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ABSTRACT 

The ability to predict material behavior that undergoes various loading conditions is critical 
to the development of reliable and safe components. Thermal and mechanical fatigue 
loading can cause significant damage to materials, leading to failure and potential safety 
hazards. Machine learning algorithms have emerged as a promising tool for improving 
accuracy and efficiency of predicting material behavior under such loading conditions. This 
research provides a comprehensive overview of a machine learning algorithm that is able 
to analyze and predict material state independently of the loading sequence. Unidirectional 
carbon fiber reinforced polymer (UD CFRP) composite which has undergone two different 
loading sequences is analyzed. On one hand, the pristine material sustains 40 cycles of 
thermal fatigue followed by a break where data is acquired and then the specimen 
undergoes 150k cycles of mechanical fatigue. The second load sequence consists of the 
same cycles but in a reversed manner. Data collected from a small section of the composite 
in each stage was used to train a Naive Bayes classifier. A feature selection process is 
carried out with the use of principal component analysis to identify the most relevant 
parameters for use.The results show that the Naive Bayes classifier can accurately predict 
the fatigue sequence of UD CFRP samples under thermal and mechanical loading 
conditions with an accuracy of up to 80%. The findings of this paper can have significant 
implications for the analysis of structures subjected to thermal and fatigue loading. 
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1. Introduction 

1.1 Background and Motivation 

Unidirectional Carbon Fiber Reinforced Polymer (UD CFRP) is the material of 

study for this research as shown in Figure 1. This composite is increasingly used in a wide 

range of industries due to their high strength-to-weight ratio, corrosion resistance and other 

desirable mechanical properties. Industries that commonly use this material include 

aerospace and aviation, automotive, wind energy, civil engineering, medical and many 

more. One of the key advantages of CFRP composites is their high temperature resistance. 

They have a relatively low coefficient of thermal expansion ranging from -1K-1 to 8K-1[1], 

therefore exhibit minimal dimensional changes when exposed to temperature fluctuations. 

This property helps prevent issues such as warping, distortion or cracking. In aerospace 

applications, where an aircraft experiences significant temperature variations during 

operations as well as changes in pressure, UD CFRP composites are preferred due to their 

ability to maintain their structural integrity. Additionally, they have excellent resistance to 

environmental factors such as moisture, chemicals, and UV radiation, making them highly 

durable. For example, the most common applications of UD CFRP composites in aircraft 

structures include components such as wings, fuselages, and tail sections [2]. In addition 

to aircraft structures, they can be used in space applications such as satellites and space 

probes and more specifically the solar panels on the Mars Reconnaissance Orbiter [3].  

Figure 1. Unidirectional Carbon Fiber Reinforced Polymer 
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Understanding material states is important in engineering and materials science 

because it allows for prediction and control of material behavior under different conditions. 

Material states refer to the physical and mechanical properties of a material, such as its 

composition, microstructure, and external loading conditions, which influence its behavior. 

It is essential for designing and optimizing material properties for specific applications. 

Understanding material state is crucial for predicting and analyzing material failure and 

material characterization. This in turn helps engineers optimize manufacturing processes 

for a particular material. By controlling processing conditions such as temperature, 

pressure and time, engineers can tailor materials to achieve desired properties for any given 

application. However, estimation of material states under various types of externally 

applied loads and corresponding change of material properties are challenging to 

determine. In this respect analytical, numerical, and experimental research has been 

conducted by researchers and scientists from academia and their industry partners [4]. 

Recently, utilization of machine learning algorithms on experimental data is becoming one 

of the major tools in engineering [5]. In this study, a customized machine learning 

algorithm has been proposed to estimate the material state of transversely isotropic 

unidirectional composite structures.  

Machine learning has been widely leveraged in discovering new functional 

material. It has become increasingly popular in materials science research due to their 

ability to extract complex relationships between material properties and processing 

conditions. Traditionally, material scientists have relied on experimental techniques to 

analyze the behavior of materials, such as microscopy, spectroscopy, and mechanical 

testing [6]. These methods can be time-consuming and costly, and they may not provide a 
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complete understanding of the material’s behavior. By analyzing large datasets of material 

properties, machine learning algorithms can identify new materials with desired 

characteristics. Furthermore, machine learning models can predict material properties 

based on their chemical and physical characteristics, eliminating the need for costly 

experimental testing [7]. Machine learning algorithms can also enhance quality control by 

analyzing data from manufacturing processes to detect defects or anomalies in materials 

[8]. Machine learning can analyze data from failed materials to identify their root cause of 

malfunctioning, giving engineers insight into how to enhance design and manufacturing 

processes [9]. Finally, machine learning can optimize manufacturing processes by 

analyzing data and recognizing opportunities to increase efficiency and reduce waste [10].  

Overall, machine learning holds the potential to revolutionize how material state 

investigation is done in engineering industries. Benefits of using machine learning to 

investigate material state include improved efficiency to process large amounts of data in 

a relatively short amount of time [11], enhanced predictive capabilities based on various 

input parameters, reduced experimental costs, and enhanced process optimization. 

Moreover, the demand for advances and smart engineering materials has increased. In this 

research, finding the correct tool to analyze a large dataset was explored to understand 

material state. Data collected from a small section of the composite in each stage can be 

used to train an algorithm to validate material recovery and memory. In this way, Machine 

Learning techniques are used to analyze and predict material state independently of the 

loading sequence applied. 
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1.2 Principal Component Analysis 

 Principal component analysis (PCA) is a multivariate technique that analyzes data 

in which observations are described by several inter-correlated quantitative variables [12]. 

In the context of material state investigation, principal component analysis was applied to 

extract relevant features from the scanning acoustic microscopy (SAM) data. SAM scans 

were taken at six different stages of each specimen’s life to monitor its internal conditions. 

These SAM scans result in high-dimensional datasets, making it challenging to extract 

meaningful information from them directly. PCA can be used in similar applications to 

reduce the dimensionality of these datasets by identifying the most important variables that 

explain the most significant variance in the data. 

 With the implementation of PCA, it is possible to identify principal components 

and identify patterns in the SAM data. Each principal component is a linear combination 

of the original variables that represent a particular pattern in the data. The first PC explains 

the most significant amount of variance, followed by the second PC, and so on. These 

components are ranked in order of importance and the ones that contribute the most to the 

data’s variance can be used as features for further analysis. By reducing the dimensionality 

of the data, PCA helps overcome the issues like overfitting and poor generalization 

performance which arise from dealing with high-dimensional datasets. Moreover, it 

becomes possible to identify and remove highly correlated variables, which can help 

overcome the problem of multicollinearity [13]. By combining correlated variables into 

principal components orthogonal to one another, PCA helps improve accuracy and stability 

of regression models. 
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1.3 Naive Bayes 

In materials science, machine learning techniques have been employed for tasks 

such as materials discovery, property prediction, and structure-property relationships. One 

notable method is the Naive Bayes classifier - an efficient probabilistic algorithm used 

widely in text classification and spam filtering applications [14]. They rely on Bayes' 

theorem, which states that the probability of a hypothesis (or class) given evidence (or input 

features) is proportional to its prior probability multiplied by that evidence's probability. 

Naive Bayes classifiers work by calculating the probability of each class given input 

features, then selecting the one with highest probability as predicted class. To do this, they 

estimate prior probabilities for each class and conditional probabilities for each feature 

given each class using a training dataset of labeled examples. 

The "naive" part of this algorithm's name comes from its assumption that all input 

features are independent from one another, making conditional probability calculations 

easier [15]. Although this assumption may not always be correct, the algorithm still 

performs well in practice. Naive Bayes classifiers are commonly employed for text 

classification tasks such as spam filtering and sentiment analysis, but they can also be 

employed for image classification, medical diagnosis, and credit risk assessment. Naive 

Bayes classifiers have the advantage of high-dimensional datasets with many input features 

where other algorithms may require too much computational power or risk overfitting. 

Materials science and engineering rely on the study of materials to understand their 

properties. Material behavior under various environmental conditions and external stimuli 

plays a major role in determining its suitability for various applications. Traditionally, 

experimental methods have been employed to investigate material state and properties; 
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however, recent advances in machine learning techniques have opened new opportunities 

to utilize computational methods for material state investigation. 

This thesis investigates the application of a Naive Bayes classifier for material state 

analysis. The goal is to create an algorithm that can accurately predict a material's state 

based on its signal properties, trained on a dataset with known states, then tested against 

another dataset to confirm its accuracy and dependability.  

While other approaches may be suitable for finding material states, Naive Bayesian 

methods and principal component analysis are often used in materials science research due 

to their simplicity, interpretability, and ability to handle large datasets. Some machine 

learning models can be complex and difficult to interpret as well as computationally 

expensive, making it difficult to understand the relationship between material properties 

and processing conditions. On the other hand, certain algorithms require the selection of 

relevant features which can be time consuming and challenging. Large amounts of data are 

necessary for most machine learning models in order to provide accurate predictions. In 

contrast, Naive Bayes and PCA are both computationally efficient and provide meaningful 

results that can be easily understood, even with limited data. Ultimately, the selection of 

an appropriate approach depends on the specific research question and data availability.  

This research has the potential to make significant advances in materials science 

and engineering. By creating an accurate model for investigating material state, we can 

expedite discovery of new materials and optimize their properties for various applications. 

Furthermore, using machine learning techniques for material state investigation can result 

in significant time and cost savings when compared to traditional experimental methods. 
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Overall, this thesis presents a novel approach for investigating material state using 

machine learning techniques, particularly the Naive Bayes classifier and principal 

component analysis. The combination of Naive Bayes and PCA has been shown to be 

effective in analyzing material data. For example, the combination of these techniques was 

used to predict the formation energy of metal-organic frameworks [16] and classify alloys 

based on their microstructure [17]. By developing and evaluating this model, we hope to 

demonstrate the potential of machine learning in materials science and engineering and 

pave the way for further research in this rapidly expanding area. 

2. Experimental Methodology 

2.1 Development of Experimental Data 

 A set of six unidirectional (UD) carbon fiber reinforced polymer (CFRP) composite 

specimens were created and polished to expose the UD fibers. The specimens were 

prepared according to ASTM D3039 standard. The specimens were then divided into two 

groups, with each group consisting of three specimens. Group 1 underwent mechanical 

fatigue loading using an MTS tensile tester machine and then thermal loading using an 

oven and ice-bucket system. On the other hand, Group 2 underwent thermal fatigue loading 

followed by mechanical loading using the same procedures as Group 1 as shown in Figure 

2.  
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Figure 2. Effect of Thermal/Mechanical Fatigue Load Sequence on UD Composites 

 

 The mechanical loading was accomplished by cyclic tensile fatigue at a frequency 

of 5 Hz for a total of 40,000 cycles at 60% of the material’s ultimate tensile strength, which 

was found to be 11,500N. Meanwhile, the thermal loading was performed by subjecting 

the specimens to 100℃ for three minutes, then immersing them in ice water for another 3 

minutes, for a total of 150 cycles.  

 Scanning Acoustic Microscopy (SAM) scans were taken of the specimens at three 

points during each specimen’s life which include the pristine state, the 12-hour relaxation 

period after each loading cycle. Therefore, the first group of specimens went through SAM 

scan after thermal fatigue cycles and mechanical fatigue cycles. On the other hand, the 

second group of specimens went through SAM scans after thermal fatigue cycles and then 

after mechanical fatigue cycles. A 12-hour window was imposed between the thermal and 

mechanical cycles of each specimen to ensure the samples were adequately rested and alert. 
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The reason behind altering the loading cycles was to intentionally expose the specimens to 

two different types of material states. 

2.2 DATA ANALYSIS USING MATLAB 

 

Figure 3. Data Analysis Flowchart 

 With the use of MATLAB, code was generated to perform the operations as shown 

in Figure 3. First, data from multiple .SAZ files which contain ultrasonic signals are read 

and important features from these signals are extracted at specific points in the region of 

interest. More specifically, it reads all .SAZ files from a selected folder and performs 

calculations to extract features from each signal.  The code sorts the .SAZ files in 

chronological order and determines the total number of files. It then initializes several 

variables that store the extracted features. 

 For each .SAZ file, the code reads in the signal point by point and applies various 

processing techniques to extract features such as nonlinearity, Hilbert envelope, maximum 

frequency and amplitude, and instantaneous energy. The extracted features are then stored 
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in a matrix called ‘data’, which also includes a column indicating the index of the .SAZ 

file to which the feature belongs. 

 Once all the signals have been processed for a given .SAZ file, MATLAB calculates 

descriptive statistics on the extracted features including minimum, maximum, median, and 

mean values. These statistics, along with the index of the .SAZ file, are stored in another 

matrix called ‘FData’. This matrix is saved in a .mat file with a name based on the index 

of the signal file. This is repeated for all files in a selected folder, resulting in a set of .mat 

files each containing feature data for a single .SAZ file.  

 Then, a separate MATLAB code performs data analysis and classification tasks 

using PCA and Naive Bayes classifier. First, it loads data from Group 1 (TM), Group 2 

(MT) and Pristine state files and stores them in variables using the ‘sprintf’ function to 

dynamically generate the file names based on the loop index ‘i’. Next, the code 

concatenates the data from Group 1, Group 2 and Pristine into a single matrix ‘X’ and 

creates a corresponding vector ‘Y’ to label each data point as belonging to either Group 1, 

Group 2 or Pristine.  

Afterwards, principal component analysis is performed on the data in ‘X’ using the 

‘pca’ function. The function calculates the eigenvectors and eigenvalues of the covariance 

matrix of the data. The eigenvectors are the principal components of the data and the 

eigenvalues represent the amount of variance captured by each PC. It then calculates the 

cumulative explained variance of each principal component and determines the number of 

principal components to use in the analysis by selecting the smallest number of components 

needed to explain at least 95% of the variance. It then projects the data onto the selected 

principal components.  
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The code then splits the data into training and testing sets and trains a Naive Bayes 

classifier using the ‘fitcnb’ function with the training data. The ‘fitcnb’ function trains a 

Gaussian Naive Bayes classifier, where each class is modeled by a Gaussian distribution 

with mean and variance estimated from the training data. It tests the classifier using the 

testing data and computes performance measures such as accuracy, precision, recall and 

F1 score using the ‘confusionmat’ function and a for loop. Finally, the results of the 

classification in the variables are stored in the variable ‘confusion_matrix’. The confusion 

matrix shows the number of true positives, false positives, true negatives, and false 

negatives for each class. These performance measures are then used to tune and validate 

the model.  

3. Results  

 After conducting extensive analysis on the large set of signal data, it was found that 

the Naive Bayes classifier trained on PCA processed data was able to predict the loading 

sequence of the samples with an accuracy of up to 80%. This was determined using a 

confusion matrix which indicated that out of the 21 observations in the testing set, 17 were 

predicted correctly and 4 were predicted incorrectly as shown in Figure 4. This indicates 

that the algorithm struggled to distinguish between groups 1 and 2 (MT & TM), with three 

observations being misclassified between these two groups. Additionally, one observation 

in the pristine group was misclassified. 
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Figure 4. Confusion Matrix 

 The precision and recall scores for each group provide further insight into the 

algorithm’s performance. Precision is the proportion of true positive predictions out of all 

the actual positive instances. Recall is the proportion of true positives over the total number 

of actual positives. For Group 1, the precision score was 0.8, indicating that 80% of the 

instances predicted in that group actually belonged there. The recall score for Group 1 was 

0.89, indicating that the algorithm correctly identified 89% of the instances in Group 1. For 

Group 2, the precision score was 0.86 and recall score was 0.75.  For the pristine group, 

the recall score was 0.75 and precision score was 0.75.  

4. Discussion 

 The algorithm was able to predict with an overall accuracy of 80%, which is a 

relatively good performance. However, the misclassifications of three observations 

between group 1 and 2, and on with pristine, indicates that there might be some overlap or 
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similarity between these groups. This can be further explored with additional data or by 

modifying the features used in analysis.  

 The precision and recall scores for each group show that the algorithm performed 

well for all groups, given that it was above 0.75 for all of them. A precision score of 1 

would indicate that there are no false positives, while a recall score of 1 means that there 

were no false negatives. In this case, a precision score of 1 was not achieved for any group, 

indicating there were misclassifications.  

 In many cases, it is difficult if not impossible to distinguish between different 

loading sequences that a material undergoes. When it comes to validating material recovery 

and memory, it is important to ensure that the material is able to recover its original 

properties after undergoing thermal or mechanical fatigue loading. UD CFRP composites 

were unloaded and allowed to rest for a certain amount of time, after which it is reloaded, 

and signal data is measured again. If the material is able to recover its original properties 

after unloading and reloading, it can be said to exhibit material memory. 

 Overall, the successful classification of loading sequences using machine learning 

algorithms can help in the validation of material recovery and memory. The results of this 

analysis demonstrate the potential use of machine learning algorithms, such as Naive 

Bayes, to classify and distinguish between different loading sequences. Further research 

can explore the use of other algorithms or feature selection techniques to improve the 

accuracy of the classification. It can also lead to the development of more advanced 

materials with tailored mechanical properties that can withstand specific loading 

conditions. 
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5. Conclusion 

 The present study aimed to investigate machine learning algorithms, specifically 

PCA and Naive Bayes, to distinguish between different loading sequences applied to 

Unidirectional Carbon Fiber Reinforced Polymers. The results indicate that the algorithm 

was able to predict with an overall accuracy of 80%, with most misclassifications occurring 

between groups 1 and 2. Precision and recall scores were calculated for each group. Scores 

of 0.75 or above were obtained for both recall and precision, providing a more 

comprehensive evaluation of the algorithm’s performance. 

 Overall, the findings of this study suggest that machine learning algorithms have 

the potential to become a valuable tool for analyzing large datasets in materials science 

applications. By accurately distinguishing between different loading sequences, the 

algorithm can be used to improve the efficiency and effectiveness of composites 

undergoing recovery processes, leading to cost savings and reduced environmental impact. 

 There are several limitations to the present study that should be addressed in future 

research. For instance, the dataset used in this study was relatively small and more data 

may be needed to increase accuracy and generalizability of the algorithm. Additionally, the 

algorithm was only implemented on two specific loading processes and its applicability to 

other processes remains unclear. Future research could also explore the use of other 

machine learning algorithms or combinations of such to improve the efficiency and 

accuracy of the model. Fine-tuning of the hyperparameters of the Naive Bayes classifier 

and PCA method can also optimize its performance. While further research is needed to 

fully realize this potential, the findings of this study highlight the importance of continuing 

to explore the use of machine learning in material state investigation. 
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