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ABSTRACT

Fine particulate matter or PM2.5 can be described as a pollution particle that has a
diameter of 2.5 micrometers or smaller. These pollution particle values are measured by
monitoring sites installed across the United States throughout the year. While these
values are helpful, a lot of areas are not accounted for as scientists are not able to
measure all of the United States. Some of these unmeasured regions could be reaching
high PM2.5 values over time without being aware of it. These high values can be
dangerous by causing or worsening health conditions, such as cardiovascular and lung
diseases. Within this study, fine particulate matter values were interpolated at centroids
of all counties in the United States throughout 2009 using the Python programming
language and a spatiotemporal Inverse Distance Weighting (IDW) interpolation method.
Machine learning concepts, such as ten-fold cross-validation, and error statistics were
used to assess the accuracy of the estimated PM2.5 values. The created Python programs
display a graphical user interface for easy interaction between a user and the system.
This allows the system to be used by more than just experts. The values reported in this
study can also be used to determine if unmeasured county areas are reaching unsafe
PM2.5 values throughout the year.
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1 Introduction

Fine particulate matter or PM2.5 can be described as solid and liquid particle

pollution that has a diameter of 2.5 micrometers or smaller [1]. These pollution particles

can be formed from basic human creations and interactions, such as gasoline, oil, dust,

smoke, and dirt [2]. Some common examples that emit PM2.5 values include cooking,

driving a car, and operating a fireplace. The United States Environmental Protection

Agency measures PM2.5 values at regular monitoring sites, or certain counties, in the

United States throughout the year. The agency measures these points in micrograms and

has standards for how high these levels should be before they are dangerous.

A higher exposure to this particulate matter can be dangerous as it can cause or

worsen long term health concerns. These particles are able to travel deeper into the lungs

and bloodstream because of how tiny they are. Exposure to these particles could result in

cardiovascular and respiratory effects, such as heart attacks and bronchitis. Those more

susceptible to health issues from particulate matter include children, older individuals,

and those with pre-existing conditions; for example, asthma or abnormal heart rhythms. It

is even suggested that higher exposure to pollution particles can lead to premature death

[3]. Since pollution particles are created from everyday human activities and could have

serious long-term health effects, PM2.5 values become crucial to study.

While the data the EPA collects is important, there are various areas that are not

accounted for that could be reaching high risk levels, not allowing residents to have the

chance to be aware of what they could be exposed to. As these particles can be so

damaging, the calculation for unmeasured centroids of all counties throughout the United
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States becomes an important issue to address. This research focuses on determining PM2.5

values for unknown locations in the United States.

Spatiotemporal interpolation can be helpful in finding PM2.5 values that

are not measured on a daily basis. Spatiotemporal interpolation occurs when a set of

known data points are used to estimate a value in space and time of an unknown data

point. Specifically, an extension-based method of interpolation was used for this research

instead of a reduction-based method. This means that time was treated as another

dimension in space instead of being reduced to regular spatial interpolation, which only

uses space [4]. Time was used as its own variable throughout the interpolation formulas

and calculations.

There are several types of interpolation, but this research focuses on inverse

distance weighting interpolation with the extension approach. Inverse distance weighting

(IDW) expresses that values that are closer to the point of interest are more related to that

point than those that are farther away [5]. IDW with the extension approach eliminates

the error of picking points that are farther away from the point of interest. Inverse

distance weighting is calculated from the Euclidean distance, which is the distance

between two points in a coordinate plane. Those with the shortest distance to the point of

interest are called the nearest neighbors. The nearest neighbors are used against each

other to find the weight each of them have on the overall PM2.5 value of an unknown

centroid point. More information about specific types of interpolation and how they relate

to IDW can be found in [4]. Along with this, research has already been completed to

interpolate the same county PM2.5 values using a different type of interpolation called

shape function interpolation [6]. The shape function interpolation method is compared



4

with IDW interpolation in [1] using different time scales. It was observed in that study

that shape function interpolation is more efficient, but harder to implement than IDW.

This study will test the accuracy of implementing IDW.

The accuracy of the spatiotemporal interpolation methods can be calculated using

k-fold cross validation and error statistics. More specifically, 10-fold cross validation is

used. This means that ten percent of the known values were removed from a file and used

as unknown points. The other ninety percent of the file was used to determine the fine

particulate matter value for each point in the ten percent [7]. Then, the actual and

estimated fine particulate matter values were compared using estimated error values to

determine how accurate the methods were. These statistical error values include the mean

absolute error, the mean squared error, the root mean squared error, and the mean

absolute squared error.

With this background knowledge, spatiotemporal inverse distance weighting

interpolation with the extension approach is used to determine the fine particulate matter

value of unmeasured centroid locations throughout the United States in 2009.

2 Objective and Method

2.1 Inverse Distance Weighting using Spatial Interpolation

Inverse distance weighting (IDW) based interpolation can be used in a 2D space

for regular spatial interpolation [1, 8]. The following formulas are used for this type of

interpolation:

𝑑
𝑖

= (𝑥
𝑖

− 𝑥)2 + (𝑦
𝑖

− 𝑦)2
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The Euclidean distances are found using the di formula, which describes the

distance between the points (xi, yi) and (x, y). These distances are used to find the weights

each distance has compared to each other, which is described in the i formula. Once theλ

weight each distance has to the overall PM2.5 value is found, they are multiplied by their

known PM2.5 value, wi. Each distance weight that is multiplied by its original PM2.5 value

is added together to find the PM2.5 value of the unknown point, which is defined in the

w(x, y) formula.

2.2 Inverse Distance Weighting using the Extension-Based Spatiotemporal Interpolation

IDW can be used in a 3D space with the extension based approach for

spatiotemporal interpolation, which treats time as another dimension in space [1]. This

type of interpolation can be found using the following formulas:

𝑑
𝑖

= (𝑥
𝑖
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The Euclidean distances are found using the di formula in a 3D space, which

describes the distance between the points (xi, yi, cti) and (x, y, ct). The concept of time is

defined by c which is the spatial distance unit over the time unit. The Euclidean distances

calculated are used the same way as the spatial IDW formulas; to find the weights and

overall PM2.5 value. The overall PM2.5 value of the unknown point in space and time is

defined in the w(x, y, ct) formula.
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2.3 Time Dimension Choice for Extension-Based Spatiotemporal Interpolation

Four time scales were tested in prior research [1]. This research expands upon the

time scale labeled A which uses the time dimension as c = 1. Each day of the year was

given a value between 1 and 365 based on the day of the year it was. This means that

January 1, 2009 was given the value 1 and December 31, 2009 was given the value 365.

All months and days within the year were given their appropriate number for testing.

2.3 Cross Validation: k-fold

The data found for each PM2.5 value was checked for accuracy using k-fold cross

validation. Cross validation involves splitting the data into two groups; a training set and

a validation set. For k-fold, the data is split into k equal folds. One of the k folds is used

as the validation set, while the other k-1 folds are combined and used as the training set

[7]. This form of validation is completed k times until all the k folds are used as the

validation set. Specifically, 10-fold cross validation is used to provide an estimate of the

accuracy of the PM2.5 calculations at the selected time dimension.

10-fold cross validation means that the data was split into ten equal parts. Ten

percent of the data is used as the validation set, while the other ninety percent is used as

the training set. This is completed ten times to make sure that each equal part is used as

the validation set and left out from the training set. The validation set PM2.5 values are

then compared with their original PM2.5 using error statistics.

2.4 Error Statistics

High-level statistical error values were used to compare the values found using

the 10-fold cross validation to see how accurate the created Python codes were using the

time dimension selected. These error statistics include the Mean Absolute Error (MAE),
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the Mean Square Error (MSE), the Mean Absolute Relative Error (MARE), and the

Relative Mean Square Error (RMSE). All of these error statistics calculate the difference

between the actual and predicted PM2.5 values. The MAE calculates the average of the

difference between the predicted and actual PM2.5 values, while the MARE calculates

how large of a difference there is between the MAE and the actual PM2.5 values [9]. The

MSE calculates the average of the squared difference between the measured and actual

PM2.5 values, while the RMSE calculates how large of a difference the MARE is from the

expected values. This is also known as calculating the variance and the standard deviation

[10]. The formulas are indicated below.:

𝑀𝐴𝐸 = 𝑖=1

𝑁

∑ 𝐼
𝑖
−𝑂

𝑖| |
𝑁 𝑀𝑆𝐸 = 𝑖=1

𝑁

∑ (𝐼
𝑖
−𝑂

𝑖
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𝑁

𝑀𝐴𝑅𝐸 = 𝑖=1
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∑
𝐼
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𝑖| |
𝑂

𝑖

𝑁 𝑅𝑀𝑆𝐸 = 𝑖=1

𝑁

∑ (𝐼
𝑖
−𝑂

𝑖
)2

𝑁

For each of these formulas, the total number of calculated centroid points is

defined by N. The interpolated value for each centroid is denoted by Ii. The actual

measured value for each centroid is defined by Oi.

2.5 Python Programming Language

The Python programming language was implemented using PyCharm. Python

was the chosen programming language as it contains several packages in its library for

implementing a graphical user interface (GUI) easily. PySimpleGUI was used to create

an interface with prompts, input text boxes, and buttons [11]. The first code that was

created allows a user to input any file with known PM2.5 values and ask for the PM2.5

value of at any unknown x and y coordinate with any identification number. The user is

able to input the power and nearest neighbors value they would like to use. The interface
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then displays a screen with the calculated value and asks the user if they would like to

find the PM2.5 value at another unknown location. The accuracy of the first codes

calculations were checked using hand calculations with the same known locations,

unknown locations, power value, and nearest neighbors.

After the completion and accuracy of the first code, a second code could be

created to allow a user to input a file of known PM2.5 values, a file of unknown centroid

locations and a filename for output. A power value of one and a nearest neighbor value of

seven was used for each of the calculations. These values were chosen as stable values to

also be used in the cross validation.

Another set of codes was created to start the 10-fold cross validation process of

separating the PM2.5 data values into 10 equal folds. One code in this set produced twenty

files; ten files containing a random ten percent and another ten files containing the

matching ninety percent. The ten percent files were then placed into another code that

removed their original PM2.5 value and placed it inside another file. Then, these files were

used in the second code with the ten percent files as the file of unknown centroid

locations and the ninety percent files as the input file of known PM2.5 values.

A final set of codes was created to calculate the average error statistics between

the calculated PM2.5 values of the ten percent files before and after it was used as the

validation set.

3 Results

To understand the IDW extension-based spatiotemporal interpolation formulas,

hand calculations were used first. These calculations used ten made up PM2.5 values with
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different identification numbers, x coordinates, y coordinates, and days of the year. The

ten made up points are listed below.

A random unknown point was picked with an identification number of 11, an x

coordinate of 3, and a y coordinate of 1 on February 10, 2009. This means that the

random point would be at the time dimension of 41 as February 10 is the 41st day of the

year 2009. From the Euclidean distance calculations, the identifications numbers 1, 5, and

7 were the closest to the unknown point. A power value of 3 and a nearest neighbors

value of 2 were selected as random numbers for the next calculations. The weights of

each of the values of the closest identifications numbers were calculated. To obtain the

PM2.5 value at the unknown point, the weights were then multiplied by their known PM2.5

values. The PM2.5 value at the unknown location was found to be 4.973.

Code one was then created The first part of this code asks the user for an input

file. A test.txt file was created with the ten random points listed above. This file was used

as the input file. After pressing the submit button, the code then asked for an output file
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name. If the user enters a filename that does not already exist, the code creates the file

and puts the output in the entered output file name. The user is then prompted to enter the

unknown PM2.5 values. The same random unknown point that was used in the hand

calculation was used for testing. The user is asked for the nearest neighbors and power

value. The values of 3 and 2 were used again. After all the information is submitted, the

code displays a screen with the calculated PM2.5 value. The same PM2.5 value of 4.973 is

displayed, thus meaning the math inside the code was done correctly. Finally, the user is

asked if they would like to continue and interpolate another point or not. All screenshots

of the prompts and interfaces are displayed below.
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After the completion of the first code, a secondary code could be created to take

another user input of an unknown list of centroid points. The user was prompted the same

way as the first code for a known file input. This time the known PM2.5 values for

measured centroids throughout the United States in 2009 were used. The measured

centroid file contained 146,126 known PM2.5 values. The unknown centroid file contained

3,110 unknown locations. For each of these unknown locations, the PM2.5 value for each

day of the year in 2009 needed to be calculated, which means 1,135,150 points needed to

be interpolated. The unknown centroid file had to be split up into about fifty different text

files to ensure each point was interpolated as the code took about twenty minutes to

compile the PM2.5 values for the 365 days of five unknown points and slowed down with

each calculation. A power value of 1 and a nearest neighbors value of 7 were used. Each

calculated value for the unknown locations was added to the same output file.

After all the unknown centroid location PM2.5 values were placed in an output file,

another set of codes could be created to split the output file for 10-fold cross validation.
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These codes split the measured centroid locations into ten files that held ten percent and

ten files that held ninety percent. The ten percent files were used as the validation set,

while the ninety percent files were used as the training set. The already calculated PM2.5

value for the ten percent values were placed into a separate file to allow for the ten

percent to be recalculated. Code two is then used again with the ninety percent file as the

known file and the ten percent file as the county file for input. Any output file name

could be chosen.

Once the PM2.5 values are calculated again for the ninety percent, error statistics

can be obtained. A final set of codes were written to convert the formulas for MAE,

MSE, MARE, and RMSE into the Python programming language and take their average.

The first code in this set found the error statistics for one of the folds by asking the user

to enter the calculated and actual PM2.5 value files for input. Any output file name could

be entered that would contain the error statistics.

After the error statistics were gathered for each of the ten percent files, the overall

average error statistics could be calculated. The second code in the set asked the user for

all the ten error statistic files from the first code in this set. The user was then asked for a

file output so the code could place the error statistics into a file neatly.
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From the completion of all the codes, the PM2.5 values were calculated, ten fold

cross validation was completed, and error statistics were gathered. The average error

statistics were completed for the time scale of c=1 with the nearest neighbors value at 7

and the power value at 1.

When comparing the error statistics above to prior research, the error statistics

above are lower than most time scale options with the same nearest neighbors and power

values. These error statistics are even better than time scale options with different nearest

neighbors and power values [1]. The mean absolute error suggests that each PM2.5 value
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is about 3.1689 away from the true value. The mean squared error expresses that the data

set is 61.3893 away from the expected line of regression, or the average of all the

observations. The mean squared error highlights the outliers. The mean absolute relative

error explains that the mean absolute error is only 0.2630 away from the measured PM2.5

value. The closer this value is to zero, the more accurate the code is. The root mean

squared error suggests that the code is 7.6070 off from being able to predict the correct

PM2.5 value.

4 Conclusion

The EPA measures PM2.5 values at monitoring sites throughout the United States

daily. While these values are important, some areas are not covered. This study

determined the PM2.5 values for several unknown centroid locations throughout the

United States in 2009 using IDW extension based spatiotemporal interpolation. This

study expanded upon the IDW extension based interpolation accuracy using a select time

dimension, power value, and nearest neighbors value. The completed research also

expanded upon machine learning and k-fold cross validations concepts.

This study can be helpful in determining which unmeasured centroid locations

may be reaching levels that are too high. The EPA has an annual average of 12.0 μg/m3

and a twenty four hour average of 35 μg/m3. This means that PM2.5 values below 12.0

μg/m3 are considered to be healthy, while those above 35 μg/m3 are considered unsafe.

The calculated county file could be sorted to find which county PM2.5 values are above or

below these levels. From this information, the importance of measuring all counties could

be stressed to the EPA and to those living in counties that may be reaching unhealthy
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levels. The calculated centroids could be plotted in a map of the United States with what

levels were healthy, concerning, and dangerous [13].

This study could be expanded by comparing different time scales, different power

values, or different nearest neighbor values to each other. Only one time scale, power

value, and nearest neighbor value was used and checked for accuracy as the Python

program had limitations. The code took a longer time than expected to interpolate the

centroids and, with each interpolation, the code slowed down. The code could be edited

with different algorithms to prevent the limitations and speed up the interpolation

process. Furthermore, the study could be expanded by using the code to interpolate

unmeasured location PM2.5 values throughout different days, months, and years.
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