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Abstract  

Fully autonomous vehicles must accurately estimate the extent of their environment 

as well as their relative location in their environment. A popular approach to organizing 

such information is creating a map of a given physical environment and defining a point in 

this map representing the vehicle’s location. Simultaneous Mapping and Localization 

(SLAM) is a computing algorithm that takes inputs from a Light Detection and Ranging 

(LiDAR) sensor to construct a map of the vehicle’s physical environment and determine 

its respective location in this map based on feature recognition simultaneously. Two 

fundamental requirements allow an accurate SLAM method: one being accurate distance 

measurements and the second being an accurate assessment of location. Researched are 

methods in which a 2D LiDAR sensor system with laser range finders, ultrasonic sensors 

and stereo camera vision is optimized for distance measurement accuracy, particularly a 

method using recurrent neural networks. Sensor fusion techniques with infrared, camera 

and ultrasonic sensors are implemented to investigate their effects on distance 

measurement accuracy.  It was found that the use of a recurrent neural network for fusing 

data from a 2D LiDAR with laser range finders and ultrasonic sensors outperforms raw 

sensor data in accuracy (46.6% error reduced to 3.0% error) and precision (0.62m std. 

deviation reduced to 0.0015m std. deviation). These results demonstrate the effectiveness 

of machine learning based fusion algorithms for noise reduction, measurement accuracy 

improvement, and outlier measurement removal which would provide SLAM vehicles 

more robust performance. 
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Hypothesis 

The integration of recurrent LSTM neural network-based sensor fusion 

algorithms for 2D LiDAR, ultrasonic, and 1D infrared ranging sensors can significantly 

improve the accuracy of distance measurements while mitigating the impact of high 

noise levels, allowing enhanced SLAM performance in autonomous vehicle 

applications.  
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Introduction 

Simultaneous Localization and Mapping Algorithm   

Localization is the act of an autonomous vehicle using sensors and computing 

algorithms to estimate its location relative to a given environment. Mapping is the act of 

using the same tools to create a map of its surroundings. By nature, fully autonomous 

vehicles need to know their surroundings as well as an accurate estimate of where they 

stand relative to their surroundings before they can use algorithms to make acting decisions. 

Simultaneous Localization and Mapping (SLAM) involves a computing algorithm that uses 

sensor data of moving vehicles to create a map of the unknown environment they are in 

and find their location within this map [1]. Visualization of such a map which also displays 

the vehicle’s trajectory, known as an occupancy grid map, can be seen in Fig. 1.  

  

Figure 1. Occupancy Grid Map using LiDAR SLAM [1]  

The blue lines represent the vehicle’s trajectory while blue dots show where data 

was taken. The grey area represents the unscanned surroundings, whereas the white area 

displays the surroundings deemed free of obstacles. Figure 1 represents an ideal result 
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from SLAM which can be used by another algorithm to determine an ideal path. SLAM 

involves an iterative process with multiple steps where sensor data is acquired then 

processed to build a map of the vehicle’s environment.  

  

Figure 2. SLAM Process Flowchart [1]  

SLAM consists of front- and back-end computer processing. The front-end 

processing involves the signals received by the vehicle’s sensor, whereas the back-end 

processing involves a pose-graph optimization using the sensor data. Sensor data may 

include more sensors than LiDAR, though due to the 360-degree horizontal measurement, 

LiDAR can be the sole sensor used. Typically, inertial measurement units (IMU) are used 

to estimate the position of the SLAM vehicle. 

After receiving data from the LiDAR sensor at a specific location, the SLAM 

algorithm processes an estimate of its current location relative to the last point at which the 

LiDAR sensor took a measurement. It does this by recognizing previous features of the 

environment measured at other locations and times of measurement. Once the vehicle has 

received sensor data that is similar enough to data of a previous point past a threshold, it 

has determined that the vehicle has completed a path loop. With path loops, SLAM can 
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optimize the map it is building as there exist substantial errors in the estimation of the 

vehicle’s location relative to objects throughout data points when solely using LiDAR data.  

Distance Measurement Sensor Principles 

Sensors are devices capable of measuring quantifiable changes in a physical 

environment. There are various methods allowing a sensor to measure, as well as various 

parameters to measure. Sensors can be either active or passive, depending on their 

method of measurement. Active sensors, such as time of flight (ToF) sensors, must first 

emit energy to its surroundings to measure its input. Passive sensors such as cameras do 

not emit energy to capture pictures, rather only receive and record from their 

environments.  

 

Figure 3. Simplification of ToF Sensor Function 

The ToF principle can be seen in Fig. 3 where a given wave is emitted from the 

sensor toward an object, reflected from the object back to the sensor and the time elapsed 
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from emitting to receiving the wave is measured. Knowing the speed at which the 

sensor’s wave travels, the relative distance between the sensor and the object can be 

found using Eqn. 1 below. 

 
𝑑 =  

𝑐𝑡

2
 

(1) 

Sensors use various types of waves to measure distance, including the use of 

electromagnetic waves. Except for ultrasonic sensors, which use sound waves, most 

sensors such as LiDAR and Radar sensors use electromagnetic waves for ranging. 

Different types of electromagnetic waves are discerned by their wavelengths and 

frequencies. Different types of electromagnetic waves result in varying characteristics, 

which make them suitable for different types of sensing and measurement. A notable 

aspect of electromagnetic waves for distance measurements is the wavelength. The 

wavelength is the maximum limit of resolution for an array of measurements using the 

electromagnetic wave. 

 

Figure 4. Electromagnetic Wave Spectrum [2] 

Radio waves are electromagnetic waves with frequencies ranging from about 3 

kHz to 300 GHz. Radar sensors use radio waves with wavelengths, typically in the range 

of 1-10 centimeters, which can penetrate through certain materials such as water 
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droplets, making them less affected by weather conditions. Radar sensors are widely 

used in automotive safety systems and have a long history of use in other aerospace, 

maritime and communication applications. 

Laser beams, which are used in LiDAR sensors, are electromagnetic waves with 

much higher frequencies and smaller wavelengths than radio waves, with frequencies 

typically in the range of hundreds of terahertz to petahertz and wavelengths in the range 

of 700-1000 nanometers, enabling the possibility of highly detailed maps and precise 

distance measurements.  

Visible light waves are electromagnetic waves with wavelengths typically in the 

range of 400-700 nanometers. Cameras use visible light to capture 2D images defined 

by an RGB matrix of pixels where each pixel’s color is defined by the red, green, and 

blue intensities to define any color. 

Sensor Fusion 

 The development of individual sensors involves maximizing measurable ranges 

and minimizing noise or other constraints. Despite this, sensors will inherently have ideal 

measurement ranges and physical restrictions. For example, ultrasonic sensors have a 

shorter measurement range than LiDAR sensors, as the dissipation of ultrasonic sound 

waves occurs over large distances, whereas infrared light waves used in LiDAR do not 

dissipate over large distances. On the other hand, an ultrasonic sensor typically 

outperforms LiDAR sensors while measuring very short distances.  
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Figure 4. Sensor Fusion Functioning Principle 

Sensor fusion techniques play a crucial role in improving the accuracy and 

reliability of distance measurements by integrating data from multiple sensors. These 

methods help overcome the limitations of individual sensors and provide a more 

comprehensive understanding of the environment. 

Kalman Filtering 

Kalman filtering is a widely used recursive estimation algorithm for fusing data 

from multiple sensors. It provides a real-time update of the state estimate based on the 

observation and prediction of system models. Kalman filtering is commonly applied in 

distance measurement fusion involving sensors such as LIDAR, RADAR, and ultrasonic 

sensors. [3]  

Kalman filtering is a recursive estimation algorithm that operates in two primary 

steps: prediction and update. In the prediction step, the algorithm estimates the state of 

a system by propagating its previous state through a dynamic model, which incorporates 

the system's uncertainty. In the update step, the algorithm combines the predicted state 

with the new measurement data from sensors, considering the observation model and the 

measurement uncertainty. By performing these steps in real-time, the Kalman filter 



12 

 

provides an optimal estimation of the system state under the assumptions of linear 

Gaussian models for both the dynamic and observation models. To achieve distance 

measurement fusion, the state typically represents the position or distance, and the 

Kalman filter integrates the data from multiple sensors to improve the accuracy and 

reduce the estimation uncertainty. 

 

Figure 5. Kalman Filtering Concept [4] 

In real-world applications, many systems exhibit nonlinear behavior, which 

cannot be accurately modeled by linear functions such as the traditional Kalman Filter. 

UKF (Unscented Kalman Filter) is a type of Kalman Filter that can deal with nonlinear 

systems more effectively. Instead of linearizing the nonlinear functions, as done in the 

Extended Kalman Filter (EKF), the UKF uses a deterministic sampling technique called 

the unscented transformation which selects a set of weighted sample points, called sigma 

points, which capture the mean and covariance of the underlying Gaussian distribution. 

The sigma points are propagated through the nonlinear functions, and the resulting 

transformed points are used to estimate the new mean and covariance of the state. [3]  

Julier et al presented the unscented Kalman filter (UKF) as an extension of the 

standard Kalman filter for nonlinear estimation problems. They demonstrated the 

application of the UKF in several scenarios, including target tracking and distance 
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measurement fusion showing its effectiveness in handling nonlinear system dynamics 

and observation models. [5] 

Particle Filtering 

Particle filtering is a non-parametric, recursive Bayesian filtering technique that 

represents the posterior distribution of the system state using a set of particles or samples. 

Each particle carries a weight, which indicates the likelihood of the particle representing 

the true state. The algorithm involves three main steps: prediction, update, and 

resampling. In the prediction step, particles are propagated through the system's dynamic 

model, incorporating process noise. In the update step, the particle weights are updated 

based on the likelihood of the current sensor measurements given the particle states. In 

the resampling step, particles with low weights are replaced by replicating particles with 

high weights, maintaining the same number of particles while focusing on the most likely 

regions of the state space. Particle filtering is particularly useful for fusing distance 

measurements when dealing with non-linear and non-Gaussian system models. [6] 

Bayesian Inference 

Bayesian inference is a statistical framework for updating the probability 

distribution of a system state based on new observations while incorporating prior 

knowledge. For distance measurement fusion, Bayesian inference combines the 

likelihood functions of different sensors to obtain a joint likelihood function. The joint 

likelihood is then combined with the prior distribution of the system state, such as 

distance, to derive the posterior distribution. This process allows for the fusion of sensor 

data while accounting for the uncertainty and noise associated with each sensor. In the 

case of linear Gaussian models, Bayesian inference reduces the Kalman filter, unlike 



14 

 

non-linear and non-Gaussian models, more advanced techniques such as particle 

filtering. 

Fox et al applied Bayesian filtering to location estimation in pervasive computing 

environments. They fused data from various sensors, such as Wi-Fi signal strength, 

infrared beacons, and ultrasonic sensors, to accurately estimate the location of users and 

devices in indoor environments. [7] 

Fuzzy Logic 

Fuzzy logic is a mathematical approach for modeling and reasoning with 

imprecise and uncertain information. In distance measurement fusion, fuzzy logic 

represents the uncertainty in sensor measurements using fuzzy sets and membership 

functions. The fusion process involves defining fuzzy rules that determine how to 

combine the fuzzy sets corresponding to the individual sensor measurements. The 

combined fuzzy set is then defuzzied to obtain a distance estimate. Fuzzy logic fusion 

techniques are particularly suitable for handling situations where sensor measurements 

are subject to varying environmental conditions or noise, as they can effectively model 

and manage the imprecision and uncertainty in the data. 

Neural Networks 

Neural networks are computational models inspired by the function of biological 

neural systems. They consist of interconnected layers of nodes that process and 

transform input data through nonlinear activation functions. In distance measurement 

fusion, neural networks learn to combine sensor data by extracting features and modeling 

complex relationships among the inputs. Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs) are commonly used for fusing data from distance 
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measurement sensors. CNNs are particularly suitable for processing spatially structured 

data, while RNNs are effective in handling time-related dependencies in the data. By 

training the neural networks on a large dataset of sensor measurements, they can learn 

to effectively fuse the data and provide accurate distance estimates. Soloiu et al 

developed a neural network based data in-data out fusion algorithm for the increase in 

accuracy of ADAS safety envelope distance measurements. [8] 

 

Methodology   

  Tested in this research are the performance effects of fusing additional sensors with 

a 2D LiDAR sensor when measuring the distance of a wall. The platform used to conduct 

this research was a vehicle equipped with an A3M1 2D LiDAR sensor, two ultrasonic 

sensors, a 1D LiDAR sensor and two camera sensors. Data from these sensors were 

received, processed, and fused using MATLAB. 

 A range of distance measurements were done from 0.05m to 0.50m with increments 

of 0.05m. This results in 10 different distances measured by the sensors. Data at each 

distance was taken for 5 hours for the sake of providing sufficient data for machine learning 

models. The data was randomly shuffled then split in half for training and testing. Multiple 

iterations of training and testing could be completed in an hour, which was done iteratively 

until the fusion was performing as good as possible. 

A MATLAB algorithm was developed which can let the 2D LiDAR sensor, infrared 

ranging sensor and ultrasonic sensor simultaneously take data at 10Hz, record this data, 

and fuse in various ways. 5 hours of 10 different distances were measured ranging from 

0.05m to 0.50m, and each sensor’s accuracy has been evaluated.  
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The 2D LiDAR measures 360 degrees of its plane environment, whereas the 

ultrasonic, and infrared distance sensor measure effectively at a single point. To fuse data 

from the 2D LiDAR sensor with the single-point infrared and ultrasonic sensors, it is 

essential to define a region of interest (ROI) for the LiDAR sensor. For this testing, the 

ROI of the LiDAR sensor was defined as -5 and 5 degrees, the 10 degrees centered at the 

frontal direction of the sensor as seen in Fig. 13. 

 

Figure 10. ROI Visualization 

To receive critical distance data, a testing environment was built where a flat obstacle was 

placed at a distance between 0 and 0.5m from the ultrasonic, 2D LiDAR and laser ranging 

sensor. This setup was used extensively to evaluate the data returned from the different 

sensors at the short distance. 
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Figure 11. Testing Bench for Varying Distance Data for Fusion  

LiDAR Sensor  

For this application, the primary front-end sensor is an A3M1 2D RPLiDAR sensor 

as shown in Fig. 6.  

  

Figure 6. A3M1 2D RPLiDAR Sensor [9]  
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Its ability to measure distances to surrounding objects is possible the ToF principle. 

The top half of this a LiDAR sensor rotates while sending and receiving 16000 signals a 

second to estimate distance at 360°.  

Ultrasonic Sensor  

Ultrasonic sensors work similarly to LiDAR sensors in the determination of 

obstacle distances: time of flight (ToF). Much different from LiDAR sensors, ultrasonic 

sensors rely on the time of flight of ultrasound waves which are emitted and reflected by 

an obstacle. One attractive advantage of ultrasonic sensors is their cost: the HC-SR04 

sensor, seen below in Fig. 7 is used in this work and only costs a few dollars. 

 

Figure 7. HC-SR04 Ultrasonic Sensor  

 Ultrasonic sensors in general are mostly used at distances less than 5 m and 

specifically this one has a maximum range of 4m. Sound waves are larger than light waves, 

making this sensor inherently lack in sensing precision in comparison to light-based 

sensors. Not only is the precision affected using a larger wave, but so is the measuring 

angle: the sound waves of ultrasonic sensors become wider as they travel away from the 
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sound emitter, limiting this sensor’s measuring angle to 15 degrees. Light on the other hand 

does not spread relative to this application.  

Infrared Ranging Sensor  

Infrared ranging sensors are also ToF sensors and can be considered a1D LiDAR 

sensor which does not rotate and measure multiple angles. These infrared sensors also rely 

on the time of flight of infrared lasers which are emitted and reflected by an obstacle. One 

attractive advantage of infrared sensors is their range: the SF11/C, seen below in Fig. 8 is 

used in this work has a range of 100m and costs less than the 2D LiDAR: $289. 

 

Figure 8. SF11/C Laser Infrared Ranging Sensor  

 Laser ranging sensors have been developed and used long before rotating LiDAR 

sensors became popular for mapping and navigation applications. In its essence, these are 

the same as LiDAR sensors, except that they measure the distance of a single point rather 

than a range of directions.  
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Camera Sensor  

Camera sensors are highly optimized passive sensors able to recreate closely the 

human eye’s photoreceptive ability. They are generally categorized by their pixel counts 

and a lens which defines the field of view. Attractive advantages of camera sensors include 

their versatility and similarity to human navigational ability. Unfortunately, camera sensors 

do not have built-in depth perception, as they only record the colors of incoming light. A 

method can be used to receive depth from camera sensors which is called stereo vision. 

Stereo vision is the basis of human depth perception as well as often depth perception of 

intelligent vehicles. It functions by knowing the distance between two cameras facing the 

same direction as well as information on their field of view. From this, an estimation can 

be made of the distance of an object, seen by both cameras. The stereo vision camera set 

used in this research is the GoPro Hero 10 camera seen in Figure 9. 

 

Figure 9. GoPro Hero 10 Camera 

 Cameras are often at a disadvantage in low-light, snowy, dusty, and rainy 

conditions. Reliance on the stereo vision assumes ideal conditions for both sensors without 
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any obstacle, meaning it is more likely to fail in adverse conditions. They are useful in 

object recognition, as many machine learning databases exist that can allow recognition of 

humans, traffic signs, road markings, traffic lights and more. 

Machine Learning Training and Testing Method 

The machine learning based fusion method was set to be a recurrent neural 

network (RNN), specifically a Long-Short-Term-Memory (LSTM) RNN. Given the 

low-level fusion: data in (m) - data out (m), the network was built to perform a regression 

rather than a classification. This means that the output of the neural network is a number 

rather than a title given in classification. The reason which this type of neural network 

was chosen was mainly due to these network’s ability to consider time-related 

dependencies in sequence data. The nature of distance measurements over time involves 

time-related issues such as noise and measurement drift, which are intended to be 

minimized using the developed machine learning platform. The layer structure of the 

LSTM neural network optimized in this work can be seen below in Figure 10. 

 

Figure 10. LSTM Sensor Fusion Regression Layer Structure 
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Various aspects of the network’s parameters were changed until the optimal 

fusion was found during testing. The training process of the final network able to perform 

fusion with any given distance between the 0.50m and 0.05m constraints can be seen 

below in Figure 11. 

 

Figure 11. Training Progress Final LSTM 

 This training progress represents the network’s learning progression during the 

training process. This training took 2min and 16s using a single CPU and a learning rate 

of 0.001.  

Results   

All sensors were interfaced with a MATLAB-windows environment, where in a 

loop structure data was taken at 10Hz from each sensor in a forced manner. This meant 

that a request was sent 10 times a second to each sensor to receive distance data. Sample 

data from all three sensors measuring a wall placed at the 0.5m distance ground truth can 

be seen in Figure 12. The upper and lower limits of the y-axis for each sensor are 
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determined by the min and max value measured in this time frame. In other words, the 

limits are defined automatically depending on the range of distances measured. 

Immediately one can notice the high distance noise which the 2D LiDAR has, providing 

occasional measurements as high as almost 20m. The ultrasonic sensor and the 1D 

microlidar did not have this high distance noise problem, where all measurements are 

within 0.1m of the ground truth (GT). 

 

Figure 12. 24Hr Distance Measurement of Obstacle (GT 0.5m)  
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The 2D LiDAR sensor often did not measure a distance at the defined ROI, 

returning 0m measurements. This can be seen in Fig. 13, where the average ROI response 

time, defined as the time in between measurements where there was at least a single ROI 

measurement present, is far above 10Hz: above 1.5s. 

 

Figure 13. ROI Time Response Distribution 

ROI separation was a post-processing data separation, where all measurements that 

did not have an ROI detection by the 2D LiDAR were discarded. The ultrasonic and 

infrared ranging sensor had no significant issues reading a distance at 10Hz, as each 

measurement there existed a provided distance from those sensors.  

Not only did the 2D LiDAR have issues in providing timely consistent readings, 

but it also had significant high distance noise. For a ground truth of 0.59m, the frequency 

distribution of all measured distances by the 2D LiDAR can be seen in Figure 14. 
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Figure 14. ROI 2D LiDAR Measurement Distribution 

It is evident that most distances were measured near the 0.59m ground truth, 

however, there exist significant numbers of points measured above 2m. A closer look at 

most of the 2D LiDAR measured points (between 0.6-0.63m) can be seen in Figure 15. 
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Figure 15. ROI 2D LiDAR Measurement Distribution (High Distance Noise 

Removed) 

There exists a multi-modal normal distribution of the sensor’s measurements. They 

are consistently inaccurate showing the possibility of an effective calibration for this data 

range. It is evident that the 2D LiDAR has two problems for this ROI: high noise and high 

response time. These characteristics of this sensor must be considered in the fusion system 

design with other sensors. Seen below in Fig. 16-17 are the measurement distributions of 

the infrared ranging sensor and ultrasonic sensor. 

 

Figure 16. ROI Ultrasonic Measurement Distribution 

There exists mainly a single normal distribution of distance measurements, 

centered around 0.576m. This is far less noisy than the 2D LiDAR sensor and also shows 

a promising opportunity of calibrating the sensor. 
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Figure 17. ROI Infrared Ranger Measurement Distribution 

The smallest detectible change in distance measured by the 1D microlidar from this 

plot can be determined to be 0.01m, whereas the resolution found for the 2D LiDAR and 

ultrasonic sensor are much lower than that. While this sensor lacked to provide data 

between centimeters, it did perform very well while measuring as closely as possible to the 

true distance. 

Two data-level fusion methods were evaluated: 1. Statistical and 2. Recurrent 

neural network LSTM. The statistical fusion method is an average of all distances in each 

measurement. The recurrent LSTM neural network was given 5 hours of training data and 

tested with the remaining 5 hours. The testing results can be seen below in Fig. 18. 
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Figure 18. ROI Multi-Sensor Statistical and LSTM Machine Learning Fusion 

The standard deviation of the statistical fusion is 0.73m whereas the standard 

deviation of the LSTM fusion is 0.02m. While the true distance measured was 0.59m, the 

average statistical fusion was 0.91m and the average LSTM fusion was 0.56m. It is evident 

that the statistical fusion method is consistently affected by the high distance noise of the 

2D LiDAR, whereas the LSTM fusion method filters away the high distance noise. This 

LSTM fusion algorithm was a preliminary version, trained to only perform fusion at a 

single ground truth value (in the above cases being 0.59m). This is further regarded as 

“individual LSTM”. As more progress was made, a “compiled LSTM” model was 

developed, able to fuse distances at any ground truth. The LSTM fusion performance of 

the compiled and individual model was compared and visualized in Figure 19. 
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Figure 19. LSTM Machine Learning Fusion Compiled vs Individual Networks 

The individual LSTM fusion performances were expected to be better than the 

compiled performances, as each distance was trained, tested, then optimized for only using 

one distance rather than multiple. Contrary to the expectation, the compiled training 

significantly outperformed the individual training. 

 It is evident that unlike the statistical fusion, which was directly affected by the 

high-distance noise present from the 2D-LiDAR, both LSTM fusion methods had less noise 

and was able to properly disregard those high distances by relying on the other sensor 

measurements when it detected a large measurement spike.  

A direct comparison of the percent error and standard deviation of the entire testing 

data set, comparing raw distance measurements to individual LSTM and compiled LSTM 

fusion from Fig. 19, can be seen in Figure 20. 
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Figure 20. Comparison of Raw Data, Individual LSTM and Compiled LSTM Error 

The average error of the raw sensor measurements is 46.61% while the average 

error of the LSTM fusion data is 5.67% for the individually trained neural networks and 

3.05% for the compiled trained LSTM neural network. The average standard deviation of 

the raw sensor measurements was 0.618m whereas the average standard deviation of the 

individually trained LSTM is 0.0054m and the average standard deviation of the compiled 

trained LSTM is 0.0015m, far less than the raw data.  
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The stereo vision setup with two GoPro Cameras were calibrated in MATLAB with 

a square checkerboard calibration. The MATLAB function was able to detect the necessary 

parameters of the cameras to perform disparity recognition. 

 

Figure 21a. Checkerboard Calibration (22-millimeter boxes) 

 

Figure 21b. Checkerboard Calibration (22-millimeter boxes) 
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From the camera calibration parameters, two images can be provided from each 

camera and a disparity map representing depth can be generated.  

 

 

Figure 22. Disparity Map Generation from Simple Stereo Vision Image 

Using the generated disparity map, a point cloud in the same format as that 

returned by the 2D LiDAR will be generated to be used for distance fusion.  
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Conclusion 

Developed was an RNN/LSTM-based sensor fusion algorithm for 2D LiDAR, 

ultrasonic, and 1D infrared ranging sensors. The evaluation of the sensors showed that 

the 2D LiDAR had issues with high noise and high response time. The ultrasonic and 

infrared ranging sensors demonstrated better performance with less noise and more 

precise measurements. 

Two data-level fusion methods were tested: statistical fusion and a recurrent 

LSTM neural network. The statistical fusion method was significantly affected by the 

high-distance noise from the 2D LiDAR sensor, while the LSTM fusion method 

demonstrated better performance with lower noise levels and a more accurate estimate 

of the true distance. Furthermore, the LSTM fusion had a lower average error rate and 

standard deviation when compared to raw sensor measurements. 

The stereo vision system was calibrated using a checkerboard pattern. The 

disparity map produced from the stereo vision system provided valuable depth 

information, which could be combined with the other sensor data for a more accurate 

and robust distance estimation. 

This thesis demonstrates the potential for fusing data from multiple sensors to 

overcome the limitations of individual sensors, particularly in the case of 2D LiDARs. 

The use of LSTM fusion methods proved to be an effective way to handle noisy data and 

improve the accuracy of distance measurements from multiple sensors. This work can 

serve as a fundamental sensor fusion technique, with potential applications in robotics, 

autonomous vehicles, and other areas where accurate SLAM is crucial for mobility and 

safety. 
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