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ABSTRACT

This work proposes a neural network architecture that was designed to predict and reverse

engineer frequency hopping jamming systems. The neural network was initially optimized

for use with a 12th order linear shift feedback register maximum length sequence utilizing a

minimal polynomial as the characteristic polynomial. This neural network was then scaled

to accommodate 7 different sequences, of orders 6 through 12. The neural network was

trained for these sequences using training data that is 10 times the length of the sequence.

This information is then used to generate a hopping sequence that reduces the jamming

interference to 0 with as few as 4 jammer hopping samples. The model is also capable of

determining if the jammer is utilizing a sequence that the model is trained for in as few as

25 jammer hopping samples.
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CHAPTER 1

INTRODUCTION

Noise jamming systems can be harmful to the signal integrity of a radio-frequency

(RF) system, reducing and even eliminating the ability of a transmitter to send a signal or

a receiver to receive a signal. One method used to defend against these attacks is the use

of frequency hopping. Frequency hopping schemes help to alleviate these effects by con-

stantly moving the transmitted signal to different frequencies, thus reducing the probability

that a jamming system can effectively inhibit communication entirely. However, frequency

hopping does not entirely eliminate the jamming effect. As demonstrated in [1], it can be

difficult to eliminate the effects of a noise jamming attack by just frequency hopping. They

show that when in the presence of a high-power noise jammer it can be difficult to remove

the jamming effects from the transmitted signal.

Frequency hopping jammers, also known as noise jammers, jam signals by emitting

RF energy while hopping over a specified frequency range [2]. These frequencies and the

order that they are hopped to, known as the hopping sequence, are typically chosen by using

a pseudo-random number generator (PRNG). For this research, a linear-feedback shift reg-

ister (LSFR) that generates maximum-length sequences (m-sequences) was chosen as the

PN PRNG. M -sequences are simple to implement and do not take up much memory since

they use LSFRs for the sequence generation. For these reasons, they are commonly found

in frequency hopping systems. The primitive polynomials chosen for the m-sequences are

minimal polynomials which are the most common characteristic polynomials used for these

sequences since they minimize the memory, hardware, and computations required. Due to

the highly nonlinear properties of PRNGs, a neural network was chosen as the machine

learning application.

Previous research has been conducted into detecting and classifying different types of

jamming signals present in a given spectrum, as demonstrated in [3] and [4]. The research
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presented in this paper is intended to build upon this previous work and allow for frequency

hopping systems to implement moving target defense. Once a frequency hopping jammer

has been detected and classified, the model proposed in this paper can be utilized to pre-

dict where the jammer is going to hop after sampling a sequence of 4 consecutive hops.

This information can then be used in smart frequency hopping systems to hop around the

interfering signal transmitted by the jammer.

The artificial neural network presented herein has the capacity to learn multiple pseudo-

noise (PN) sequences and can predict the next value in the sequence with a high degree of

accuracy. This network consists of an input layer with 4 neurons, 4 hidden layers, each

containing 1024 neurons, and an output layer with a single output neuron. This network

was trained for 7 different maximum-length sequences (m-sequences), whose primitive

polynomials were orders 6 through 12. The primitive polynomial for each sequence was

chosen as a minimal polynomial. An algorithm was also developed that allows for the sys-

tem to determine if the jamming system is using a primitive polynomial that is known by

this system.

The remainder of this work is structured as follows. Chapter 2 contains background

information and the literature review, which discusses existing work. Chapter 3 describes

the details of the simulation design and the parameters used. Chapter 4 contains the results

and provides some discussion. Chapter 5 concludes this work and suggests direction for

future work.
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CHAPTER 2

LITERATURE REVIEW

2.1 FREQUENCY JAMMING

Due to the increased reliance on wireless networks, transmission security has become

an increasingly important and necessary area of study. These wireless networks are es-

pecially vulnerable to jamming attacks due to how simple and easy the attacks can be to

implement [5].

Frequency jamming occurs when electromagnetic energy is purposefully emitted in

the direction of a communication system with the intent of interfering with the signal trans-

mission of the system. This is accomplished by transmitting signals at the same frequency

as the targeted communication [6]. This technique is often used for military and defense

purposes, as it can block enemy communication and disrupt their operations. There are two

main types of frequency jamming: reactive and cognitive.

2.1.1 REACTIVE JAMMING

Reactive jamming involves a jamming system that listens to the RF spectrum and

is able to sense when a radio transmission is being sent [6, 7]. It will then continuously

transmit a strong signal on the same frequency as the target communication, effectively

drowning it out and preventing it from being received. This can be further broken down

into noise-spoofing and noise-jamming [7]. Noise-spoofing is when the jammer targets

a specific transmitter and wants to prevent it from being able to send a signal. This is

accomplished by transmitting a strong signal over the transmitter’s channel so that the

transmitter thinks that the channel is busy. While Noise-jamming is when the jammer

targets one or more receivers and has the goal of preventing them from receiving a complete

packet. This is accomplished by sending a signal that is stronger than the one sent by the
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transmitter so that the receivers are not able to receive the signal accurately [7].

Based on the above, reactive jamming can be effective in certain situations, such as

when the target signal is relatively weak or when the jammer is located relatively close

to the target. It can also reduce the packet delivery ratio to nearly 0 [6]. However, it

requires a strong and continuous signal, which can be difficult to sustain for long periods

of time. Additionally, reactive jamming can be relatively easy to detect, as it involves

transmitting a strong signal at the same frequency as the target. Reactive jamming is often

used for military and defense purposes, as it can be used to block enemy communication

and disrupt their operations. It can also be used in other fields where secure communication

is important, such as in emergency response or transportation.

2.1.2 COGNITIVE JAMMING

On the other hand, more complex jamming systems have been developed that can

adapt their output signal to various situations. These cognitive jammers sense the spectrum

in real-time, quickly analyze and characterize the data, and develop and deploy the jamming

strategy [7]. This effectively transmits a signal similar to the target communication but with

added noise or false information. Noise jamming transmits a broad spectrum of noise over

a wide range of frequencies. This can confuse the receiver and make it difficult for them

to interpret the message. Each type of jamming has its advantages and disadvantages,

depending on the specific situation. Cognitive jamming can be more subtle and difficult to

detect, but it is more complex to execute and less effective against advanced communication

systems.

2.2 FREQUENCY HOPPING JAMMING SYSTEMS

Frequency hopping jamming systems, also known as noise jammers, are a type of cog-

nitive jammer that try to prevent communication by mimicking noise and overloading the
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RF spectrum with energy to make communication difficult. They are capable of jamming

multiple channels simultaneously [2]. They hop over a given spectrum with sufficient

power so that the receiving system can not distinguish between the ”noise” and the signal

of interest. This jamming waveform is generated by using a frequency hopping sequence

that is developed by using a pseudo-random number generator. This helps the jamming

system to appear as noise in the background of the spectrum that the RF system is trying to

communicate over [8].

2.2.1 FREQUENCY JAMMING COUNTERMEASURES

Countermeasures to frequency jamming include using encryption to secure communi-

cation, switching to alternative communication methods or frequencies, changing the trans-

mission rate, using ambient backscatter communication, utilizing dynamic power control,

using modern machine learning methods, and using techniques such as spread spectrum to

make the target communication more difficult to jam [9].

Frequency hopping is a proven method to improve the communication reliability of a

wireless system. This relatively simple technique is used in Bluetooth communication as a

preventative measure to minimize noise and jamming attacks and to increase the integrity

of the signal. A study was conducted that showed when WiFi is in the presence of a reactive

jamming signal, the transmission accuracy of the signal can be significantly improved [5].

The effectiveness of frequency hopping for jamming protection can be improved even more

by increasing the rate that the frequency hopping occurs [10]. Still, frequency hopping can

struggle to eliminate the effects of jamming systems that are not stationary, whether that be

sweep jamming, frequency hopping jamming, etc [11].

Frequency jamming is a complex and constantly evolving field, with advances in tech-

nology and communication systems constantly challenging the effectiveness of jamming

techniques. Despite its limitations, frequency jamming remains an important tool in the
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military and defense sectors, as well as in other fields where secure communication is cru-

cial.

2.3 DETECTION AND CLASSIFICATION OF JAMMING PRESENCE

Several studies have been conducted to utilizing machine learning algorithms to detect

when a jamming signal is present and then to classify what type of jamming signal it is,

as shown in [12], [13], [14], [3], and [4]. For these applications, this information can

be used to determine whether the system should continue transmitting for stop until the

jamming system has ceased. This section will dive deeper into some of the research that

has been completed in these areas.

There have been several studies conducted on detecting and classifying the various

types of jamming systems. Three options are shown and compared in [3] that utilize ma-

chine learning methods (neural networks, random forest, and support vector machines) in

order to accurately detect when a jamming signal is present. They were able to achieve

94% accuracy using neural networks and 96% accuracy using random forest methods.

In [4], the authors demonstrate that machine learning algorithms can be used to clas-

sify jamming attacks as either Single-tone, barrage, protocol-aware, or successive-pulse.

They were able to achieve a 93% success rate.

2.3.1 FREQUENCY HOPPING SEQUENCES

When the carrier signal of a transmitted signal changes, or ”hops” over time, this is

called frequency hopping. The is usually a set time interval that the signal hops from one

frequency to another. The method in which the order of the frequencies is chosen is called

the frequency hopping sequence [15].

Frequency hopping is typically used in order to minimize the effect of jamming sys-

tems and also to increase the transmission security of the signal, in return increasing the
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total security of the transmitted signal [5].

There are an infinite number of ways to generate frequency hopping sequences. The

only limitation is what the hardware is capable of handling and how fast the hopping needs

to occur. For more sensitive information being sent, more complex frequency hopping

algorithms will be used. These more complex algorithms require more expensive hardware

as more computations will have to be conducted in between each hop. Using something

simple like m-sequences can provide fast, cheap, and sufficiently long sequences so that the

system can have the security of a frequency hopping system while still keeping expenses

and complexity low.

2.4 MAXIMUM-LENGTH SEQUENCES

Maximum-length sequences are used in basic cryptography systems as shown in [16],

[17] and [18]. They can also be used in frequency hopping systems to help select the

frequency hopping code. These sequences are easy to implement and do not require many

hardware resources. They utilize a linear-feedback shift register that has the same number

of stages and bits as the order of the chosen primitive polynomial. The use of a primitive

polynomial ensures that the sequence generated is of maximum length. The output value

of the register is then used for the generation of the sequence [19].

Hopping patterns can then be generated from the resulting maximum-length sequence

by combining bits from the sequence based on the number of frequencies, or channels, that

are needed [19].

There are certain criteria that m-sequences must meet. The first is that maximum-

length sequences should adhere to the ”balanced property’ that states there should be ap-

proximately the same number of 1s and 0s in each sequence period. They should also

contain consecutive sub-sequences of 1s and 0s within each of the sequences; half of them

should have a length of 1, a fourth should have a length of 2, and so on. There should be a
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periodic autocorrelation function that assumes binary values. When modulo 2 is performed

on the sequence with a shifted copy of the sequence, this should result in a different shifted

copy of the original sequence [20, 21].

M -sequences use linear-shift feedback registers to generate the sequence. These reg-

isters utilize ’taps’ that go to an XOR gate at the points where the primitive polynomial

used has non-zero coefficients. Because of this, the most common application will use a

minimal polynomial for a given primitive polynomial order.

Figure 2.1: Example Linear-Shift Feedback Register

The m-sequences used in this paper were generated using an LSFR model in Matlab.

An example LSFR is shown in Figure 3.4. The primitive polynomial chosen for a given

m-sequence determines the ”taps” where the polynomial has non-zero coefficients. In the

example given here, the polynomial used would be x7 + x + 1. Note that the number of

flip-flops equals n− 1 of a polynomial of degree n.

An LSFR is a method used for generating m-sequences. These generate a pseudo-

random sequence that is pseudo-random by nature, which means that the m-sequence is

capable of passing the statistical requirements of true random sequences [22]. The LSFR

design is often the first choice in many applications requiring a PRNG due to its simplicity

and its ability to pass the most basic randomness requirements for various applications [23].
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2.4.1 PRIMITIVE POLYNOMIALS

For an m-sequence to achieve the maximum possible length of the sequence, 2n − 1

for an n-stage LSFR, the characteristic polynomial of the LSFR must be an irreducible

(or primitive) polynomial. A primitive polynomial is defined as a ”monic polynomial that

divides 1 + xk, for k = 2n − 1.” When a polynomial that meets these criteria is used, the

period of the m-sequence will be equal to 2n − 1 [24].

[25] describes a 4-part test to determine if a polynomial is primitive or not. The first 2

of these remove all of the reducible polynomials from the list. The final 2 stages finish the

test and determine if the given polynomial meets the necessary and sufficient requirements

for being considered primitive [25].

In the first stage, the polynomial of degree n that is under test is checked to see if

all of the terms are an even power. If this is the case, then the polynomial is rejected as

being reducible. If the polynomial passes this test, it moves on to the second stage, where

the Euclidean algorithm is used to calculate the greatest common divisor of the polynomial

and x(2m) + x for all m between 1 and n/2. This polynomial will fail this second stage

if each iteration over m is not equal to 1. Upon passing the second stage, the polynomial

moves on to the third stage, where it is verified if the polynomial can divide x(2n) + x.

This effectively checks to see if the period of the polynomial is can divide 2n − 1. This

is necessary to be true in order to check for machine errors that may occur in the second

stage. The fourth and final stage checks the modulo function of x((2n − 1)/q) with the

polynomial for each prime factor q of 2n − 1. If any of the results give 1, the polynomial is

not primitive [25].
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2.4.2 MINIMAL POLYNOMIALS

The more ”taps” that are required to implement a specific LSFR, the more complex

the LSFR is, the slower it will perform, and more computations are required between each

output value. A weight can be determined for a given polynomial by adding up the total

number of ”taps” required to implement the polynomial in the LSFR. Note that m must

be an odd number in order to obtain the maximum sequence length possible. The lower

the weight, the better the performance of the LSFR since there is less work to be done to

generate the sequence. In general, the smallest weight polynomials will have either 3 or 5

terms which equate to weights of 3 and 5, respectively [24]. Some examples of minimal

polynomials can be found in 4.5 below.

Table 2.1: Some Example Minimal Polynomials

Polynomial Order Polynomial

6 x6 + x+ 1

7 x7 + x+ 1

8 x8 + x7 + x2 + x+ 1

Minimal Polynomial Uses

- Matlab - In the Matlab function pnsequence(), the default polynomial used is a min-

imal polynomial [26].

- liquidsdr - In the liquidsdr function msequence(), the default polynomial used in a

minimal polynomial [27].
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2.4.3 CALCULATING PRIMITIVE POLYNOMIALS

Research has also been conducted in [28] where a model is proposed that can ac-

curately calculate the primitive polynomial used in a given m-sequence by using linear

algebra. The catch here is that they must sample an entire sequence before they can cal-

culate the polynomial used. This can be an issue for very long sequences and if the seed

is changed before an entire sequence has been sent. For the model presented herein, the

system only needs to pause for 4 jammer hops before accurately predicting the jammer

hopping sequence. This does require a constant seed value for the 4 consecutive hops.

2.4.4 SUMMARY

Using similar methods presented in these papers, these can be built upon to develop a

smart frequency hopping system that can detect when a frequency hopping jamming system

is present and then update the transmitting frequency hopping sequence so that the signal

integrity is preserved and there is minimal interference from the jamming system.

Based on the literature review presented here, it can be reasonably assumed that a

frequency-hopping jamming system will most like be utilizing an m-sequence with a min-

imal polynomial as the characteristic polynomial of the LSFR.
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CHAPTER 3

PROPOSED JAMMING PREDICTION NEURAL NETWORK

In order to reverse engineer and predict the hopping sequence of a jamming system,

the transmitting system needs to know how many channels the jammer is using, how long

the sequence of pseudo-random numbers is, and what type of PRNG the jammer is using.

A neural network is presented that can predict with high fidelity where a given jammer is

going to hop next over a range of minimal primitive polynomials. For the purposes of this

research, certain assumptions had to be made. These assumptions can be found in section

3.1.

Figure 3.1 shows a typical frequency hopping system. In this diagram, a jamming

signal is shown, and the frequency hopping sequence generators are the hopping sequences

described herein. The change in hopping sequence that is generated at the receiving side of

the system is sent to the transmitting system via an out-of-bound (OOB) signal.

Figure 3.1: Neural Network Architecture for Prediction of a Single Polynomial
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3.1 ASSUMPTIONS

Because of the vast number of possibilities when it comes to methods of determining

a frequency hopping algorithm, the following assumptions were made. First, we assume

that the jamming system uses PN PRNGs in the generation of the hopping sequence. This

is because PN PRNGs are the most common frequency hopping sequence generator and

they are simple, fast, and do not require much hardware or memory. Next, The PN PRNG

uses minimal polynomials as the characteristic polynomial of the LSFR. These require a

minimal number of XOR gates in the feedback, which results in a minimal number of

computations for each clock cycle, further simplifying the jamming system. Thirdly, we

assume that both the transmitting and jamming systems are both hopping over the same

frequency band, and each uses 256 channels in that band. Forth, we assume that both

systems are hopping at the same rate. The fifth assumption is that both systems use 8-bit

sequences. Sixth is that the jamming system uses an m-sequence that the neural network

was trained for. The final assumption is that the transmitting system has already detected

the jamming system and has begun to track it.

Based on the literature review presented in 2, the use of PN PRNGS that utilize

minimal polynomials are the most likely candidates to be used as the hopping sequence

generator in a frequency hopping jamming system since they are easy to implement, take up

the least amount of resources, and are fast. Only one minimal polynomial per polynomial

degree was used in this research, but it can easily be scaled to accommodate any number of

desired polynomials.

3.2 CHARACTERISTIC POLYNOMIAL SELECTION

The first step in this process was to choose a set of primitive polynomials for 7 dif-

ferent orders. These were chosen as 6th through 12th-order minimal polynomials. These
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are shown in Table 3.2. These polynomials were chosen to be some of the most likely

candidates for the LSFR based on the minimal polynomial characteristics described in this

paper.

Table 3.1: Minimal Polynomials Used

Polynomial Order Polynomial

6 x6 + x+ 1

7 x7 + x+ 1

8 x8 + x7 + x2 + x+ 1

9 x9 + x4 + 1

10 x10 + x3 + 1

11 x11 + x2 + 1

12 x12 + x6 + x4 + x+ 1

After these polynomials were chosen, they were run through the pnsequence() func-

tion in Matlab for an entire sequence and used to generate training data for training the

neural network.

3.3 NEURAL NETWORK ARCHITECTURE

To start, a neural network architecture was developed, designed, and trained to predict

only the 12th-order primitive polynomial. This was done as a proof of concept to determine

the complexity of the neural network required in order to accurately predict these hopping

sequences.

An optimization effort was taken in order to ensure accurate results and that the chosen

architecture is capable of learning the hopping sequences. This optimization effort involved

varying the number of inputs, the number of hidden layers, the widths of each hidden

layer, and the number of training sets sent through the network during the training process.
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Ultimately, the neural network chosen has 4 inputs, 5 fully-connected hidden layers, each

with 256 neurons, and a single output. The 4 inputs are any 4 sequential numbers from

the 8-bit m-sequence. Once the neural network was optimized to predict the 12th-order

polynomial, the same architecture was used to train for the remaining polynomials and

achieved similar results.

Figure 3.2: Neural Network Architecture for Prediction of a Single Polynomial

Finally, a larger neural network was designed and trained that was able to accurately

predict the pseudo-random sequence of all seven of the chosen primitive polynomials, re-

gardless of the seed value, as long as there were 4 consecutive samples of the sequence

data. Based on the optimization effort, it was shown that increasing the width of the neural

network improves performance much better than increasing the depth of the network. For

this case, the original network was used with the width of all of the hidden layers updated

to 1024 neurons.
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Figure 3.3: Neural Network Architecture for Prediction of All Polynomials

3.4 NEURAL NETWORK TRAINING

The training data used for the individual neural networks consisted of 10 times the

given sequence length for the targeted polynomial. Since the 6th-order polynomial has a

sequence length of 63 (26 − 1), then the training set consisted of 630 sequential values.

These values were then organized in sets of 5 per row, with each following row offset

by one value. This allowed for every combination of the sequence to be run through the

network and made it possible for the network to be trained for all cases.

The training data was then normalized to be between 0 and 1. This was done by

dividing each training set’s values by 2n, where n is the order of the primitive polynomial.

The rows of data were then shuffled. 20% of the data was set aside for testing. 10% of

the remaining data was then set aside for a validation data set. The training data that was
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Table 3.2: Sample Training Data

Training Sample Sample Sample Current Next

Set t=-3 t=-2 t=-1 Sample Value

1 236 146 223 147 83

2 146 223 147 83 48

3 223 147 83 48 24

4 147 83 48 24 202

5 83 48 24 202 52

6 48 24 202 52 191

7 24 202 52 191 162

8 202 52 191 162 199

9 52 191 162 199 89

10 191 162 199 89 103

used to train the final model consisted of a combination of all of the data used to train the

individual models. This was also shuffled and broken up into training, test, and validation

data in the same manner. The final neural network was trained over 1,500 epochs, batch

size of 16 and a learning rate of 0.0001.

3.5 SIMULATION MODEL

The initial Matlab testing of this model consisted of exporting the model from Py-

torch as an ONNX file, loading the ONNX file into Matlab, and then running the simula-

tion. Within the simulation, it is assumed that this network has been notified that there is

a frequency-hopping jammer present. Once the network is notified of this, transmission is

paused for 4 jammer hops while the jammer frequencies are sampled and saved into mem-

ory. Once 4 hops are sampled, the simulation then feeds the sampled hops through the
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neural network, predicting where the 5th hop will be. After the fifth hop is predicted, the

system then chooses a frequency to hop to that is 128 channels away from the predicted

jamming frequency. Once 25 hops have passed, the network has an algorithm that is able to

determine if the jammer is utilizing an m-sequence that it is trained for and exactly which

primitive polynomial the jammer is utilizing. This information will be useful in the event

that the jammer is using a sequence that the transmitting system is not prepared to defend

against.

The simulation then compares the jamming frequency to the transmitting frequency at

each time, and the probability of jamming Pjam was calculated as the ratio of the number

of successful jamming instances NumJams to the overall number of hops TotalHops as

illustrated in Eq. 3.1. To determine if the signal was successfully jammed, the output from

the jammer and the transmitter m-sequence codes had to produce the same number on a

given sequence call.

Simulations were also run where the jamming system has the prediction algorithm and

the transmitter does not. Then, both the transmitter and jammer have it.

Pjam =
NumJams

TotalHops

(3.1)

The jammer was run using each of the different m-sequences that the model was

trained for on each run. Then, a baseline transmitter was run using a different m-sequence

than the jammer. This resulted in some of the transmitted signals being successfully

jammed. The smart transmitter then waits for the first 4 jamming frequencies to be sampled

and then starts to feed the previous 3 samples with the current through the neural network

in order to predict what the next hop will be. Then, the selected frequency to hop to is

offset from the predicted jamming frequency by half of the total number of channels, 128

in this case. If the selected channel is greater than 256, then the system wraps the chosen

channel back starting at 1. So, if the predicted jamming channel was 210, then the offset
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Figure 3.4: Simulation Flow Chart
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channel would be 338, and the chosen channel would be 82 (or 338-256). This method-

ology proved to work well because the neural network was trained with an accuracy near

100%. This helped to reduce the jamming probability to 0 for all cases.

Once these cases were run, the jammer was then given the neural network so that it

can predict where the transmitting system will hop to. For this case, the transmitting system

uses the pre-trained m-sequences. Then, the jammer continues to use the neural network

and the transmitter also uses the neural network to demonstrate how the system performs

in the presence of a smart jamming system.

3.6 CHECK FOR PRE-TRAINED POLYNOMIAL

While the system is actively predicting and choosing a hopping sequence based on

the predicted jamming frequency, the system is saving the first 25 hops into memory to

run through a prediction algorithm that can accurately determine if the jamming hopping

sequence is something that the network is already trained for. In the unlikely event that

it is not, the transmitting will cease communication until the jamming signal has stopped

transmitting before transmitting with the original hopping sequence defined by the system.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 NEURAL NETWORK OPTIMIZATION - 12TH ORDER POLYNOMIAL

The neural network optimization task was focused on the 12th-order polynomial and

started with 4 inputs and 1 output and then varied the number of hidden layers, the width

of the hidden layers, different activation functions, and different numbers of training sets.

As expected, it was found that the more data available to run through the model, the higher

the accuracy. It needs at least one full sequence to run through the model as training data

in order for the network to accurately learn the pattern of the sequence. For the activa-

tion functions, ReLU was the primary activation function used. Sigmoid was tried but did

not provide nearly the same accuracy as the ReLU, so that was short-lived. Ultimately,

the neural network that was chosen contained 5 hidden layers, each containing 256 neu-

rons. This allowed for maximizing the accuracy of the system while minimizing the total

computations required.

4.1.1 NUMBER OF HIDDEN LAYERS

To test the effect of the number of hidden layers on the learning ability of the neural

network for the 12th order polynomial, the number of layers was varied between 4, 5, and

8 hidden layers, shown in Figure 4.1. All of these have 256 wide layers, and the case with

5 layers had the best performance, as shown in Table 4.1.

4.1.2 VARYING THE WIDTH

To test the effect of the number of neurons in each hidden layer on the learning ability

of the neural network for the 12th-order polynomial, the number of neurons in each layer

was varied between 64, 128, and 256 neurons, shown in Figure 4.2. All of these have 8
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(a) 4 Layers - Training Results (b) 4 Layers - Test Results

(c) 5 Layers - Training Results (d) 5 Layers - Test Results

(e) 8 Layers - Training Results (f) 8 Layers - Test Results

Figure 4.1: Comparison of Different Numbers of Layers
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Table 4.1: Number of Layers Comparison

Number of Layers R2 MSE

4 0.9795 0.0017

5 0.9987 0.00011

8 0.9255 0.0062

hidden layers, and the case with 128 neurons had the best performance, as shown in Table

4.2.

Table 4.2: Number of Layers Comparison

Width of Layers R2 MSE

64 0.9461 0.0045

128 0.9985 0.00013

256 0.9255 0.0062

4.2 NEURAL NETWORK TRAINING AND TEST RESULTS - INDIVIDUAL

POLYNOMIALS

After the neural network optimization was completed, the chosen network was then

trained individually for each of the chosen polynomials with a very high degree of accuracy.

The results from this can seen in Figure 4.3, Figure 4.4, and Table 4.3.

4.3 FINAL NETWORK TRAINING RESULTS

Figure 4.5 shows the training results for the final neural network that is able to predict

any of the 7 m-sequences used. Very good accuracy is also shown here, with a total mean

squared error (MSE) training loss of 0.00027 and an MSE validation loss of 0.00015.
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(a) 64 Width - Training Results (b) 64 Width - Test Results

(c) 128 Width - Training Results (d) 128 Width - Test Results

(e) 256 Width - Training Results (f) 256 Width - Test Results

Figure 4.2: Comparison of Different Widths
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Table 4.3: Neural Network Training Results

Order R2 MSE

6 0.9999 3.034 ∗ 10−6

7 0.9996 3.096 ∗ 10−5

8 0.9999 1.211 ∗ 10−5

9 0.9999 2.538 ∗ 10−6

10 0.9996 3.232 ∗ 10−5

11 0.9997 2.151 ∗ 10−5

12 0.9987 1.118 ∗ 10−4

Figure 4.6 shows the training and test results for the final neural network that is able

to predict any of the 7 m-sequences used. Very good accuracy is also shown here. When

tested, the neural network had an R2 value of 0.99817.

4.4 SIMULATION RESULTS

Table 4.5 shows the overall results for the network. The jamming order is the order

of the primitive polynomial that was chosen from Table 3.2 for the jamming m-sequence.

The transmitting order is the order of the primitive polynomial chosen from Table 3.2.

Pjam is the calculated probability of jamming without the neural network predicting the

jammer hopping sequence and telling the transmitting system where to hop. PjamSmart

is the calculated probability of jamming with the neural network predicting the jamming

hopping sequence and telling the transmitting system where to hop. It is shown that for all

tested cases, the probability of jamming was reduced to 0 when the neural network is in the

loop predicting the next hop for the jamming system.

Figure 4.7 shows the accuracy of the final neural network’s accuracy when imported

and implemented into the Matlab system model. Near-perfect accuracy is demonstrated
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here for each case. It is shown that similar results are achieved to the initial training and

testing conducted in Pytorch.

The results here show that the system is highly accurate in predicting a jamming signal

that uses a hopping sequence that the neural network has been trained for. Because of

this, this system can choose hopping sequences that completely eliminate the interference

caused by a frequency hopping jammer. Once 25 hops have passed, the network can also

determine with a 96.83% degree of accuracy if the jammer is using an m-sequence the

network is trained for and which one.

Table 4.4: Experimental Results for Probability of Jamming with/without the Smart Hop-

ping Sequence

Case Jammer Transmitting

No. Order Order Pjam PjamSmart

1 6 9 0.003265 0

2 7 9 0.003912 0

3 8 9 0.003879 0

4 9 9 0.001957 0

5 10 9 0.003906 0

6 11 9 0.003899 0

7 12 9 0.003956 0

4.4.1 SMART JAMMING SYSTEM

The results here show that when the jamming system utilizes the trained neural net-

work for the transmitting hopping sequence, the transmitting system can be jammed be-

tween 11% and 12% of the time. However, when the neural network is also added to the
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transmitting system, the probability of jamming is greatly reduced to 0.002441, or about

0.24%.

Table 4.5: Experimental Results for Probability of Jamming with a Smart Hopping Jam-

ming System

Case Transmitting

No. Order Pjam

1 6 0.2063

2 7 0.1181

3 8 0.1844

4 9 0.2035

5 10 0.1769

6 11 0.1856

7 12 0.1731

4.4.2 CHANGING THE SEED

For all cases when a different seed is used for the starting point of the m-sequence,

there was no change in the simulation results because the network was trained to predict the

sequence regardless of the starting point as long as the sample used for prediction consists

of a sequence of 4 consecutive hops with the same seed.
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(a) 6th-Order (b) 7th-Order

(c) 8th-Order (d) 9th-Order

(e) 10th-Order (f) 11th-Order

(g) 12th-Order

Figure 4.3: Training Test Results for the various order polynomials
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(a) 6th-Order (b) 7th-Order

(c) 8th-Order (d) 9th-Order

(e) 10th-Order (f) 11th-Order

(g) 12th-Order

Figure 4.4: Training Test Results for the various order polynomials
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Figure 4.5: Neural Network Training Results

Figure 4.6: Neural Network Test Results
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(a) 6th-Order (b) 7th-Order

(c) 8th-Order (d) 9th-Order

(e) 10th-Order (f) 11th-Order

(g) 12th-Order

Figure 4.7: Predicted vs. True plots for the various order polynomials
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CHAPTER 5

CONCLUSION

Jamming systems can be detrimental to the signal integrity and transmission security

of radio frequency systems. While certain methods exist in order to combat it, like fre-

quency hopping, it is very difficult to develop a system that is immune to these jamming

attacks. One type of jamming system that mimics noise is a noise jammer that hops over

various carrier frequencies.

In this work, a novel approach was proposed to use a neural network to predict where

a frequency-hopping jammer will hop. Once the jamming signal’s presence is known and

being tracked, the RF system can then use the network presented here to choose a hopping

sequence that completely eliminates the interference caused by the jamming signal.

The artificial neural network presented in this work has the capacity to learn multiple

PN sequences and can predict the next value in the sequence with a high degree of accuracy.

This network consists of an input layer with 4 neurons, 4 hidden layers, each containing

1024 neurons, and an output layer with a single output neuron. This network was trained

for 7 different m-sequences, whose primitive polynomials were orders 6 through 12. The

primitive polynomial for each sequence was chosen as a minimal polynomial. An algorithm

was also developed that allows for the system to determine if the jamming system is using

a primitive polynomial that is known by this system.

By completely eliminating the jamming interference of a frequency-hopping jammer,

this network architecture allows for increased transmission security in frequency-hopping

systems. Similar work can also be done to predict any PRNG with a sufficient amount of

training data. This has the potential to predict more complex frequency hopping schemes

and even has applications outside of these sequences, like data encryption.

This work can be expanded in the future to create networks that are trained for more

primitive polynomials of higher order, different PRNGs, and even networks that can cal-
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culate the polynomial used in the sequence generation when the network has not been

trained for a specific polynomial. Given that this network has to have an entire sequence

run through it in order to recognize the pattern, future work could also be conducted here to

figure out how to develop a neural network that is able to characterize the pattern of more

complex PRNGs without the need to run an entire sequence through the network. This

would open up the possibilities for what they are capable of learning. The neural network

presented here could be scaled to learn any PRNG sequence; the user would only be limited

by the time and hardware available to them.
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