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ABSTRACT 

According to the World Health Organization, 785 million people lack access to basic drinking water 

facilities, and 144 million people rely on surface water which is prone to microbial contamination. Point-

of-use (POU) water disinfection technologies can be adopted to help address these issues by treating 

water at the household level; however, navigating various POU disinfection technologies for a given 

water source or location can be difficult. While numerous conventional POU technologies exist (e.g., 

boiling water, POU chlorination), new emerging POU technologies (e.g., using novel materials or 

advanced processes) have been coined by developers to be lower cost with higher treatment capacity. It is 

unclear if these claims are substantiated and how novel technologies stack up against conventional ones in 

terms of cost and environmental impacts when considering a necessary level of disinfection for human 

health. This research compares POU technologies using quantitative sustainable design methods to assess 

four different POU treatment technologies. The technologies evaluated include chlorination using sodium 

hypochlorite, silver nanoparticle-enabled ceramic water filter, ultraviolet mercury lamps, and ultraviolet 

light-emitting diodes. This study leverages open-source Python packages to assess the relative 

sustainability using techno-economic analysis, life cycle assessment, and disinfection efficacy. 

Uncertainty is included in all input parameters, and sensitivity analysis (i.e., Spearman's rank correlation) 

is used to identify which assumptions influence outcomes. The study assumes a household size of 6 

people, and a lifecycle of 5 years. Escherichia coli is used as an indicator microbe in characteristic 

surface and ground waters. We set raw water types to capture the impact of water quality parameters (e.g., 

turbidity and total organic carbon) on sustainability. Per capita cost (USD∙cap-1∙yr-1) and global warming 



potential (kg CO2eq∙cap-1∙yr-1) are tracked as sustainability indicators. Study results can potentially inform 

decision makers, non-profit organizations, and future research on sustainable approaches to safe drinking 

water through POU technologies.  
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CHAPTER 1 

OVERVIEW OF THESIS 

1.1 Introduction 

United Nation’s Sustainable Development Goal 6 is centered around universal access to safe and 

affordable drinking water by 2030, with a focus on the 2.1 billion people that lack access to safely 

managed water globally.1 One of the primary issues with poor water quality is microbial contamination 

which can cause acute health risks, e.g., the spread of diarrheal diseases.2,3 To supply safe and potable 

drinking water, centralized treatment facilities typically remove pathogens through both physical and 

chemical methods. While such facilities are common in developed countries, centralized systems are 

costly and require extended construction periods, especially when considering distribution systems.4 For 

example, a new water distribution system in lower income countries is estimated to cost 64-268 

USD·person-1 for 500-2000 households.5 Another study estimated a piped water supply for a small town 

in Ghana to be 10-14 USD·person-1·yr-1.6 It is notable that these estimated costs are only for the 

distribution system and do not include cost for treatment. These barriers make potable piped water out of 

reach in many developing countries where the need to disinfect water for drinking is urgent. One potential 

solution for those with microbially compromised water is to disinfect at the household level or point-of-

use (POU). POU water disinfection technologies can be a potential pathway for immediate safe drinking 

water for off-the-grid communities.7  

Numerous POU disinfection technologies are commercially available, and many more are 

emerging. These treatment technologies exist over a scale, ranging from conventional technologies (e.g., 

boiling and POU chlorination) to novel technologies (e.g., ultraviolet disinfection systems).8 Typically, 

researchers investigate the adoption of a unique POU disinfection technology employed as an intervention 

to microbial contamination of water. For example, solar water disinfection (SODIS) can be a relatively 

simple intervention for disinfection when properly utilized. A year-long study in Cameroon highlighted 

that SODIS intervention provided up to a 42.5% reduction in the risk for diarrheal in households that 
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properly treated their water, but only 45.8% of all households met the determined levels of properly using 

SODIS after the training.9 Ceramic water filters are another POU technology that can be produced with 

local materials and provide dual mechanisms to remove bacteria, i.e., the porous ceramic matrix and 

silver nanoparticle coating.10 A randomized controlled field trial of ceramic filters in Bolivia found them 

to be effective in meeting World Health Organization (WHO) drinking-water standards even with turbid 

challenge waters. However, this study was completed over a relatively short five-month period.11 Despite 

ceramic filters being relatively easy to use, their long-term sustainability has been explored with an agent-

based model and can be hindered when the filter maintenance is not completed.12 Overall, sustained 

adoption of individual POU technologies can vary between communities due to contextual and end-user 

factors. Inadequate clarity on how decision makers and stakeholders can navigate the different POU 

technologies under different contexts can limit implementation and sustained adoption. The sustainability 

of numerous POU technologies needs to be simultaneously assessed while considering context-specific 

factors so that engineers, agencies, and researchers can select the most appropriate treatment technology 

for a given community.      

Technoeconomic analysis (TEA) and life cycle assessment (LCA) can be adopted as methods to 

help evaluate trade-offs in terms of cost and environmental impacts among different POU technologies. 

These methods are usually leveraged separately to explore either the costs or environmental impacts of 

different technologies. In one such study, the cost effectiveness was evaluated for POU chlorination 

(Aquatabs), flocculent disinfection (Procter and Gamble Purifier of Water), and ceramic filters, 

considering costs related to startup, management, and logistics.13 While POU chlorination was found to be 

the most cost-effective method, this study considered a one year period, which may be shorter than 

necessary in other contexts. A recent LCA of four ultraviolet (UV) based systems, chlorination, and 

trucked water delivery found chlorination to have the lowest environmental impacts over various time and 

scale horizons.14 Leveraging both TEA and LCA can help identify trade-offs between cost and 

environmental impacts for POU technologies. These tools together have been used to evaluate 
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technologies (boiling, ceramic filters, bio-sand filters, and POU chlorination). Under a specific set of 

assumptions, boiling and chlorination had the highest environmental impacts, while boiling was the most 

expensive (0.053 USD·L-1) and chlorination was the least expensive (0.0005 USD·L-1).15 Generally, 

comparing the relative sustainability among different studies can be difficult to accurately complete 

because assumptions can vary which causes different outcomes for the sustainability indicators. For 

example, shorter studies with technology lifespans of less than one year may not consider all materials 

and supplies that are used in the process throughout the technology’s lifetime. Assessing the relative 

sustainability of POU technologies under uncertainty can help to account for the fluctuation in 

assumptions due to changes over the lifetime, location, and other factors. 

The goal of this study is to compare the relative sustainability of several readily available POU 

disinfection technologies. Specifically, the objectives of this work are to (i) characterize the overall cost 

and environmental impacts while consider necessary disinfection efficacy of these technologies and (ii) 

elucidate drivers for sustainability to better inform appropriate adoption in specific contexts. The 

technologies assessed in this study include: POU chlorination, silver nanoparticle enabled ceramic water 

filters (AgNP CWF), UV with mercury lamp, and UV with light-emitting diode (LED). This study 

leverages quantitative sustainable design (QSD) methods for TEA, LCA, and disinfection efficacy 

assessment. Models and algorithms were developed in several open-source Python packages  (QSDsan 

(QSD for sanitation and resource recovery systems) and EXPOsan (EXPOsition of sanitation and 

resource recovery systems)).16,17 The baseline assumptions of this study were a five year period and six 

people per household for all systems.18 Uncertainty was incorporated in the assumption inputted into the 

models, and sensitivity analysis (via Spearman's rank correlation coefficients) was completed to identify 

key drivers of sustainability. The impact of context was evaluated by updating assumptions considering 

two different water compositions. Assumptions relating to technology adoption period were also assessed. 

Study results can potentially inform decision makers, non-profit organizations, and future research on 

sustainable approaches to safe drinking water through POU technologies.   
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1.2 Objectives of Research 

This study aims to understand the relative sustainability of four POU technologies and how the 

technologies will perform in terms of cost and environmental impacts. The objectives of this research 

include (i) characterizing the overall cost and environmental impacts while consider necessary 

disinfection efficacy of these technologies and (ii) elucidating drivers for sustainability to better inform 

appropriate adoption in specific contexts. This comparative analysis employs QSD methods through an 

object-oriented program in Python to model and analyze the different systems of selected POU 

technologies. The Python scripts developed in this study can serve as a blueprint for future research to 

adopt in understanding the sustainability of more novel POU technologies. The relative sustainability of 

POU technologies can help to guide decision makers in selection and deployment. 

1.3 Significance of Study  

According to WHO, diseases like diarrhea, cholera, and others caused by microbial 

contamination have resulted in about 485,000 deaths annually.19 This contamination comes from people 

getting their water from untreated and poorly managed sources, e.g., 122 million people use untreated 

surface water, and about 368 million people use unprotected wells and springs.19 This study has the 

potential to contribute towards the successful deployment of POU technologies to improve safe drinking 

water accessibility at the household level, especially in regions lacking safely managed water. Figure 1 

shows the countries of the world in which adoption of POU technologies can be impactful to serve the 

percentage of the population that lack access to drinking water services. While much of the lack of access 

to safe drinking is in Africa and Asia, rural or off-the-grid communities in developed counties may also 

benefit from the adoption of POU disinfection technologies.20 For example, some off-the-grid 

communities in the United States and Mexico rely on costly bottled water for drinking because their other 

source is unsafe to drink.21–23 The use of POU disinfection technologies may provide cost savings for 

these communities. Separately, extreme weather events can cause interruptions in piped water supplies 

and warrant the need for temporary use of POU disinfection technologies while the community rebuilds. 
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Thus, the potential impact of this study is global as it highlights sustainable approaches to safe drinking 

water through POU technologies. 

 

Figure 1. The percentage of population in the countries with access to basic drinking water services. The 

map is directly from the United Nations.24 
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CHAPTER 2 

LITERATURE REVIEW 

A literature review was conducted to gain knowledge of previous research and studies. The 

literature review covered microbial contamination of drinking water, POU technologies, Short to long 

term adoption of POU technologies, TEA, LCA, and applications of QSD. Generally, the literature review 

highlights the lack of access to safe drinking water and the need for affordable and environmentally 

friendly treatment options for households at a global scale. Numerous studies have been conducted on 

POU technologies both in the lab and field; however, the sustainability of these technologies remains 

unclear.  

2.1 Microbial contamination of drinking water 

Drinking water contamination is not only limited to the water source, as the process of collecting, 

handling, and storing water can also significantly contribute to increasing microbial contamination.25 The 

process of treating water at the POU (or household level) and storing treated water before used should 

leverage practices that avoid recontamination. Many different microbial organisms can be responsible for 

diseases as a result of consuming contaminated water.26 Some example pathogens include: bacteria (e.g., 

E. coli causing Gastroenteritis), viruses (e.g., adenoviruses causing upper respiratory and gastrointestinal 

illness), and protozoa (e.g., cryptosporidium causing Cryptosporidiosis).27 c In this study, we focus on 

bacterial contamination using E. coli as our microbial indicator for microorganism. Many studies on 

microbial contamination of water have also adopted E. coli as an indicator;28–30 due to the fact that the 

presence of E. coli shows the possibility of microbial contamination and can be linked exposure to human 

or animal fecal pollution from poor sanitation.31 It provides a reasonable baseline or indicator for the 

disinfection efficacy of POU technologies. Although it is notable that some microorganisms are more 

robust and resistant to certain disinfection technologies.   

Another issue that can cause microbial contaminants is the interruption of a treated water supply. 

Intermittent supply of water is common in some across the globe either based on a set schedule (e.g., 
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water is only available on certain days of the week) or can be due to failures in the supply system. Despite 

the sources of interruption, it can cause some people to go back to using untreated water directly wherever 

it may be available. In many cases, use of untreated water can result in health issues that were previously 

avoided prior to the system failure or breakdown. For example, a community in Uganda experienced an 

increase in exposure to microbial contamination that was dependent on how long (in days) people had to 

rely on raw water due to system failure, i.e., the probability of E. coli infection increased from 1 in 50,000 

people before treated water supply failure 1 in 8 persons after returning to raw water consumption.32 

Apart from system failure or breakdowns, any centralized water supply can experience issues that result 

in health risks to the users. Contamination issues in centralized systems can be linked to an aging system, 

improper maintenance, inadequate disinfection residual, and infiltration.33 However, risks to the user in 

when these issues are prevalent can be potentially prevented with an adequate and proper adaptation of 

POU technologies. The adoption of POU technologies in communities with a centralized system provides 

a multi-barrier solution to treatment and can lower health risks. Thus, communities that are vulnerable to 

such system failures can benefit from our study of informing the sustainable deployment of POU 

technologies.    

2.2 Adopting POU technologies 

The need for proper deployment of POU technologies may not be noticeably significant in 

developed countries (e.g., United States) due to the availability of well-managed centralized water 

treatment facilities. However, in developing nations around the world, POU disinfection technologies can 

help to fill an access gap left behind by the lack of adequate centralized water treatment facilities.34  POU 

technologies also have the potential to be effective in emergency situations like natural disasters, e.g., the 

earthquake in Haiti in 2010.35 POU technologies can reduce the risk of water related infections if 

deployed properly with the addition of a proper storage option.35,36  

Large scale deployment of the POU technologies with sustained long-term usage remains an issue 

despite their effectiveness in reducing bacterial infection.37 The effective adoption of POU technologies 
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requires implementers to manage or keep track of progress to ensure proper and continuous usage. One 

diarrheal risk intervention study showed that the risk of infection increased with a decrease in the 

percentage of continuous user compliance in a community.38 For emergency deployments of POU 

technologies, such as after a flooding event, higher effectiveness has been reported when users are 

provided with proper training, follow up, and provisions of needed POU materials.39  

Another issue associated with the deployment of some POU technologies is sustained adoption by 

users. After POU technologies are deployed, the initial acceptance and usage has been reported to decline 

over time, e.g., SODIS and chlorine tablets (Aquatabs) deployed in Flores Island, Indonesia.40 

Affordability can be a key issue for households when using technologies that require continuous 

replacement.41 Sustained adoption as low as 8.1% has been reported in Nigerian communities due to cost 

of replacement parts and spare parts.42  Thus, it is vital for researchers to consider socioeconomic 

characteristics in a community as well as disinfection efficacy.  

For deployment and sustained adoption of POU technologies, it is necessary to understand 

contextual characteristics like targeted users, geographical context, and water source, as these factors will 

greatly influence the effectiveness and sustainability.43 It is also essential to compare POU options before 

deployment in order to deploy the most appropriate option. One such study in Southern African 

communities evaluated the efficacy of five different POU technologies (i.e., bio-sand filter-standard, bio-

sand filter-zeolite, bucket filter, ceramic candle filter, and silver-impregnated porous pot). While this 

study found that silver-impregnated porous ceramic pot was the most effective and sustainable for the 

targeted community,44 water chemistry also impact the technology performance (i.e., disinfection 

efficacy). Water quality parameters like turbidity can impact POU technology performance. A specific 

example is that chlorination has better disinfection efficiency on water with turbidity less than 10 NTU.45 

It is vital to understand contextual parameters (e.g., local water quality) and how they may influence 

technology performance and sustainability.  
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2.3 Short to long term adoption of POU technologies  

Increasing numbers of extreme weather events over the last 3 decades (Figure 2) can have a 

severe impact on water supply and drinking water safety.46 In the cases of such events, short term 

adoption of POU technologies can be help alleviate the issue of lack of access to safely drinking water 

such events can cause. POU technologies can be deployed in affected areas by response organizations for 

the people affected to adopt for a short-term period until their water supply is being restored. Adoption of 

POU technologies for safe water supply in emergency situations is a prominent part of Water, Sanitation 

and Hygiene (WASH) interventions.47 POU technologies can be deployed as a short-term emergency 

water intervention following a natural disaster if there is access to water source that requires treatment.48 

It is important to understand which POU technologies can be quickly deployed to such cases in the most 

cost-effective way while also minimizing the environmental impact of the adoption and disposal of POU 

technology through the lifetime of usage. More people are likely to use an introduced POU technology in 

the short period following deployment than in extended period. To ensure extended usage, more 

monitoring, training and follow up programs are necessary.49,50  For cases of disease outbreak linked to 

water contamination, short term adoption of POU technologies can be a quick preventive measure to 

deploy.51,52  
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Figure 2: Number of extreme weather events by country or region from 1990 to 2021. These events 

include mainly storms and floods, droughts, extreme temperatures, and wildfires. Figure is from Wang et 

al. 2022 with original data from The International Disaster Database.46,53 

 

The United Nations Sustainable Development Goals (SDGs) 6.1 focuses on access to safe and 

affordable drinking water for all by 2030 which can be measured by the proportion of people with access 

to safely managed drinking water.1 Therefore, it is essential to address water safety issues through 

sustained long-term adoption of POU disinfection technologies in order to improve the progress towards 

meeting target of the SDGs (Figure 3). The long-term adoption of POU disinfection technologies is not 

only limited to introducing the technology but also adequate storage vessels in households to prevent 

recontamination, and the attitude of people towards adoption and usage of POU.54 Adoption of POU 

technologies will be less effective if the usage is discontinued for a period, if the usage is not sustained for 

an extended period and if people are not fully committed to proper usage. The type of POU technology 

deployed can also have an impact on sustained long-term adoption of the technology based on people’s 

preferences.55 Therefore, it is essential to explore the cost and impacts of POU technologies over extended 
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periods of time. For example, the affordability for maintenance and continuous purchase of consumables 

and spare parts for a technology can impact long-term usage.56,57  

 

Figure 3: Global progress on household drinking water from 2000 to 2020, i.e., five years into the 

Sustainable Development Goals (SDGs). Access is broken down into categories of *safely managed 

(improved source accessible on premises, available when needed and free of contamination),**basic 

(improved source within 30 minutes round trip collection time), ***limited (improved source over 30 

minutes round trip collection time), ^unimproved (an unprotected dug well or unprotected spring), and 

^^surface water (drinking water directly from a river, dam, lake, pond, stream, canal or irrigation canal).24 

 

POU technologies has the potential to provide safely managed drinking water to households.58 The 

service level for household drinking water services according to the WHO and UNICEF Joint Monitoring 

Program (JMP) has 5 categories which are safely managed, basic, limited, unimproved and no service 

water.59,60 The safely managed drinking water is water that is available to users from improved source 
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without contamination (e.g., fecal contamination). Basic drinking water is gotten from an improved 

source that requires less than 30 minutes to collect. Limited drinking water is gotten from an improved 

source that requires more than 30 minutes to collect. Unimproved drinking water is water collected from 

an unimproved source like unprotected wells and spring. The last category is no service drinking water 

which is water gotten without treatment from sources like rivers, lake, and ponds.60 

2.4 TEA of POU technologies  

Understanding and capturing the capital and operating costs of technologies are essential to guide 

selection and deployment.61,62 TEA is a methodology that is used to understand the financial viability of a 

system or technology. This tool that can be used to determine cost as either an absolute analysis of one 

technology or a comparative analysis to see how various technologies compare to each other in terms of 

cost.63 This tool has been used in numerous studies on both conventional and advanced POU 

technologies. For example, TEA was used to access the cost of a novel electrochemical advanced 

oxidation product POU device in comparison with a commercially available carbon block POU treatment 

device.64 Proper accounting of the capital expenses helped to reveal the cost advantage of the novel POU 

technologies and the specific parameters that were major drivers for cost.64  

While many studies have completed cost analysis on POU technologies, most only consider 

simplified assumptions and are not a full TEA. Some of these studies provide simple comparisons of the 

capital costs of different POU systems. One such study found chlorination, SODIS, and ceramic filter to 

be less expensive options compared to coagulation/chlorine system and bio-sand filter by mostly listing 

only approximate unit costs.56  While this work gives a relative idea of cost comparison, but it can be less 

effective method compared to a complete TEA method as some cost factors are not fully analyzed that 

can impact both capital and operational expenses. 
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2.5 LCA of POU technologies 

LCA is a methodology that can be used to estimate environmental and human health impacts over 

a technology’s lifetime. This tool that can be used as an comparative assessment of different technologies 

in an effort to understand how they stack up against each other in terms of environmental impacts over 

their lifespans.65 Similar to TEA, LCA can be used for either an absolute or comparative analysis. 

Environmental impact indicators (e.g., global warming, acidification, eutrophication, ozone depletion, and 

ecotoxicity) are used for LCA.14 These different indicators serve as a guide help eliminate the 

environmental sustainability of technologies.15,66 With LCA, the impact of all individual materials that 

make up the technology are being taken into account. Apart from the comparison between technologies, 

these tools can be used to explore what components in each technology are driving change in 

environmental impacts through sensitivity analysis.  

Global warming potential (GWP) is used as a measure of the carbon dioxide (CO2) emission 

equivalent to technology’s greenhouse gas emission. With CO2 as the reference gas, GWP lets us 

understand the relationship between the energy emitted by a ton of gas absorbed over time and a ton of 

CO2. GWP is a commonly used indicator of the environmental impacts of technologies used in LCA 

reports.67,68 This indicator can be normalized to yield an understanding of the per capita impact for each 

person using a selected POU technology covering capital materials and operational components of the 

technology.  

2.6 Application of QSD 

QSD methodology enables us to evaluate the relative sustainability of technologies, considering 

their respective technological components, contextual parameters, and to understand and evaluate key 

indicators of interest driving change in sustainability (Figure 4).69 This methodology leverages tools like 

TEA and LCA to help inform technology selection, explore the impacts of design considerations, and 

optimize operational parameters.70 QSD has been used to track indicators (e.g., per capita cost and 

environmental impacts) of technologies for various decision variables, technological parameters, and 
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contextual parameters.71 Decision variables are independent parameters that can be adjusted or 

manipulated by either designers or operators.69  Technological parameters are intrinsically defined by the 

materials and design of a system or technology (are not able to be controlled through design or 

operation).69  Contextual parameters account for the broader conditions in which a system or technologies 

exists.69  QSD framework allows us to track indicators over the simulation space or various combinations 

of the decision variables, technological parameters, and contextual parameters.  

An important feature of QSD methodology is the incorporation of uncertainty. Adding 

uncertainty to the datasets allows us to accommodate fluctuation in the data set due to factors like time 

and location. The distribution of uncertainty can follow any form (e.g., triangular, uniform, normal, etc.) 

or a set to constant in cases where uncertainty is not required like a set volume of container. Therefore, 

when we run the simulation, it will consider the different possibilities within the range of uncertainty for 

each data point. Then, sensitivity analysis is performed to understand the key drivers of change in the 

tracked indicators (e.g., cost and environmental impacts) of the technologies. Therefore, through 

sensitivity analysis we understand how the change in certain input parameters impacts the changes in the 

cost and environmental impact of the technology.72 This study adopts and leverages QSD methodology 

for comparative analysis of POU technologies.  

Studies have adopted QSD methodology and used it to successfully explore the  sustainability of 

other technologies and design through TEA, LCA and performance.73 For example, QSD has been used to 

explore and compare the sustainability of designs of non-sewered fecal sludge system for cost and 

environmental impacts. Through the QSD method, better informed decisions could be made by 

incorporating environmental impacts. In one is for large scale sanitation systems, lower environmental 

impacts and higher cost were observed from source separated excreta due to resource recovery compared 

to treatment of mixed excreta. Thus, decision making for technology deployment needs to consider 

multiple indicators for more sustainable solutions. QSD methodology also provides a platform to access 

other factors driving the cost and environmental impacts of the technologies e.g., location related 



25 

 

 

factors.71 Another non sewered sanitation system simulated through QSD method was the NEWgenerator 

systems that the sustainability was accessed through cost and environmental impact with location (i.e., 

five countries) factored into the simulation to capture the impact of location based factor. In addition to 

understanding the finance and environmental impacts of the system, the exploring the influence of 

location on indicators can also achieved through QSD methodology.73 

 

Figure 4: Overview of the quantitative sustainable design (QSD) framework that integrates techno-

economic analysis (TEA), life cycle assessment (LCA), and performance modeling under uncertainty. 

This figure is based on those presented by Li et al. 2022.72  

 

QSDsan is an open-source Python package that was used to build, model, and run the QSD 

methods. The QSDsan package uses object oriented programming to perform the QSD operations by 

simulating the technology systems, allocating cost and impacts of construction materials, developing 

models and algorithms, simulation, and performing TEA and LCA.70 The QSDsan package can be 

adopted and used to build and evaluate the relative sustainability of different technologies and the 

documentation, tutorials, and sample python scripts can be accessed online for free. The QSDsan 

packages allows the user to create components like materials with assigned attributes (e.g., NaOCl), 



26 

 

 

create the unit systems for the design and simulation of each technology, and develop integrated multi-

unit systems to simulate performance and complete TEA and LCA of the all the technologies.70 
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CHAPTER 3 

METHODOLOGY 

3.1 POU technologies 

To explore trade-offs among POU technologies, we set parameters based on the design, materials, 

energy requirements, capital requirements, and operation and maintenance requirements. All essential 

decision variables and technological parameters were incorporated into the study design based on 

published research, manufacturers’ specifications, and guideline reports. We utilized QSDsan and 

EXPOsan packages through object-oriented programming in Python to explore trade-offs with TEA and 

LCA.70 All the Python scripts are open-source published on GitHub and have been included in the 

Appendix.16 We set general assumptions of a 5 yr study period and 6 people per household for all the 

POU technologies. The number of people per household is aligned with to the average number of 

households in most of the countries with lower access to basic drinking water.18,24 Raw water quality with 

varying parameters like turbidity and hardness were modelled with an aim to capture how the systems 

respond to different water quality sources, e.g., surface versus ground water. We modelled and set water 

quality parameters for two raw waters (Appendix Table A 5).  

The QSD methodology follows the steps in Figure 5 beginning with selecting the POU 

technologies to be modelled and analyzed. After selecting the POU technologies, we had to build the 

datasets needed for all the technologies for all components necessary for LCA and TEA. The Python code 

or script for each POU technology was developed to portray the real-life operation of the technology 

considering design of technology, construction, and cost using adequate conditional statements, 

algorithms, constraints, and data. The script for raw water (or influent water) was also developed to 

reflect the conditions of the raw water quality. The scripts for each technology were compiled and 

evaluated through the systems for TEA and LCA. The next step included developing the model and 

analysis scripts which are to run each POU technology system scripts to obtain simulation results which 
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reflect the uncertainty incorporated in all the inputs. In the final stage, sensitivity analysis was conducted 

to elucidate which input parameters in each POU technology system influence the indicators.  

 

Figure 5. QSD methodology leveraged to develop the models for this work by selecting POU 

technologies, compiling datasets, developing design and process algorithms, developing systems, and 

running models and analyses. 

 

3.1.1 POU chlorination. The disinfection method for POU chlorination was designed based on the use of 

a solution of sodium hypochlorite (NaOCl). This solution is used to disinfect drinking water in 

households with a simple set up as presented in (Figure 6). The specific NaOCl product used here is 

marketed as WaterGuard, and each bottle contains 150 mL of the NaOCl solution.74 The treated water 

volume was 20 L based on the assumed container capacity. This disinfection method is designed to be 

relatively simple to use, where the bottle cover of the WaterGuard bottle is used to dose the NaOCl 

solution into 20 L of raw water. An expected one WaterGuard bottle cover is a measure of a single dose 

of NaOCL solution while two is used for a double dose. The full materials and cost inventory data for 

POU chlorination system is in Appendix Table A 1. The code of this system was designed for three 

influence streams, i.e., the raw water, NaOCl (chlorine stream), and polyethylene (WaterGuard bottles). 

The dosing of NaOCl was single dose of 1.88 mg∙L-1 at low turbidity (≤10 NTU), and at higher turbidity 
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(> 10 NTU), a double dosed of 3.75 mg∙L-1 was used.44 Algorithms were developed to capture the impact 

of water quality, e.g., turbidity on disinfection and potential impact on cost and environmental impacts.  

  

Figure 6. Visual representation of POU chlorination using NaOCl from WaterGuard. This set-up is 

designed to be easy to use as the cap of the WaterGuard bottle is used to dose the NaOCl solution to 20 L 

of water for disinfection. 

 

3.1.2 AgNPs CWF. The CWF is coated with AgNPs such that the ceramic matrix filters the water with 

some bacteria removed while the AgNPs performs the chemical disinfection.66 As shown in Figure 7 the 

setup has the ceramic coated with AgNP placed over a plastic bucket that holds the filtered and treated 

water. The construction items in Appendix Table A 2 (i.e., sawdust, clay, wood, and polyethylene for the 

plastic container) were incorporated to account for their costs and environmental impacts.10  AgNP has 

been developed in cost through cost effective and eco-friendly methods and made available for water 

disinfection.75,76 The unit has one influent stream of raw water and an effluent of treated water. Here, 

AgNP is the main consumable as recoating will be needed after every 0.5 to 2 years. The length of time 
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before recoating the filter with AgNPs varied based on the quality of the water type. Duration of the 

lifetime for AgNPs in this unit depends on the water quality (i.e., turbidity and hardness). More frequent 

recoating is expected for higher turbidity and hardness because these constituents have been reported 

remove more AgNPs.77 In this analysis, algorithms were developed to account for the recounting of 

AgNPs with turbidity  > 10 NTU and hardness > 60 mg CaCO3⋅L-1.  

 

Figure 7. Visual representation of silver nanoparticle-enabled ceramic water filters (AgNP CWF).10 These 

point-of-use (POU) disinfection technology have dual mechanisms to remove microorganisms through 

filtration and chemical disinfection. They are commonly produced with local clays near target 

communities.  

 

3.1.3 UV with mercury lamp. Low pressure UV lamps were used to design another POU disinfection unit. 

UV radiation is used to inactivate bacteria when exposed to an adequate UV dose, and the wavelength for 

disinfection is between 200 to 280 nm.44 The system in this study has two UV lamps on opposite sides 

with water flowing through a quartz tube to maximize light transmittance to microbes as illustrated in 
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Figure 8. Some of the materials accounted for included quartz, aluminum, polyethylene, and polyvinyl 

chloride (Appendix Table A 3).78 The mercury UV lamps have a lifespan of 2,000 hours set for this 

studies and varying lifespan has been reported by manufacturers and other studies with some up to 10,000 

hours.79 The unit is modelled to have two mercury lamps that use 30 W of electricity each. It is designed 

based on a flow of 9.46 L∙min-1 with a UV dose of 215 mJ/mc2 .78 In this unit, we incorporated the impact 

of water quality through turbidity on UV light transmittance, UV dose, and detention time. This factor 

influences the energy requirements and potential cost and environmental impacts. The UV lamp was 

assumed to be on for double the time in higher turbidity > 10 NTU to account for the increased retention 

time in water with less UV light transmittance. The extended residence time was also accounted for in the 

unit’s electricity demand. 

 

Figure 8. Visual representation of UV disinfection with mercury lamps. This set-up has water that flows 

through the UV system with two mercury lamps as the source of UV transmission for disinfection. 

Treated water is then stored in a container for use as needed.  
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3.1.4 UV with LED. The last POU technology in this study is UV with LED as the source of disinfection. 

This lights are which are considered more environmentally sustainable as they do not contain mercury 

like the lamps for traditional UV systems do.79 This unit also allows the UV dose to be adjusted and offers 

design flexibility as the UV LEDs can be arranged in different format to achieve better disinfection. The 

design capital materials included quartz, stainless steel, aluminum, and 30 UV LEDs. The unit was 

designed to allow water flow through it in such a way that it is surrounded by arrays of UV LEDs 

separated from the water by a quartz material that allows adequate transmittance of UV lights for 

disinfection. As shown in Figure 9 plan view UV LEDs are set up with 15 on each side of the unit.80 The 

system is set up such that an array of UV LEDs require 23 W of electricity.81 UV LEDs have a life span 

of 10,000 hours. Other study and manufacturers have reported higher lifetime of up to 100,000 hours 

although not certain given that the UV LED is still in a developing stage.79 The data for the UV LED 

system is shown in Appendix Table A 4. The unit is designed to incorporate the influence of water quality 

similar to the unit for UV with mercury lamp. Turbidity of over 10 NTU was assigned a double retention 

time factor, which also impacted electricity demand. 
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Figure 9. Visual representation of the UV disinfection with LEDs. This set-up has water that flows 

through an array of 30 UV LEDs with 15 LEDs on each side to allow adequate UV transmission for 

disinfection.  

 

3.2 Economic analysis 

TEA was leveraged to assess the economic requirements of each POU technology. We accounted 

for capital, operation and maintenance, and energy costs. Discounted cash flow analysis was applied to 

account for future value of money over the technology’s lifespan with a 5% adjusted discount rate on 

average.82 Capital cost covered all the purchases that the units required at start while operation and 

maintenance accounted for cost estimates of all consumables materials and parts that require periodic 

replacements. Energy cost requirements were accounted for depending on the electricity need of each 

unit. It is notable that this requirement does not apply to units without electricity use.  
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The steps for TEA are outlined in Figure 10. The first few steps are to identifying the objective of 

what cost is to be accounted for, the components of the technology, and factors that contributes to cost 

(e.g., cost of UV lamp, labor cost). The next step is to compile the data for cost of each material and how 

often that cost will be applicable for cases of replaceable parts. It is important to note that capital costs are 

also spread out through the analysis period (5 years in the baseline for this study). The next step is to 

identify capital cost (construction) and operation and maintenance cost requirement throughout the 

lifetime of the analysis. We then account for impact of decision variables through design equations and 

algorithms all units (e.g., dose of NaOCl impact on cost).70 The cost analysis was designed to account for 

impacts of water quality from each unit while achieving necessary disinfection efficacy.  

 

Figure 10: Flowchart showing the steps for the TEA framework for detailed economic analysis through 

QSDsan.70 
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3.3 Environmental analysis 

This work utilized LCA to access the environmental impact of all the POU technologies. This 

covered impacts from capital impacts, operation and maintenance, and energy requirements. Impact data 

was obtained from EcoInvent v3.9 database for all the materials and consumables in each unit. Impact 

data was based on the U.S. EPA’s TRACI (Tool for the Reduction and Assessment of Chemicals and 

Other Environmental Impacts).83 The environmental impacts accounted for global warming potential. 

GWP is used as a measure of the carbon dioxide (CO2) emission equivalent to technology’s greenhouse 

gas emission. With CO2 as the reference gas, GWP lets us understand the relationship between the energy 

emitted by a ton of gas absorbed over time and a ton of CO2.  

The steps for LCA in this study are shown in Figure 11. These steps include first setting the goal 

and scope. For our analysis, the goal is to track the environmental impacts of capital as well as operation 

and maintenance requirements of the POU technologies. The inventory analysis is used to account for all 

the materials and their respective weight (kg) (e.g., weight of NaOCl) and other parameters (e.g., units of 

UV lamps) in each POU system.70 Impact assessment for all the identified parameters and materials to 

incorporate their respective GWP values based on the data from ecoinvent.84 The impact items data 

obtained from ecoinvent with the corresponding uncertainties are reported in Appendix Table A 6.  

 

Figure 11: Flowchart showing the steps for performing LCA detailed environmental impacts analysis 

through QSDsan.  
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3.4 Water quality and disinfection efficacy 

To factor in the effect of water quality, surface water and ground water were modelled based on 

parameters and assumptions derived from literature. The indicator microbe to access contamination level 

was E. coli. The algorithms aimed to achieve similar log reduction and disinfection efficacy for all 

systems (i.e., 3 log removal).56 To achieve the set level of efficacy for each system, we accessed the 

required capital materials and consumables based on raw water quality which in turn influences cost and 

environmental impacts. Therefore, the different water quality parameters for groundwater and surface 

water sources serve as the contextual parameters modelled into the systems. For example, groundwater 

source will most likely have hardness due to water dissolves minerals as it moves through rocks.85 Both 

waters have 150,000 – 250,000 CFU/mL of E. coli.10 Note the value for CFU/mL of E. coli can vary. 

Water 1 (a characteristic groundwater) had a turbidity of 1 - 10 NTU and hardness of 60 - 120 mg/L as 

CaCO3. Water 2 (a characteristic surface water) had a turbidity of 10 - 30 NTU and hardness of 0 - 60 

mg/L as CaCO3.86 

3.5 Uncertainty and sensitivity analyses 

Uncertainty was incorporated into all assumptions and data for each parameter by adding a 

variability of 5-25% depending on the data availability and level of confidence. The incorporated 

uncertainties capture variation in the values for all the data points, e.g., fluctuation in materials cost and 

impacts. We executed uncertainty through 10,000 Monte Carlo simulations.87 Sensitivity analysis was 

performed to determine factors and parameters that are key drivers to changes in system’s cost and 

environmental impacts. Specifically, we used the Spearman’s rank correlation coefficients to measure and 

analyze the sensitivity of individual parameters for all units.72 The report of the Spearman’s rank 

coefficients ranges from -1 and 1, where the values towards -1 have a higher negative correlation and a 

positive correlation towards 1 (Figure 12). Here, we report the absolute value for the top five Spearman’s 

rank correlation coefficients (> |0.05|) for total cost and GWP for each technology in each water. The 
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sensitivity analysis can serve as a feedback loop to the QSD framework as it allows developers to identify 

key parameters and assumptions can be changed or adjusted to access how it impacts results. 

Formula for Spearman’s rank correlation coefficient: 

 

Where:  rs = Spearman’s rank correlation, d = difference in ranks, and n = number of data points.  

 

Figure 12: Illustration of Spearman’s rank correlation showing (A) a positive correlation, (B) negative 

correlation, (C) a case with no Spearman’s rank correlation.88 

 

3.6 Impact of technology adoption lifetime 

The baseline assumption was that each technology was used for 5 years. In the next layer of 

analysis, the impact of the POU technology adoption lifetime was evaluated to determine how the cost 

and environmental impact of technologies vary from short to long-term adoption. Depending on the 

context, these technologies may be deployed for a relatively short period (e.g., after extreme weather 

events cause interruption of a centralize water supply) or a longer period (e.g., as a primary treatment 

method in underserved communities). The performance of each technology was simulated by setting the 

use period to 1, 2, 5, 10, and 15 years. Design and process algorithms for each technology were designed 

to account for the change in the use period to obtain the net cost and net GWP for the different length of 

adoption. 

 

 

 

𝒓𝒔 = 𝟏 −
𝟔∑𝐝𝟐

𝐧(𝐧𝟐 − 𝟏)
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Economic and environmental sustainability of POU technologies in varying water quality    

Since the objective of this study is to characterize the sustainability of readily available POU 

technologies, this analysis focused on how water quality may impact cost and environmental impacts. The 

results are reported for all four POU technologies for both water 1 (a characteristic groundwater) and 

water 2 (a characteristic surface water) in (Figure 13). It is notable that this analysis focused on GWP 

exclusively for the LCA since it is a high priority of global sustainability indicatives and has been 

identified as a significant impact indicator in other studies.15,89  

4.1.1 Techno-economic analysis. The economic analysis conducted was done to compare the cost 

effectiveness of deploying each POU technology. The annual per capita cost of each technology is 

reported and separated to capture capital expenses and operational and maintenance expenses as shown in 

Figure 13 a, and b. These costs are reported for each technology for water type 1 and 2.   

The net cost for water type 1 (a characteristic groundwater) for all four POU technologies is 

reported starting with the lowest net cost for AgNP CWF system having a net cost of 0.49 USD·cap-1·yr-1 

as median and a 5th and 95th percentile of 0.43, and 0.55, respectively (Appendix Table A 7). Henceforth, 

the percentiles are reported in brackets after the median for all net values. The next lowest cost was POU 

chlorination with a net cost of 1.34 [0.96 – 1.86] USD·cap-1·yr-1. POU UV (mercury lamp) had a net cost 

of 3.6 [2.88 – 4.44] USD·cap-1·yr-1, and the highest net cost was for UV LED which was 9.45 [7.35 – 

11.57] USD·cap-1·yr-1. The low cost for AgNP CWF can be attributed to the low cost of capital materials 

and production along with low-cost requirements for operation and maintenance. The only consumable 

for AgNP CWFs is the AgNP recoating which is not as frequent compared to the POU chlorination 

system that relies strictly on consumable NaOCl. The relatively low cost for POU chlorine can be 

attributed to the simple materials like 20 L jerrycan and WaterGuard (NaOCl) bottle which cost 0.08 to 

0.33 USD per bottle.90 On the other hand, UV mercury lamp and UV LED require more expensive 



39 

 

 

materials as well as electricity to disinfection water. Comparing the two UV systems, LEDs are more 

expensive than the mercury lamps, although the lifetime of LEDs are higher with lower electricity 

requirements.  

For water type 2 (a characteristic surface water) (Appendix Table A 8), the net cost followed the 

same order from lowest to highest; however, the specific cost estimates were higher for water type 2. Net 

cost for water type 2 starting from lowest to highest were AgNP CWF (0.49 [0.43 – 0.55] USD·cap-1·yr-

1), POU chlorination (2.63 [1.85 – 3.65] USD·cap-1·yr-1), POU UV mercury lamp (3.76 [2.99 – 4.56] 

USD·cap-1·yr-1), and UV LED (9.47 [7.38 – 11.60] USD·cap-1·yr-1). The higher operation and 

maintenance cost associated with water type 2 is due to the need of replaceable parts or consumables. 

These estimates were significantly higher for chlorination and only marginally higher for AgNP CWFs. 

Specifically, water 2 required a higher dose of NaOCl for POU chlorination as a double dose of NaOCl is 

required for higher turbidity.74 For the AgNP CWFs, the lifespan of the AgNP coating was lower for 

water type 2 also due to the turbidity more readily removing the coating and decreasing the lifespan. A 

lower lifespan resulted in more frequent recoating of AgNP. It is notable that the increase in cost for the 

AgNP CWFs was only marginal; where the operation and maintenance cost increased from 0.007 to 0.01 

USD·cap-1·yr-1 from water 1 to water 2, respectively. The turbidity in water 2 required an increase in the 

electricity run time for POU UV mercury lamps and UV LEDs. This increased run time to ensure proper 

disinfection increased electricity costs and resulted in more frequent replacement of the lamps. Although 

the impacts of these additional costs were minimal to the overall costs of the UV mercury lamps and UV 

LEDs. The higher operation and maintenance cost cause the net cost of deploying the POU technologies 

to be higher when treating raw water with similar water quality characteristics to water 1 than that of 

water 2.  
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Figure 13. Estimated cost and environmental impacts of POU technologies. The cost USD·cap-1·yr-1 for 

(a) water type 1, and (b) water type 2 for all POU technologies. The GWP kg CO2 eq·cap-1·yr-1 for (c) 

water type 1 and (d) water type 2. The plots show the cost and environmental impacts on the ordinate and 

the POU technologies on the abscissa. The overall cost and GWP are broken down into capital as well as 

operation and maintenance. The median net values are plotted with the error bars representing the 5th and 

95th percentile. 

   

4.1.2 Life cycle assessment. For the environmental impacts of each technology, GWP in kg CO2 eq·cap-

1·yr-1 was the environmental indicator used. Environmental analysis through LCA was conducted for all 

four POU technologies and for water type 1 and 2 to also access the influence of water quality (Figure 13 
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c, and d). For water type 1, the lowest overall GWP is AgNP CWF estimated to be 0.046 [0.033 – 0.062] 

kg CO2 eq·cap-1·yr-1 followed by POU chlorination at 0.13 [0.098 – 0.16] kg CO2 eq·cap-1·yr-1. Next 

greatest was the UV LED with estimated GWP of 0.74 [0.58 – 0.94] kg CO2 eq·cap-1·yr-1, and the highest 

GWP was estimated for UV mercury lamp at 1.83 [1.39 – 2.42] kg CO2 eq·cap-1·yr-1. The GWP was 

separated for both capital (Appendix Table A 7) (e.g., construction materials) and operation and 

maintenance (e.g., direct emissions from stream items and consumables). For both UV systems, the 

capital materials had more impact on GWP than the operation and maintenance, which was mostly 

electricity and lamp replacement. However, POU chlorination system was also impacted by operation and 

maintenance due to the need for consumable NaOCl. 

For water type 2 (Appendix Table A 8) the estimated GWP from lowest to highest are AgNP 

CWF (0.046 [0.034 – 0.063] kg CO2 eq·cap-1·yr-1), POU chlorination (0.17 [0.14 – 0.21] kg CO2 eq·cap-

1·yr-1), UV LED (1.12 [0.84 – 1.51] kg CO2 eq·cap-1·yr-1), and UV mercury lamp (3.27 [2.41 – 4.44] kg 

CO2 eq·cap-1·yr-1). The estimates of GWP followed similar order of lowest to highest impact for both 

water types. However, due to the impact of water quality on materials requirements (e.g., dose of NaOCl, 

AgNP recoating, and lamp lifetime), the GWP of water type 2 was relatively higher for all POU 

technologies than that of water type 1. These results follow the same trends as described for the TEA of 

water type 2.  

Overall, the cost and environmental impacts of these POU disinfection technologies can be 

directly influenced by water quality. Generally, turbidity in treated water required more consumables for 

each of the technologies to ensure proper disinfection. These consumables can have a direct influence on 

overall sustainability. The requirements for capital along with operation and maintenance maybe help to 

inform the deployment of these POU technologies in various contexts. For example, chlorination relies 

heavily on the supply chain of NaOCl. Whereas the UV systems require readily available electricity. This 

level of our analysis revealed that water type can impact sustainability and requirements of each 

technology may present different opportunities for deployment. 
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4.2 Elucidating drivers of sustainability  

The next level of analysis was to perform sensitivity analysis through Spearman’s rank 

coefficient. This analysis was done for all POU technologies with water type 1 and water type 2 (Figure 

14) to identify key parameters driving the sustainability. The key drivers are listed on the ordinate with 

the corresponding net cost and net GWP for all the POU technologies on the abscissa. The size of the 

circles is used to represent the magnitude of the Spearman’s rank correlation coefficient. The absolute 

value of the correlation is reported between 1 and 0, with 1 having the most influence on the indicator. In 

this study, we are interested in the top key drivers with a Spearman’s rank correlation of > 0.05. In cases 

where the correlation of many parameters is above 0.05, the top 5 parameters are reported.  

4.3.1 Elucidating drivers for net cost. We report key net cost drivers for each technology for water type 1 

and type 2, starting with the parameter with highest influence followed by subsequent key drivers. For 

water type 1 and 2, the key drivers for cost of POU chlorination were dose of NaOCl and price of NaOCl 

(Appendix Table A 9). This result is expected since NaOCl is the main consumable. The drivers for 

AgNP CWF with water type 1 were labor cost, discount rate, bucket cost, lid cost, and spout cost. With 

water type 2, labor cost, discount rate, bucket cost, AgNP, and lid cost. With AgNP CWF the labor cost 

had the greatest impact on cost for both water types. While most of key drivers for cost of the AgNP 

CWF were capital cost, water type 2 also had AgNP as a key driver because this water type required more 

frequent recoating of AgNP (Appendix Table A 10). Key drivers of cost with water type 1 for UV 

mercury lamp were unit cost and discount rate. For water type 2, the key drivers were unit cost, discount 

rate, lamp cost, and lamp lifespan. For water type 2, the lamps were required to be on for more time 

which led to more frequent replacement. The costs of UV LED system with water type 1 and 2 were 

impacted by unit cost and discount rate (Appendix Table A 11 and Table A 12). For both UV systems, a 

driver to their costs were unit costs. These UV systems are inherently a more expensive option compared 

to chlorination and AgNP CWF. However, it is notable that electricity cost did not significantly influence 

the sustainability of the UV systems.  
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Figure 14. Spearman's rank correlation for net cost and GWP for all POU technologies with water type 1 

(a) and water type 2 (b). The key drivers are on the ordinate corresponding with each technology’s cost 

and GWP on the abscissa.  
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4.3.2 Elucidating drivers for GWP. The key drivers of GWP for each technology is reported for water 

type 1 and 2.  The key GWP drivers for POU chlorination with water type 1 were polyethylene (PE) of 

container weight, PE impact factor, NaOCl dose, and NaOCl impact factor. With water type 2, NaOCl 

dose, PE of container weight, PE impact factor, and NaOCl impact factor. It is expected that the NaOCl 

dose influences the environmental impact because it is the main consumable of POU chlorination which 

impacts its maintenance and operation. The 20 L plastic container also had significant impact on LCA of 

POU chlorination system for both water type as a capital component of the system (Appendix Table A 9). 

 For water type 1, AgNP CWF key drivers were PE impact factor, PE in container, and AgNP 

loading. For water type 2, PE impact factor, PE in container, AgNP loading, and AgNP impact factor. 

AgNP loading is the concentration of AgNP on the CWF based on the mass of AgNP applied per filter 

(Appendix Table A 2).66 The component with the highest influence on environmental impact of AgNP 

CWF system was the plastic bucket that holds the water that filters through the CWF. The AgNP coating 

had more influence on water type 2 due to the shorter AgNP lifespan which results in more frequent 

recoating of AgNP with the more turbid water (Appendix Table A 10).   

UV mercury lamp key drivers for water type 1 were UV mercury lamp lifespan, UV mercury 

lamp impact factor, aluminum impact factor, aluminum foil weight, and PE from storage. For water type 

2, the key drivers were UV mercury lamp lifespan, UV mercury lamp impact factor, and aluminum 

impact factor (Appendix Table A 11). The key drivers of the UV mercury lamp system were capital 

requirements and lamp replacement. The UV lamps are key drivers of GWP and can be attributed to the 

lamp’s mercury content and the release of mercury into the environment during disposal considered a 

factor.79 For the UV LED system with water type 1 and 2, the key drivers were LED weight, LED 

lifespan, LED impact factor, stainless steel impact factor, and stainless steel weight (Appendix Table A 

12). Both UV systems had impact of lamp and LED lifespan because of the need for lamp replacement.  
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Overall, the results from the sensitivity analysis highlight how assumptions can impact financial 

and environmental sustainability. The identification of key drivers can also inform technology developers 

about key areas to research in order to improve sustainability. For example, when deploying POU 

chlorination using WaterGuard or similar products as a source of NaOCl, then the desired dose of NaOCl 

will be the most important factor to consider while adjusting for cost and environmental impacts. The cost 

of the AgNP CWF was mostly impacted by labor; therefore, mass production of AgNP CWF may further 

reduce their cost. Generally, the additional required components beyond the ceramic and AgNPs were 

drivers for its sustainability, i.e., the GWP of the plastic containers along with the costs of bucket, lid and 

spout. The highest impact on cost for both UV systems was the unit cost; therefore, it will be beneficial 

for UV POU technologies to explore how they can be developed with a lower price. The negative 

Spearman’s rank correlation of GWP impact of lamp and LED lifespan on GWP shows that an 

improvement in the lifespan can increase environmental sustainability. These key drivers can provide a 

potential pathway for technology developers and manufacturers to improve the sustainability of these 

POU technologies.   

4.3 Short to long-term adoption of POU technologies 

To explore the sustainability of the POU technologies for short to long-term adoption, the impact 

of length of adoption lifetime was explored. The adoption lifetime is the length of time (years) which the 

POU technology is expected to be used for by a household. In some cases, a POU technology may be 

needed for short-term deployment (e.g., disasters intervention). In other cases, it could be deployed 

throughout a community for long-term usage and treatment intervention especially in developing regions. 

For all the POU technologies the cost and environment impacts are reported for 1 to 15 years adoption 

and usage. The median along with the 5th, 25th, 75th, and 95th are reported. Across all POU technologies, 

we observed that the yearly per capita cost (Appendix Table A 13) and environmental impact (Appendix 

Table A 14) decreases as the lifetime increases. Broadly, this trend shows that the technologies are more 

sustainable with long-term adoption and usage. Long-term adoption is more beneficial because as the 
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years go by, the cost and environmental impact of using the technologies is spread out rather than 

investing in the technology and only using it for few years. Although, the reduction in costs and 

environmental impacts with lifetimes varies significantly for the different POU technologies.  

The net cost and GWP for POU chlorination in Figure 15 shows that all values were lower with 

long-term adoption. In short-term adoption of 1 year, the POU chlorination system had a net cost of 1.56 

USD·cap-1·yr-1 and net GWP of 0.46 kg CO2 eq·cap-1·yr-1 for the median estimates. Long-term adoption 

of 15 years has a decreased cost of 1.31 USD·cap-1·yr-1. The magnitude of decrease between the short-

term and long-term adoption net cost for the POU chlorination system is not very drastic. The similar cost 

over the increase in lifetime can be attributed to the continuous need for consumables to run the system 

(i.e., NaOCl). On the other hand, the GWP for 15 years adoption decreases to 0.07 kg CO2 eq·cap-1·yr-1 

from 0.46 kg CO2 eq·cap-1·yr-1 for the 1-year adoption. This reduction in GWP with adoption is because 

the capital requirements of the 20 L jerry can are distributed over the lifetime. If cost is important for a 

particular context, these results reveal that POU chlorination may be a good solution for short-term 

adoption. 
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Figure 15: Impact of short to long-term adoption of POU chlorination on (a) cost and (b) global warming 

potential (GWP).. The cost and GWP are plotted over lifetime (years) of adoption. The median values are 

plotted as the center line, 25th and 75th percentiles are plotted in the shaded region, and 5th and 95th 

percentiles are plotted with the dashed lines. 

 

The AgNP CWF system has lower net cost and GWP than all the other technologies over the 

entire spectrum of adoption length (Figure 16). Specifically, the estimated net cost for a 1-year adoption 

term was 2.20 USD·cap-1·yr-1 and the net GWP was 0.22 kg CO2 eq·cap-1·yr-1. Both the net cost and GWP 

reduced significantly as the years of adoption increased from 1 to 5. And at 15 years, the estimated net 
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cost and GWP were 0.20 USD·cap-1·yr-1 and 0.016 kg CO2 eq·cap-1·yr-1, respectively. Therefore, for both 

short-term and long-term adoption, AgNP CWF system maybe with a viable option. This system has the 

potential to be the most sustainable option to adopt considering both cost and environmental impacts. 

 

Figure 16: Impact of short to long-term adoption of silver nanoparticle enabled ceramic water filters 

(AgNP CWFs) on (a) cost and (b) global warming potential (GWP). The cost and GWP are plotted over 

lifetime (years) of adoption. The median values are plotted as the center line, 25th and 75th percentiles 

are plotted in the shaded region, and 5th and 95th percentiles are plotted with the dashed lines. 
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Both UV systems had a more drastic decline in cost and GWP with an increase in lifetime. This 

finding is due to the high capital requirements of these advanced systems. In other words, the longer the 

term of adoption for these systems allows for the capital requirements to be spread out over a longer 

period of time. Specifically, a 1-year adoption period of UV mercury lamp system had a net cost and 

GWP of 16.35 USD·cap-1·yr-1 and 3.42 kg CO2 eq·cap-1·yr-1, respectively (Figure 17).  These estimates 

reduced significantly after approximately 5 years, with 15 years adoption had a net cost of 1.56 USD·cap-

1·yr-1 and GWP of 1.57 kg CO2 eq·cap-1·yr-1.  
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Figure 17: Impact of short to long-term adoption of UV lamp system on (a) cost and (b) global warming 

potential (GWP). The cost and GWP are plotted over lifetime (years) of adoption. The median values are 

plotted as the center line, 25th and 75th percentiles are plotted in the shaded region, and 5th and 95th 

percentiles are plotted with the dashed lines. 

 

The UV LED system had the highest cost of all the technologies over the entire simulation space 

for adoption period (Figure 18). With 1 year adoption, the UV LED had a net cost of 43.21 USD·cap-1·yr-

1 while 15-year adoption had a net cost was 3.86 USD·cap-1·yr-1. The GWP was 2.17 kg CO2 eq·cap-1·yr-1 

for 1 year adoption and 0.50 kg CO2 eq·cap-1·yr-1 for 15 years. As with the other technologies the values 
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decreased as the years of adoption increase as shown in. These results reveal that it is best to strive for 

long-term adoption when considering the UV systems.  

 

Figure 18: Impact of short to long-term adoption of UV LED system on (a) cost and (b) global warming 

potential (GWP). The cost and GWP are plotted over lifetime (years) of adoption. The median values are 

plotted as the center line, 25th and 75th percentiles are plotted in the shaded region, and 5th and 95th 

percentiles are plotted with the dashed lines. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Study limitations  

This study evaluated sustainability based on cost and environmental impacts. However, other 

sustainability indicators may be considered in the future. Specifically, this study set disinfection efficacy 

to explore cost and environmental impacts. Given a certain cost or environmental matrices constrain, the 

disinfection efficacy of POU technologies can also be evaluated as an indicator for technology selection. 

Additionally, other microorganisms could be considered beyond E. coli for case specific situations, e.g., 

cryptosporidium. Different microbes will require different disinfection efficacy which will impact both 

the type of POU to select, the cost requirement and the environmental impact that will be accumulated. 

For example, chlorination may not be an effective method for some pathogens and other pathogens may 

require longer exposure time to disinfection. Another factor not considered is the potential for disinfection 

byproducts to form, which could be important for systems like POU chlorination. Therefore, 

understanding the potential byproducts associated with each system could be another measure that can 

shape decision making. 

 Some technological parameters and decision variables can also impact the outcome of the 

study. For example, the lamp lifespan for both UV systems can have an impact on the cost and 

environmental impacts, as better outcomes are expected for lamps with higher lifespan. Therefore, 

exploring the lifespans of UV lamps as specified by different manufacturers creates a better understanding 

of the sustainability of these systems. Moreover, the wattage of the UV lamps could also vary, which will 

influence energy requirements. For turbid waters with a high number of particles, pretreatment with 

particle removal might be important. Although the addition of pretreatment options like filtration would 

be an additional unit with more capital requirements, it may have other tradeoffs, e.g., can improve 

disinfection efficiency. Transportation of the water from the source to the household is another factor not 



53 

 

 

considered in this study. For example, if the raw water source is groundwater, considering the cost of well 

construction and groundwater pumping can influence the overall capital and energy requirements.  

5.2 Conclusions  

The QSD framework was leveraged for this study to reveal how POU technologies perform 

against each other in terms of cost and environmental impacts. From the economic analysis, the POU 

technology with the lowest net cost was AgNP CWF and the highest cost was UV LED system, under the 

baseline general set of assumptions. For environmental impacts, the AgNP CWF also had the lowest 

GWP while the UV (mercury lamp) system had the highest environmental impacts, under the baseline 

general set of assumptions. The water quality for water type 2 (which had higher turbidity) had a direct 

impact on the sustainability of these systems especially for operational and maintenance. If the motivation 

for selecting a technology is affordability (e.g., in low-income areas), POU chlorination would be 

appropriate for short-term adoption and AgNP CWF would be appropriate for long-term adoption. If 

GWP is the deciding factor for selecting a technology, AgNP CWF would be appropriate based on the 

reported low environmental impacts, according to the finding of this study. It is notable that the AgNP 

CWF is also easy to use; however, the process of recoating the AgNPs to the CWF will require an expert 

compared to POU chlorination that households can easily use without needing an expert.  

Another major comparison in this study was the sustainability of UV mercury lamps versus UV 

LED. From this study, we estimate that UV LED had the higher cost under all adoption periods. 

However, UV LED had lower environmental impacts compared to UV mercury lamps. The relatively 

high GWP of UV mercury lamps are aligned with other studies and can be attributed to the disposal phase 

of the mercury of the lamps.79 However, due to electricity demand both UV systems would be less 

effective in regions where electricity supply is not adequate or unavailable.  

The disinfection of more turbid water also resulted in higher net GWP for all POU technologies. 

This finding is attributed to more replaceable components or consumables that are required in order to 

achieve adequate disinfection. Overall, these results give an understanding of the potential cost and 



54 

 

 

environmental impacts while deploying a selected POU technology to households with similar water 

quality parameters modeled in this study. It also highlights the importance of technology developers to 

evaluate the impact of different water sources on the sustainability of their systems. It is notable that this 

study is not limited to only the water quality types used here as this framework can be applied to any real-

life water quality. Evaluation of a specific water quality can be completed by updating the raw water data 

and script. 

The sensitivity analysis resulted in an understanding of which of parameters in each POU 

technology are key drivers of the indicators of costs and GWP. Therefore, if these key drivers are 

controllable within a desired range, they can be used to potentially reduce cost and environmental impacts 

where necessary. The key drivers are also influenced by the water quality as some water quality 

parameters may affect the adjustment of these key drivers, e.g., adjusting NaOCl dose which is a key 

driver in POU chlorination to suit the turbidity of the raw water. The sensitivity analysis will in future 

allow for the selection of key drivers for each POU technology and then having a range of input values 

for the drivers to further access the drivers’ individual impacts on the cost and environmental impacts of 

the technologies. 

While this this study focused on four POU technologies that were selected, this framework can be 

adopted to explore other POU technologies including novel and emerging ones that need to be evaluated 

before deploying. This study has the potential to help inform research, development, and deployment of 

POU disinfection technologies. Specifically, decision makers, non-profit organizations, and future 

researchers may use these results and methods to help decide what POU technologies to deploy, while 

considering decision variables, technological variables, and contextual parameters. An important aspect of 

sustainability that can further inform decision making when selecting POU technologies is not only 

limited to economic (cost effectiveness) and performance of technology but the environmental of the 

POU technologies accumulated throughout its lifetime from manufacturing to usage to disposal is vital to 

decision making. Understanding environmental impacts of all stages of the POU technologies and 
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identifying the key drivers (e.g., materials, components) for environmental impacts can help decision 

makers select and deploy eco-friendly systems. 

It is important to note that the results and outcomes for both cost and environmental impacts of 

the POU technologies reported in this study are under a set of assumptions with uncertainty included on 

many of them. The assumptions are based on manufacturer’s recommendations as well as published 

reports and papers. The specific results and outcomes can vary depending on the changes in key 

assumptions and parameters that drive sustainability. Also, the inclusion of additional decision variables, 

contextual parameters, and technological parameters may yield different outcomes, e.g., cost of 

transportation of water from source or pumping energy required for groundwater. The addition of other 

parameters or changes in parameters and assumptions can be incorporated into the future analysis to 

achieve better informed case-specific results. Therefore, this study can serve as a tool for which 

parameters and assumptions can be explored to better decision making in a specific context. The 

framework of this study is available as a blueprint to serve this purpose for future researchers and entities 

interested in understanding the relative sustainability of different POU technologies.  

5.3 Recommendations  

In this study, models and algorithms were developed so that all POU technologies have a 

disinfection efficacy of at least 3 log reduction. In the future of studies, the next criteria for relative 

sustainability for the POU technologies could be to set the model and algorithms to have typical use 

conditions and evaluate the disinfection efficacy across water types. The water types could also be 

modelled based on actual tested water samples in a context of interest to derive the water quality 

parameters that serve as raw water. Other contextual analysis could also be completed with location-

specific data, e.g., price of materials and electricity.  

In this study, the four POU technologies were modeled based on previous research and 

manufacturer’s guidelines. In the future, this developed framework can be expanded to explore 

commercially available POU technologies as well as novel ones. Since the estimates of financial and 
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environmental sustainability rely on assumptions, lab-scale studies on disinfection efficacy of POU 

technologies could be conducted in parallel to gain real-time results. Due to POU chlorination being a 

popular option in many underserved communities, future studies may evaluate other commercially 

available POU chlorination.  

Adoption period was observed to have a drastic impact on the sustainability of the AgNP CWF 

and both UV systems. However, it is unclear if these technologies are guaranteed to survive the long-term 

adoption of 10 to 15 years. Therefore, a need exists to evaluate and improve technologies’ lifetime and 

durability for long-term adoption.  

The most sustainable POU technology option from the findings in this study is AgNP CWF 

because of the relatively low cost and environmental impacts. It is also relatively easy to use and can be 

useful in developing countries and places without adequate electricity. The POU chlorination will be best 

for short-term adoption like distribution of WaterGuard after a disaster. The unit costs of both UV 

systems are key drivers for the high cost. If the UV systems could be made available for lower unit cost, 

then it would be an effective POU for areas where the supply of electricity is guaranteed. Lower unit costs 

would make the UV LED more attractive for deployment because of its already relatively low 

environmental impacts. The results from this study can potentially inform decision makers, non-profit 

organizations, and future research on sustainable approaches to safe drinking water through POU 

technologies. 
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APPENDIX 

DATA FOR TECHNOLOGY AND RAW WATER SCRIPTS 

Table A 1: Data set for the POU chlorination script. The dataset covers materials cost and design 

parameters. Uncertainty is added to the datapoint, and the data source is cited. 

parameter unit expected low high distribution references 

NaOCl _dose mg NaOCl 

/L 

1.87 1.4025 2.3375 uniform 74 

contact_time min 30 22.5 37.5 uniform 74 

container_cost USD 1.6 1.2 2 uniform 91 

container_volume L 20 
  

constant 74 

container_vol L/container 20 
  

constant 74 

NaOCl _cost USD/kg 1.96 1.47 2.45 uniform 9F2 

NaOCl _volume L/bottle 0.15 
  

constant 74 

NaOCl _density kg/L 1.21 
  

constant 92 

Rate_coefficient 3.2185 
  

constant 93 

Intercept 0.0845 
  

constant 93 

PE_in_container kg 0.9 0.675 1.125 uniform 94 

PE_to_ NaOCl KgPE/kgN

aOCl 

0.096 
  

constant  

NaOCl _bottle_mass kg 0.023 0.0172 0.0287 uniform 95 
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Table A 2: Dataset for the AgNP CWF script. The dataset covers materials cost and design parameters. 

Uncertainty is added to the datapoint, and the data source is cited. 

parameter unit expected low high distribution references 

CWF_cost USD 16.68 8 35 triangular 66 

Clay_mass kg 4.7 3.525 5.875 uniform 66 

Sawdust_mass kg 1.3 0.975 1.625 uniform 66 

CWF_water kg 2 1.5 2.5 uniform 66 

AgNP kg/filter 0.000064 9.6E-

06 

0.000096 uniform 66 

Electricity  Mj 0.0324 0.0243 0.0405 uniform 66 

Brush_cost USD 0.4 0.3 0.5 uniform 96 

Wood_mass kg 6.1 4 9.4 triangular 66 

propane kg 0.9 0.55 1.3 triangular 66 

PE_in_container kg 0.9 0.675 1.125 uniform 94 

AgNP_low_lifetime yr 1 0.5 1.5 uniform 97 

AgNP_lifetime yr 3 1.5 4.5 uniform 97 

CWF_clay_cost USD/filter 0.99 0.7425 1.2375 uniform 10 

CWF_grog_cost USD/filter 0.18 0.135 0.225 uniform 10 

CWF_sawdust_cost USD/filter 0.9 0.675 1.125 uniform 10 

CWF_AgNP_cost_old USD/filter 10 7.5 12.5 uniform 10 

CWF_water_cost USD/filter 0.02 0.015 0.025 uniform 10 

CWF_wood_cost USD/filter 0.5 0.375 0.625 uniform 10 

CWF_labor_cost USD/filter 5.53 4.1475 6.9125 uniform 10 

CWF_additional_cost USD/filter 4 3 5 uniform 10 

CWF_AgNP_cost USD/kg 1250 1000 1500 triangular 10 

Argenol_AgNP_content fraction Ag 0.725 0.7 0.75 triangular 98 

CWF_bucket USD 2 1.5 2.5 uniform 10 

CWF_lid USD 1 0.75 1.25 uniform 10 

CWF_spout USD 1 0.75 1.25 uniform 10 

 

  



67 

 

 

Table A 3: Date for the UV mercury lamp system script. The dataset covers materials cost and design 

parameters. Uncertainty is added to the datapoint, and the data source is cited. 

parameter unit expected low high distribution references 

uv_dose mJ/cm2 187 140.25 233.75 uniform 78 

UVT % 95 
  

constant 78 

uv_unit_cost USD 90 67.5 112.5 uniform 78 

uv_flow L/min 9.46 7.095 11.825 uniform 78 

quartz_tube_volume L 1.54 
  

constant 78 

uv_lamp_cost USD 26 19.5 32.5 uniform 78 

lamp_life_span hr 2000 1500 2500 uniform 78 

uv_PVC kg 0.384405 0.288304 0.480507 uniform 78 

uv_aluminum_foil kg 0.391631 0.293723 0.489539 uniform 78 

storage_PE kg/container 0.9 0.675 1.125 uniform 94 

uv_storage_cost USD 1.6 1.2 2 uniform 91 

uv_electric_cost USD/l 0.000015 1.13E-05 1.88E-05 uniform 78 

uv_electric_demand W 30 22.5 37.5 uniform 78 

number_of_uv_lamps number of 

lamps 

2 
  

constant 78 
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Table A 4: Data for the UV LED system script. The dataset covers materials cost and design parameters. 

Uncertainty is added to the datapoint, and the data source is cited. 

parameter unit expected low high distribution references 

UVT % 88 
  

constant 79 

uv_led_unit_cost USD 245 183.75 306 uniform 79 

uv_led_electric_cost USD 0.2 0.15

  

0.25 uniform 79 

uv_led_flow L/min 0.19 0.1425 0.2375 uniform 80 

uv_led_cost USD 26 19.5 32.5 uniform 99 

uv_led_lifespan hr 10000 7500 12500 uniform 79 

uv_led_per_unit 30 
  

constant 80 

uv_led_storage_cost USD 1.6 1.2 2 uniform 91 

uv_led_quartz kg 0.081236 0.060927 0.101546 uniform 80 

StainlessSteel kg 1.328596 0.996447 1.660745 uniform 80 

uv_led_dose mJ/cm2 187 95 215 uniform 80 

led_electricity_demand W 23 11 35 uniform 81 

uv_quartz kg 0.233106 0.17483 0.291383 uniform 80 

uv_led_weight kg 0.0105 0.007875 0.013125 uniform 84  

uv_led_storage_PE kg/container 0.9 0.675 1.125 uniform 94 
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RAW WATER DATA 

Table A 5: Data for the raw water scripts for water types 1 and 2. The dataset covers water quality 

parameters. Uncertainty is added to the datapoint, and the data source is cited. 

 

Water type 1 

parameter unit expected low high distribution references 

E_coli CFU/mg 200000 150000 250000 uniform 10 

Turbidity NTU 5 1 10 uniform 100 

TOC mg/L 5 1 10 uniform 101 

Ca mg/L 30 20 40 uniform 78 

Mg mg/L 30 20 40 uniform 78 

UVT % 80 72 88 uniform 78 

 

Water type 2 

parameter unit expected low high distribution references 

E_coli CFU/mg 200000 150000 250000 uniform 10 

Turbidity NTU 20 10 30 uniform 100 

TOC mg/L 10 5 15 uniform 101 

Ca mg/L 10 1 20 uniform 78 

Mg mg/L 10 1 20 uniform 78 

UVT % 80 72 88 uniform 78 
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ENVIRONMENTAL IMPACT DATA 

Table A 6: Data for the global warming potential assumptions. The GWP impact dataset covers all 

materials accounted for in all the POU technologies and their GWP. Uncertainty is added to each GWP 

datapoint, and the data source is Ecoinvent version 3. 

ID unit expected low high distribution references 

Plastic kg CO2-eq 1.97 1.93 2.01 uniform ecoinvent 3 

StainlessSteel kg CO2-eq 4.33 3.07 5.5 uniform ecoinvent 3 

StainlessSteelSheet kg CO2-eq 4.98 3.65 6.21 uniform ecoinvent 3 

Steel kg CO2-eq 2.55 2.13 3.15 uniform ecoinvent 3 

Wood kg CO2-eq 197 186 208 uniform ecoinvent 3 

PE kg CO2-eq 2.7933 2.094975 3.491625 uniform ecoinvent 3 

PVC kg CO2-eq 2.4204 1.8153 3.0255 uniform ecoinvent 3 

Uvlamp kg CO2-eq 0.98118 0.735885 1.226475 uniform ecoinvent 3 

Aluminum kg CO2-eq 15.106 11.3295 18.8825 uniform ecoinvent 3 

CWFClay kg CO2-eq 0.010238 0.0076785 0.0127975 uniform ecoinvent 3 

SilverNP kg CO2-eq 496.58 372.435 620.725 uniform ecoinvent 3 

Sawdust kg CO2-eq 0.022008 0.016506 0.02751 uniform ecoinvent 3 

Quartz kg CO2-eq 0.035012 0.026259 0.043765 uniform ecoinvent 3 

LED kg CO2-eq 247.43 185.5725 309.175 uniform ecoinvent 3 
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COST AND ENVIRONMENTAL IMPACTS RESULTS 

Table A 7: Cost and environmental impacts of all POU technologies for water type 1. The capital cost and 

impact along with the operation and maintenance is reported. The net cost and GWP is reported for 

median, 5th and 95th percentiles. 

Cost (USD/person/yr) 
   

 
Capital O&M Net Net Net 

 
0.5 0.5 0.5 0.05 0.95 

Chlorination 0.060738 1.283698 1.343758 0.957294 1.858157 

AgNP CWFs 0.478542 0.007487 0.486057 0.427573 0.546768 

UV lamp 3.538284 0.113657 3.651957 2.877123 4.435757 

UV LED 9.418379 0.025355 9.445701 7.350754 11.57297 

GWP (kg CO2 eq/person/yr) 
   

 
Capital O&M Net Net Net 

 
0.5 0.5 0.5 0.05 0.95 

Chlorination 0.082326 0.043595 0.126664 0.098408 0.159651 

AgNP CWFs 0.04575 
 

0.04575 0.033197 0.062311 

UV lamp 1.82893 2.44E-05 1.828954 1.397715 2.419888 

UV LED 0.73728 0.001855 0.739011 0.578779 0.9449 
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Table A 8: For water type 2, Cost and environmental impacts of all POU technologies. The capital cost 

and impact along with the operation and maintenance is reported. The net cost and GWP is reported for 

median, 5th and 95th percentiles. 

Cost (USD/person/yr) 
   

 
Capital O&M Net Net Net 

 
0.5 0.5 0.5 0.05 0.95 

Chlorination 0.060738 2.567396 2.627024 1.853205 3.653796 

AgNP CWFs 0.478542 0.009983 0.48868 0.429612 0.549477 

UV lamp 3.538284 0.227313 3.769893 2.988969 4.555864 

UV LED 9.418379 0.050709 9.472372 7.375421 11.59792 

GWP (kg CO2 eq/person/yr) 
   

 
Capital O&M Net Net Net 

 
0.5 0.5 0.5 0.05 0.95 

Chlorination 0.082326 0.087189 0.171144 0.135583 0.210311 

AgNP CWFs 0.046491 
 

0.046491 0.033819 0.063158 

UV lamp 3.26527 4.87E-05 3.265314 2.412833 4.440827 

UV LED 1.113818 0.003709 1.116961 0.837988 1.507276 
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SPEARMAN’S RANK CORRELATION 

Table A 9: The POU chlorination elucidating drivers of cost and environmental impacts for water type 1 

and 2. 

 

Water type 1  
Element Parameter Annual net cost 

[USD/cap/yr] 

Net emission 

GlobalWarming 

 [kg CO2-eq/cap/yr] 

 

Cost drivers 

POUChlorination-

D2 

POUChlorination na cl O dose [mg 

NaOCl /L] 

0.697672758 0.321712659 

TEA Na cl O price [$/kg] 0.696512422 0.007003118 

 

Environmental Impact drivers 

POUChlorination-

D2 

POUChlorination PE in container [kg] 0.000151108 0.638242064 

LCA PECF [kg CO2-eq/kg] -0.003290513 0.632973612 

POUChlorination-

D2 

POUChlorination na cl O dose [mg 

NaOCl /L] 

0.697672758 0.321712659 

LCA Na cl O CF [kg CO2-eq/kg NaOCl] 0.007432278 0.208663532 

 

Water type 2  

Element Parameter Annual net cost 

[USD/cap/yr] 

Net emission 

GlobalWarming              

[kg CO2-eq/cap/yr] 

 

Cost drivers 

POUChlorination-

D2 

POUChlorination na cl O dose [mg 

NaOCl /L] 

0.698040069 0.546422424 

TEA Na cl O price [$/kg] 0.69670675 0.005211194 

 

Environmental Impact drivers 

    

POUChlorination-

D2 

POUChlorination na cl O dose [mg 

NaOCl /L] 

0.698040069 0.546422424 

POUChlorination-

D2 

POUChlorination PE in container [kg] 0.00013754 0.520873919 

LCA PECF [kg CO2-eq/kg] -0.003282974 0.510566032 

LCA Na cl O CF [kg CO2-eq/kg NaOCl] 0.00733244 0.342606148 

 

  



74 

 

 

Table A 10: The AgNP CWF elucidating drivers of cost and environmental impacts for water type 1 and 

2. 

 

Water type 1 

Element Parameter Annual net cost 

[USD/cap/yr] 

Net emission  

Global Warming  

[kg CO2-eq/cap/yr] 

 

Cost drivers  

    

Ag NP CWF-E2 Ag NP CWF CWF labor cost 

[USD/filter] 

0.845527122 0.010045256 

TEA Discount rate [fraction] 0.297466173 0.008647642 

Ag NP CWF-E2 Ag NP CWF CWF bucket [USD] 0.288301484 -0.012002875 

Ag NP CWF-E2 Ag NP CWF CWF lid [USD] 0.150716757 0.005424618 

Ag NP CWF-E2 Ag NP CWF CWF spout [USD] 0.150511715 -0.012144317 

 

Environmental Impact drivers 

  

LCA PECF [kg CO2-eq/kg] 0.005613189 0.692434037 

Ag NP CWF-E2 Ag NP CWF PE in container [kg] 0.005274619 0.690624295 

Ag NP CWF-E2 Ag NP CWF ag NP [kg/filter] 0.131052888 0.115754665 

 

Water type 2 

Element Parameter Annual net cost 

[USD/cap/yr] 

Net emission  

Global Warming  

[kg CO2-eq/cap/yr] 

 

Cost drivers 

    

Ag NP CWF-E2 Ag NP CWF CWF labor cost 

[USD/filter] 

0.841242361 0.009899368 

TEA Discount rate [fraction] 0.296568487 0.009354402 

Ag NP CWF-E2 Ag NP CWF CWF bucket [USD] 0.28625171 -0.012485334 

Ag NP CWF-E2 Ag NP CWF ag NP [kg/filter] 0.161096169 0.153072101 

Ag NP CWF-E2 Ag NP CWF CWF lid [USD] 0.149791451 0.005405378 

 

Environmental Impact drivers 

  

LCA PECF [kg CO2-eq/kg] 0.005627551 0.688492853 

Ag NP CWF-E2 Ag NP CWF PE in container [kg] 0.005023137 0.686115121 

Ag NP CWF-E2 Ag NP CWF ag NP [kg/filter] 0.161096169 0.153072101 

LCA Silver NPCF [kg CO2-eq/kg] -0.005950382 0.055777106 
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Table A 11: The UV mercury lamp elucidating drivers of cost and environmental impacts for water type 1 

and 2. 

 

Water type 1 

Element Parameter Annual net cost 

[USD/cap/yr] 

Net emission 

GlobalWarming [kg 

CO2-eq/cap/yr] 

 

Cost drivers 

    

POU UV-F2 POU UV uv unit cost [USD] 0.984266068 0.003402151 

TEA Discount rate [fraction] 0.172380557 -0.004251059 

 

Environmental Impact drivers 

  

POU UV-F2 POU UV lamp life span [hr] -0.027884877 -0.692570502 

LCA Uvlamp CF [kg CO2-eq/kg] 0.013095629 0.68549558 

LCA Aluminum CF [kg CO2-eq/kg] 0.001546707 0.093446362 

POU UV-F2 POU UV uv aluminum foil [kg] -0.016709272 0.080701604 

POU UV-F2 POU UV storage PE [kg/container] 0.018578889 0.057378977 

 

Water type 2 

Element Parameter Annual net cost 

[USD/cap/yr] 

Net emission 

GlobalWarming [kg 

CO2-eq/cap/yr] 

 

Cost drivers 

    

POU UV-F2 POU UV uv unit cost [USD] 0.981071005 0.003788621 

TEA Discount rate [fraction] 0.171528522 -0.003297773 

POU UV-F2 POU UV uv lamp cost [USD] 0.068916114 0.006925562 

POU UV-F2 POU UV lamp life span [hr] -0.060013704 -0.699861973 

 

Environmental Impact drivers 

  

POU UV-F2 POU UV lamp life span [hr] -0.060013704 -0.699861973 

LCA Uvlamp CF [kg CO2-eq/kg] 0.013228547 0.694485695 

LCA Aluminum CF [kg CO2-eq/kg] 0.001839643 0.049623777 
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Table A 12: The UV LED system elucidating drivers of cost and environmental impacts for water type 1 

and 2. 

 

Water type 1 

Element Parameter Annual net cost 

[USD/cap/yr] 

Net emission 

GlobalWarming  

[kg CO2-eq/cap/yr] 

 

Cost drivers 

    

UV LED-G2 UV LED uv led unit cost [USD] 0.986385591 -0.00658818 

TEA Discount rate [fraction] 0.144093629 0.006110942 

 

Environmental impact drivers 

  

UV LED-G2 UV LED uv led weight [kg] 0.00565815 0.49189166 

UV LED-G2 UV LED uv led lifespan [hr] 0.006995662 -0.487656131 

LCA LEDCF [kg CO2-eq/kg] 0.003151922 0.482832808 

LCA Stainless steel CF [kg CO2-eq/kg] -0.010684992 0.269847466 

UV LED-G2 UV LED stainless steel [kg] 0.001132612 0.239248612 

 

Water type 2 

Element Parameter Annual net cost 

[USD/cap/yr] 

Net emission 

GlobalWarming  

[kg CO2-eq/cap/yr] 

 

Cost drivers 

    

UV LED-G2 UV LED uv led unit cost [USD] 0.986379275 -0.004820943 

TEA Discount rate [fraction] 0.144046078 0.004267631 

 

Environmental impact drivers 

  

UV LED-G2 UV LED uv led weight [kg] 0.005668012 0.546357919 

UV LED-G2 UV LED uv led lifespan [hr] 0.004588971 -0.54177728 

LCA LEDCF [kg CO2-eq/kg] 0.003124014 0.536282638 

LCA Stainless steel CF [kg CO2-eq/kg] -0.010719161 0.143617873 

UV LED-G2 UV LED stainless steel [kg] 0.001146859 0.128025071 
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IMPACT OF LIFETIME (SHORT-TERM AND LONG-TERM ADOPTION) 

Table A 13:  Short to long-term adoption of POU technologies impact on net cost. The median, 5th, 25th, 

75th, and 95th percentiles are reported. 

POU chlorination Cost (USD/person/yr) 

Lifetime (years) 0.05 0.25 0.5 0.75 0.95 

1 1.167956 1.388022 1.561561 1.772851 2.082073 

2 1.038692 1.25249 1.426285 1.634991 1.942223 

5 0.957294 1.170626 1.343758 1.55265 1.858157 

10 0.93021 1.14378 1.316783 1.526758 1.83073 

15 0.921689 1.135221 1.308121 1.518093 1.821344 

            

AgNP CWF Cost (USD/person/yr) 

Lifetime (years) 0.05 0.25 0.5 0.75 0.95 

1 1.947508 2.0808 2.203011 2.326258 2.460089 

2 0.997073 1.066429 1.129416 1.192501 1.262561 

5 0.427573 0.458845 0.486057 0.513403 0.546768 

10 0.236753 0.256693 0.272871 0.28923 0.311387 

15 0.173296 0.189769 0.202838 0.216246 0.235739 

            

UV mercury lamp Cost (USD/person/yr) 

Lifetime (years) 0.05 0.25 0.5 0.75 0.95 

1 12.82011 14.38766 16.35056 18.31724 19.86041 

2 6.606427 7.414023 8.412404 9.420827 10.20473 

5 2.877123 3.232014 3.651957 4.085377 4.435757 

10 1.631513 1.840713 2.081569 2.31473 2.544622 

15 1.2165 1.3846 1.560699 1.735407 1.932872 

            

UV LED Cost (USD/person/yr) 

Lifetime (years) 0.05 0.25 0.5 0.75 0.95 

1 33.63525 37.93089 43.20641 48.52585 52.79409 

2 17.20528 19.40444 22.08831 24.8093 26.99849 

5 7.350754 8.296213 9.445701 10.58933 11.57297 

10 4.056335 4.611002 5.244675 5.880415 6.507177 

15 2.96248 3.397293 3.867497 4.331567 4.870263 
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Table A 14: Short to long-term adoption of POU technologies impact on net GWP. The median, 5th, 25th, 

75th, and 95th percentiles are reported. 

POU chlorination GWP (kg CO2 eq/person/yr) 

Lifetime (years) 0.05 0.25 0.5 0.75 0.95 

1 0.330578 0.399723 0.455509 0.522494 0.614061 

2 0.186032 0.221151 0.250095 0.283514 0.329669 

5 0.098408 0.113994 0.126664 0.14037 0.159651 

10 0.067791 0.077458 0.085572 0.09361 0.105155 

15 0.05679 0.064869 0.071655 0.078356 0.087766 

            

AgNP CWF GWP (kg CO2 eq/person/yr) 

Lifetime (years) 0.05 0.25 0.5 0.75 0.95 

1 0.157783 0.193295 0.220028 0.254218 0.302395 

2 0.079969 0.097689 0.111123 0.128198 0.152416 

5 0.033197 0.040327 0.04575 0.052687 0.062311 

10 0.01761 0.021158 0.023995 0.027507 0.032418 

15 0.012299 0.014742 0.016756 0.019109 0.022461 

            

UV mercury lamp GWP (kg CO2 eq/person/yr) 

Lifetime (years) 0.05 0.25 0.5 0.75 0.95 

1 2.816548 3.15747 3.423061 3.709218 4.134955 

2 1.953647 2.215276 2.426826 2.674541 3.040913 

5 1.397715 1.63134 1.828954 2.064684 2.419888 

10 1.206399 1.436591 1.632646 1.86229 2.220406 

15 1.142566 1.368958 1.566765 1.796176 2.154193 

            

UV LED GWP (kg CO2 eq/person/yr) 

Lifetime (years) 0.05 0.25 0.5 0.75 0.95 

1 1.731573 1.98275 2.174308 2.378709 2.675004 

2 1.022558 1.168171 1.280341 1.395218 1.56914 

 5 0.578779 0.66801 0.739011 0.814605 0.9449 

10 0.418115 0.493619 0.557698 0.629401 0.752532 

15 0.362228 0.434611 0.497143 0.567332 0.690498 
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POU CHLORINATION SCRIPT 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

''' 

QSDsan: Quantitative Sustainable Design for sanitation and resource recovery systems 

Copyright (C) 2020, Quantitative Sustainable Design Group 

This module is developed by: 

    Bright Elijah <be05055@georgiasouthern.edu & brightcarlelijah@gmail.com> 

Department of Civil Engineering and Construction 

Georgia Southern University 

This module is under the University of Illinois/NCSA Open Source License. 

Please refer to https://github.com/QSD-Group/QSDsan/blob/master/LICENSE.txt 

for license details. 

''' 

# %% 

import numpy as np 

from qsdsan import SanUnit, Construction 

from qsdsan.utils.loading import load_data, data_path 

from qsdsan.sanunits._decay import Decay 

import os 

from math import ceil, pi 

from . import Decay 

from .. import SanUnit, Construction 

from ..utils import ospath, load_data, data_path 

 

__all__ = ('POUChlorination',) 

#path to csv with all the inputs 

#data_path += '\sanunit_data/_pou_chlorination.tsv' 

poucl_path = ospath.join(data_path, 'sanunit_data/_pou_chlorination.csv') 

class POUChlorination(SanUnit): 

    '''mh  
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    Point of use water treatment technology: Desinfection through chlorination 

    Reference documents 

    -------------------  

    Hussein, M.; Brown, J.; Njee, R. M.; Clasen, T.; Malebo, H. M.; Mbuligwe, S. Point-of-Use 

Chlorination of Turbid Water: Results from a Field Study in Tanzania. Journal of Water and Health 2015, 

13 (2), 544–552. http://dx.doi.org/10.2166/wh.2014.001 

    Tamene, A. A Qualitative Analysis of Factors Influencing Household Water Treatment Practices 

Among Consumers of Self-Supplied Water in Rural Ethiopia. Risk Management and Healthcare Policy 

2021, 14, 1129–1139. https://doi.org/10.2147/RMHP.S299671. 

    Parameters 

    ---------- 

    ins : Raw water  

        Chlorine  

    outs : Treated water    

    '' 

    def __init__(self, ID='', ins=None, outs=(), thermo=None, init_with='WasteStream', 

number_of_households=1, **kwargs,): 

        SanUnit.__init__(self, ID, ins, outs, thermo, init_with) 

        self.number_of_households = number_of_households 

# load data from tsv each name will be self.name   

        data = load_data(path=poucl_path) 

        for para in data.index: 

            value = float(data.loc[para]['expected']) 

            setattr(self, para, value) 

        del data 

        for attr, value in kwargs.items(): 

            setattr(self, attr, value) 

# define the number of influent and effluent streams     

    _N_ins = 3 

    _N_outs = 1 

# in _run: define influent and effluent streams and treatment processes  

    def _run(self): 

        raw_water, chlorine, Cl_bottle = self.ins 
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        treated_water = self.outs[0]   

        # give treated water all the properties and cmps of raw water 

        # these will be changed below 

        treated_water.copy_like(self.ins[0]) 

        chlorine.phase = 'l' 

        Cl_bottle.phase = 's'      

        # add chlorine to the treated_water 

        #breakpoint() 

        if raw_water.turbidity <= 10: 

            pass 

        elif raw_water.turbidity > 10: 

            self. NaOCl _dose *= 2 

        chlorine.imass[' NaOCl '] = self. NaOCl _dose * treated_water.F_vol / 1000 # kg NaOCl /hr 

        self.chlorine_rate = chlorine.imass[' NaOCl '] 

        Cl_bottle.imass['Polyethylene'] = chlorine.imass[' NaOCl '] * self.PE_to_ NaOCl 

        # disinfect bacteria from treated_water 

        Cl_Concentration = self. NaOCl_dose #mg/L 

        No = raw_water.imass['Ecoli']/raw_water.F_vol * 10**-4  # E coli CFU/ mL ICC/ml (intact cells 

counts) used by (Cheswick et al., 2020)   

    #_design will include all the construction or captial impacts   

    def _design(self): 

        design = self.design_results  

        # defining the quantities of materials/items 

        # note that these items are in the _impacts_items.xlsx data 

        design['PE'] = Container = self.number_of_households * self.PE_in_container 

        self.construction = ( 

            Construction(item='PE', quantity = Container, quantity_unit = 'kg'), 

            ) 

        self.add_construction(add_cost=False)      

    #_cost based on amount of steel and stainless plus individual components 

    def _cost(self): 

        #purchase_costs is used for capital costs 
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        #can use quantities from above (e.g., self.design_results['StainlessSteel']) 

        #can be broken down as specific items within purchase_costs or grouped (e.g., 'Misc. parts') 

        self.baseline_purchase_costs['WaterContainer'] = (self.container_cost)*self.number_of_households 

        self.F_BM = dict.fromkeys(self.baseline_purchase_costs.keys(), 1) 

 

        #certain parts need to be replaced based on an expected lifefime 

        #the cost of these parts is considered along with  the cost of the labor to replace them 
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AGNP CWF SCRIPT 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

''' 

QSDsan: Quantitative Sustainable Design for sanitation and resource recovery systems 

Copyright (C) 2020, Quantitative Sustainable Design Group 

This module is developed by: 

    Bright Elijah <be05055@georgiasouthern.edu> 

Department of Civil Engineering and Construction 

Georgia Southern University 

This module is under the University of Illinois/NCSA Open Source License. 

Please refer to https://github.com/QSD-Group/QSDsan/blob/master/LICENSE.txt 

for license details. 

''' 

# %% 

import numpy as np 

from qsdsan import SanUnit, Construction 

from qsdsan.utils.loading import load_data, data_path 

from qsdsan.sanunits._decay import Decay 

import os 

 

from math import ceil, pi 

#from . import Decay 

#from .. import SanUnit, Construction 

from ..utils import ospath, load_data, data_path 

 

__all__ = ('AgNP_CWF',) 

#path to csv with all the inputs 

#data_path += '\sanunit_data/_pou_chlorination.tsv' 

agnp_path = ospath.join(data_path, 'sanunit_data/_AgNP_CWF_2.csv') 

class AgNP_CWF(SanUnit): 
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    '''mh  

    Point of use water treatment technology: Desinfection through Silver Nanoparticles 

    Reference documents 

    -------------------  

 Iii, R.; Stetson, L. Socially Embedded and Sustained Point-of-Use Disinfection : Enhancing Silver 

Nanoparticle Enabled Ceramic Water Filters with a Navajo Pottery Technique. Thesis, 2020. 

https://doi.org/10.26153/tsw/13860. 

  

Mikelonis, A. M.; Rowles, L. S.; Lawler, D. F. The Effects of Water Chemistry on the Detachment and 

Dissolution of Differently Stabilized Silver Nanoparticles from Ceramic Membranes. Environ. Sci.: 

Water Res. Technol. 2020, 6 (5), 1347–1356. https://doi.org/10.1039/C9EW01141B.    

    

 Parameters 

    ---------- 

    ins : Raw water  

          AgNP 

    outs : Treated water   

    ''' 

 

    def __init__(self, ID='', ins=None, outs=(), thermo=None, init_with='WasteStream', 

number_of_households=1, **kwargs,): 

        SanUnit.__init__(self, ID, ins, outs, thermo, init_with) 

        self.number_of_households = number_of_households 

        data = load_data(path=agnp_path) 

        for para in data.index: 

            value = float(data.loc[para]['expected']) 

            setattr(self, para, value) 

        del data 

        for attr, value in kwargs.items(): 

            setattr(self, attr, value) 

    _N_ins = 1 

    _N_outs = 1 

# in _run: define influent and effluent streams and treatment processes  
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    def _run(self): 

        raw_water,  = self.ins 

        treated_water = self.outs[0] 

 

        # give treated water all the properties and cmps of raw water 

        # these will be changed below 

        treated_water.copy_like(self.ins[0]) 

         

        #set the equation for log reduction following the Chick Watson Kinetic Model for log removal. 

Log(N/No) = -K*co*t 

        #This was adopted from <https://pubs.acs.org/doi/full/10.1021/es4026084> 

        #Here the log reduction value was set in the san sunit data (this wil be improved to accomodate 

changes in the raw water quality) 

        No = raw_water.imass['Ecoli']/raw_water.F_vol * 10**-4  # E coli CFU/ mL ICC/ml (intact cells 

counts) used by (Cheswick et al., 2020) 

        log_reduction = self.log_reduction_cwf 

        log_N = log_reduction + np.log10(No) #CFU/mL 

        N = 10**(log_N) 

        #set conditional statement for simulation to capture the impact of raw water quality parameters 

        self.hardness = raw_water.imass['Ca'] + raw_water.imass['Mg']  

        if raw_water._turbidity <= 10 and self.hardness <= 60: 

            self.AgNP_lifetime = 2 

        elif raw_water._turbidity > 10 or self.hardness > 60: 

            self.AgNP_lifetime = 1.5 

        elif raw_water._turbidity > 10 and self.hardness > 60: 

            self.AgNP_lifetime = 0.5            

    #_design will include all the construction or captial impacts   

    def _design(self): 

        design = self.design_results 

        # defining the quantities of materials/items 

        # note that these items to be to be in the _impacts_items.xlsx 

        design['CWFClay'] = CWF_clay = self.number_of_households * self.Clay_mass 
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        design['SilverNP'] =  AgNP = self.number_of_households * self.AgNP 

        design['Sawdust'] =  Sawdust = self.number_of_households *self.Sawdust_mass 

        design['PE'] = Container = self.number_of_households * self.PE_in_container/2 

 

        self.construction = ( 

            Construction(item='CWFClay', quantity = CWF_clay, quantity_unit = 'kg'), 

            Construction(item='SilverNP', quantity = AgNP, quantity_unit = 'kg', lifetime = 

self.AgNP_lifetime, lifetime_unit='yr'), 

            Construction(item='Sawdust', quantity = Sawdust, quantity_unit = 'kg'), 

            Construction(item='PE', quantity = Container, quantity_unit = 'kg') 

            ) 

        self.add_construction(add_cost=False) 

       

    #_cost based on amount of steel and stainless plus individual components 

    def _cost(self):       

        #purchase_costs is used for capital costs 

        #can use quantities from above (e.g., self.design_results['StainlessSteel']) 

        #can be broken down as specific items within purchase_costs or grouped (e.g., 'Misc. parts') 

 

        self.baseline_purchase_costs['brush'] = (self.Brush_cost)*self.number_of_households 

        self.baseline_purchase_costs['clay'] = (self.CWF_clay_cost)*self.number_of_households 

        self.baseline_purchase_costs['grog'] = (self.CWF_grog_cost)*self.number_of_households 

        self.baseline_purchase_costs['sawdust'] = (self.CWF_sawdust_cost)*self.number_of_households 

        self.baseline_purchase_costs['water'] = (self.CWF_water_cost)*self.number_of_households 

        self.baseline_purchase_costs['wood'] = (self.CWF_wood_cost)*self.number_of_households 

        self.baseline_purchase_costs['labor'] = (self.CWF_labor_cost)*self.number_of_households 

        self.baseline_purchase_costs['AgNP'] = 

(self.CWF_AgNP_cost*self.AgNP/self.Argenol_AgNP_content)*self.number_of_households 

        self.baseline_purchase_costs['Bucket'] = (self.CWF_bucket)*self.number_of_households 

        self.baseline_purchase_costs['Lid'] = (self.CWF_lid)*self.number_of_households 

        self.baseline_purchase_costs['Spout'] = (self.CWF_spout)*self.number_of_households 
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        self.F_BM = dict.fromkeys(self.baseline_purchase_costs.keys(), 1) 

                 

        #certain parts need to be replaced based on an expected lifefime 

        #the cost of these parts is considered along with  the cost of the labor to replace them 

        # USD/yr 

        replacement_cost = (self.CWF_AgNP_cost*self.AgNP/self.Argenol_AgNP_content) * 

self.number_of_households / self.AgNP_lifetime 

         

        #self.add_OPEX = self.chlorine_rate / self. NaOCl _density / self.container_vol * 

self.operator_refill_cost  # USD/hr (all items are per hour) 

        self.add_OPEX = replacement_cost / (365*24) 
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UV MERCURY LAMP SCRIPT 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

''' 

QSDsan: Quantitative Sustainable Design for sanitation and resource recovery systems 

Copyright (C) 2020, Quantitative Sustainable Design Group 

This module is developed by: 

    Bright Elijah <be05055@georgiasouthern.edu & brightcarlelijah@gmail.com> 

Department of Civil Engineering and Construction 

Georgia Southern University 

This module is under the University of Illinois/NCSA Open Source License. 

Please refer to https://github.com/QSD-Group/QSDsan/blob/master/LICENSE.txt 

for license details. 

 

''' 

# %% 

import numpy as np 

from qsdsan import SanUnit, Construction 

from qsdsan.utils.loading import load_data, data_path 

from qsdsan.sanunits._decay import Decay 

import os 

from math import ceil, pi 

#from . import Decay 

from .. import SanUnit, Construction 

from ..utils import ospath, load_data, data_path 

__all__ = ('POU_UV',) 

#path to csv with all the inputs 

#data_path += '\sanunit_data/_pou_chlorination.tsv' 

pou_uv_path = ospath.join(data_path, 'sanunit_data/_pou_uv.csv') 

 

class POU_UV(SanUnit): 
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    '''mh  

    Point of use water treatment technology: Desinfection through POU UV 

    Reference documents 

    -------------------  

Younis, B. A.; Mahoney, L. E.; Yao, S. Field Evaluation of a Novel UV Water Disinfection System for Use in 

Underserved Rural Communities. Water environment research : a research publication of the Water 

Environment Federation 2018, 91 (1), 75–82. https://doi.org/10.2175/106143017x15131012188141. 

    Parameters 

    ---------- 

    ins : Raw water      

    outs : Treated water 

    ---------- 

    .. N/A 

     

    ''' 

    def __init__(self, ID='', ins=None, outs=(), thermo=None, init_with='WasteStream', 

number_of_households=1, **kwargs,): 

        SanUnit.__init__(self, ID, ins, outs, thermo, init_with) 

        self.number_of_households = number_of_households 

# load data from tsv each name will be self.name   

        data = load_data(path=pou_uv_path) 

        for para in data.index: 

            value = float(data.loc[para]['expected']) 

            setattr(self, para, value) 

        del data 

        for attr, value in kwargs.items(): 

            setattr(self, attr, value) 

# define the number of influent and effluent streams   

# There is one influent streams which is the raw water (from the raw water san unit) 

# The effluent stream is the treated water 

    _N_ins = 1 

    _N_outs = 1 

# in _run: define influent and effluent streams and treatment processes  
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    def _run(self): 

      

        raw_water,  = self.ins 

        treated_water = self.outs[0] 

        # give treated water all the properties and cmps of raw water 

        # these will be changed below 

        treated_water.copy_like(self.ins[0]) 

        if raw_water.F_vol > (self.uv_flow*60): 

        self.run_time = raw_water.F_vol/(self.uv_flow*60) 

        No = raw_water.imass['Ecoli']/raw_water.F_vol * 10**-4  # E coli CFU/ mL ICC/ml (intact cells 

counts) used by (Cheswick et al., 2020) 

        #set the equation for log reduction following the Chick Watson Kinetic Model for log removal. 

Log(N/No) = -K*co*t 

        #This was adopted from <https://escholarship.org/uc/item/3p76b9gb> 

        # Chatterley, C.; Linden, K. Demonstration and Evaluation of Germicidal UV-LEDs for Point-of-

Use Water Disinfection. Journal of Water and Health 2010, 8 (3), 479–486. 

https://doi.org/10.2166/wh.2010.124. 

        #Here the log reduction value was set in the san sunit data 

        log_removal =  self.uv_slope*self.uv_dose + self.uv_intercept 

        log_N = log_removal + np.log10(No) #CFU/mL 

        N = 10**(log_N) 

        #set conditional statement for simulation to capture the impact of raw water quality parameters 

        if raw_water._turbidity <= 10: 

            self.lamp_lifespan_factor = 1 

        elif raw_water._turbidity > 10: 

            self.lamp_lifespan_factor = 0.5 

        self.lamp_life_span *= self.lamp_lifespan_factor   

              

    #_design will include all the construction or captial impacts   

    def _design(self): 

        design = self.design_results 

        # defining the quantities of materials/items 

        # note that these items to be to be in the _impacts_items.xlsx 
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        design['PE'] = uv_storage = self.number_of_households * self.storage_PE*2 

        design['PVC'] = uv_pvc = self.number_of_households * self.uv_PVC  

        design['Uvlamp'] = uv_lamp_mecury = self.number_of_households * self.number_of_uv_lamps 

        design['Aluminum'] =  uv_aluminum_foil = self.number_of_households * self.uv_aluminum_foil 

 

        self.construction = ( 

            Construction(item='PE', quantity = uv_storage, quantity_unit = 'kg'), 

            Construction(item='PVC', quantity = uv_pvc, quantity_unit = 'kg'), 

            Construction(item='Uvlamp', quantity = uv_lamp_mecury, quantity_unit = 'kg', lifetime = 

(self.lamp_life_span ), lifetime_unit='hr'), 

            Construction(item='Aluminum', quantity = uv_aluminum_foil, quantity_unit = 'kg') 

            ) 

        self.add_construction(add_cost=False) 

    #_cost based on amount of steel and stainless plus individual components 

    def _cost(self): 

        #purchase_costs is used for capital costs 

        #can use quantities from above (e.g., self.design_results['StainlessSteel']) 

        #can be broken down as specific items within purchase_costs or grouped  

 

        self.baseline_purchase_costs['uv_unit'] = (self.uv_unit_cost)*self.number_of_households 

        self.baseline_purchase_costs['uv_storage'] = (self.uv_storage_cost*2)*self.number_of_households 

        self.add_OPEX['uvlamp'] = (self.uv_lamp_cost/(self.lamp_life_span))  

                  

        self.F_BM = dict.fromkeys(self.baseline_purchase_costs.keys(), 1) 

        power_demand = (self.uv_electric_demand / 1000) * self.run_time / self.lamp_lifespan_factor 

        self.power_utility(power_demand) 

         

        #certain parts need to be replaced based on an expected lifefime 

        #the cost of these parts is considered along with the cost of the labor to replace them 
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UV LED SCRIPT 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

''' 

QSDsan: Quantitative Sustainable Design for sanitation and resource recovery systems 

Copyright (C) 2020, Quantitative Sustainable Design Group 

This module is developed by: 

    Bright Elijah <be05055@georgiasouthern.edu & brightcarlelijah@gmail.com> 

Department of Civil Engineering and Construction 

Georgia Southern University 

This module is under the University of Illinois/NCSA Open Source License. 

Please refer to https://github.com/QSD-Group/QSDsan/blob/master/LICENSE.txt 

for license details. 

 

''' 

# %% 

import numpy as np 

from qsdsan import SanUnit, Construction 

from qsdsan.utils.loading import load_data, data_path 

from qsdsan.sanunits._decay import Decay 

import os 

from math import ceil, pi 

#from . import Decay 

from .. import SanUnit, Construction 

from ..utils import ospath, load_data, data_path 

 

__all__ = ('UV_LED',) 

 

#path to csv with all the inputs 

#data_path += '\sanunit_data/_pou_chlorination.tsv' 

uv_led_path = ospath.join(data_path, 'sanunit_data/_uv_led.csv') 
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class UV_LED(SanUnit): 

    '''mh  

    Point of use water treatment technology: Desinfection through UV LED 

    Reference documents 

    -------------------  

  Chatterley, C.; Linden, K. Demonstration and Evaluation of Germicidal UV-LEDs for Point-of-Use 

Water Disinfection. Journal of Water and Health 2010, 8 (3), 479–486. 

https://doi.org/10.2166/wh.2010.124. 

   

  Jenny, R. M.; Simmons, O. D.; Shatalov, M.; Ducoste, J. J. Modeling a Continuous Flow Ultraviolet 

Light Emitting Diode Reactor Using Computational Fluid Dynamics. Chemical Engineering Science 

2014, 116, 524. 

   

  Point-of-use water disinfection using ultraviolet and visible light-emitting diodes - PubMed. 

https://pubmed.ncbi.nlm.nih.gov/26967007/ (accessed 2023-02-13). 

   

  Parameters 

    ---------- 

    ins : Raw water  

         

    outs : Treated water     

    ''' 

 

    def __init__(self, ID='', ins=None, outs=(), thermo=None, init_with='WasteStream', 

number_of_households=1, **kwargs,):     

        SanUnit.__init__(self, ID, ins, outs, thermo, init_with) 

        self.number_of_households = number_of_households 

 

# load data from tsv each name will be self.name   

        data = load_data(path = uv_led_path) 

        for para in data.index: 

            value = float(data.loc[para]['expected']) 

            setattr(self, para, value) 
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        del data 

        for attr, value in kwargs.items(): 

            setattr(self, attr, value) 

 

# define the number of influent and effluent streams   

# There is one influent streams which is  the raw water (from the raw water san unit) 

# The effluent stream is the treated water 

    _N_ins = 1 

    _N_outs = 1 

# in _run: define influent and effluent streams and treatment processes  

    def _run(self): 

        raw_water,  = self.ins 

        treated_water = self.outs[0] 

        # Give treated water all the properties and cmps of raw water 

        # These will be changed below 

        treated_water.copy_like(self.ins[0]) 

 

        No = raw_water.imass['Ecoli']/raw_water.F_vol * 10**-4  # E coli CFU/ mL ICC/ml (intact cells 

counts) used by (Cheswick et al., 2020) 

        #set the equation for log reduction following the Chick Watson Kinetic Model for log removal. 

Log(N/No) = -K*co*t 

        #This was adopted from <https://pubmed.ncbi.nlm.nih.gov/26179637/> 

        # Chatterley, C.; Linden, K. Demonstration and Evaluation of Germicidal UV-LEDs for Point-of-

Use Water Disinfection. Journal of Water and Health 2010, 8 (3), 479–486. 

https://doi.org/10.2166/wh.2010.124. 

        #Here the log reduction value was set in the san sunit data 

 

        log_removal =  self.uv_led_slope*self.uv_led_dose + self.uv_led_intercept 

        log_N = log_removal + np.log10(No) #CFU/mL 

        N = 10**(log_N) 

 

        #set conditional statement for simulation to capture the impact of raw water quality parameters 
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        if raw_water._turbidity <= 10: 

            self.led_lifespan_factor = 1 

        elif raw_water._turbidity > 10: 

            self.led_lifespan_factor = 0.5 

             

        self.uv_led_lifespan *= self.led_lifespan_factor 

         

         

        if raw_water.F_vol > (self.uv_led_flow*60): 

        

        self.run_time = raw_water.F_vol/(self.uv_led_flow*60) 

    #_design will include all the construction or captial impacts   

    def _design(self): 

        design = self.design_results 

        # defining the quantities of materials/items 

        # note that these items to be to be in the _impacts_items.xlsx 

        design['Quartz'] = uv_led_quartz = self.number_of_households * self.uv_quartz 

        design['PE'] = uv_led_storage = self.number_of_households * self.uv_led_storage_PE*2 

        design['StainlessSteel'] =  uv_led_steel = self.number_of_households * self.StainlessSteel 

        design['LED'] = uv_led = self.number_of_households * self.uv_led_weight 

 

        self.construction = ( 

            Construction(item='Quartz', quantity = uv_led_quartz, quantity_unit = 'kg'), 

            Construction(item='PE', quantity = uv_led_storage, quantity_unit = 'kg'), 

            Construction(item='StainlessSteel', quantity = uv_led_steel, quantity_unit = 'kg'), 

            Construction(item='LED', quantity = uv_led, quantity_unit = 'kg', lifetime = 

(self.uv_led_lifespan), lifetime_unit='hr'), 

            ) 

        self.add_construction(add_cost=False) 

         

    def _cost(self): 

        #purchase_costs is used for capital costs 
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        #can use quantities from above (e.g., self.design_results['StainlessSteel']) 

        #can be broken down as specific items within purchase_costs or grouped  

 

        self.baseline_purchase_costs['uv_led_unit'] = (self.uv_led_unit_cost)*self.number_of_households 

        self.baseline_purchase_costs['uv_led_storage'] = 

(self.uv_led_storage_cost*2)*self.number_of_households 

        #self.baseline_purchase_costs['uv_pump'] = (self.uv_led_pump_cost)*self.number_of_households 

        self.add_OPEX['LED'] = (self.uv_led_cost/(self.uv_led_lifespan))  

          

        self.F_BM = dict.fromkeys(self.baseline_purchase_costs.keys(), 1) 

         

        power_demand = (self.led_electricity_demand / 1000) * self.run_time /self.led_lifespan_factor 

        self.power_utility(power_demand)         

 

        #certain parts need to be replaced based on an expected lifetime 

        #The cost of these parts is considered along with the cost of the labor to replace them 
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RAW WATER SCRIPT 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

 

''' 

QSDsan: Quantitative Sustainable Design for sanitation and resource recovery systems 

This module is developed by: 

    Bright Elijah <be05055@georgiasouthern.edu & brightcarlelijah@gmail.com>     

Department of Civil Engineering and Construction 

Georgia Southern University 

This module is under the University of Illinois/NCSA Open Source License. 

Please refer to https://github.com/QSD-Group/QSDsan/blob/main/LICENSE.txt 

for license details. 

''' 

# %% 

from .. import SanUnit 

from ..utils import ospath, load_data, data_path 

__all__ = ('RawWater',) 

raw_water_path = ospath.join(data_path, 'sanunit_data/_raw_water1.tsv') 

#raw_water_path = ospath.join(data_path, 'sanunit_data/_raw_water2.tsv') 

# %% 

 

class RawWater(SanUnit): 

    ''' 

    References 

    ---------- 

Iii, R.; Stetson, L. Socially Embedded and Sustained Point-of-Use Disinfection : Enhancing Silver 

Nanoparticle Enabled Ceramic Water Filters with a Navajo Pottery Technique. Thesis, 2020. 

https://doi.org/10.26153/tsw/13860.    

 

Stumm, W.; Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters; Wiley, 

1996. 
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Maciel, P. M. F.; Fava, N. de M. N.; Lamon, A. W.; Fernandez-Ibañez, P.; Byrne, J. A.; Sabogal-Paz, L. 

P. Household Water Purification System Comprising Cartridge Filtration, UVC Disinfection and 

Chlorination to Treat Turbid Raw Water. Journal of Water Process Engineering 2021, 43, 102203. 

https://doi.org/10.1016/j.jwpe.2021.102203. 

     

Wilhelm, N.; Kaufmann, A.; Blanton, E.; Lantagne, D. Sodium Hypochlorite Dosage for Household and 

Emergency Water Treatment: Updated Recommendations. Journal of Water and Health 2017, 16 (1), 

112–125. https://doi.org/10.2166/wh.2017.012. 

    Parameters 

    ---------- 

       ins :none 

    outs : Raw water 

    ''' 

    _N_ins = 0 

    _N_outs = 1 

    def __init__(self, ID='', ins=None, outs=(), thermo=None, init_with='WasteStream', 

                 household_size=6, number_of_households=1, water_demand=3.7, **kwargs): 

        SanUnit.__init__(self, ID, ins, outs, thermo, init_with) 

        self.household_size = household_size 

        self.number_of_households = number_of_households 

        self.water_demand = water_demand 

 

        data = load_data(path=raw_water_path) 

        for para in data.index: 

            value = float(data.loc[para]['expected']) 

            setattr(self, para, value) 

        del data 

 

        for attr, value in kwargs.items(): 

            setattr(self, attr, value)                                                                                   

 

    def _run(self): 
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        water = self.outs[0] 

        water.empty()  

        factor = self.household_size * self.water_demand / 24 # from L per day of water to kg per hour 

        water.imass['Ecoli'] = self.E_coli/1000*factor  

        ###! units are MPN/hr need to confirm this is done correctly 

 

        water._TOC = self.TOC # mg/L 

        water.imass['Ca'] = self.Ca/1000*factor # kg/hr 

        water.imass['Mg'] = self.Ca/1000*factor # kg/hr 

        water._turbidity = self.Turbidity # NTU 

        water.F_vol = factor 

        # water._UVT = self.UVT # % 
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SYSTEMS SCRIPT FOR FOUR POU TECHNOLOGIES WITH TEA AND LCA 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

''' 

This module is developed by: 

This module is developed by: 

    Bright Elijah <be05055@georgiasouthern.edu & brightcarlelijah@gmail.com> 

Department of Civil Engineering and Construction 

Georgia Southern University  

This module is under the University of Illinois/NCSA Open Source License. 

Please refer to https://github.com/QSD-Group/EXPOsan/blob/main/LICENSE.txt 

for license details. 

''' 

 

# %% 

# Filter out warnings related to solid content 

import warnings 

warnings.filterwarnings('ignore', message='Solid content') 

import graphviz as graphviz 

import numpy as np 

import biosteam as bst 

import qsdsan as qs 

from collections.abc import Iterable 

from sklearn.linear_model import LinearRegression as LR 

from qsdsan import sanunits as su 

from qsdsan import WasteStream, ImpactIndicator, ImpactItem, StreamImpactItem, SimpleTEA, LCA 

from exposan.POU_dis import results_path 

 

from exposan.bwaise._cmps import cmps 

#from exposan.POU_dis._cmps import cmps 

from exposan.POU_dis._lca_data import lca_data_kind, load_lca_data, _ImpactItem_LOADED 
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# 

===========================================================================

== 

# Unit parameters 

# 

===========================================================================

== 

currency = qs.currency = 'USD' 

qs.CEPCI = qs.CEPCI_by_year[2018] 

discount_rate = 0.05 

qs.set_thermo(cmps) 

household_size = 6 

household_per_container = 1 

get_pou_user = lambda: household_size * household_per_container 

ppl_1k = 1000 

ppl_500 = 500 

get_ppl = lambda kind: ppl_1k if kind=='1k' else ppl_500 

lifetime_all= 5 

# 

===========================================================================

== 

# Prices and GWP CFs 

# 

===========================================================================

== 

price_dct = { 

    'Electricity': 0.17, 

    'Concrete': 194, 

    'Steel': 2.665, 

    ' NaOCl ': 1.96/0.15/1.21/0.125, #updated later  

    'Polyethylene': 0, #update later 

    } 

GWP_dct = { 
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    'Electricity': 0.1135, 

    'CH4': 28, 

    'N2O': 265, 

    'N': -5.4, 

    NaOCl ': 2.6287,  

    'Polyethylene': 2.7933,  

    } 

 

GWP = ImpactIndicator('GWP', unit='kg CO2') 

bst.PowerUtility.price = price_dct['Electricity'] 

 

#ImpactItem.get_item(' NaOCl ').price = price_dct[' NaOCl '] 

# 

===========================================================================

== 

# Universal units and functions 

# 

===========================================================================

== 

 

def batch_create_stream_items(kind): 

    if kind == 'original': 

        for k, v in GWP_dct.items(): 

            if k == 'Electricity': 

                ImpactItem(ID='E_item', functional_unit='kWh', GWP=v) 

            else: 

                StreamImpactItem(ID=f'{k}_item', GWP=v) 

    elif kind == 'new': 

        E_factor = {'GW2ECO': 0.000000000532, # global warming to ecosystem 

                    'GW2HH': 0.0000000812, # global warming to human health 

                    'OD2HH': 0.00134} # stratospheric ozone depletion to human health 

        H_factor = {'GW2ECO': 0.0000000028, 'GW2HH': 0.000000928, 'OD2HH': 0.000531} 

        I_factor = {'GW2ECO': 0.000000025, 'GW2HH': 0.0000125, 'OD2HH': 0.000237} 
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        StreamImpactItem(ID='CH4_item', 

                         E_EcosystemQuality_Total=E_factor['GW2ECO']*4.8, 

                         E_HumanHealth_Total=E_factor['GW2HH']*4.8, 

                         H_EcosystemQuality_Total=H_factor['GW2ECO']*34, 

                         H_HumanHealth_Total=H_factor['GW2HH']*34, 

                         I_EcosystemQuality_Total=I_factor['GW2ECO']*84, 

                         I_HumanHealth_Total=I_factor['GW2HH']*84 

                         ) 

        StreamImpactItem(ID='N2O_item', 

                         E_EcosystemQuality_Total=E_factor['GW2ECO']*78.8, 

                         # From climate change + ozone depletion 

                         E_HumanHealth_Total=\ 

                             E_factor['GW2HH']*78.8+E_factor['OD2HH']*0.017, 

                         H_EcosystemQuality_Total=H_factor['GW2ECO']*298, 

                         H_HumanHealth_Total=\ 

                             H_factor['GW2HH']*298+H_factor['OD2HH']*0.011, 

                         I_EcosystemQuality_Total=I_factor['GW2ECO']*264, 

                         I_HumanHealth_Total=\ 

                             I_factor['GW2HH']*264+I_factor['OD2HH']*0.007 

                         ) 

    else: 

        raise ValueError(f'`kind` can only be "original" or "new", not "{kind}".') 

    global _ImpactItem_LOADED 

    _ImpactItem_LOADED = True 

NaOCl _item = StreamImpactItem(ID=' NaOCl _item', GWP=GWP_dct[' NaOCl ']) 

Polyethylene_item = StreamImpactItem(ID='Polyethylene_item', GWP=GWP_dct['Polyethylene']) 

 

def batch_create_streams(prefix): 

    stream_dct = {} 

    # item = ImpactItem.get_item('CH4_item').copy(f'{prefix}_CH4_item', set_as_source=True) 
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    # stream_dct['CH4'] = WasteStream(f'{prefix}_CH4', phase='g', stream_impact_item=item) 

    # # CH4.stream_impact_item = ImpactItem.get_item('CH4_item').copy(stream=CH4, 

set_as_source=True) 

 

    # item = ImpactItem.get_item('N2O_item').copy(f'{prefix}_N2O_item', set_as_source=True) 

    # stream_dct['N2O'] = WasteStream(f'{prefix}_N2O', phase='g', stream_impact_item=item) 

    # # N2O.stream_impact_item = ImpactItem.get_item('N2O_item').copy(stream=N2O, 

set_as_source=True) 

 

    item = ImpactItem.get_item(' NaOCl _item').copy(f'{prefix}_ NaOCl _item', set_as_source=True) 

    stream_dct[' NaOCl '] = WasteStream(f'{prefix}_ NaOCl ', phase='l', price=price_dct[' NaOCl '],  

                                      stream_impact_item=item) 

 

    item = ImpactItem.get_item('Polyethylene_item').copy(f'{prefix}_Polyethylene_item', 

set_as_source=True) 

    stream_dct['Polyethylene'] = WasteStream(f'{prefix}_Polyethylene', phase='s', 

price=price_dct['Polyethylene'],  

                                      stream_impact_item=item) 

     

    return stream_dct 

 

# %% 

# 

===========================================================================

== 

# POU Chlorination (sysD): test system 

# 

===========================================================================

== 

flowsheetD = bst.Flowsheet('sysD') 

bst.main_flowsheet.set_flowsheet(flowsheetD) 

streamsD = batch_create_streams('D') 

 

#################### Human Inputs #################### 
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D1 = su.RawWater('D1', outs=('raw_water'), household_size=household_size,  

                 number_of_households=(get_ppl('1k')/household_size)) 

 

D2 = su.POUChlorination('D2', ins=(D1-0, streamsD[NaOCl '], streamsD['Polyethylene']),  

                        outs='treated_water',  

                        number_of_households=(get_ppl('1k')/household_size)) 

 

############### Simulation, TEA, and LCA ############### 

sysD = bst.System('sysD', path=(D1, D2) 

 

sysD.simulate() 

 

teaD = SimpleTEA(system=sysD, discount_rate=discount_rate, start_year=2018, 

                 lifetime=lifetime_all, uptime_ratio=1, lang_factor=None, 

                 annual_maintenance=0, annual_labor=0) #12*3e6*12 

 

lcaD = LCA(system=sysD, lifetime=lifetime_all, lifetime_unit='yr', uptime_ratio=1, 

           annualize_construction=True) 

 

# 

===========================================================================

== 

# AgNP CWF (sysE): test system 

# 

===========================================================================

== 

 

flowsheetE = bst.Flowsheet('sysE') 

bst.main_flowsheet.set_flowsheet(flowsheetE) 

streamsE = batch_create_streams('E') 

 

#################### Human Inputs #################### 

E1 = su.RawWater('E1', outs=('raw_water'), household_size=household_size,  
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                  number_of_households=(get_ppl('1k')/household_size)) 

 

E2 = su.AgNP_CWF('E2', ins=(E1-0), outs='treated_water',  

                        number_of_households=(get_ppl('1k')/household_size)) 

 

############### Simulation, TEA, and LCA ############### 

sysE = bst.System('sysE', path=(E1, E2)) 

 

 

sysE.simulate() 

 

teaE = SimpleTEA(system=sysE, discount_rate=discount_rate, start_year=2018, 

                  lifetime=lifetime_all, uptime_ratio=1, lang_factor=None, 

                  annual_maintenance=0, annual_labor=0) #12*3e6*12 

 

lcaE = LCA(system=sysE, lifetime=lifetime_all, lifetime_unit='yr', uptime_ratio=1, 

            annualize_construction=True) 

 

# 

===========================================================================

== 

# POU UV (sysF): test system 

# 

===========================================================================

== 

 

flowsheetF = bst.Flowsheet('sysF') 

bst.main_flowsheet.set_flowsheet(flowsheetF) 

streamsF = batch_create_streams('F') 

 

#################### Human Inputs #################### 

F1 = su.RawWater('F1', outs=('raw_water'), household_size=household_size,  

                  number_of_households=(get_ppl('1k')/household_size)) 
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F2 = su.POU_UV('F2', ins=(F1-0), outs='treated_water',  

                        number_of_households=(get_ppl('1k')/household_size)) 

 

############### Simulation, TEA, and LCA ############### 

sysF = bst.System('sysF', path=(F1, F2)) 

 

sysF.simulate() 

  

teaF = SimpleTEA(system=sysF, discount_rate=discount_rate, start_year=2018, 

                  lifetime=lifetime_all, uptime_ratio=1, lang_factor=None, 

                  annual_maintenance=0, annual_labor=0) #12*3e6*12 

 

lcaF = LCA(system=sysF, lifetime=lifetime_all, lifetime_unit='yr', uptime_ratio=1, 

            annualize_construction=True, 

            E_item=lambda: F2.power_utility.rate*(365*12*5)) 

 

# 

===========================================================================

== 

#  UV LED (sysG): test system 

# 

===========================================================================

== 

 

flowsheetG = bst.Flowsheet('sysG') 

bst.main_flowsheet.set_flowsheet(flowsheetG) 

streamsG = batch_create_streams('G') 

 

#################### Human Inputs #################### 

G1 = su.RawWater('G1', outs=('raw_water'), household_size=household_size,  

                  number_of_households=(get_ppl('1k')/household_size)) 
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G2 = su.UV_LED('G2', ins=(G1-0), outs='treated_water',  

                        number_of_households=(get_ppl('1k')/household_size)) 

 

############### Simulation, TEA, and LCA ############### 

sysG = bst.System('sysG', path=(G1, G2)) 

 

sysG.simulate() 

 

teaG = SimpleTEA(system=sysG, discount_rate=discount_rate, start_year=2018, 

                  lifetime=lifetime_all, uptime_ratio=1, lang_factor=None, 

                  annual_maintenance=0, annual_labor=0) #12*3e6*12 

 

lcaG = LCA(system=sysG, lifetime=lifetime_all, lifetime_unit='yr', uptime_ratio=1, 

            annualize_construction=True, 

            E_item=lambda: G2.power_utility.rate*(365*24*5)) 

 

# %% 

  

# 

===========================================================================

== 

# Util functions 

# 

===========================================================================

== 

 

def update_lca_data(kind): 

    ''' 

    Load impact indicator and impact item data. 

    Parameters 

    ---------- 

    kind : str 

        "original" loads the data from Trimmer et al. 
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        (TRACI, ecoinvent v3.2), 

        "new" loads the data for ReCiPe and TRACI 

        (ecoinvent 3.7.1, at the point of substitution). 

    ''' 

    global lca_data_kind 

 

    if lca_data_kind != kind: 

        load_lca_data(kind) 

        batch_create_stream_items(kind) 

 

        for lca in (lcaD, lcaE, lcaF, lcaG): 

            for i in lca.lca_streams: 

                # To refresh the impact items 

                source_ID = i.stream_impact_item.source.ID 

                i.stream_impact_item.source = ImpactItem.get_item(source_ID) 

 

 

        for i in sysD, sysE, sysF, sysG: 

            i.simulate() 

 

        lca_data_kind = kind 

 

def get_total_inputs(unit, multiplier=1): 

    if len(unit.ins) == 0: #  

        ins = unit.outs 

    else: 

        ins = unit.ins 

    inputs = {} 

    inputs[' NaOCl '] = sum(i.imass[' NaOCl '] for i in ins) 

    inputs['Polyethylene'] = sum(i.imass['Polyethylene'] for i in ins) 

    inputs['Ecoli'] = sum(i.Ecoli*i.F_vol/1e3 for i in ins) 
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    for i, j in inputs.items(): 

        inputs[i] = j * multiplier 

    return inputs 

 

 

#breakpoint() 

sys_dct = { 

    'ppl': dict(sysD=get_ppl('1k'), sysE=get_ppl('1k'), sysF=get_ppl('1k'),sysG=get_ppl('1k')), 

    'input_unit': dict(sysD=D1,sysE=E1, sysF=F1, sysG=G1), 

    'liq_unit': dict(sysD=D1, sysE=E1, sysF=F1, sysG=G1), 

    'sol_unit': dict(sysD=None, sysE=E2, sysF=None, sysG=None), 

    'gas_unit': dict(sysD=None, sysE=None, sysF=None, sysG=None), 

    'stream_dct': dict(sysD=streamsD, sysE=streamsE, sysF=streamsF, sysG=streamsG), 

    'TEA': dict(sysD=teaD, sysE=teaE, sysF=teaF, sysG=teaG), 

    'LCA': dict(sysD=lcaD, sysE=lcaE, sysF=lcaF, sysG=lcaG), 

    'cache': dict(sysD={}, sysE={}, sysF={}, sysG={}), 

    } 

 

def get_summarizing_functions(system): 

    func_dct = {} 

    func_dct['get_annual_net_cost'] = lambda tea, ppl: (tea.EAC)/ppl 

    func_dct['get_annual_CAPEX'] = lambda tea, ppl: tea.annualized_CAPEX/ppl 

    func_dct['get_annual_OPEX'] = lambda tea, ppl: tea.AOC/ppl 

    ind = 'GlobalWarming' 

    func_dct['get_annual_GWP'] = \ 

        lambda lca, ppl: lca.total_impacts[ind]/lca.lifetime/ppl 

    func_dct['get_constr_GWP'] = \ 

        lambda lca, ppl: lca.total_construction_impacts[ind]/lca.lifetime/ppl 

    func_dct['get_trans_GWP'] = \ 

        lambda lca, ppl: lca.total_transportation_impacts[ind]/lca.lifetime/ppl   

    func_dct['get_stream_items_emission_GWP'] = \ 
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        lambda sys, lca, ppl: (lca.get_stream_impacts(stream_items=lca.stream_inventory, 

kind='direct_emission')[ind]) \ 

            /lca.lifetime/ppl 

    func_dct['get_other_GWP'] = \ 

        lambda lca, ppl: lca.total_other_impacts[ind]/lca.lifetime/ppl 

         

    #func_dct[' NaOCl '] = lambda sys: carbon_dict[' NaOCl '][sys.ID] 

 

    return func_dct 

def print_summaries(systems): 

    try: iter(systems) 

    except: systems = (systems, ) 

 

    for sys in systems: 

        func = get_summarizing_functions(sys) 

        sys.simulate() 

        ppl = sys_dct['ppl'][sys.ID] 

        print(f'\n---------- Summary for {sys} ----------\n') 

        tea = sys_dct['TEA'][sys.ID] 

        tea.show() 

 

        unit = f'{currency}/cap/yr' 

        print(f'\nNet cost: {func["get_annual_net_cost"](tea, ppl):.1f} {unit}.') 

        print(f'Capital: {func["get_annual_CAPEX"](tea, ppl):.1f} {unit}.') 

        print(f'Operating: {func["get_annual_OPEX"](tea, ppl):.1f} {unit}.') 

        print('\n') 

                                                                                                               

        lca = sys_dct['LCA'][sys.ID] 

        lca.show() 

        print('\n') 

         

        unit = f'{GWP.unit}/cap/yr' 
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        print(f'\nNet emission: {func["get_annual_GWP"](lca, ppl):.2f} {unit}.') 

        print(f'Construction: {func["get_constr_GWP"](lca, ppl):.2f} {unit}.') 

        print(f'Transportation: {func["get_trans_GWP"](lca, ppl):.2f} {unit}.') 

        print(f'Stream items emission: {func["get_stream_items_emission_GWP"](sys, lca, ppl):.2f} 

{unit}.') 

        print(f'Other: {func["get_other_GWP"](lca, ppl):.2} {unit}.\n') 

 

def save_all_reports(): 

    import os 

    if not os.path.isdir(results_path): 

        os.path.mkdir(results_path) 

    for i in (sysD, sysE, lcaD, lcaE): 

        if isinstance(i, bst.System): 

            i.simulate() 

            i.save_report(os.path.join(results_path, f'{i.ID}_report.xlsx')) 

        else: 

            i.save_report(os.path.join(results_path, f'{i.system.ID}_lca.xlsx')) 

 

__all__ = ('sysD','sysE','teaD','teaE','lcaD','lcaE', 

           'print_summaries', 'save_all_reports', 

           *(i.ID for i in sysD.units), 

           *(i.ID for i in sysE.units) 

           ) 
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MODELS SCRIPT 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

''' 

EXPOsan: Exposition of sanitation and resource recovery systems 

This module is developed by: 

    Bright Elijah <be05055@georgiasouthern.edu & brightcarlelijah@gmail.com> 

Department of Civil Engineering and Construction 

Georgia Southern University  

This module is under the University of Illinois/NCSA Open Source License. 

Please refer to https://github.com/QSD-Group/EXPOsan/blob/main/LICENSE.txt 

for license details. 

''' 

# %% 

import os, pickle 

import numpy as np 

import pandas as pd 

from chaospy import distributions as shape 

from thermosteam.functional import V_to_rho, rho_to_V 

from biosteam import PowerUtility 

from biosteam.evaluation import Model, Metric 

from qsdsan import currency, ImpactItem 

from qsdsan.utils import ( 

    ospath, load_data, data_path, dct_from_str, 

    AttrSetter, AttrFuncSetter, DictAttrSetter, 

    FuncGetter, 

    time_printer 

    ) 

from exposan import POU_dis as pou 

 

c_path = pou._lca_data.c_path 
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lca_data_kind = pou.systems.lca_data_kind 

 

__all__ = ('modelD','modelE','modelF','modelG') 

 

# # %% 

# # 

===========================================================================

== 

# # Functions for batch-making metrics and -setting parameters 

# # 

===========================================================================

== 

systems = pou.systems 

sys_dct = systems.sys_dct 

price_dct = systems.price_dct 

GWP_dct = systems.GWP_dct 

get_summarizing_functions = systems.get_summarizing_functions 

 

def add_LCA_metrics(system, metrics, kind): 

    systems.update_lca_data(kind) 

    lca = sys_dct['LCA'][system.ID] 

    ppl = sys_dct['ppl'][system.ID] 

    funcs = [ 

        lambda ID: lca.total_impacts[ID]/lca.lifetime/ppl, 

        lambda ID: lca.total_construction_impacts[ID]/lca.lifetime/ppl, 

        lambda ID: lca.total_transportation_impacts[ID]/lca.lifetime/ppl, 

        lambda ID: lca.get_stream_impacts(stream_items=lca.stream_inventory, kind='direct_emission')[ID] 

\ 

            /lca.lifetime/ppl, 

        lambda ID: lca.get_stream_impacts(stream_items=lca.stream_inventory, kind='offset')[ID] \ 

            /lca.lifetime/ppl, 

        lambda ID: lca.total_other_impacts[ID]/lca.lifetime/ppl 

        ] 
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    for ind in lca.indicators: 

        unit = f'{ind.unit}/cap/yr' 

        cat = 'LCA results' 

        metrics.extend([ 

            Metric(f'Net emission {ind.ID}', FuncGetter(funcs[0], (ind.ID,)), unit, cat), 

            Metric(f'Construction {ind.ID}', FuncGetter(funcs[1], (ind.ID,)),unit, cat), 

            Metric(f'Transportation {ind.ID}', FuncGetter(funcs[2], (ind.ID,)),unit, cat), 

            Metric(f'Direct emission {ind.ID}', FuncGetter(funcs[3], (ind.ID,)),unit, cat), 

            Metric(f'Offset {ind.ID}', FuncGetter(funcs[4], (ind.ID,)),unit, cat), 

            Metric(f'Other {ind.ID}', FuncGetter(funcs[5], (ind.ID,)),unit, cat), 

            ]) 

 

    return metrics 

 

def add_metrics(system, kind): 

    sys_ID = system.ID 

    tea = sys_dct['TEA'][sys_ID] 

    ppl = sys_dct['ppl'][sys_ID] 

    func = get_summarizing_functions(system) 

 

    metrics = [] 

 

    unit = f'{currency}/cap/yr' 

    cat = 'TEA results' 

    metrics.extend([ 

        Metric('Annual net cost', lambda: func['get_annual_net_cost'](tea, ppl), unit, cat), 

        Metric('Annual CAPEX', lambda: func['get_annual_CAPEX'](tea, ppl), unit, cat), 

        Metric('Annual OPEX', lambda: func['get_annual_OPEX'](tea, ppl), unit, cat), 

        ]) 

 

    metrics = add_LCA_metrics(system, metrics, kind) 
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    return metrics 

 

#!!! leave out update_metrics for now, may need to add in later 

# def update_metrics(model, kind): 

#     metrics = [i for i in model.metrics if i.element_name!='LCA results'] 

#     model.metrics = add_LCA_metrics(model.system, metrics, kind) 

#     return model 

 

 

def batch_setting_unit_params(df, model, unit, exclude=()): 

    for para in df.index: 

        if para in exclude: continue 

        b = getattr(unit, para) 

        lower = float(df.loc[para]['low']) 

        upper = float(df.loc[para]['high']) 

        dist = df.loc[para]['distribution'] 

        if dist == 'uniform': 

            D = shape.Uniform(lower=lower, upper=upper) 

        elif dist == 'triangular': 

            D = shape.Triangle(lower=lower, midpoint=b, upper=upper) 

        elif dist == 'constant': continue 

        else: 

            raise ValueError(f'Distribution {dist} not recognized for unit {unit}.') 

 

        su_type = type(unit).__name__ 

        if su_type.lower() == 'lagoon': 

            su_type = f'{unit.design_type.capitalize()} lagoon' 

        name = f'{su_type} {para}' 

        model.parameter(setter=AttrSetter(unit, para), 

                        name=name, element=unit, 
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                        kind='coupled', units=df.loc[para]['unit'], 

                        baseline=b, distribution=D) 

 

# %% 

# 

===========================================================================

== 

# Shared by all systems 

# 

===========================================================================

== 

su_data_path = ospath.join(data_path, 'sanunit_data/') 

 

def add_shared_parameters(model, water): 

    ########## Related to multiple units ########## 

    sys = model.system 

###########     sys.path[0], sys.path[1] ????????????? 

    param = model.parameter 

    streams = sys_dct['stream_dct'][sys.ID] 

    tea = sys_dct['TEA'][sys.ID] 

 

 

 

    ########## Related to raw water ########## 

 

     

     

    # Household size 

    b = systems.household_size 

    D = shape.Trunc(shape.Normal(mu=b, sigma=1.8), lower=1) 

    @param(name='Household size', element=water, kind='coupled', units='cap/household', 

            baseline=b, distribution=D) 

    def set_household_size(i): 
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        systems.household_size = i 

 

 

 

    ######## General TEA settings ######## 

 

 

    # Money discount rate 

    b = systems.discount_rate 

    D = shape.Uniform(lower=0.03, upper=0.06) 

    @param(name='Discount rate', element='TEA', kind='isolated', units='fraction', 

            baseline=b, distribution=D) 

    def set_discount_rate(i): 

        systems.discount_rate = tea.discount_rate = i 

 

    # Electricity price 

    b = price_dct['Electricity'] 

    D = shape.Triangle(lower=0.08, midpoint=b, upper=0.21) 

    @param(name='Electricity price', element='TEA', kind='isolated', 

            units='$/kWh', baseline=b, distribution=D) 

    def set_electricity_price(i): 

        PowerUtility.price = i 

         

    # NaOCl price 

    b = price_dct[' NaOCl '] 

    D = shape.Uniform(lower=1.96/0.15/1.21/0.125*0.75, upper=1.96/0.15/1.21/0.125*1.25) 

    @param(name=' NaOCl price', element='TEA', kind='isolated', 

            units='$/kg', baseline=b, distribution=D) 

    def set_ NaOCl_price(i): 

        price_dct['NaOCl'] = streams['NaOCl'].price = i 
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    return model 

def add_LCA_CF_parameters(model, kind=pou._lca_data.lca_data_kind): 

    param = model.parameter 

    sys = model.system 

    lca = sys_dct['LCA'][sys.ID] 

 

    ######## LCA CF ######## 

    if kind == 'original': 

        b = GWP_dct['CH4'] 

        D = shape.Uniform(lower=28, upper=34) 

        @param(name='CH4 CF', element='LCA', kind='isolated', units='kg CO2-eq/kg CH4', 

                baseline=b, distribution=D) 

        def set_CH4_CF(i): 

            GWP_dct['CH4'] = ImpactItem.get_item('CH4_item').CFs['GlobalWarming'] = i 

 

        b = GWP_dct['N2O'] 

        D = shape.Uniform(lower=265, upper=298) 

        @param(name='N2O CF', element='LCA', kind='isolated', units='kg CO2-eq/kg N2O', 

                baseline=b, distribution=D) 

        def set_N2O_CF(i): 

            GWP_dct['N2O'] = ImpactItem.get_item('N2O_item').CFs['GlobalWarming'] = i 

 

        b = GWP_dct['Electricity'] 

        D = shape.Uniform(lower=0.106, upper=0.121) 

        @param(name='Electricity CF', element='LCA', kind='isolated', 

                units='kg CO2-eq/kWh', baseline=b, distribution=D) 

        def set_electricity_CF(i): 

            GWP_dct['Electricity'] = ImpactItem.get_item('E_item').CFs['GlobalWarming'] = i 

 

        b = GWP_dct['NaOCl'] 

        D = shape.Triangle(lower=2.6287*0.75, midpoint=b, upper=2.6287*1.25) 
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        @param(name='NaOCl CF', element='LCA', kind='isolated', 

                units='kg CO2-eq/kg NaOCl', baseline=b, distribution=D) 

        def set_NaOCl_CF(i): 

            GWP_dct['NaOCl'] = ImpactItem.get_item('NaOCl_item').CFs['GlobalWarming'] = i 

 

        b = GWP_dct['Polyethylene'] 

        D = shape.Triangle(lower=2.7933*0.75, midpoint=b, upper=2.7933*1.25) 

        @param(name='Polyethylene CF', element='LCA', kind='isolated', 

                units='kg CO2-eq/kg Polyethylene', baseline=b, distribution=D) 

        def set_Polyethylene_CF(i): 

            GWP_dct['Polyethylene'] = ImpactItem.get_item('Polyethylene_item').CFs['GlobalWarming'] = i 

 

        # b = GWP_dct['PVC'] 

        # D = shape.Triangle(lower=1.0*0.75, midpoint=b, upper=1.0*1.25) 

        # @param(name='PVC CF', element='LCA', kind='isolated', 

        #         units='kg CO2-eq/kg PVC', baseline=b, distribution=D) 

        # def set_PVC_CF(i): 

        #     GWP_dct['PVC'] = ImpactItem.get_item('PVC_item').CFs['GlobalWarming'] = i 

             

        # b = GWP_dct['Mecury'] 

        # D = shape.Triangle(lower=1.0*0.75, midpoint=b, upper=1.0*1.25) 

        # @param(name='Mecury CF', element='LCA', kind='isolated', 

        #         units='kg CO2-eq/kg Mecury', baseline=b, distribution=D) 

        # def set_Mecury_CF(i): 

        #     GWP_dct['Mecury'] = ImpactItem.get_item('Mecury_item').CFs['GlobalWarming'] = i 

             

        # b = GWP_dct['Aluminum'] 

        # D = shape.Triangle(lower=1.0*0.75, midpoint=b, upper=1.0*1.25) 

        # @param(name='Aluminum CF', element='LCA', kind='isolated', 

        #         units='kg CO2-eq/kg Mecury', baseline=b, distribution=D) 

        # def set_Aluminum_CF(i): 
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        #     GWP_dct['Aluminum'] = ImpactItem.get_item('Aluminum_item').CFs['GlobalWarming'] = i 

 

        item_path = ospath.join(pou._lca_data.data_path, 'items_original.xlsx') 

        data = load_data(item_path, sheet='GWP') 

        for p in data.index: 

            item = ImpactItem.get_item(p) 

            b = item.CFs['GlobalWarming'] 

            lower = float(data.loc[p]['low']) 

            upper = float(data.loc[p]['high']) 

            dist = data.loc[p]['distribution'] 

            if dist == 'uniform': 

                D = shape.Uniform(lower=lower, upper=upper) 

            elif dist == 'triangular': 

                D = shape.Triangle(lower=lower, midpoint=b, upper=upper) 

            elif dist == 'constant': continue 

            else: 

                raise ValueError(f'Distribution {dist} not recognized.') 

            model.parameter(name=p+'CF', 

                            setter=DictAttrSetter(item, 'CFs', 'GlobalWarming'), 

                            element='LCA', kind='isolated', 

                            units=f'kg CO2-eq/{item.functional_unit}', 

                            baseline=b, distribution=D) 

 

        

    return model 

 

 

# %% 

 

# 

===========================================================================

== 
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# Scenario D (sysD) 

# 

===========================================================================

== 

 

sysD = systems.sysD 

sysD.simulate() 

modelD = Model(sysD, add_metrics(sysD, lca_data_kind)) 

paramD = modelD.parameter 

 

# Shared parameters 

modelD = add_shared_parameters(modelD, systems.D1) 

modelD = add_LCA_CF_parameters(modelD) 

 

# RawWater 

D1 = systems.D1 

path = ospath.join(su_data_path, '_raw_water1.tsv') 

data = load_data(path) 

batch_setting_unit_params(data, modelD, D1) 

     

     

# Chlorination 

D2 = systems.D2 

path = ospath.join(su_data_path, '_pou_chlorination.csv') 

data = load_data(path) 

batch_setting_unit_params(data, modelD, D2) 

 

# # %% 

 

# # 

===========================================================================

== 

# # Scenario E (sysE) 
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# # 

===========================================================================

== 

 

sysE = systems.sysE 

sysE.simulate() 

modelE = Model(sysE, add_metrics(sysE, lca_data_kind)) 

paramE = modelE.parameter 

 

# Shared parameters 

modelE = add_shared_parameters(modelE, systems.E1) 

modelE = add_LCA_CF_parameters(modelE) 

 

# RawWater 

E1 = systems.E1 

path = ospath.join(su_data_path, '_raw_water1.tsv') 

data = load_data(path) 

batch_setting_unit_params(data, modelE, E1) 

     

# AgNP CWF 

E2 = systems.E2 

path = ospath.join(su_data_path, '_AgNP_CWF_2.csv') 

data = load_data(path) 

batch_setting_unit_params(data, modelE, E2) 

# # %% 

 

# 

===========================================================================

== 

# Scenario F (sysF) 

# 

===========================================================================

== 

 



124 

 

 

sysF = systems.sysF 

sysF.simulate() 

modelF = Model(sysF, add_metrics(sysF, lca_data_kind)) 

paramF = modelF.parameter 

 

# Shared parameters 

modelF = add_shared_parameters(modelF, systems.F1) 

modelF = add_LCA_CF_parameters(modelF) 

 

# RawWater 

F1 = systems.F1 

path = ospath.join(su_data_path, '_raw_water1.tsv') 

data = load_data(path) 

batch_setting_unit_params(data, modelF, F1) 

     

     

# UV lamp 

F2 = systems.F2 

path = ospath.join(su_data_path, '_pou_uv.csv') 

data = load_data(path) 

batch_setting_unit_params(data, modelF, F2) 

 

 

# # %% 

 

# # 

===========================================================================

== 

# # Scenario G (sysG) 

# # 

===========================================================================

== 
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sysG = systems.sysG 

sysG.simulate() 

modelG = Model(sysG, add_metrics(sysG, lca_data_kind)) 

paramG = modelG.parameter 

 

# Shared parameters 

modelG = add_shared_parameters(modelG, systems.G1) 

modelG = add_LCA_CF_parameters(modelG) 

 

# RawWater 

G1 = systems.G1 

path = ospath.join(su_data_path, '_raw_water1.tsv') 

data = load_data(path) 

batch_setting_unit_params(data, modelG, G1) 

     

     

# UV LED 

G2 = systems.G2 

path = ospath.join(su_data_path, '_uv_led.csv') 

data = load_data(path) 

batch_setting_unit_params(data, modelG, G2) 

# # %% 

 

# # 

===========================================================================

== 

# # Functions to run simulation and generate plots 

# # 

===========================================================================

== 

 

result_dct = { 

        'sysD': dict.fromkeys(('parameters', 'data', 'percentiles', 'spearman')), 
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        'sysE': dict.fromkeys(('parameters', 'data', 'percentiles', 'spearman')), 

        'sysF': dict.fromkeys(('parameters', 'data', 'percentiles', 'spearman')), 

        'sysG': dict.fromkeys(('parameters', 'data', 'percentiles', 'spearman')), 

        } 

 

@time_printer 

def run_uncertainty(model, seed=None, N=1000, rule='L', 

                    percentiles=(0, 0.05, 0.25, 0.5, 0.75, 0.95, 1), 

                    spearman_metrics='default'): 

    if seed: 

        np.random.seed(seed) 

 

    samples = model.sample(N, rule) 

 

    model.load_samples(samples) 

    model.evaluate() 

 

    # Spearman's rank correlation, 

    # metrics default to net cost, net emission, and total recoveries 

    spearman_results = None 

    if spearman_metrics: 

        if spearman_metrics.lower() == 'default': 

            spearman_metrics = [i for i in model.metrics 

                                if 'net' in i.name.lower() or 'total' in i.name.lower()] 

 

        # Different versions of BioSTEAM 

        try: spearman_results = model.spearman_r(model.parameters, spearman_metrics)[0] 

        except: spearman_results = model.spearman_r(model.parameters, spearman_metrics) 

 

        spearman_results.columns = pd.Index([i.name_with_units for i in spearman_metrics]) 
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    dct = organize_uncertainty_results(model, spearman_results, percentiles) 

    return dct 

 

 

# Data organization 

def organize_uncertainty_results(model, spearman_results, 

                                  percentiles=(0, 0.05, 0.25, 0.5, 0.75, 0.95, 1)): 

    global result_dct 

    dct = result_dct[model._system.ID] 

    index_p = len(model.parameters) 

    dct['parameters'] = model.table.iloc[:, :index_p].copy() 

    dct['data'] = model.table.iloc[:, index_p:].copy() 

 

    if percentiles is not None: 

        dct['percentiles'] = dct['data'].quantile(q=percentiles) 

 

    if spearman_results is not None: 

        dct['spearman'] = spearman_results 

    return dct 

 

def save_uncertainty_results(model, dct=None, path=''): 

    if not path: 

        path = ospath.join(c_path, 'results') 

 

        if not ospath.isdir(path): 

            os.mkdir(path) 

        path = ospath.join(path, f'sys{model._system.ID[-1]}_model.xlsx') 

 

    elif not (path.endswith('xlsx') or path.endswith('xls')): 

        extension = path.split('.')[-1] 

        raise ValueError(f'Only "xlsx" and "xls" are supported, not {extension}.') 
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    dct = dct or result_dct[model._system.ID] 

    if dct['parameters'] is None: 

        raise ValueError('No cached result, run model first.') 

    with pd.ExcelWriter(path) as writer: 

        dct['parameters'].to_excel(writer, sheet_name='Parameters') 

        dct['data'].to_excel(writer, sheet_name='Uncertainty results') 

        if 'percentiles' in dct.keys(): 

            dct['percentiles'].to_excel(writer, sheet_name='Percentiles') 

        dct['spearman'].to_excel(writer, sheet_name='Spearman') 

        model.table.to_excel(writer, sheet_name='Raw data') 
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RESULTS AND SENSITIVITY ANALYSIS FOR ALL POU TECHNOLOGIES 

# -*- coding: utf-8 -*- 

""" 

Created on Wed Mar 30 17:17:30 2022 

Bright Elijah <be05055@georgiasouthern.edu & brightcarlelijah@gmail.com>  

Department of Civil Engineering and Construction 

Georgia Southern University 

""" 

############POU chlorination  

from qsdsan import stats as a 

from exposan import POU_dis as pou  

m = pou.models 

modelD = m.modelD 

uncertainty = m.run_uncertainty(modelD, seed=5, N=10000) 

m.save_uncertainty_results(modelD) 

 

 

############# -*- coding: utf-8 -*- 

""" 

Created on Wed Mar 30 17:17:30 2022 

Bright Elijah <be05055@georgiasouthern.edu & brightcarlelijah@gmail.com>    

Department of Civil Engineering and Construction 

Georgia Southern University 

""" 

#AgNP CWF 

from qsdsan import stats as a 

from exposan import POU_dis as pou  

m = pou.models 

modelE = m.modelE 

uncertainty = m.run_uncertainty(modelE, seed=5, N=10000) 

m.save_uncertainty_results(modelE) 
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# -*- coding: utf-8 -*- 

""" 

Created on Wed Aug 31 13:14:39 2022 

Bright Elijah <be05055@georgiasouthern.edu & brightcarlelijah@gmail.com>   

Department of Civil Engineering and Construction 

Georgia Southern University 

""" 

############ UV mercury lamp 

from qsdsan import stats as a 

from exposan import POU_dis as pou  

m = pou.models 

modelF = m.modelF 

uncertainty = m.run_uncertainty(modelF, seed=5, N=10000) 

m.save_uncertainty_results(modelF) 

 

# -*- coding: utf-8 -*- 

""" 

Created on Wed Aug 31 13:14:40 2022 

Bright Elijah <be05055@georgiasouthern.edu & brightcarlelijah@gmail.com> 

Department of Civil Engineering and Construction 

Georgia Southern University 

""" 

############ UV LED 

from qsdsan import stats as a 

from exposan import POU_dis as pou  

m = pou.models 

modelG = m.modelG 

uncertainty = m.run_uncertainty(modelG, seed=5, N=10000) 

m.save_uncertainty_results(modelG) 
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