailto:pk03815@georgiasouthern.edu
mailto:lili@georgiasouthern.edu
https://drive.google.com/file/d/1vH92YnOB3GQhrIvxUzNQzgRt3JcDxnmo/view
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I certify that the statements made in this request are accurate and complete, and if I receive IRB approval for this project, I agree to 

inform the IRB in writing of any emergent problems or proposed procedural changes. I agree not to proceed with the project until the 

problems have been resolved or the IRB has reviewed and approved the changes. It is the explicit responsibility of the researchers and 

supervising faculty/staff to ensure the well-being of human participants. At the conclusion of the project, I will submit a report. A 

report must be submitted no later than 12 months after project initiation. 
 

_____________                                                                                         ___April 28th, 2022____________ 

Signature of Primary Investigator                                                                                          Date 
 

____________________________                                                                                     ___ April 28th, 2022__________ 

Signature of Co-Investigator(s)                                                                                              Date 

 

By signing this cover page, I acknowledge that I have reviewed and approved this protocol for scientific merit, rationale, and 

significance.  I further acknowledge that I approve the ethical basis for the study. 

 

If faculty project, please have department chair sign; if student project, please have research advisor sign: 

 

Li Li 

 

 

  

April 28th , 2022 

Typed/Printed Name  Signature  Date 
 

 

Compliance Information 

Please indicate which of the following will be used in your research: (applications may be submitted simultaneously) 

☒  Human Subjects 

☐  Care and Use of Vertebrate Animals (Submit IACUC Application) 

☐  Biohazards (Submit IBC Application) 

Please indicate if the following are included in the study (Check all that apply): 

☒  Recruitment delivered to georgiasouthern.edu email 

addresses 

☐  Deception 

☐  Prisoners 

☐  Children 

☐  Individuals with impaired decision-making capacity, or 

economically or educationally disadvantaged persons 

☐  Video or Audio Recordings 

☐  Human Subjects Incentives 

☒  Medical Procedures, including exercise, administering 

drugs/dietary supplements, and other procedures, or 

ingestion of any substance 

Is your project a research study in which one or more human subjects are prospectively assigned to one or more interventions (which 

may include placebo or other control) to evaluate the effects of those interventions on health-related biomedical or behavioral 

outcomes.  See the IRB FAQ for help with the definition above. 

☐  Yes    ☒  No      If yes, attach Good Clinical Practice (GCP) CITI training appropriate to the project. 

 

Instructions:  Please respond to the following as clearly as possible.  The application should include a step by step plan of how you 

will obtain your subjects, conduct the research, and analyze the data. Make sure the application clearly explains aspects of the 

methodology that provide protections for your human subjects. Your application should be written to be read and understood by a 

general audience who does not have prior knowledge of your research and by committee members who may not be expert in your 

specific field of research.  Your reviewers will only have the information you provide in your application.  Explain any technical 

terms, jargon or acronyms. 

DO NOT REMOVE THE QUESTIONS/PROMPTS. 

1. Personnel 

A. Please list ALL individuals who will be conducting research on this study.  This includes the principal investigator, co-

investigators, and any additional personnel. Please describe the level of involvement in the process and the access to 

information/data that each may have.  

a. Hui Tang: Hui is responsible for participant recruitment, data collection, and interpretation. Hui has access to all data. 

Deidentified data will be stored in a password-protected computer in the lab. 

http://research.georgiasouthern.edu/researchintegrity/institutional-animal-care-and-use-committee-forms/
http://research.georgiasouthern.edu/researchintegrity/ibc-forms/
http://research.georgiasouthern.edu/researchintegrity/irb-faq/
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b. Benjamin Paquette: Benjamin is the Co-Investigator and is responsible for participant recruitment and data collection. Benjamin 

has access to all data. Deidentified data will be stored in a password-protected computer in the lab. 

c. Petra Kis: Petra will help the parrticipants recruitment and data collection. Petra has access to all data. Deidentified data will be 

stored in a password-protected computer in the lab.  

d. Li Li, Ph.D.: Co-Investigator and advisor. Dr. Li will assist with participant recruitment, data collection, and interpretation. Dr. Li 

has access to all data. Informed consent and corresponding participating code will be stored in a locked cabinet in Dr. Li’s office. 

e. Please detail the experience of each researcher. Please include any credentials, training, or education that directly relate to the 

procedures in this research.  Specifically, address any experience or knowledge that will help mitigate any risks associated with 

this research. 

Hui has been working in the biomechanical lab for over one year and is familiar with biomechanical equipment such as motion 

capture systems and force-plate embedded treadmill. She has conducted whole-body motion capture experiments safely and 

successfully. 
Benjamin has been working in the biomechanical lab and the athletic training department for one year. He is familiar with clinical 

biomechanics applications. 

Petra has been working in the biomechanical lab for about a year and is familiar with biomechanical equipment such as motion 

capture systems, and force plates. She has conducted a lower body motion capture experiment safely and successfully. 

Dr. Li has been working in the biomechanics field for over thirty years. The experiment design will be repeatedly supervised. We 

have been piloting the protocol, adjusting the fastest running speed to 8 miles/h for recreational athletes and healthy participants, 

without any adverse events. 
 

2. Purpose 

A. Briefly describe in one or two sentences the purpose of your research.   

The aim of this research is to validate a markerless motion capture system for measuring biomechanical features during treadmill 

running at three different speeds. 

 

B. What questions are you trying to answer in this project?  Please include your research question in this section.  The jurisdiction of 

the IRB requires that we ensure the appropriateness of research.  It is unethical to put participants at risk without the possibility of 

sound scientific result.  For this reason, you should be very clear about how participants and others will benefit from knowledge 

gained in this project. 

This investigation asks: a) how the markerless compared to the marker-based motion capture system (gold standard) in gait 

biomechanical study; b) how time series affect the accuracy of the markerless system in gait kinematics and kinetics. We hypothesize 

that: a) calculated kinematic and kinetic parameters from the markerless system would be accurate and consistent with the marker-

based system; b) the markerless system will be more accurate as time series. 

A better understanding of the markerless motion capture system will help researchers resolve the time-consuming and limit size 

issues in motion capture studies. The improvements in the application of this technology will provide participants with an easy way to 

cooperate with researchers with effectiveness and efficiency. 
C. Provide a brief description of how this study fits into the current literature.  Have the research procedures been used before? How 

were similar risks controlled for and documented in the literature?  Have your instruments been validated with this audience?  

Include citations in the description.  Do not include dissertation or thesis chapters. 

Researchers and clinicians use three-dimensional (3D) motion capture systems to analyze the biomechanics of human movement. 

While marker-based motion capture systems are considered as the non-invasive gold standard of motion analysis, it is time-consuming 

to set up and process data (1), limiting their use in large studies (2). Newly developed markerless motion capture has the potential to 

alleviate some of the technical and practical issues of marker-based motion analysis by replacing physical palpation and skin surface 

marker tracking of bony landmarks with probabilistic estimation of landmark positions using trained neural networks (3-4). However, 

the dispute about the reliability and validity of a markerless system is constant. 

According to previous literature, markerless motion capture can provide reliable kinematic analysis in gait studies (5-7) where 

kinematic analysis has been focused on lower limb joint poses and angles. For example, Sandau et al. (2014) applied highly detailed 

3D reconstructions to compare the poses of the hip, knee, and ankle joints during walking overground. Kan et al. (2021) investigated 

the lower limb segment pose and joint angles of walking gaits on the treadmill (3).  

However, there is no study probing the comparisons of gait kinematics and kinetics of different running speeds using markerless 

and marker-based motion capture systems. To better understand how reliable the markerless system in both gait kinematics and 

kinetics in a clinical setting is, this project will apply the speed-varied running protocol in gait biomechanical studies. Risk 

management was prepared for this research by performing pre-running warm-up and post-running relaxation.  
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3. Outcome 

Please state what results you expect to achieve.  Who will benefit from this study?  How will the participants benefit (if at all)?  

Remember that the participants do not necessarily have to benefit directly.  The results of your study may have broadly stated 

outcomes for a large number of people or society in general. 

In this project, we expect to see: a) calculated kinematic and kinetic parameters from the markerless system would be accurate and 

consistent with the marker-based system; b) the markerless system becomes more reliable over time. The outcome of this project will 

directly propel the development of motion-based biomechanical studies. The markerless motion capture system will help researchers 

to resolve the time-consuming and limiting size problems in biomechanical studies. The validity of a markerless system will provide 

researchers with a better understanding when applying this technology.  

Participants in this study may not have direct benefits. However, more people will benefit from the convenience of the markerless 

system if it is proven to be as good as the marker system. 

 

 

4. Describe Your Subjects 

A. Maximum number of participants 

40 

B. Briefly describe the study population. 

This study will recruit healthy, recreationally active individuals of all genders between the age of 18 and 30 years old. 

C. Applicable inclusion or exclusion requirements (ages, gender requirements, allergies, etc.) 

The project includes healthy, recreationally active college students (between 18 to 30 years old) of all genders. Participants who 

answered “No” to all the PAR-Q questions, and did not check any boxes in the Present/Past History section of the Health History 

Questionnaire, will be defined as “healthy”. Participants are “recreationally active” are the ones who answered “Yes” to the first two 

questions of the Activity History section of the Health History Questionnaire. Exclusion criteria: participants who are screened by the 

EIM Health History Questionnaire (attached) with present/past history of “seizures”, “muscle or joint problems (e.g., back, knee)”, 

“pain, discomfort in the chest, neck, jaw, arms, or other areas”, “unusual fatigue or shortness of breath at rest or with light activity”, 

“temporary loss of clear vision or speech or short- term numbness or weakness in one side, arm, or leg of your body”, “intermittent 

claudication (calf cramping)” will be excluded from participation. People who answered "Yes" for any of the PAR-Q questions will 

also be excluded from participation. 

D. How long will each subject be involved in the project? (Number of occasions and duration) 

Each participant will visit the lab once for about 60 minutes. The lab visit will consist of 15 minutes guided warm-up exercise and 

three 2-minute-running sessions with different speeds (5, 6.5, and 8 miles/hour).  

 

5. Recruitment 

Describe how subjects will be recruited. (Attach a copy of recruitment emails, flyers, social media posts, etc.)  DO NOT state that 

subjects will not be recruited. 

Participants will be recruited from kinesiology courses offered on campus, such as Biomechanical Analysis of Movement (KINS 

50453), Physiological Aspects of Exercise (KINS 50442), and Data Acquisition of Biomechanics (KINS 51699). The investigators 

will go to the classes with the instructors' permission and then distribute the recruitment flyers (attached) to the class. Potential 
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questions will be discussed after the flyer distribution. Researchers’ email addresses are provided on the flyer. Potential participants 

will contact the PI via their Georgia Southern email address. Future communication regarding the project will be conducted using 

Georgia Southern emails.   

6. Incentives 

A. Are you compensating your subjects with money, course credit, extra credit, or other incentives?   

☐  Yes         ☒  No 

B. If yes, indicate how much and how they will be distributed. 

 

C. Describe if and how you will compensate subjects who withdraw from the project before it ends and any exclusion criteria from 

compensation.  

Not applicable 

 

7. Research Procedures and Timeline 

A. Which statement best describes the procedures in this protocol (including recruitment, consent, interventions, etc,)? 

☐  This data is being collected without ANY in person interactions with participants (ie. online surveys, virtual interviews, 

etc.) 

☐  This data is being collected in person with participants but without any direct physical contact (ie. in person 

interviews, in person focus groups, etc.). Safety Plan REQUIRED 

☒  This data requires direct physical contact with participants (ie. placing sensors on a participant, etc.) Safety Plan 

REQUIRED 

B. Outline step-by-step what will happen to participants in this study (including what kind of experimental manipulations you will 

use, what kinds of questions or recording of behavior you will use, the location of these interactions).  Focus on the interactions 

you will have with the human subjects. Specify tasks given as attachments to this document. 

The participants will receive PAR-Q and EIM-Health History Questionnaire through email communication (attacheed). They will 

be instructed to fill out these two questionnaires and send back to the experimenters. All participants’ eligibility will be confirmed by 

experimenters after checking their filled questionnaires. PAR-Q is a 7-step questionnaire for use with persons of all ages that has been 

validated in many previous studies (1-3). It screens for evidence of risk factors during moderate physical activity and reviews family 

history and disease severity. If a potential participant answers yes to one or more questions, the individual may not be eligible for 

participation. EIM-Health-History Questionnaire is provided and validated by the American College of Sports Medicine (ACSM) and 

the American Medical Association (AMA) co-launched Exercise is Medicine (EIM) (4). By using this questionnaire, investigators can 

assess potential participants’ level of physical activity by screening their past and current family and personal medical history. Before 

the first lab visit, eligible participants will be asked to read and sign the Informed Consent Form through email. All questions regarding 

the project will be answered satisfactorily. 

Participants visit the Biomechanics Lab at Georgia Southern University at a scheduled time. Before the visit, participants will be 

advised to wear athletic attire and refrain from pre-workout in advance. 

Each participant will be required to run on the instrumented treadmill (AMTI force-sensing tandem treadmill; MA, USA) in the 

balanced order: slow (5 miles/h), intermediate (6.5 miles/h), and fast (8 miles/h) running speeds. An eight high-speed camera system 

(Vue, Vicon, Oxford, UK) will be used to record motion video and sampling rate at 100 Hz. Another eight-camera motion capture system 

(Vero, Vicon, Oxford, UK) will be used to record the coordination of markers and sampling rate at 100 Hz. The instrumented treadmill 

will be used to record force data and sampling rate at 1000 Hz. The Nexus lock+ system (Vicon, Oxford, UK) will be used to synchronize. 

The data collection will use the Nexus system (Vicon, Oxford, UK).  

Preparations for motion capture include: 

1) Participants will change to minimal, skin-tight clothing and lab running shoes.  

2) The researcher will record anthropometric measurements of each participant, such as body mass and height. 

3) A set of retroreflective markers and tracking clusters are affixed to relevant anatomical landmarks and body segments (Figure 

1). 

4) Participants will perform 10 minutes warm-up exercises guided by researchers. 

5) Participants will familiarize the running protocol on the treadmill guided by one researcher. 

6) Each participant is required to stand still on the force-plate embedded treadmill with arms crossed for 2 seconds for the marker-

based Vicon system to calibrate. However, the Thia system does not require calibration. 

 

The running speed starts from slow (5 m/h) to fast (8 m/h). Two researchers will help the participant to accomplish the running 

motion capture process in the following steps: 

1) With the verbal instruction, “Capture started”, one investigator will help to increase to target speed (slow-5 miles/h, 

intermediate-6.5 miles/h, fast 8 miles/h). Meanwhile, the participant will transition from walking to running. When the 

participant reaches a steady speed and run for 2 minutes, the other investigator will record data for 30 seconds. Then, one 

https://research.georgiasouthern.edu/researchintegrity/face-to-face-in-person-research/
https://research.georgiasouthern.edu/researchintegrity/face-to-face-in-person-research/
https://research.georgiasouthern.edu/researchintegrity/face-to-face-in-person-research/
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investigator will inform the participant to slow down and adjust the treadmill speed. The participant can stop and step out of 

the treadmill after hearing “Capture Ended”.  

2) To avoid fatigue, the participant will rest for 5 minutes between each running condition.  

3) The participant will perform some relaxation guided by the investigator.  

 

 
Figure 1. IOR Full-Body Model. 
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C. Identify any activity included in the research description that will occur without modification regardless of the research effort.  
(E.g., A class exercise that is part of the normal course activities that is not altered for the research about which you will collect data or a team 

warm-up exercise session that is not altered for the study about which you will collect data.) Answer "N/A" if this does not apply. 

N/A 

D. Describe how legally effective informed consent will be obtained. (Also, attach a copy of the consent form(s).) 

A signed informed consent form will be collected through email communication after all questions are answered satisfactorily and 

before data collection. 

E. If minors are to be used describe procedures used to gain consent of their parent (s), guardian (s), or legal representative (s), and 

gain assent of the minor. 

☒  N/A or   Explain: 

F. Describe all study instruments and whether they are validated.  Attach copies of questionnaires, surveys, and/or interview 

questions used, labeled accordingly. 

Potential participant eligibility will be accessed using PAR-Q and EIM-Health-History questionnaire (attached). PAR-Q is a 7-step 

questionnaire for screening the risks of participating in physical activity by researchers and teachers worldwide for a long time. If a 

potential participant answers yes to one or more questions, the individual may not be eligible for participation. EIM-Health-History 

Questionnaire is prepared by the American College of Sports Medicine (ACSM) and the American Medical Association (AMA) co-

launched Exercise is Medicine (EIM) which is more detailed than the PAR-Q. Investigators can assess potential participants’ 

vulnerabilities in participating physical activity by screening family and personal medical history. 

This study will use an eight high-speed camera system (Vue, Vicon, Oxford, UK) and another eight-camera motion capture system 

(Vero, Vicon, Oxford, UK) to capture running movement. The instrumented treadmill will be used to record force data. The Vicon motion 

capture system is considered as gold standard in the motion capture (1-3).  The instrumented treadmill (AMTI force-sensing tandem 

treadmill; MA, USA)  used in this study is reliable and safe equipment for kinetics data collection. It has been applied in both children 

(4) and older adults (5). 

1. Miranda, D. L., Schwartz, J. B., Loomis, A. C., Brainerd, E. L., Fleming, B. C., & Crisco, J. J. (2011). Static and dynamic error 

of a biplanar videoradiography system using marker-based and markerless tracking techniques. 
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2. Ganguly, A., Rashidi, G., & Mombaur, K. (2021). Comparison of the Performance of the Leap Motion ControllerTM with a 

Standard Marker-Based Motion Capture System. Sensors, 21(5), 1750. 

3. Rodrigues, T. B., Catháin, C. Ó., Devine, D., Moran, K., O'Connor, N. E., & Murray, N. (2019, June). An evaluation of a 3D 

multimodal marker-less motion analysis system. In Proceedings of the 10th ACM Multimedia Systems Conference (pp. 213-

221). 

4. Rozumalski, A., Novacheck, T. F., Griffith, C. J., Walt, K., & Schwartz, M. H. (2015). Treadmill vs. overground running gait 

during childhood: A qualitative and quantitative analysis. Gait & posture, 41(2), 613-618. 

5. Harada, N. D., Chiu, V., & Stewart, A. L. (1999). Mobility-related function in older adults: assessment with a 6-minute walk 

test. Archives of physical medicine and rehabilitation, 80(7), 837-841. 

 

G. Describe how you will protect the privacy of study participants.  

Participants’ privacy will be protected confidentially. They will be deidentified with ID numbers with all collected data. The copies 

of signed informed consent forms stored in Dr. Li’s office will be the only documentation linking the participants’ identities to their 

research ID numbers. All research-specific data will be stored in password-protected computers within lock-protected offices. Only 

Hui Tang, Benjamin Paquette, Petra Kis, and Dr. Li Li have access to these data. 

4) Data Analysis 

A. Briefly describe how you will analyze and report the collected data.   

The video streaming from Thia system (Theia markerless, Inc., Kingston Ontario, Canada) will be used for pre-processing. The 

Nexus system will be used to pre-process the marker position. Then, Visual 3D will be utilized to calculate biomechanical parameters, 

such as joint angle, moment, and power of the lower limb. 

We will assess the concurrent validity of the biomechanical features from a markerless and marker-based (gold standard) motion 

capture system for 90 strides (30 strides for each speed). Mean RMSD will be calculated for the time-normalized for each outcome 

variable at each speed. For the time series analysis, the relative difference will be calculated as the coefficient of variation of RMSD 

relative to the mean of the gold standard. Intraclass correlation coefficients (ICC2,1) and Bland–Altman plot metrics (markerless 

system measurement bias, 95% limits of agreement) will be computed to examine consistency and agreement between outcomes. 

Additionally, we will evaluate the validity of the biomechanical features from the markerless system and gold standard at different 

time epochs. Here, mean RMSD will be calculated for the time-normalized for each outcome variable at each speed at three different 

epochs (first, middle, and last five strides). The rest analysis method is the same as the aforementioned.  

B. What will you do with the results of your study (e.g. contributing to generalizable knowledge, publishing sharing at a conference, 

etc.)? 

The results of this project will be disseminated through professional conferences and peer-reviewed journals.  

C. Include an explanation of how will the data be maintained after the study is complete.  Specify where and how it will be stored 

(room number, password-protected file, etc.) 

The data will be stored in Dr. Li’s password-protected office computer. The office is located in Room 1070C, Water College of 

Health Professions, Hollis Building, Georgia Southern University.  

D. If this research is externally funded (funded by non-Georgia Southern funds), student researchers must specify which faculty or 

staff member will be responsible for records after you have left the university.  The person listed below must be included in the 

personnel section of this application. 

Responsible Party:  

☒  N/A 

E. Anticipated destruction date or method used to render data anonymous for future use. Please make sure this in consistent with 

your informed consent. 

☐  Destroyed 3 Years after conclusion of research (minimum required for all PIs)        

☐  Other timeframe (min 3 years):  

☒  Maintained for future use in a deidentified fashion.  Method used to render it anonymous for future use:  
Note: Your data may be subject to other retention regulations (i.e. American Psychology Association, etc.) 

Special Conditions 

5) Risk 

Even minor discomfort in answering questions on a survey may pose some risk to subjects.  Carefully consider how the subjects will 

react and address ANY potential risks. 

A. Is there greater than minimal risk from physical, mental, or social discomfort? 

☐  No 

 

If no, Do not simply state that no risk exists.  If risk is no greater than risk associated with daily life experiences, state risk in 

these terms. 
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☒  Yes 

 

If yes, describe the risks and the steps taken to minimize them.  Justify the risk undertaken by outlining any benefits that 

might result from the study, both on a participant and societal level. 

In clinical settings, treadmill running is used to inform gait retraining strategies for performance enhancement, injury prevention, 

and rehabilitation. During rehabilitation, it is also used to commence running in a controlled environment (1). Therefore, the risk of 

running on a treadmill is even smaller than overground running. In addition, the eligible participants are recreationally active and 

should run for a long distance. Given the running duration in this project is only 2 and half minutes for each trial, the risks of possible 

fatigue and ankle sprain can hardly be more significant than their daily life experiences.  
 

1. Van Hooren, B., Fuller, J. T., Buckley, J. D., Miller, J. R., Sewell, K., Rao, G., ... & Willy, R. W. (2020). Is motorized treadmill 

running biomechanically comparable to overground running? A systematic review and meta-analysis of cross-over studies. 

Sports medicine, 50(4), 785-813. 

B. Will you be carrying out procedures or asking questions that might disturb your subjects emotionally or produce stress or anxiety? 

If yes, describe your plans for providing appropriate resources for subjects. 

No. 

6) Research Involving Minors 

A. Will minors be involved in your research? 

☐ Yes  ☒ No 

B. If yes, describe how the details of your study will be communicated to parents/guardians.  Please provide both parental consent 

letters and child assent letters (or processes for children too young to read).  

 

C. Will the research take part in a school (elementary, middle, or high school)?  

☐ Yes  ☒ No 

D. If yes, describe how permission will be obtained from school officials/teachers, and indicate whether the study will be a part of the 

normal curriculum/school process. 

☐ Part of the normal curriculum/school process 

☒ Not part of the normal curriculum/school process 

 

7) Deception 

A. Will you use deception in your research? 

☒ No Deception 

☐ Passive Deception 

☐ Active Deception 

B. If yes, describe the deception and how the subject will be debriefed.  Include a copy of any debriefing materials.  Make sure the 

debriefing process is listed in your timeline in the Procedures section. 

 

C. Address the rationale for using deception.   

 

Be sure to review the deception disclaimer language required in the informed consent. Note: All research in which active deception 

will be used is required to be reviewed by the full Institutional Review Board.  Passive deception may receive expedited review. 

8) Medical Procedures 

A. Does your research procedures involve any of the following procedures: 

☒ Low expenditures of physical effort unlikely to lead to physical injury  

☐High expenditures of physical effort that could lead to physical injury 

☐ Ingesting, injecting, or absorbing any substances into the body or through the skin 

☐ Inserting any objects into bodies through orifices or otherwise 

☐ Handling of blood or other bodily fluids 

☐Other Medical Procedures 

☒ No Medical Procedures Involved 

B. Describe your procedures, including safeguards.  If appropriate, briefly describe the necessity for employing a medical procedure 

in this study.  Be sure to review the medical disclaimer language required in the informed consent. 

To avoid minimal potential running injuries, sufficient warm-up and after-running relaxation exercises guided by researchers are 

applied. To discourage the onset of fatigue and discomforts caused by running, participants are allowed to take sufficient rest between 

different running speeds. 



305 
 

 

C. Describe a medical emergency plan if the research involves any physical risk beyond the most minimal kind. The medical research 

plan should include, but not necessarily be limited to: emergency equipment appropriate for the risks involved, first rescuer 

actions to address the most likely physical risk of the protocol, further actions necessary for the likely risks. 

If any physical risk beyond the most minimal kind happened, experimenters will contact Georgia Southern Health Service at 912-

478-5641 immediately and allow the professional health providers to handle the injuries.  

Reminder:  No research can be undertaken until your proposal has been approved by the IRB. 
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CERTIFICATION OF INVESTIGATOR RESPONSIBILITIES 

By signing the cover page, I agree/certify that: 

1. I have reviewed this protocol submission in its entirety and I state that I am fully cognizant of, and in agreement 

with, all submitted statements and that all statements are truthful. 

2. This application, if funded by an extramural source, accurately reflects all procedures involving human 

participants described in the proposal to the funding agency previously noted. 

3. I will conduct this research study in strict accordance with all submitted statements except where a change 

may be necessary to eliminate an apparent immediate hazard to a given research subject. 

a. I will notify the IRB promptly of any change in the research procedures necessitated in the interest of the 

safety of a given research subject. 

b. I will request and obtain IRB approval of any proposed modification to the research protocol or informed 

consent document(s) prior to implementing such modifications. 

4. I will ensure that all co-investigators, and other personnel assisting in the conduct of this research study have been 

provided a copy of the entire current version of the research protocol and are fully informed of the current (a) 

study procedures (including procedure modifications); (b) informed consent requirements and process; (c) 

anonymity and/or confidentiality assurances promised when securing informed consent (d) potential risks 

associated with the study participation and the steps to be taken to prevent or minimize these potential risks; (e) 

adverse event reporting requirements; (f) data and record-keeping requirements; and (g) the current IRB approval 

status of the research study. 

5. I will not enroll any individual into this research study: (a) until such time that the conduct of the study has been 

approved in writing by the IRB; (b) during any period wherein IRB renewal approval of this research study has 

lapsed; (c) during any period wherein IRB approval of the research study or research study enrollment has been 

suspended, or wherein the sponsor has suspended research study enrollment; or (d) following termination of IRB 

approval of the research study or following sponsor/principal investigator termination of research study 

enrollment. 

6. I will respond promptly to all requests for information or materials solicited by the IRB or IRB Office. 

7. I will submit the research study in a timely manner for IRB renewal approval. 

8. I will not enroll any individual into this research study until such time that I obtain his/her written informed consent, 

or, if applicable, the written informed consent of his/her authorized representative (i.e., unless the IRB has granted 

a waiver of the requirement to obtain written informed consent ). 
9. I will employ and oversee an informed consent process that ensures that potential research subjects understand 

fully the purpose of the research study, the nature of the research procedures they are being asked to 
undergo, the potential risks of these research procedures, and their rights as a research study volunteer. 

10. I will ensure that research subjects are kept fully informed of any new information that may affect their 

willingness to continue to participate in the research study. 

11. I will maintain adequate, current, and accurate records of research data, outcomes, and adverse events to 

permit an ongoing assessment of the risks/benefit ratio of research study participation. 

12. I am cognizant of, and will comply with, current federal regulations and IRB requirements governing human 

subject research including adverse event reporting requirements. 

13. I will notify the IRB within 24 hours regarding any unexpected study results or adverse events that injure or cause 

harm to human participants. 

14. I will make a reasonable effort to ensure that subjects who have suffered an adverse event associated with 

research participation receive adequate care to correct or alleviate the consequences of the adverse event to the 

extent possible. 

15. I will notify the IRB prior to any change made to this protocol or consent form (if applicable). 

16. I will notify the IRB office within 30 days of a change in the PI or the closure of the study. 

 

*Faculty signature on the first page indicates that he/she has reviewed the application and attests to its 

completeness and accuracy 
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APPENDIX 

 

1. CITI HUMAN SUBJECTS TRAINING 

2. INFORMED CONSENT 

3. INSTRUMENT 1: PAR-Q SURVEY 

4. INSTRUMENT 2: EIM-HEALTH-HISTORY QUESTIONNAIRE 

5. RECRUITMENT FLYER 

6. RECRUITMENT EMAIL SAMPLE 
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WATERS COLLEGE OF HEALTH PROFESSIONS 

 

DEPARTMENT OF HEALTH SCIENCES AND KINESIOLOGY 

 

Informed Consent 

Concurrent Assessment of Gait Biomechanics Using Markerless and Marker-based Motion Capture Systems 

You are being invited to participate in the study of the Concurrent Assessment of Gait Biomechanics 

Using Markerless and Marker-based Motion Capture Systems. The primary investigator is Hui Tang who is 

currently a Master's student at Georgia Southern University. The purpose of this research is to validate a markerless 

motion capture system for measuring biomechanical features during treadmill running at three different speeds. 

To participate, you must be between the ages of 18-30, have regular physical activity habits, and meet all of 

the following criteria: be healthy (answered “No” to all the PAR-Q questions, and did not check any boxes in the 

Present/Past History section of the Health History Questionnaire), and be “recreationally active” (answered “Yes” to 

the first two questions of the Activity History section of the Health History Questionnaire). You wear athletic outfits 

and your preferred athletic, non-high top shoes during testing. After reporting to the Kinesiology laboratory, we take 

your forehead temperature and screen your COVID symptoms. After signing the consent document (if you failed to 

sign it electronically) , the data collection is in the Biomechanical Lab 2.  

We test your gait kinematics and kinetics under slow, intermediate, and fast running on the force-plate 

embedded treadmill using both markerless and marker-based motion capture systems. Your eligibility will be 

confirmed by completing PAR-Q and health history questionnaires via email. Once confirmed, you will visit the 

Biomechanical lab at a pre-scheduled appointment time. The visit starts with familiazing the lab environment, 

followed by a three-trial testing protocol. The protocol has three running trials that require slow (5 miles/hour), 

intermediate (6.5 miles/ hour), and fast (8 miles/hour) speeds, respectively. Each running trial will be recorded by 

both markerless and marker-based motion capture systems simultaneously. To obtain sufficient and steady speed gait 

cycles for further analysis, the running duration for each speed is 2 minutes. The duration of the scheduled lab visit is 

60 minutes at most, including 1) 25 minutes of marker-based motion capture preparation, 2) 10 minutes pre-running 

warm-up exercises and familiarization; 3) 15 minutes of motion capture testing, 4) 10 minutes post-running 

relaxation. 

In preparation for marker-based motion capture testing, we place a set of retroreflective markers and tracking 

clusters on your skin. We may ask you to change to the lab-provided tight clothing and running shoes for quality 

control. All provided tights and shoes are thoroughly washed using laundry detergent and sanitizer and dried with 

scent booster to ensure the tidy and odor-free before applying to each participant.  

You follow the researcher’s guidance to perform 10 minutes of pre-running warm-up exercises. You 

familiarize yourself with running on the instrumented treadmill. You then stand still on the instrumented treadmill 

with arms crossed over for 2 seconds for marker-based motion capture calibration. After the static standing, two 

investigators will help you accomplish the running protocol. With the verbal instruction, “Capture started”, one 

investigator will help you to adjust the speed to 5 miles/h. Meanwhile, you will transition from walking to running. 

You keep running for 2 minutes for the otherinvestigator to record the data. Then, one investigator will inform you to 

slow down and start to adjust the treadmill speed for you. You will stop and step out of the treadmill after hearing 

“Capture Ended”. You rest for 5 minutes before you initiate the second running trial. The process is identical to the 

previous one except for the running speed set as 6.5 miles/hour. Before proceeding to the fast running speed, you 

may rest sufficiently. The fast speed running trial is the same as the previous ones except for the speed set as 8 

miles/hour. Upon completing all running trials, you follow the researcher’s guidance to do post-running stretching 

and relaxation.  
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The risk of this study includes the possible COVID-19 transmission. However, precautions will be taken 

with current Georgia Southern policies to reduce the spread, including encouraging experimenters and participants 

wearing masks (except for performing running protocols), and having fully vaccinated experimenters. In addition, the 

risk of the experimental protocol is no greater than risks associated with daily life experiences. Running on the force-

plate embedded treadmill in clinical settings is safer than overground running. Before being tested for different 

running speeds, researchers will guide warm-up exercises to minimize the potential running-related discomforts and 

muscle injuries. To reduce the possible discomforts caused by running, you will perform the post-running relaxation 

exercise guided by researchers. Your request to stop the procedure will be honored during the test if you feel 

uncomfortable. You understand that medical care is available in the unlikely event of injury resulting from research. 

We would contact Georgia Southern University Health Service at 912-478-5641 immediately if any injury were to 

happen.  

You understand that although there is no direct benefit for you to participate in this study, however, the 

project results can help the community and enhance scientific understanding of the motion capture technology. 

Additionally, more people will benefit from the convenience of the markerless system if it is proven to be as good as 

the marker system. 

You understand that all personal information and data are only open to the principal and co-investigator. 

Your privacy is protected confidentially. Your name is deidentified with ID numbers with all collected data. All 

research-specific data are stored in password-protected computers within lock-protected offices located in Room 

1070C, Hollis Building, Georgia Southern University (Dr. Li’s office).   

You have the right to ask questions and have those questions answered. If you have questions about this 

study, please get in touch with the researchers named above, whose contact information is located at the end of this 

document. For questions concerning your rights as a research participant, contact Georgia Southern University 

Institutional Review Board at 912-478-5465. 

Please understand that your participation is voluntary. You may discontinue your participation at any time. 

Additionally, the researchers reserve the right to terminate your participation in the study without your consent.  

If you consent to participate in this research study and the terms above, please sign your name and indicate 

the date below. 

You will be given a copy of this consent form to keep for your records. This project has been reviewed and 

approved by the GS Institutional Review Board under tracking number H _22372_. 

Title of Project: Concurrent Assessment of Gait Biomechanics Using Markerless and Marker-based Motion 

Capture Systems 

Principal Investigator:   

 Hui Tang, M.S. Student 

 Email: ht01253@georgiasouthern.edu 

 Ph: 912-582-1607 

Co-Investigator:   

 Benjamin Paquette, M.S. Student 

 Email: bp11854@georgiasouthern.edu 

 Petra Kis, M.S. Student 

mailto:ht01253@georgiasouthern.edu
mailto:bp11854@georgiasouthern.edu
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 Email: pk03815@georgiasouthern.edu 

 Li Li, PhD. 

 Email: lili@georgiasouthern.edu 

 Ph: 912-478-0200 

If you consent to participate in this research study and to the terms above, please sign your name and indicate the 

date below: 

______________________________________  _____________________ 

Participant Signature     Date 

mailto:pk03815@georgiasouthern.edu
mailto:lili@georgiasouthern.edu
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Health History Questionnaire  
Name:  

  

Date of birth:   Date:   

Address: 

 

City:   

  

State:    Zip:   

Phone (Cell):   (Work):    Email address:  

In case of emergency, whom may we 

contact? Name:

  

Phone (Cell): 

  

 

Relationship:  

(Home):  

Health Care Provider:  

 

Name:  

  

Phone:    Fax: 

 

Present/Past History 
Have you had, or do you presently have any of the following? (Check if yes.) 

□ Heart attack 

□  Any kind of heart disease or heart surgery 

□  Diabetes 

□  Prediabetes 

□ High blood pressure  

□  Low blood pressure □  Kidney disease 

□  High Cholesterol 

□  Lung disease 

□  Seizures 

□  Cancer 

□  Rheumatic fever 

□  Recent operation 

□  Other (please describe):     
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□  Fainting or dizziness 

□  Chest pains 

□  Palpitations or tachycardia (unusually strong or 

rapid heartbeat) 

□  Known heart murmur 

□  Muscle or joint problems (e.g., back, knee) 

□  Edema (swelling of ankles) 

□  Pain, discomfort in the chest, neck, jaw, arms, or 

other areas 

□  Unusual fatigue or shortness of breath at rest or 

with light activity 

□  Temporary loss of clear vision or speech or short- 

term numbness or weakness in one side, arm, or leg 

of your body 

□  Shortness of breath while lying down, at night or 

that comes on suddenly 

□  Intermittent claudication (calf cramping)
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Family History 

Have  any of your first-degree relatives (parent, sibling, or child) experienced the following conditions? (Check if 
yes.) In addition, please identify at what age the condition occurred.

□  Heart attack 

□  Congenital heart disease 

□  High blood pressure 

□  High cholesterol Explain checked 

items: 

□  Heart surgery 

□  Diabetes 

□  Other major illness: 

 

Activity History 

1. Why have you decided to seek exercise guidance at this time? (Please be specific.) 

2. Were you referred to this program? □  Yes By whom:    

3. Have you ever worked with a personal trainer before? □  Yes □  No 

4. Date of your last physical examination performed by a physician: 

5. Do you participate in a regular exercise program currently? □  Yes □  No If yes, 

briefly describe: 

6. Can you currently walk 2 miles briskly without fatigue? □  Yes □  No 

7. Have you ever performed strength training exercises in the past? □  Yes □  No 

8. Do you have injuries (bone/muscle disabilities) that may interfere with exercising? □  

Yes □  No If yes, briefly describe: 

9. Do you smoke? □  Yes □  No 

If yes, how much per day and what was your age when you started? 

10. What is your body weight now? What was it one year ago? At age 21? 

11. How tall are you? 

12. Do you follow, or have you recently followed any specific dietary intake plan and, in 

general, how do you feel about your nutritional habits? 

13. List the medications you are presently taking. 

14. What are your personal health or fitness goals? 
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Georgia Southern University  

 

Physical Activity Readiness Questionnaire (PAR-Q) 

 

Please check “Yes” or “No” for each of the following questions 

1. Has your doctor ever said that you have a heart condition and that you should only do 

physical activity recommended by a doctor? 

A. Yes; B. No. 

2. Do you feel pain in your chest when you do physical activity? 

A. Yes; B. No. 

3. In the past month, have you had chest pain when you were not doing physical activity? 

A. Yes; B. No. 

4. Do you lose your balance because of dizziness or do you ever lose consciousness? 

A. Yes; B. No. 

5. Do you have a bone or joint problem that could be made worse by a change in your 

physical activity? 

A. Yes; B. No. 

6. Is your doctor currently prescribing drugs (for example, water pills) for your blood 

pressure or heart condition? 

A. Yes; B. No. 

7. Do you know of any other reason why you should not do physical activity? 

A. Yes; B. No.
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RECRUITMENT EMAIL SAMPLE:  

Ask for professors’ permission to recruit participants in class: 

 

Dear Dr. XXX, 

I am Hui Tang, a graduate student from the Department of Health Sciences & Kinesiology. I am writing to ask for 

permission to recruit potential participants for my project supervised by Dr. Li Li from your class during class time.  

 

The project “Concurrent Assessment of Gait Biomechanics Using Markerless and Marker-based Motion Capture 

Systems " aims to validate a markerless motion capture system for measuring biomechanical features during treadmill 

running at three different speeds. The project needs a maximal amount of 40 healthy, recreationally active young 

adults aged from 18 to 30 years old. This project involves three running trials that require different speeds (slow, 

intermediate, and fast). Students who take kinesiology courses may be familiar with those procedures and be eligible 

for participation. Therefore, I hope I can recruit some students in your class.  

 

I would be grateful if you could allow me to use 5 to 10 minutes of your class time to send out recruitment flyers and 

deliver a brief introduction of the project. Please let me know if you have any other concerns. 

 

I am looking forward to hearing from you soon.  

 

Regards, 

Hui Tang 

Graduate Assistant, 

Department of Health Sciences and Kinesiology, 

Georgia Southern University  
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Reply for potential participants: 

 

Dear XXXX, 

Thank you for reaching out and being interested in our project.  

 

Before officially participating in our project, we need you to complete two surveys, namely PAR-Q and EIM-Health 

History Questionnaire. The primary purpose of completing these two surveys is to screen for evidence of risk factors 

during participation. Upon completion, we will inform you within 3 days about your eligibility. If you are eligible, 

we will schedule the testing date for your lab visit.  

 

Please let me know if you have any concerns or questions, and I would be more than happy to answer.  

 

 

Best, 

Hui Tang, 

Graduate Assistant, 

Department of Health Sciences and Kinesiology, 

Georgia Southern University  

 



 

 
 

We would like to have you in our project, Concurrent Assessment of Gait 

Biomechanics Using Markerless and Marker-based Motion Capture Systems 

This project seeks to investigate the discrepancy between markerless system 

(Thia) and marker-based motion capture system (Vicon) in gait kinematics and 

kinetics under different running speeds in the recreationally active healthy 

population.  

You May Qualify If You 

• Are aged between 18 and 30 

• Have physical activity habits                    

• Do not have recent knee or ankle injuries 

• Do not have cardiovascular diseases 

 

Location  

Biomechanical Lab, Hanner Fieldhouse, 590 Herty Dr, Statesboro, GA, 30458.  

Participation Involves 

• One testing visit to Biomechanics Lab 

• Running at three different speeds for the lab visit 

• The lab visit will last for 60 minutes 

 

FOR MORE INFORMATION 

Please contact Hui Tang at 912-582-1607, email ht01253@georgiasouthern.edu 

 

 

Volunteers Needed  
for Research Study on Gait 
Biomechanics. 

Waters College of Health Professions 

Department of Health Sciences & Kinesiology 
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