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ABSTRACT 

 

Web applications are important to protect from threats that will compromise sensitive information. Web 

vulnerability scanners are a prominent tool for this purpose, as they can be utilized to find vulnerabilities 

in a web application to be rectified. Two popular open-source tools were compared head-to-head, 

OWASP ZAP and Snort. The performance metrics evaluated were SQLi attacks detected, false positives, 

false negatives, processing time, and memory usage. OWASP ZAP yielded fewer false positives and had 

less processing time. Snort used significantly fewer memory resources. The internal workings of ZAP’s 

Active Scan feature and Snort’s implementation of the Boyer-Moore and Aho-Corasick algorithms were 

identified as the main processes responsible for the results. Based on the research, a set of future working 

recommendations were proposed to improve web vulnerability scanning methods. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

             Web applications are becoming increasingly prominent in today’s technological society. There is 

no shortage of sensitive information that users expect web applications to securely manage – this includes 

credit card numbers in e-commerce transactions, patient medical records in hospital databases, student 

records in school/university databases, personal photos and videos on mobile devices, and so on. As such, 

it is crucially important that web developers are up to date with the latest software and best practices to 

ensure that applications are protected from the most common cybersecurity threats that could compromise 

sensitive data. Open Web Application Security Project, known commonly as OWASP, is a non-profit 

organization that provides open-source documentation of the most prominent web application 

vulnerabilities. As of 2021, their top ten vulnerability list is as follows: 1) Broken Access Control, 2) 

Cryptographic Failures, 3) Injection, 4) Insecure Design, 5) Security Misconfiguration, 6) Vulnerable and 

Outdated Components, 7) Identification and Authentication Failures, 8) Software and Data Integrity 

Failures, 9) Security Logging and Monitoring Failures, 10) Server-Side Request Forgery (Top 10 Web 

Application Security Risks, 2021). 

             An effective and widely used means of detecting and protecting applications from these 

vulnerabilities is the deployment of a web vulnerability scanner (WVS). These tools are primarily used 

for Blackbox or penetration testing purposes, which essentially is the systematic analysis and probing of a 

given application’s security foundations, typically undergone by white hat hackers to improve its 

defensive integrity (Hawamleh, 2020). For legal purposes, it is of course always advised that web 

vulnerability scanners are used on applications that a user either owns or has permission to scan, such as 

in the Blackbox testing case. How web vulnerability scanners function will be discussed in detail later, 

but most operate using three main modules – a crawling module, an attacking module, and an analyzer 

module. In the crawling module, all associated web pages and links are explored from the primary target 

URL. In the attacking module, the information gathered from the crawling module is used to generate 

various attacks against the target web application. In the analyzer module, the success rate of those attacks 

is processed to raise alerts about potential vulnerabilities that exist on the target web application 

(Amankwah, 2020). Examples of commercial and open-source web vulnerability scanners include 

OWASP ZAP, Skipfish, Arachni, Black Widow, VulScan, Nessus, and Acunetix, among many others. 
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1.2 Motivations and Aim 

             As explained above, it’s very important that web applications are kept as secure as possible due to 

the prevalence of sensitive data that exists and depends on web applications to manage. Web vulnerability 

scanners are useful and widely used tools for this purpose. The goal of this thesis is to conduct a 

comparative analysis on the performance of two existing vulnerability scanning tools that, based on 

current knowledge to date, have not been compared before. The contribution this work seeks to first 

provide is an understanding of the performance of the tools based on identifying specific methods behind 

how they function, and secondly, the research proposes ideas for future work that might help improve the 

performance of web vulnerability scanners and inspire innovation in different methods used for web 

application vulnerability scanning. 

             The two tools this paper evaluates are OWASP ZAP and Snort. ZAP was specifically chosen 

because it is one of the most popularly used and regularly updated open-source web vulnerability 

scanners free to download on the internet. The ZAP developers host open forums where the community 

can ask questions and learn more about how the tool works, which assisted in the research process for this 

thesis. ZAP also has a graphical user interface that makes the tool easy and convenient to use. Snort is 

also a popular and regularly updated open-source tool, but unlike ZAP, it does not function as a web 

application vulnerability scanner per se – rather, it is used for network intrusion detection purposes. Still, 

this tool was primarily chosen because there is a great deal of overlap between web vulnerability scanning 

and network intrusion detection, and its inclusion would make a novel comparison. There is a large 

existing body of literature that evaluates ZAP compared to a variety of different popularly used web 

vulnerability scanners, so this specific comparison with Snort helps this thesis stand out as a unique 

contribution to the field. 

             SQL injection (SQLi) attacks were focused on exclusively as a vulnerability type to assess as a 

metric, for three main reasons – first, SQL injection is one of the most prominent web application 

vulnerabilities, so further research contributions assessing detection methods for it are important. Second, 

there are two key algorithms in Snort that primarily serve as pattern matching functions. This makes SQLi 

an appropriate vulnerability type to assess using this tool, as SQLi attacks are often characterized by 

various kinds of string inputs. Third, it is for the sake of simplicity and specificity. While the evaluation 

of other injection-based vulnerabilities such as Cross Site Scripting (XSS) would make this work more 

comprehensive, it is outside of the scope of this thesis and is a topic for future research. 
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1.3 Research Questions 

             The three core research questions this thesis seeks to answer are the following:  

RQ1) Which tool performs better or worse?  

RQ2) What specific aspects of each tool can be identified to explain their performance?  

RQ3) How can this information generate new research ideas for future work innovations in different 

methods that may improve the detection performance of web vulnerability scanners? 
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CHAPTER 2 

LITERATURE REVIEW 

 

             This section summarizes how both ZAP and Snort performed respectively in detecting SQLi 

attacks, as well as other vulnerabilities, according to previous literature investigations. 

2.1 ZAP 

             MBurano and Si conducted a performance comparison between ZAP and Arachni for two 

common performance metric benchmarks – OWASP and WAVSEP. They created a penetration testing 

environment that consisted of a LAN connecting two computers, with one computer functioning as a 

target and the other functioning as an attacker. Five different categories of vulnerabilities were tested – 

Command Injection, LDAP Injection, SQL Injection, XSS, and Path Traversal. The OWASP benchmark 

metrics evaluated were true positives and negatives, false positives and negatives, true positive rate 

percentage, false positive rate percentage, and score percentage. The results for ZAP were as follows for 

SQL Injection: TP = 158, FN = 114, TN = 224, FP = 8, TPR% = 58.09, FPR% = 3.45, Score% = 55. The 

results for Arachni were as follows for SQL Injection: TP = 136, FN = 136, TN = 227, FP = 5, TPR% = 

20, FPR% = 2.16, Score% = 48. For the OWASP SQL Injection benchmark, ZAP scored 48% and 

Arachni scored 55%. These results were then compared with the WAVSEP score benchmark, which was 

58% and 50% for ZAP and Arachni respectively with regards to OWASP, and 96% and 100% for ZAP 

and Arachni respectively with regards to WAVSEP (Mburano, 2018). 

             Makino and Klyuev compared ZAP and Skipfish for vulnerability detection. Both scanners were 

tested on two different web applications, which were DVWA and WAVSEP. The metrics evaluated were 

the total number of vulnerabilities categorized by severity, detection precision, and false positive rate 

percentage. The results for ZAP were as follows: On DVWA, there were 13 high vulnerabilities, 10 

medium vulnerabilities, 83 low vulnerabilities, and 1 informational vulnerability for a total of 107 

vulnerabilities found. On WAVSEP, there were 0 high vulnerabilities, 34 medium vulnerabilities, 2535 

low vulnerabilities, and 625 informational vulnerabilities for a total of 3194 vulnerabilities found. The 

results for Skipfish were as follows: On DVWA, there were 7 high vulnerabilities, 2 medium 

vulnerabilities, 3 low vulnerabilities, and 1 informational vulnerability for a total of 13 vulnerabilities 

found. On WAVSEP, there were 0 high vulnerabilities, 11 medium vulnerabilities, 14 low vulnerabilities, 

and 353 informational vulnerabilities for a total of 378 vulnerabilities found. According to WAVSEP, the 

detection precision for ZAP was as follows: 100% for RXXS, 100% for SQLi, 43.2% for LFI, and 9% for 

RFI. For Skipfish, the detection precision is as follows: 8.2% for RXXS, 9.5% for SQLi, 1% for LFI, and 

0% for RFI. The false positive rate for ZAP was 0% for all vulnerabilities, and for Skipfish it was 100% 

for all vulnerabilities. Based on this study, ZAP was shown to be significantly superior compared to 
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Skipfish for both detection precision and false positive rate percentage for all vulnerabilities (Makino, 

2015). 

             Another paper comparing ZAP and Skipfish by Zukran and Siraj looked at SQL Injection and 

XSS. A penetration testing environment was set up on Kali Linux and both scanners were run on two 

different vulnerable web applications, DVWA and WAVSEP. Data was collected about the total 

vulnerabilities found categorized by severity, detection accuracy, and false positive rate percentage. The 

results for ZAP were as follows: on average, 3 high, 3 medium, 5 low, and 0 informational vulnerabilities 

were found. For Skipfish, the results were as follows: on average, 1 high, 6 medium, 4 low, and 12 

informational vulnerabilities were found. For ZAP, the detection precision was 100% for both SQLi and 

XSS. For Skipfish, it was 8.2% for SQLi and 9.5% for XSS. ZAP reported a false positive rate of 0% for 

both SQL Injection and XSS, whereas Skipfish reported a false positive rate of 100% for both 

vulnerabilities. The vulnerability detection results for SQLi and XSS were also compared to the results of 

the prior Klyuev paper (5), which was as follows: ZAP found 1 SQLi and XSS vulnerability each, 

whereas Skipfish found 1 SQLi and 2 XSS vulnerabilities according to the results in this paper. In Klyuev 

et. al, ZAP found 1 SQLi and 2 XSS vulnerabilities, whereas Skipfish found 1 SQLi and XSS 

vulnerability each (Zukran, 2021) 

             Sagar and Brahma compared ZAP, Skipfish, and w3af for vulnerability scanning detection on 

DVWA. The testing environment consisted of Windows 10, Linux, and OWASP VMs. Data was 

collected regarding the total number of true positives detected and the runtime of each tool. The results 

for ZAP showed the following: 1 vulnerability each was found for RXXS, SSXSS, SQLi, CSRF, LFI, and 

CMD Execution. No vulnerabilities were found for BSQLi. The total run time was 2 minutes and 50 

seconds. For Skipfish, 1 vulnerability each was found for RXXS, SSXSS, SQLi, and CSRF. None were 

found for BSQLi, LFI, or CMD Execution. The total runtime was 1 minute and 48 seconds. W3af did not 

detect any of the vulnerability metrics. The total runtime was a whopping 5 hours and 20 minutes. In 

conclusion, the results show ZAP as being superior for vulnerability detection. Skipfish saw the fastest 

runtime, and w3af performed the worst for both vulnerability detection and runtime speed (Sagar, 2018). 

2.2 Snort 

             Alnabulsi et al. proposed a customized rule set for SQL injection detection with Snort. The 

signature rules contained various iterations of certain keywords and phrases designed to detect SQLi 

activity in the captured traffic. This includes ((OR%20), (OR+), (%0A), (OR/*), (LIKE), (CONCAT), 

(VERSION), (HOSTNAME), (DATADIR), and (UUID)). In this paper, the experimental setup consisted 

of a Linux operating system where Snort and a DVWA web server were installed. The dataset consisted 

of 46 different SQLi attacks launched against a large sample of both normal and intentionally vulnerable 

websites. The detection results for each rule are as follows: Rule 1 – 15 false positives, 0 false negatives, 
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1 precision rate, and 0.7540 recall rate. Rule 2 – 15 false positives, 12 false negatives, 0.7391 precision 

rate, and 0.6938 recall rate. Rule 3 – 17 false positives, 0 false negatives, 1 precision rate, and 0.7301 

recall rate. Rule 4 – 4 false positives, 0 false negatives, 1 precision rate, and 0.9387 recall rate. Rule 5 – 0 

false positives, 0 false negatives, 1 precision rate, and 1 recall rate. Based on the results, rule 5 performed 

the best in all metrics, and all the rules performed well in precision rate except for rule 2 (Alnabulsi, 

2014). 

             Mookhey and Burghate proposed various methods for detecting SQL injection and XSS attacks 

using Snort rules. Their proposed methods consisted of an in-depth list of regular expressions with 

explanations for the logic of the code structure. For SQLi, the rules include regex detection of meta-

characters /(\%27)|(\')|(\-\-)|(\%23)|(#)/ix, modified regex detection for meta-characters 

/((\%3D)|(=))[^\n]*((\%27)|(\')|(\-\-)|(\%3B)|(;))/i, regex for typical SQLi attacks 

/\w*((\%27)|(\'))((\%6F)|o|(\%4F))((\%72)|r|(\%52))/ix, regex detection for union based SQLi attacks / ( ( 

\ % 2 7 ) | ( \ ') ) union/ ix ( \ % 2 7 ) | ( \ '), and regex detection MS SQL Server based SQLi attacks 

/exec(\s|\+)+(s|x)p\w+/ix. For XSS, the rules include regex detection for standard XSS attacks 

/((\%3C)|<)((\%2F)|\/)*[a-z0-9\%]+((\%3E)|>)/ix, regex detection for an html img src XSS attack 

/((\%3C)|<)((\%69)|i|(\%49))((\%6D)|m|(\%4D))((\%67)|g|(\%47))[^\n]+((\%3E)|>)/I, and ‘paranoid 

’regex detection for XSS attacks /((\%3C)|<)[^\n]+((\%3E)|>)/I (Mookhey, 2004). 

             Caesarano and Riadi tested Snort for SQL injection detection in a network environment using the 

NIST method. NIST has nine phases for risk assessment, which are as follows: system characterization, 

threat identification, vulnerability identification, control analysis, likelihood determination, impact 

analysis, risk determination, control recommendations, and results documentation. A web server 

environment was set up and SQLMAP was used to conduct the SQLi detection simulation with Snort. 

The detection process for Snort was described in a series of steps as follows: A) The SQLi attacks are 

launched on the target system. B) Snort’s detection engine finds and processes the attacks. C) The 

captured attack packets are cross checked with the configuration rules in Snort to detect SQLi. D) If the 

attack matches the rule, it will be marked as an attack. E) The marked attacks will be raised as alerts in 

log files. Based on the result analysis using the User Acceptance Test, system users who chose Disagree 

before mitigation yield 35% and mitigation yield 0%. System users who chose Less Agree before 

mitigation yield 48% and after mitigation yield 10%. System users who chose Agree before mitigation 

yield 17% and after mitigation yield 44%. System users who chose Strongly Agree before mitigation 

yield 0% and after mitigation yield 46% (Caesarano, 2018). 

             Silva et al. tested Snort’s efficacy for detecting SQL injection attacks. In this paper, the testing 

environment was conducted using two virtual machines on a shared network – Kali Linux which 

functioned as an attack agent to launch SQLi attacks via Sqlmap, and Windows 7 which hosted the target 
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database server and Snort. Based on the results, Snort did not raise any alerts for any of the SQLi attacks 

the target web application was vulnerable to, which were logically incorrect queries, timing attacks, and 

generic union queries. However, through Nmap Snort was able to generate three “Reset outside window” 

alerts due to a particular rule for detecting port scan traffic. Due to Snort not being configured to detect 

specific SQLi attacks, this paper determines it is a poor tool for SQLi detection in a network setting. 

However, it should be noted that the strength of Snort’s detection capability is largely dependent on the 

strength of its rule configuration. As such, the implementation of robust signature rules designed 

specifically for SQLi detection could make Snort an efficacious tool for this purpose (Silva, 2016). 
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CHAPTER 3 

THEORY 

 

3.1 Web Vulnerability Scanners 

             The structure of web vulnerability scanners usually consists of three main components – the 

crawler, fuzzer, and analyzer (Amankwah, 2020). The basic logic flow begins with the crawler searching 

through web links on a target application. The crawler starts with a seed web link, which is usually the 

home page of the web application, to traverse to other entry points (Kals, 2006). From there it will search 

for HTTP requests and URLs through the HTML DOM tree (Koswara, 2019). There are two lists that the 

found URLs will subsequently be distributed – the first list contains unsearched URLs, which will go 

through the HTML DOM tree until they have all been searched, and the list is empty. The second list 

contains parsed URLs. Next, the fuzzer uses the information gathered from the crawler to initiate attack 

patterns against the identified web links (Idrissi, 2017). Finally, the analyzer processes the outputs from 

the fuzzer to determine the success rate of the generated attacks by parsing the response feedback and 

looking for certain parameters that would indicate the existence of a vulnerability (Kals, 2006). 

3.2 The Crawler 

             The general workflow of a web crawler starts with checking for web links to be downloaded. This 

includes checking if they are allowed to be downloaded by reading instructions found in a web 

application’s robots.txt file. When a web link is downloaded, all associated information on the page is 

extracted and saved in a queue. The web links investigated by the crawler are called seeds, and each seed 

that is found is added to a list known as the crawl frontier. How the crawler visits links in the frontier is 

determined by certain rules that may differ depending on the crawler. The saved web links are 

downloaded from the parser and generator modules and stored in a database. This crawling process is 

how most search engines work to find the information requested by the user (Singh, 2014). The process is 

illustrated in Figure 1. 
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Figure 1 Crawler Workflow (Singh, 2014) 

 

             There are several different algorithms that can be used for web crawling functions. One of which 

is the Breadth First Search (BFS) algorithm, which is one of the most simple and traditional crawling 

methods. It works by using the frontier as a FIFO queue, which finds web links in the order they are first 

encountered. This algorithm is often used to solve problems related to graph traversal. The overall main 

advantage of BFS is its ability to provide domain specificity (Physu, n.d). Another crawling algorithm is 

Depth First Search (DFS). It starts its path by analyzing the contents of a web link first and moving to the 

next path based on the child links. The advantage of this method is its ability to traverse deep into a web 

application, but this is a double-edged sword that introduces the possibility of the crawler getting lost and 

entering an infinite loop if the targeted application’s network of links is too complex or obscure (Yu, 

2020). 

3.3 The Fuzzer 

             Fuzzing is the automated process of finding vulnerabilities by inserting invalid data into an 

application – this includes files, network packets, and code. The workflow of fuzzing consists of four 

primary modules: test case generation, program execution, runtime state monitoring, and crash analysis 

(Figure 2). The test case generation module is where input is generated for fuzzing, which starts with the 

creation of seed files. The seed files undergo mutation which creates a variety of different test cases. 
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These test cases are then filtered depending on how well they can find new paths and vulnerabilities in the 

application (Wang, 2020).  

 

 

Figure 2 Fuzzer Workflow (Wang, 2020) 

 

             The two main types of fuzzing algorithms that are widely implemented are mutation and 

generation-based fuzzing. In mutation-based fuzzing, valid data is first collected and then modified in 

either random or heuristic ways. Heuristic modifications include replacing a small string with a long 

string or changing a length value to be either small or large. In generation-based fuzzing, test cases are 

generated from specified file formats and network protocols. The advantage that the former holds over the 

latter is that it does not require specific knowledge about the target system to conduct an attack, making 

the fuzzing process faster and more convenient. However, the advantage of generation-based fuzzing is 

the potential to produce more comprehensive and accurate fuzzing, because it is manually conducted 

based on the specifications of the target system. Miller and Peterson showed that generation-based 

fuzzing can perform up to 76% better than mutation in the context of PNG formats (Miller, 2007). 
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3.4 The Analyzer 

             The analyzer is typically the final component of the web vulnerability scanner workflow, and its 

main job is to determine the existence of a vulnerability in the application. As pointed out in the paper by 

Doupe, the Analyzer determines this based on the output from the fuzzing module. As an example, the 

return of a database error message related to SQL injection is likely to be interpreted as an SQL 

vulnerability existing by the analyzer (Doupe, 2010). The SQL example is illustrated in Figure 3. 

 

 

Figure 3 Analyzer SQLi Example (Doupe, 2010) 

 

             The main limitation of the analyzer relates to how accurately it can find real vulnerabilities in an 

application. There are two specific problematic cases here, false positives and false negatives. The former 

case describes a scenario where the analyzer classifies a response as a vulnerability, when it is not. The 

latter case describes a scenario where the analyzer classifies a response as not being a vulnerability, when 

it is. It should be intuitive as to why false negatives are so potentially dangerous – they result in leaving 

vulnerabilities undetected that can be exploited in an application. False positives are not as threatening but 

are still problematic in their own respect as a large quantity of them can warrant a time-consuming effort 

to manually check which vulnerabilities are real and which ones aren’t. 
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3.5 Limitations 

             The limitations of web vulnerability scanners are very much a product of the limitations that exist 

for the three core components discussed above. If the crawler fails to find all the relevant URLs in an 

application, any vulnerabilities that exist on those URLs will be entirely overlooked. Another problem 

pertains to user authentication, as web vulnerability scanners may not have the means to accommodate all 

types of authentications for different web applications. The scanner automatically logging out from 

accessing a web application’s logout page is an additional error that can occur, as well as failure to verify 

the validity of an authenticated session. Many web vulnerability scanners do provide means of handling 

these downsides, which include configuration options that allow the user to add URLs to be crawled for 

entry points, manually scan the application, and specify an authentication ID for accessing protected areas 

if it lacks the compatibility with specific authentication methods used by the web application (Esposito, 

2018).  

            The fuzzing process can become cumbersome and inefficient when trying to reach deep parts of a 

program, and increasingly so the larger and more complex the program inputs are. The reliance on 

searching for program crashes is another limitation to keep in mind with fuzzing algorithms. The problem 

is that not all bugs become apparent in the event of a crash. This is the case with embedded devices, as 

crashes do not often occur even in the event of memory function errors. As such, more ingenuity is 

needed for optimal vulnerability detection (22). The main problem relevant to both fuzzing and the 

analyzer component in web vulnerability scanning is the occurrence of false positives and false negatives, 

which was discussed above. A common cause of this is the overconsumption of computing resources, 

which can result in the application not functioning properly. Some methods for mitigating this are 

creating an environment where fuzzers can operate in a distributed manner and improving fuzzing speed 

by minimizing performance impacts from events such as path explosion (Beaman, 2022). 

3.6 SQL Injection 

             SQL injection (SQLi) is a type of code injection-based attack where SQL code is inserted into an 

input field on an application. The structure of the code is often designed to be interpreted as a database 

query by the application’s server-side functions, which can result in sensitive data stored in the database 

being exposed, manipulated, or deleted. Proper validation of user input is the main means of defending 

against and preventing SQLi attacks. Different types of SQLi attacks include tautologies, invalid queries, 

union queries, piggy-backed queries, stored procedures, and inference (Halfond, 2006). Figure 4 describes 

examples of each SQLi attack. 

             Tautologies are usually meant to bypass authentication and extract data from an application. The 

logic behind how they work is to exploit conditional statements in the internal application code to always 

evaluate as true. Successful attacks depend on the attacker identifying vulnerable parameters and figuring 
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out how the internal code is structured to evaluate input for those parameters. The indication for an attack 

being successful is typically the return of at least one record from the database, but well-structured 

tautologies can often return all records (Halfond, 2006). 

             Invalid queries are invalid input that is meant to trigger an error response from the database. The 

intended purpose of this is to find information generated from the error response that may reveal details 

about the structure of an application’s back-end database that can be used to find and exploit 

vulnerabilities. Examples include input that trigger syntax, type conversion, or logical error responses 

from the database. Syntax error responses can reveal injectable parameters, type conversion error 

responses can reveal information about column data types, and logical error responses can reveal 

associated table and column names (Halfond, 2006). 

             Union queries are aimed to extract data from different tables than what is intended by the 

application. This is accomplished by injecting code using the ‘UNION SELECT’ statement. A successful 

union query attack will return data that is the union of the original query intended to be executed by the 

application and the second query which is the malicious code intended to extract specific data by the 

attacker (Halfond, 2006). 

             Piggy-backed queries are malicious input designed to be executed in addition to the original 

query that the application is intended to execute. Piggy-backed queries are particularly dangerous because 

essentially any kind of attack can be carried out on the application from the additional queries if 

successful. An application is usually susceptible to this when multiple statements can be contained in one 

string within the internal code (Halfond, 2006). 

             Stored procedure SQLi attacks attempt to exploit existing stored procedure statements in the 

application’s internal code. Because stored procedures are typically incorporated into databases for 

allowing additional functionality to the operating system, successful stored procedure attacks pose a threat 

to the operating system of the application as well. It is interesting and important to note that stored 

procedures are often designed to protect against SQLi attacks, yet it is clearly the case that they too are 

susceptible to being compromised. Therefore, developers should not rely on stored procedures exclusively 

and make sure to implement other defensive measures in place (Halfond, 2006). 

             Inference is a type of SQLi attack that attempts to change a query to function as an executable 

action based on true or false questions related to the data values in the database. This attack is often 

deployed when other SQLi attacks aimed to trigger error responses from the database fail to yield any 

useful information. Instead, inference seeks to find vulnerabilities in the application by injecting input and 

observing how the application reacts to it. Blind injection and timing attacks are two prominent methods 

of inference attacks. Blind injection works by inserting true/false statements and observing how the web 

pages on the application respond – if the statement is evaluated as true, they will function normally. If 
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evaluated as false, the web pages will function differently than those that are true. Timing attacks work by 

inserting if/then statements and observing time delays in database responses. The if/then statements 

branch into areas of the database that at first are unknown. One of the branches will trigger an SQL 

statement that already takes a prespecified amount of time to execute – the WAITFOR keyword, for 

example. From this, the attacker can measure the delay in the response time and determine the specific 

if/then branch that the database interacted with (Halfond, 2006). 

             Alternate encodings are different from the other SQLi techniques discussed above – they do not 

provide any direct means of attacking an application. Rather, their purpose is to evade SQLi prevention 

and defensive measures that exist on an application. As such, they are used in conjunction with other 

SQLi attacks to facilitate exploiting vulnerabilities. For example, one means of defending against SQLi is 

validating input by searching for ‘bad characters’ that would commonly be used in an attack. This can be 

bypassed by alternating encodings of strings such as hexadecimal, ASCII, and Unicode, as basic bad 

character scanning practices may not cover all special combinations of these strings (Halfond, 2006). 
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Figure 4 SQLi Examples (Jakobsson, 2022) 
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3.7 ZAP Internals 

             ZAP’s crawler offers two crawling methods, Depth First Search and Breadth First Search, which 

were described above. It also has two main crawling capabilities – traditional crawling and AJAX 

crawling, where the latter is useful for applications with AJAX functionality. The fuzzer will save the 

requests from the crawler to be later fuzzed. The analyzer checks the DOM for stored vulnerabilities and 

error messages similar to other scanners but does not specify different database management types such 

as MySQL and SQLite (Jakobsson, 2022). 

             ZAP has two primary automated scanning modalities – passive and active scanning. Passive 

scanning does not change HTTP requests and responses gathered from the crawler, and thus is a safe 

means of exploring an application without compromising its integrity. Active scanning, on the other hand, 

conducts attacks on an application to find vulnerabilities. An interesting aspect about ZAP’s active 

scanning method that makes it different from other conventional web vulnerability scanners is it does not 

utilize much of the fuzzer. Instead, ZAP finds vulnerabilities based on a comprehensive list of rules it 

applies to finding specific vulnerabilities. ZAP’s fuzzing capabilities instead are more purposed for 

specific, manual tests. To that point, the automated nature of ZAP’s passive and active scanning methods 

precludes their ability to find certain vulnerabilities, such as logic-based vulnerabilities (ex. broken access 

control), so manual testing is recommended in addition to automated testing to cover all bases in 

vulnerability scanning (Features, n.d). 

3.8 Snort Internals 

             Snort functions use five main modules – packet capture, parsing, preprocessing, detection, and 

alarm generation (Figure 5). In the packet capture module, also referred to as Snort DAQ, packets are 

captured from the network card using Libpcap. In the parsing module, the captured packets are decoded 

based on the network protocol stack. In the link-layer protocol, packets are processed into data structures 

that prepare them for future detection functions. In the preprocessing module, the packet structures are 

processed further to prepare them for the detection module. In the detection module, the packets are 

analyzed through a set of rules. Every rule contains features that are designed to represent some form of 

network intrusion attack. The packets are compared to these features, and if matched raises an alert that 

gets sent to the alarm generation module. The algorithms behind this process are Boyer-Moore, Aho-

Corasick, and PCRE regular expressions. In the alarm generation module, the matched rules are processed 

and documented in Snort’s logs (Shuai, 2021). 
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Figure 5 Snort Workflow (Shuai, 2021) 

 

3.9 Boyer-Moore Algorithm 

             The Boyer-Moore algorithm is one of the many prominent string-matching algorithms used in 

pattern searching applications. The logic behind the algorithm is as follows – consider a body of text (T), 

and a pattern to be found in that text (P). P is first aligned under T from the left side. From there, the 

algorithm evaluates each character from the right side and skips alignments until P is found in T. The two 

rules that the full Boyer-Moore algorithm uses to do this are the bad-character rule and good-suffix rule, 

but a simplified version that is often used only implements the bad-character rule (Tsai, 2006). The bad-

character rule works by skipping alignments upon a mismatched character between T and P until the 

characters match or P moves past the mismatched character entirely (Lin, n.d). An example is explained 

below: 
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1) T = ABCDEADEBC 

    P =  ADE 

Right away, there is a mismatch between C and E. 

2) T = ABCDEADEBC 

    P =          ADE 

Another occurrence of C is searched for in P. Because there is no matching C in the rest of P, P moves 

past C entirely (skipping two alignments). Now, there is a mismatch between A and E. 

3) T = ABCDEADEBC 

    P =               ADE 

Another occurrence of A is searched for in P. It exists, and so P shifts over two alignments (skipping one 

alignment) to match the A in P with the A in T. In this case after doing so, P is found in T. 

             The good-suffix rule functions similarly – the main difference is instead of only evaluating one 

character at a time between T and P, it evaluates a substring of T (t) to match P. The rule skips alignments 

until there is no mismatch between P and t or P moves past t entirely. Regarding the evaluation of P and t, 

there are two cases to consider – A) t matches P, or B) a prefix of P matches a suffix of t (28). An 

example of each case is explained below: 

A) 

1) T = ABCDEDEFDCADGFGDECADEFCGABCDECADEF 

     P = DEFCADEF 

DEF is matched between T and P, so t = DEF. A mismatch is then found between E and A. 

2) T = ABCDEDEFDCADGFGDECADEFCGABCDECADEF 

     P = DEFCADEF 

Another iteration of DEF is searched for in P, which in this case exists. 

3) T = ABCDEDEFDCADGFGDECADEFCGABCDECADEF 

     P =              DEFCADEF 

P is then shifted over five alignments (skipping four alignments) to match DEF in T and P. 

B) 

1) T = ABCDEDEFDCADGFGDECADEFCGABCDECADEF 

     P = EFACADEF 

DEF is matched between T and P, so t = DEF. A mismatch is then found between E and A. 

2) T = ABCDEDEFDCADGFGDECADEFCGABCDECADEF 

     P = EFACADEF 

Another iteration of DEF is searched for in P. In this case, it does not exist. However, a prefix of P that 

can match a suffix of t does exist (EF). 
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3) T = ABCDEDEFDCADGFGDECADEFCGABCDECADEF 

     P =                 EFACADEF 

P is then shifted over six alignments (skipping five alignments) to match the prefix EF in P with the suffix 

EF in t. 

             When using the good-suffix rule, it is also important to note the character directly preceding an 

occurrence of t found in P upon a mismatch between T and P. If the character preceding the occurrence of 

t is the same as the current mismatched character in P, then it is best to skip this and instead look for 

another occurrence of t before the character preceding the first found occurrence, as doing so will avoid a 

given subsequent mismatch (29). An example is explained below: 

1) T = GAAAAAACABCDEDEFDCADGFGDECADEFCGABCDECADEF 

    P = ACDEFCGBDEFACBDEF 

DEF is matched between T and P, so t = DEF. A mismatch is then found between E and B. 

2) T = GAAAAAACABCDEDEFDCADGFGDECADEFCGABCDECADEF 

    P = ACDEFCGBDEFACBDEF 

Another occurrence of DEF is searched for in P. It is found, but the character directly preceding it is the 

same as the current mismatched character in P (B). If this occurrence of DEF is shifted to match DEF in 

T, it will automatically result in another mismatch. As such, this occurrence should be skipped, and 

another occurrence of DEF should be searched for. 

3) T = GAAAAAACABCDEDEFDCADGFGDECADEFCGABCDECADEF 

    P = ACDEFCGBDEFACBDEF 

Another occurrence of DEF is found, and the preceding character C is not the same as the current 

mismatched character B. 

4) T = GAAAAAACABCDEDEFDCADGFGDECADEFCGABCDECADEF 

    P =                                 ACDEFCGBDEFACBDEF 

P is then shifted over twelve alignments (skipping eleven) to match the new occurrence of DEF in P with 

DEF in T, and the process continues. 

             In real-world coding applications, both rules of Boyer-Moore are implemented as pre-calculated 

functions that are called upon to determine the most efficient route for skipping alignments to find a given 

pattern. Generally, pre-processing gives Boyer-Moore notable advantages over more straightforward 

approaches such as the Brute-Force or Naive algorithm. Lin and Soe showed that Boyer-Moore required 

significantly less alignment shifts, comparisons, and run-time compared to Brute-Force to find patterns of 

various sizes (Lin, n.d). Boyer-Moore performed better the longer the pattern was. The increased 

efficiency is explained by pre-processing allowing Boyer-Moore to skip unnecessary or repetitive 

character comparisons, whereas the nature of Brute-Force compels it to compare every existing character 
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in the pattern and text, making the former ideal for finding larger, more complex patterns. The main 

disadvantage of this, however, is that it requires more computational space and resources. 

             Boyer-Moore has also displayed notably faster runtimes compared to similar algorithms that 

utilize pre-processing, such as Knuth-Morris-Pratt (KMP). According to Dawood and Barakat, Boyer-

Moore yielded faster execution times compared to KMP in every text and pattern size evaluated (text 

sizes ranging from 1 KB to 200 MB, and pattern sizes ranging from 10 characters to 75 characters) 

(Dawood, 2020). This paper also showed relatively faster run times at greater text and pattern sizes for 

both algorithms. 

3.10 Aho-Corasick Algorithm 

             Aho-Corasick is a pattern matching algorithm that can evaluate multiple patterns. There are two 

ways of implementing Aho-Corasick, which are Non-deterministic Finite Automata and Deterministic 

Finite Automata. The automation process of the algorithm works in two steps: in the first step, a limited 

number of patterns are preprocessed. In the second step, the text desired to be matched is inserted, and the 

matching process uses three functions: goto, failure, and output. An example is illustrated below using a 

given pattern set (he, she, his, hers) in Figure 6 (Tran, 2012). 
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Figure 6 Aho-Corasick Functions Example (Tran, 2012) 

 

             In this example, the goto function maps a pair of a state and input symbol into a state or failure 

message. The failure function puts a state into another state and is called when the previous function 

reports a failure message. The output function displays a set of keywords at matching states (Tran, 2012). 
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CHAPTER 4 

METHODS 

 

              The experimental setup consisted of a Windows 10 computer and an Ubuntu Desktop virtual 

machine installed using VMware. On the Windows 10 desktop, OWASP ZAP was installed, and this 

module functioned as an attacking agent. On the Ubuntu Desktop virtual machine, an Apache localhost 

web server and database were configured using the XAMPP package. On the web server, a customized 

vulnerable web application was created and served as the scanning target. Snort was also installed on 

Ubuntu, and this module served as the target network system to be attacked. First, the target web 

application was infiltrated using ZAP’s Manual Explore feature to identify all web pages associated with 

the seed URL. Next, the target was automatically scanned using ZAP’s Active Scan feature, which 

launches a series of attacks against the web application. As that process is running, Snort is 

simultaneously running on Ubuntu to capture the network traffic on the target localhost server. In essence, 

ZAP attacks the target system and will report whatever vulnerabilities it detects through its analyzer 

module. Snort monitors the target system and will report whatever vulnerabilities it detects from ZAP’s 

attack process through its detection and alarm generation modules. This setup is illustrated in Figure 6. 

 

 

Figure 7 Experimental Setup 

 

             While ZAP’s Active Scan feature attacks the target web application with several different types 

of attacks, SQLi was the only attack type evaluated in this thesis. As such, Snort was configured using a 

customized signature rule set designed to detect SQLi attacks only (Chandel, 2018). The SQLi attack 

types designed to be captured by the ruleset were single and double quote error-based attacks, Boolean 

attacks, encoded attacks, order by attacks, and form-based attacks. Data was collected looking at the alert 

log documentation generated by both tools, and the performance metrics evaluated were total unique 

SQLi attack types detected, false positives, false negatives, processing time, and total memory usage. 
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CHAPTER 5 

RESULTS 

 

             The results are summarized in Table 1. ZAP detected 4 unique SQLi attack types, did not yield 

any false positives or negatives, took a total 19.399 seconds to finish running, and yielded a total memory 

usage of 710,740,000 bytes. Snort detected 6 unique SQLi attack types, two of which were false positives, 

did not yield any false negatives, took a total of 27 seconds to finish running, and yielded a total memory 

usage of 119,321,712 bytes. The unique attack types detected by ZAP were single quote error-based 

attacks, Boolean based attacks, union-based attacks, and form-based attacks. Snort detected these attack 

types as well (Figure 8), but also falsely detected two kinds of double quote error-based attacks. 

 

 

Table 1 Results 

 

 

Figure 8 Snort SQLi Detection 
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CHAPTER 6 

ANALYSIS 

 

             The analysis section is the main contribution this thesis aims to provide – after obtaining the 

results of the head-to-head performance comparison between ZAP and Snort, the research questions 

posed in the introduction of this paper can now be revisited. 

6.1 RQ1 

             Based on the results of the performance metrics, ZAP and Snort both performed equally well in 

detecting unique SQLi attack types after correcting for false positives. ZAP performed better in the false 

positives metric, as it did not yield any false positives while Snort yielded two. In practice, there is not too 

much significance to this finding, as two false positives shouldn’t be difficult to correct. There was no 

difference between the tools in the false negatives metric, as both yielded zero false negatives that could 

be detected. ZAP performed better for processing time, as it was about 8 seconds faster than Snort. There 

is likely little practical significance to this however, as an additional 8 seconds is hardly a long wait time 

for the tool to finish running. Snort performed better in the memory usage metric, as it used almost 7x less 

memory than ZAP. This is a meaningful finding, as over 700 million bytes of memory usage is quite 

significant in taxing system resources. 

6.2 RQ2 

             To answer this question, it is important to return to the theoretical section of this paper and 

understand how each tool works. ZAP’s Active Scan uses a rule-based method that functions by sending 

attacks to the target web application, and each rule corresponds to a specific attack type. The analyzer 

module then raises potential alerts about potential vulnerabilities that it detects based on the success rate 

of the Active Scan attack. Snort functions similarly in that it also uses a signature rule-based method to 

detect threats. The three main algorithms implemented in the detection module to find threats through the 

rules are Boyer-Moore, Aho-Corasick, and PCRE expressions. Because no expression based SQLi attacks 

were present, it is likely the PCRE function played little role and thus the contribution of the other two 

algorithms can be highlighted. The main strength of Boyer-Moore lies in its ability to utilize the bad-

character and good-suffix rules to skip alignments, making it faster and more efficient in finding patterns 

compared to more linear approaches like Brute-Force (Lin, n.d). The main strength of Aho-Corasick is its 

memory efficiency utility from its implementation of trie structures for pattern matching (Tran, 2012). 

             Given this, why did Snort yield two false positives whereas ZAP yielded none? This is likely due 

to the high degree of network traffic generated by ZAP’s Active Scan, and ZAP’s ability to cross check 

attacks with its analyzer module. Snort likely detected the injection of some double quote string from 

ZAP’s attack process somewhere in the network traffic even though none were aimed at the target web 
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application, resulting in false positives. Because ZAP can verify the success rate of its attacks with the 

analyzer module, it has a lower likelihood of yielding false positives. With regards to processing time, it 

is surprising that Snort performed worse, because the Boyer-Moore algorithm is usually one of the fastest. 

Its failure to provide a shorter run time may be explained by the fact that the generated SQLi attack inputs 

were not particularly long. As previously discussed, Boyer-Moore becomes the most efficient the longer 

the given texts and patterns. This advantage is largely missed if the string parameters are not long enough. 

With regards to memory usage, the superiority of Snort for using less memory is likely explained by its 

implementation of the Aho-Corasick algorithm, which has previously been shown to be beneficial for 

memory usage efficiency (Karimov, 2020). Conversely, because ZAP’s Active Scan process generates 

such a large degree of network traffic from all the different kinds of attack types it launches, its 

substantial memory and resource usage is not surprising. 

6.3 RQ3 

             The main identified factors after discussing the second question are ZAP’s Active Scan feature, 

and Snort’s pre-processing detection algorithms Boyer-Moore and Aho-Corasick. In continuing future 

research with ZAP, this thesis proposes that both the Boyer-Moore and Aho-Corasick algorithms should 

be implemented in ZAP. ZAP offers the feature of adding custom scripts that can function as rules in the 

vulnerability detection process, like Snort. These scripts would be modified versions of its SQLi ruleset 

using both algorithms. As a future work proposal, it would be interesting if ZAP’s memory usage 

efficiency can be improved with the Aho-Corasick algorithm, and if its run time can be even faster using 

the Boyer-Moore algorithm if SQLi attack inputs are sufficiently long. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

             In conclusion, ZAP and Snort were compared head-to-head in various performance metrics 

related to SQLi vulnerability detection. Based on the results, there were no differences in the total amount 

of SQLi attacks detected or false negatives detected. There were differences with regards to false 

positives detected and total processing time which favored ZAP, and memory usage which favored Snort. 

Based on the analysis, this thesis proposes an experimental setup where the Boyer-Moore and Aho-

Corasick algorithms are implemented into ZAP to improve its processing time and memory usage 

efficiency for future work research. The experimental setup involves using the script feature in ZAP to 

create versions of its existing SQLi ruleset that are modified using both algorithms. The modified rules 

would be compared with the pre-existing rules to see if the proposed method results in a faster runtime 

and less memory resource usage when scanning for SQLi vulnerabilities. 
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