Computer implementation of Mason's rule and software development of stochastic petri nets

Xiaoyong Zhao
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses
Part of the Databases and Information Systems Commons, and the Management Information Systems Commons

Recommended Citation

Zhao, Xiaoyong, "Computer implementation of Mason's rule and software development of stochastic petri nets" (1993). Theses. 2217.
https://digitalcommons.njit.edu/theses/2217

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

Computer Implementation of Mason's Rule and Software Development of Stochastic Petri Nets

by
Xiaoyong Zhao

A symbolic performance analysis approach for discrete event systems can be formulated based on the integration of Petri nets and Moment Generating Function concepts [1-3]. The key steps in the method include modeling a system with arbitrary stochastic Petri nets (ASPN), generation of state machine Petri nets with transfer functions, derivation of equivalent transfer functions, and symbolic derivation of transfer functions to obtain the performance measures. Since Mason's rule can be used to effectively derive the closed-form transfer function, its computer implementation plays a very important role in automating the above procedure. This thesis develops the computer implementation of Mason's rule (CIMR). The algorithms and their complexity analysis are also given. Examples are used to illustrate CIMR method's application for performance evaluation of ASPN and linear control systems. Finally, suggestions for future software development of ASPN are made.

COMPUTER IMPLEMENTATION OF
 MASON'S RULE AND

SOFTWARE DEVELOPMENT OF STOCHASTIC PETRI NETS

by Xiaoyong Zhao

A Thesis
Submitted to the Faulty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of Master of Science
Department of Computer and Information Science
January 1993

APPROVAL PAGE

Computer Implementation of Mason's Rule and Software Development of Stochastic Petri Nets

Xiaoyong Zhao

Dr. MengChu Zhou, Thesis Adviser

Assistant Professor of Department of Electrical and Computer Engineering, and Center for Manufacturing Systems, NJIT

Dr. Daniel Chao, Committee Member

Assistant Professor of Department of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: Xiaoyong Zhao

Degree: Master of Science in Computer and Information Science

Date: January 1993

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

- Master of Science in Computer and Information Science, New Jersey Institute of Technology, Newark, NJ, 1993
- Bachelor of Science in Electrical and Computer Engineering, University of Electronic Science and Technology of China, Chengdu, 1982

Major: Computer and Information Science

This thesis is dedicated to
My parents, my sister, my wife and
my son

ACKNOWLEDGMENT

I wish to express my sincere gratitude to my supervisor, Dr. MengChu Zhou, for his guidance, friendship, and moral support throughout this research. He taught me in discrete event dynamic system theory and methodology, took care of the research project and saw it through to its successful completion. I could not have finished this thesis without him.

I would like to thank the members of the thesis committee, Dr. Daniel Chao and Dr. David Wang for reviewing and commenting on my thesis report.

Finally, I would like to express here my deepest gratitude for my parents for their continuous support and encouragement throughout my studies. My greatest thanks go to my wife, Qing, for her patience and understanding in my whole work because I spent the many hours with my computer terminal instead of her and my son, and to my sister, Anna X. Zhao, for her special support and care during my academic years.

TABLE OF CONTENTS

CHAPTER PAGE
1 OBJECTIVES AND MOTIVATION. 1
2 INTRODUCTION TO PETRI NET AND METHODOLOGY. 3
2.1 Petri Net Structure and Graph 4
2.2 Behavioral Properties of Petri Nets 5
2.2.1 Liveness 5
2.2.2 Boundedness 5
2.2.3 Conservativeness 7
2.2.4 Reversibility. 7
2.3 Stochastic Petri Nets (SPN) 7
2.3.1 Time Petri Nets (TPN) 8
2.3.2 Definition of SPN 9
2.3.3 Extensions to SPN 9
2.3.4 Transfer Function Analysis Method 10
2.4 Procedure for System Performance Evaluation 14
3 MASON'S RULE 16
4 DATA STRUCTURES AND ALGORITHMS 19
4.1 Representation for Directed Graphs 19
4.2 DFS and BFS Algorithms 20
4.2.1 Depth-First Searching 20
4.2.2 Breadth-First Searching 21
4.3 Data Structures and Graph Declarations 21
4.4 Loop Searching 23
4.5 Forward Path Searching 25
4.6 Check Non-touching Loops. 27
4.7 Check the Loops Touching Each Forward Path 28
4.8 Complexity Analysis of the Algorithms and the Program 29
5 DESIGN SPECIFICATIONS OF CIMR 32
5.1 Development Environment of CIMR 32
5.2 Modules of CIMR 32
6 APPLICATION EXAMPLES OF CIMR 34
6.1 An Example of Performance Analysis of SPN 34
6.2 An Example of a Linear System 43
6.3 An Example of a Complicated Net 47
7 CONCLUSIONS AND FURTHER RESEARCH 57
APPENDIX - SOURCE CODE OF CIMR 62
REFERENCES 103

LIST OF TABLES

TABLE PAGE
6.1 Node Structures and Information Fields for Figure 6.4 38

LIST OF FIGURES

FIGURE PAGE
2.1 A Petri Net 6
3.1 Multiple-loop System 17
4.1 A Directed Graph 19
4.2 Adjacent List for a Directed Graph 20
6.1 A Flexible Manufacturing System 34
6.2 A Petri Net Model and its Reachability Graph 36
6.3 State Machine Petri Net 37
6.4 A Net for Deadlock Rate by Source-Sink Solution 37
6.5 A Mapped Directed Graph for the Deadlock Rate 38
6.6 An Input File of State Machine Petri Net 39
6.7 An Output File of Mason's Rule Computer Implementation 41
6.8 Description File of the Net Shown in Figure 3.1 44
6.9 Computer Solution of Mason's Rule for the Net Shown in Figure 3.1 46
6.10 A Complicated Net 48
6.11 Input File of cimr in Figure 6.10 50
6.12 Output File of cimr in Figure 6.10 56
7.1 Basic Functional Blocks for Delelopment of ASPN software 61

CHAPTER 1

OBJECTIVES AND MOTIVATION

This research work is motivated by the need in automating the moment generating function and Petri net based procedure for performance analysis of discrete event systems. Given a system in which an operation may take an arbitrarily distributed processing time, we can model this system as an arbitrary stochastic Petri net (ASPN). Then, the reachability graph is generated and transformed into a state machine Petri net with moment generating function included. The equivalent transfer functions are derived and performance measures are analyzed [1-3]. The method can result in a closed-form result for some classes of ASPNs. Since the transfer functions retain all the information of performance measures and thus often become very complex when the system state number grows, the human manipulation of this process becomes very difficult. The need arises to automate this process. One of the key steps is to use Mason's rule for derivation of an equivalent transfer function between the given nodes. Although the reduction methods can be used for some large and complex graphs, a computerized implementation of Mason's rule (CIMR) is more efficient and convenient.

Mason's rule was invented in 50s for signal flow graphs. It has been used for analysis of circuits and control systems. The computer manipulation of the Mason's rule recently receives attention and similar work is reported in [10] in order to determine the symbolic transfer function of a linear system with a SPICE-like system description language. The work presented in this thesis differs from the previous work in the following aspects:

1. Different motivations result in different system description environments;
2. The algorithms are improved in this work and the applications are enhanced;
3. The complexity analysis of the algorithms is conducted;
4. CIMR is applied to develop new software for ASPN.

The objectives of this thesis are to:

1. Present an efficient method to implement a computerized solution of the Mason's rule including forward path search, loop search, and non-touching loop check, etc.;
2. Provide the complexity analysis of the developed algorithms;
3. Propose a Stochastic Petri Net Language (SPNL) that describes a State Machine Petri Net;
4. Design and code a utility program (cimr) using C language to derive automatically an equivalent transfer function, which runs under UNIX;
5. Illustrate the application of cimr for the performance evaluation of discrete event system;
6. Illustrate the application of cimr for a complex net system in which it is very difficult to derive the transfer functions;
7. Propose a scheme to develop a synthesis software tool for performance analysis and evaluation of ASPN via moment generating function.

CHAPTER 2

INTRODUCTION TO PETRI NET AND METHODOLOGY

Carl A. Petri developed a net-theoretic approach to model and analyze communication systems [6]. Petri nets have been proven to be useful tool for the modeling, performance evaluation and analysis of discrete event dynamic system [12-13]. Specifically, they are useful for modeling systems with the following characteristics:

- Concurrency or parallelism: There are some systems, in which many operationstake place simultaneously.
- Asynchronous operations: Machines complete their operations in variable amountsof time and so the model must maintain the ordering of the occurrence of events.
- Deadlock: In this case, a state can be reached where none of the processes can continue. This can happen when two processes share two resources. The order by which these resources are used and released could produce a deadlock.
- Conflict: This may occur when two or more processes require a common resource at the same time. For Example, two workstations might share a common transport system or might want access to the same database.
- Event driven: The manufacturing system can be viewed as a sequence of discrete events. Since operations occur concurrently, the order of occurrence of events is not necessarily unique; it is one of many allowed by the system structure.

These types of systems have been difficult to accurately model with differential equations and queueing theory. Petri nets can provide accurate models for the following reasons:

- Petri nets capture the precedence relations and structural interactions of concurrent and asynchronous events.
- They are logical model derived from the knowledge of how the system works. As a result, they are easy to understand and their graphical nature is a good visual aid.
- Deadlock, conflicts, and buffer sizes can be modeled easily and concisely.
- Petri net models have a well developed mathematical foundation that allows a qualitative and quantitative analysis of the system.
- Petri net models can also be used to implement real-time control systems for a automated manufacturing system. They can sequence and coordinate the subsystems as a programming logic controller does.

2.1 Petri Net Structure and Graph

A petri net is composed of a set of place P, a set of transition T, an input function I, an output function O, and an initial marking m_{0}. A graph structure is often used for illustration of Petri nets where a circle " O " represents a place and a bar " \mid " represents a transition. An arc with an arrow from a place to a transition defines the place to be an input to the transition. Similarly, an output place is indicated by an arc from a transition to the place.

A formal definition used follows [3]:
An ordinary Petri Net is a five-tuple (P, T, I, O, m).
$P=\left\{p 1, p 2, \ldots p_{n}\right\}, n>0$, and is a finite set of places;
$T=\left\{t_{1}, t_{2}, \ldots, t_{s}\right\}, s>0$, is a finite set of transitions, $P \cup T \neq \emptyset$ and $P \cap T=\emptyset ;$
$\mathrm{I}: \mathrm{P} \times \mathrm{T} \rightarrow \mathrm{N}$ and is an input function that defines the set of directed arcs from P to T, where $N=\{0,1,2, \ldots\}$;
$\mathrm{O}: \mathrm{P} \times \mathrm{T} \rightarrow \mathrm{N}$ is an output function that defines the set of directed arcs from T to P ;
$\mathrm{m}: \mathrm{P} \rightarrow \mathrm{N}$ and is a marking whose $\mathrm{i}^{\text {th }}$ component represents the number of tokens in the $\mathrm{i}^{\text {th }}$ place. An initial marking is denoted by m_{0};

The dynamic aspects of Petri net models are denoted by markings which are assignments of tokens to places of a Petri net. The execution of a Petri net is controlled by the number and distribution of tokens in the Petri Net. A transition is enabled if and only if each of its input places contains at least as many tokens as arcs exist from that place to the transition. When a transition is enabled, it may fire. When a transition fires, all enabling tokens are removed from its input places, and a token is deposited in each of its output places.

The state of the Petri nets is defined by the marking. The change in state caused by firing a transition is defined by the next-state function. Given an initial state, the reachability set for the Petri net is the set of states that result from executing the Petri net. Both tree and graph have been used to represent the graph labeled with the present marking (i.e., the state) and the arcs represent transitions between states.

Figure 2.1 shows a simple Petri net. Here, tokens reside in places, travel along arcs, and their flow through the net is regulated by the transitions.

2.2 Behavioral Properties of Petri Nets

2.2.1 Liveness

A Petri net is live with respect to a marking, if for any marking in $R\left(m_{0}\right)$, it is possible to fire any transition in the net. Liveness guarantees the absence of deadlock. Thus if a transition is live, it is always possible to maneuver the Petri net from its current marking to a marking which would allow the transition to fire.

2.2.2 Boundedness

Boundedness is a generalization of safeness of a net with the situation that places can at

(a) A Petri net with initial marking

(b) Making after 11 fires

(c) Making after t 2 fires

Figure 2.1: A Simple Petri Net
most hold a particular number of tokens. A place is k-bounded, if the number of tokens in that place cannot exceed an integer k, e.g., p is k-bounded if $m(p) \leq k, \forall m \in R(Z$, m_{0}). If $\forall \mathrm{p} \in \mathrm{P}, \mathrm{p}$ is k -bounded, the Z is k-bounded. Since there are only a finite number of places in Petri net, we can find the k as the maximum of the bounds of each
place and define a Petri net to be k -bounded if every place is k -bounded. In a manufacturing system, a bounded net implies that resource constraints have been met .

2.2.3 Conservativeness

A Petri net is conservative if, for any initial marking and a reachable marking $m \in R\left(m_{0}\right)$, there exists an $\mathrm{n} \times$ vector x , each of whose component is non-zero such that

$$
x^{\mathrm{T}} \mathrm{~m}=\mathrm{x}^{\mathrm{T}} \mathrm{~m}_{0}
$$

This says that the sum of the tokens weighted by x is constant.

2.2.4 Reversibility

A Petri net is resversible if for every $m \in R\left(m_{0}\right)$ then $m_{0} \in R(m)$. Reversibility means that the initial mark is reachable from all reachable markings. This is important in a manufacturing system where failures occur and the system is able to be reinitialized.

2.3 Stochastic Petri Nets (SPN)

Stochastic Petri nets, evolved in late 1970's as Petri nets with exponential delay distributions. Important research work is referred to [18], [25-26], [27] and [28]. The researcher has contributed to theory, structural improvement, implementation and application of SPN in various fields as below.

- Communication Systems

Communication systems have a main feature of synchronization. Florin and Natkin [27] by using the existing isomorphism of Markov Process and SPN, has modeled synchronous network queues by SPN. They derived ergodic criterion and steadystate solutions for the model.

- Local Area Networks
E. Gressier [29] has shown modeling of Ethernet protocol by SPN. The results are based upon simulation. M. A. Marsan [26] has computed a performance model for Carrier Sense Multiple Access with Collision Detection protocol (CSMA) of a bus LAN.
- Concurrent / Multiprocessor Systems

Much work has been done recently in these areas. SPN modeling for multiprocessor systems [25], interprocess communication, distributed file systems and concurrent task synchronization has been shown [30].

- Manufacturing Systems

SPN has also been used for modeling, design and control of manufacturing systems [1, 31, 32].

2.3.1 Timed Petri Nets (TPN)

Time can be included in a Petri net model by associating time with the transitions, to form a timed transition Petri net (TTPN), or with the places, resulting in a timed place Petri net (TPPN). Both representations are equivalent [15].

In a TTPN, the firing of a transition takes a certain amount of time. Note that this time is fixed, which makes TTPNs deterministic.

In a TPPN, a token enters a place and is unavailable for time d_{i}, after which it becomes available. In this net, only available tokens in a marking can enable a transition. During the unavailable period, another token may arrive in the place. A TPPN with all delays set zero reduces to an ordinary Petri net.

The properties of Petri nets analyzed in the previous section can be applied to timed Petri nets by using the incidence matrix. An alternate approach attempts to cast these nets in a system-theoretic framework $[16,17]$. A minimal algebra is applied to the Petri net models and concepts analogous to transfer function, input-output models, feedback, etc., are developed. The potential for this approach lies in its ability to build on analogies with
traditional control theory concepts. Its is still to be proven that useful analogies exist and can be extended to systems that include shared resources.

2.3.2 Definition of Stochastic Petri Net (SPN)

Molloy has defined SPN as a Petri nets in which each transition firing delay is associated with an exponentially distributed random variable [18].

Stochastic Petri Nets (SPN) is defined as a six-tuple (P, T, I, O, m, F)
Where,
$\mathrm{P}=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}\right\}, \mathrm{n}>0$, is a finite set of place;
$T=\left\{t_{1}, t_{2}, \ldots, t_{s}\right\}, s>0$, is a finite set of transitions, $P \cup T \neq \emptyset$ and $P \cap T=\emptyset$.;
$\mathrm{I}: \mathrm{P} \times \mathrm{T} \rightarrow \mathrm{N}$ and is an input function that defines the set of directed arcs from P to T, where, $N=\{0,1,2, \ldots\}$;
$\mathrm{O}: \mathrm{P} \times \mathrm{T} \rightarrow \mathrm{N}$ is an output function that defines the set of directed arcs from P to T ;
$\mathrm{m}: \mathrm{P} \rightarrow \mathrm{N}$ is a marking whose $\mathrm{i}^{\text {th }}$ component represents the number of tokens in the $i^{\text {th }}$ place. An initial marking is denoted by m_{0};
$\mathrm{F}: \mathrm{T} \rightarrow \mathrm{R}$ is a firing time delay function with an stochastic distribution function.

2.3.3 Extensions to SPN

Generalized stochastic Petri nets (GSPNs) [35-36] incorporate both timed transitions and immediate transitions. GSPNs permit the use of inhibitor arcs, priority functions, and random switches. These additional modeling capabilities follow the equivalence with Markov chains. The steady-state probabilities obtained from the Markov chain are used to compute the expected number of tokens in a place. Thus exact solutions can be derived by solving the equivalent Markov models; thereby deriving the performance measures.

Marsan et al.[25] defined stochastic Petri nets where arbitrary distributed random firing delays can be associated to transitions. Zhou et al.[3] call the nets arbitrary
stochastic Petri nets (ASPN). An ASPN is a six-tuple Petri net (P, T, I, O, m, f) where $\mathrm{f}: \mathrm{T} \rightarrow \mathrm{R}$ is a firing delay function of arbitrary distributions [3]. ASPN extends above various kinds of Petri nets and allows various mechanisms such as inhibitor arcs, probability arcs, and priority firing.

Moment generating function (MGF) [1,3] based methods approach the performance analysis of SPN in a different way from the above methods which use Markov models. Instead of solving the resulting Markov models, MGF-based methods derive the MGF of interesting performance measures. For arbitrary stochastic Petri nets, where arbitrary distributions are incorporated into stochastic Petri nets, the method can be used to find a lower and an upper bound. Exact solutions can be obtained for those Petri nets where transitions with non-exponential distributions are converted into subnets in which each transition has a firing delay of exponential distribution by using the existing techniques [22, 34].

Other methods have been used for modeling and performance analysis of various DEDS, form example, Markov analysis, queuing networks, perturbation analysis, and discrete event simulation [24, 41, 39]. Compared with these methods, Petri nets have their unique features. The advantages of Petri nets include their ease of modeling, duo to their graphical representation, and their ability to model various event-driven system characteristics: concurrency, conflicts, non-determinism, and mutual exclusion. In addition, they are more compact models than Markov models. At the design stage, the use of Petri nets avoids the need to enumerate all states, which is often impossible in modern manufacturing systems.

2.3.4 Transfer Function Analysis Method

The evaluation and analysis of Stochastic Petri Nets is proposed to be done by using a methodology which is based on the concepts of Markov theory, control systems and
symbolic computation methods. It is called the Moment Generating Function (MGF) or the Transfer Function approach. This technique has been recently formulated by Guo, DiCesare and Zhou [1]. The implementation of this technique involves five main steps: a) Reachability Graph Generation and Transformation to State Machine Petri Net

It has been shown by Molloy and others [18], that the reachability graph of a bounded SPN is isomorphic to a finite Markov Chain. Using this theorem, each marking in the reachability graph of the underlying PN is considered as a place of a state machine Petri net.
b) Computation of MGF and Transfer functions

Each transitions of the transformed state machine Petri net is assigned a transfer function, which is the product of branch probability and moment generating function. The transfer function depends upon the firing distribution of the transition and number of markings directly reachable from the marking under consideration.
c) Computation of Equivalent Transfer function

The application of Mason's rule or net reduction techniques leads to computation of equivalent transfer functions of the net. The equivalent function is useful for study and evaluation of the net.
d) Computation of Performance Parameters

Finally, computation of various performance parameters of the SPN model is done by computing derivative of equivalent transfer functions. The implementation of this technique can provide important analytical parameters of the modeled system such as fault rate, conflict rate, deadlocks, production rate, cycle time and system throughput.

The main advantages of this technique are:

1) It does not require simulation of transition firing delays for generation of reachability graph. This technique utilizes the reachability graph of the underlying Petri and imparts the timing information while analysis of the graph.
2) It identifies all possible system states by SPN execution and also indicates system parameters.
3) It provides detection of conflicts and deadlocks in the modeled system, for example, resource allocation problem and buffer overflow problem.
4) It implements net reduction techniques to reduce complexity of the net and ease its analysis.
5) Computation of performance indices of the modeled system. For example, steady-state probabilities, system throughput, fault rate, etc.

- Definition of Moment Generating Function (MGF)

For a random variable t with probability density function $f(t)$, its Moment generating function (MGF) is defined [38] as

Discrete case

$$
\mathrm{M}(\mathrm{~s})=\sum_{-\infty}^{\infty} e^{s t} f(t) d t
$$

Continuous case

$$
\mathrm{M}(\mathrm{~s})=\int_{-\infty}^{\infty} e^{s t} f(t) d t
$$

where s is an arbitrary parameter and $f(t)$ is a probability density function of random variable t . The n -th derivatives of MGF generates n -th moments of the function.

- Properties of MGF

a) The k-th moments are computed as

$$
\mathrm{E}\left(\mathrm{t}^{\mathrm{k}}\right)=\left.\frac{\partial \mathrm{k}}{\partial \mathrm{~s}} \mathrm{M}(\mathrm{~s})\right|_{\mathrm{s}=0}
$$

b) According to the definition of the pdf as the summation of probabilities, the value of MGF at $s=0$ equals to unity.

$$
\mathrm{M}(0)=\int_{-\infty}^{\infty} f(t) d t=1
$$

MGF for Exponential Distributions

The exponential probability density function is given as,

$$
f(t)=\lambda e^{-\lambda t}, \quad t \geq 0
$$

The MGF is computed as

$$
\begin{aligned}
& \mathrm{M}(\mathrm{~s})=\int_{-\infty}^{\infty} \lambda \mathrm{e}^{(\mathrm{s}-\lambda) \mathrm{t}} d t=\int_{-0}^{\infty} \lambda \mathrm{e}^{(\mathrm{s}-\lambda) \mathrm{t}} d t \\
& \mathrm{M}(\mathrm{~s})=\frac{\lambda}{\lambda-\mathrm{s}}
\end{aligned}
$$

The moments are,

$$
\mathrm{E}(\mathrm{t})=\frac{1}{\lambda^{2}} \quad \text { and } \quad \mathrm{E}\left(\mathrm{t}^{2}\right)=\frac{2}{\lambda^{2}}
$$

- Transfer Functions

The concept of transfer functions from control theory is applied in this analytical method.
The procedure is that after obtaining the reachability graph, we transform it to a StateMachine Petri net (SMPN) with single input-single output transitions. We define a transfer function for each transition in the transformed SMPN as the product of MGF and the branch probability of firing $P(t)$ of a transition. Thus a transfer function $W(s)$ can be written as

$$
\mathrm{W}(\mathrm{~s})=\mathrm{P}(\mathrm{t}) \mathrm{M}(\mathrm{~s})
$$

Transfer function depends upon the marking and distribution of concurrent transitions. If the state i leads only to state j, by firing t_{j} and no other concurrent transition exists at that state, then branch probability is 1 . In case when two transitions t_{1} and t_{2} with exponential distributions l_{1} and l_{2} are enabled concurrently at a marking, then the transfer functions are

$$
\begin{aligned}
& \mathrm{W}_{1}=\frac{\lambda_{1}}{\lambda_{2}+\lambda_{1}-\mathrm{s}} \\
& \mathrm{~W}_{2}=\frac{\lambda_{2}}{\lambda_{2}+\lambda_{1}-\mathrm{s}}
\end{aligned}
$$

2.4 Procedure for System Performance Evaluation

The moment generating function based Petri net performance evaluation methodology for ASPN consists of five stages: ASPN modeling, generation of reachability graph, generation of state machine Petri net, derivation of the transfer functions, and evaluation of performance measures.
a) ASPN Modeling

Using Petri net design methodologies such as bottom-up [19], top-down [20-21], and hybrid approaches [44], we can synthesize an ordinary Petri net model for a system based on its operations and relationship among these operations. After we get such an ordinary Petri net, time requirements for various operations result in an ASPN model where every transition is associated with an appropriate time delay that is either constant or random. The execution policy should be built up into such ASPN models to reflect the operations of practical systems.
b) Generation of Reachability Graph

Using conventional approaches [14], we can automatically generate a reachability graph of a Petri net. Such a graph represents all reachable states and their relationship among these states. Firing of a transition often implies a change from a state to another.
c) Generation of State Machine Petri Net

A state machine Petri net is generated based on the derived reachability graph and information on firing delays of transitions. In fact this state machine Petri net is an ASPN with a particular structure, i.e., each transition has exactly one input place and one output place. A place in the net can have multiple input and output transitions. The place with more than one output transition is called a choice place. It should be noted that in this net, a transition, which may differ from the original transition, is attached with a time delay variable computed based on that of the original transition in the ASPN and its relationship with other transitions in the net. The MGF of the firing delay of each transition in this state machine Petri net is computed. For a choice place, its branch probability is also calculated. Then the transfer function of each transition is derived, which also depends on different execution policies.

d) Derivation of Transfer Functions

For the above state machine Petri net, the transfer functions of interesting indices can be derived based on stepwise reductions It is noted that Mason's formula can be directly used in such a reduction process. A sequence, choice, or loop structure can be found to be equivalent of a transfer function.
e) Evaluation of Performance Measures

To obtain the i -th moments, we simply take the i -th ($\mathrm{i} \geq 1$) derivative of a transfer function of a performance index. Means and derivations of certain measure can be obtained. The analytical results may be obtained by inverting their transfer functions. The mean time to a deadlock state is found. For the system with a deadlock resources such as passage time, reoccurrence time, and cycle time can also be derived for discrete event dynamic systems [2].

CHAPTER 3

MASON'S RULE

A linear system can be represented as a signal-flow graph in which each node represent a variable. The linear dependence $T_{i j}$ between the independent variable x_{i} and a dependent variable x_{j} is given by Mason's loop rule [7]:

$$
\mathrm{T}_{\mathrm{ij}}=\frac{\Sigma_{\mathrm{k}} \mathrm{P}_{\mathrm{ijk}} \Delta_{\mathrm{ijk}}}{\Delta}
$$

where $\quad \mathrm{P}_{\mathrm{ijk}}=k$ th path from variable x_{i} to variable x_{j},
$\Delta=$ determinant of the graph,
$\Delta_{\mathrm{ijk}}=$ cofactor of the path $\mathrm{P}_{\mathrm{ijk}}$,
and the summation is taken over all possible k paths from x_{i} to x_{j}. The cofactor $\Delta_{i j k}$ is the determinant with the loops touching the path removed. The determinant Δ is

$$
\Delta=1-\sum_{n=1}^{N} L_{n}+\sum_{m=1, q=1}^{M, Q} L_{m} L_{q}-\sum L_{T} L_{s} L_{q}+\ldots
$$

where L_{q} equals the value of the q th loop transmittance. In other words,

$$
\begin{aligned}
\Delta=1 & - \text { (sum of all different loop gains) } \\
& + \text { (sum of the gain products of all combinations of } 2 \text { non-touching } \\
& \text { loops) } \\
& - \text { (sum of the gain products of all combinations of } 3 \text { non-touching } \\
& \text { loops) } \\
& +\ldots
\end{aligned}
$$

Two loops are non-touching if they do not have any common nodes.

Consider the following system shown in Figure 3.1 It can be difficult to reduce by block diagram techniques [7]. The forward paths are

$$
\begin{aligned}
& P_{1}=G_{1} G_{2} G_{3} G_{4} G_{5} G_{6} \\
& P_{2}=G_{1} G_{2} G_{7} G_{6} \\
& P_{3}=G_{1} G_{2} G_{3} G_{4} G_{8}
\end{aligned}
$$

The feedback loops are

$$
\begin{aligned}
& \mathrm{L}_{1}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{7} \mathrm{G}_{6} \mathrm{H}_{3}, \\
& \mathrm{~L}_{2}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{G}_{8} \mathrm{H}_{3}, \\
& \mathrm{~L}_{3}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{G}_{6} \mathrm{H}_{3}, \\
& \mathrm{~L}_{4}=-\mathrm{G}_{7} \mathrm{H}_{2} \mathrm{G}_{2}, \\
& \mathrm{~L}_{5}=-\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{G}_{2}, \\
& \mathrm{~L}_{6}=-\mathrm{G}_{4} \mathrm{H}_{4}, \\
& \mathrm{~L}_{7}=-\mathrm{G}_{8} \mathrm{H}_{1}, \\
& \mathrm{~L}_{8}=-\mathrm{G}_{5} \mathrm{G}_{6} \mathrm{H}_{1},
\end{aligned}
$$

Figure 3.1. Multiple-loop system

Loop L_{5} does not touch loop L_{4} and loop $L_{7} ;$ loop L_{3} dose not touch loop L_{4}; and all other loops are touched with each other. Therefore the determinant is

$$
\Delta=1-\left(\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+\mathrm{L}_{4}+\mathrm{L}_{5}+\mathrm{L}_{6}+\mathrm{L}_{7}+\mathrm{L}_{8}\right)+\left(\mathrm{L}_{6} \mathrm{~L}_{1}+\mathrm{L}_{6} \mathrm{~L}_{4}+\mathrm{L}_{7} \mathrm{~L}_{4}\right)
$$

The cofactors are

$$
\Delta_{1}=\Delta_{3}=1 \quad \text { and } \quad \Delta_{2}=1-\mathrm{L}_{6}=1+\mathrm{G}_{4} \mathrm{H}_{4}
$$

Finally, the transfer function is then

$$
T=\frac{\mathrm{C}(\mathrm{~s})}{\mathrm{R}(\mathrm{~s})}=\frac{\mathrm{P}_{1}+\mathrm{P}_{2} \Delta_{2}+\mathrm{P}_{3}}{\Delta}
$$

From this example, one can conclude usefulness of the Mason's rule. On the other hand, one may recognize the complexity of paths and loops search and their non-touching loop check when the system becomes complicated. This partially motivates the computer manipulation of the Mason's rule.

CHAPTER 4

DATA STRUCTURES AND ALGORITHMS

This chapter discusses two representations of a directed graph and two travel algorithms, Depth-First Searching (DFS) and Breadth-First Searching (BSF)[9]. The combination of DFS and BSF in the directed graph are used to search all the loops and forward paths. Then algorithms for check of k -non-touching loops and the loops touching a forward path are derived.

4.1 Representation for Directed Graphs

A directed graph G consists of a set of vertices V and a set of arcs E. The vertices are also called nodes; the arcs could be called directed edges. One common representation for a digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is the adjacency matrix (Figure 4.1), where $\mathrm{V}=\{1,2, \ldots \mathrm{n}\}$ and $\mathrm{E}=\{1,2, \ldots$ e $\}$. Its storage space is $\Omega\left(\mathrm{n}^{2}\right)$. Its search time is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ [9].

$$
M=\begin{gathered}
1 \\
2 \\
3 \\
4
\end{gathered}\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

(a) Representation of adjacency matrix

(b) A directed graph

Figure 4.1 A directed graph

Another common representation for a directed graph $G=(E, V)$ is called the adjacency list (Figure 4.2). Its storage space is $\Omega(n+e)$, where e is the number of edges. Its search time is $\mathrm{O}(\mathrm{n}+\mathrm{e})$ [9]. This representation will be used in our implementation.

Figure 4.2 Adjacent list for a directed graph

4.2 DFS and BFS Algorithms

4.2.1 Depth-First Searching (DFS)

Breadth-First Searching is to visit all nodes of a graph. Suppose we have a directed graph G in which all nodes are initially marked unvisited. Depth-First Searching works by selecting one node v of G as a start node; v is marked visited. Then each unvisited node adjacent to v is searched in turn, using depth-first search recursively. Once all nodes that can be reached from v have been visited, the search of v is complete. If some nodes remain unvisited, we select an unvisited node as a new start node. We repeat this process until all nodes of G have been visited. This algorithm has the complexity $\mathrm{O}(\mathrm{e})$ [9].

4.2.2 Breadth-First Searching (BFS)

In order to visit all node of a graph, Breadth-First Searching visits all nodes that are distance 1 form source at first, then visit all nodes that are distance 2 form source, and so on. We will use queue Q to put source into Q while it is not empty. The algorithm has the same complexity as DFS.

4.3 Data Structures and Graph Declarations

We define a link list structure to represent a given directed graph during the implementation of the Mason's rule as follows:

Structure 1: store net node information for a given net graph struct list_node
\{
struct list_node *next;
int id;
double weighted
int node_type;
int input_arc_number;
int in_p[MAX_INPUT_PLACE_NUMBER];
int out_p[MAX_OUTPUT_PLACE_NUMBER];
int visited_flag;
)
struct list_node *place[MAX_NODE_NUMBER];
where
id: the identification number of the place;
weighted: a weight of directed graph, it refers to the transfer function in Petri net application
node_type: the type of place, it declares a place of SOURCE(input), DESTINATION(output), MULTI_INPUT, or SINGLE_INPUT;
input: the number of input arcs of the place;
in_p[]: the id of input place;
out_p[]: the id of output place;
visited_flag: a check flag(initially 0) for searching forward paths and loops.
Structure 2: store the searching queue information during searching of loops and forward paths.
struct searching_queue

```
    {
```

 int queue_no;
 int p_queue_no;
 int n_queue_no;
 int place[MAX_PLACE_NUMBER];
)
 struct searching_queue queue[MAX_QUEUE_NUMBER];
where
queue_no: the number of current searching queue;
p_queue_no: the number of previous queue;
n_queue_no: the net queue numbers expanded from current queue.
place[]: the place numbers of searched places.

Declaration 1: A SOURCE denotes an original input place.
Declaration 2: A DESTINATION denotes an output place.
Declaration 3: A SINGLE_INPUT denotes a place that has only an input arc.

Declaration 4: A MULTI_INPUT denotes a place that has multiple-input arcs.

4.4 Loop Searching

A loop or cycle in a direct graph is a path of non-zero length whose endpoint coincides with its source. A loop is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{n}, n>1$ such that $v_{\mathrm{i}}=v_{\mathrm{j}}$, $1 \leq i<j \leq n$, implies that $\mathrm{i}=1$ and $\mathrm{j}=\mathrm{n}$. Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, we wish to determine whether there are loops. The DEF algorithm can be used to solve this problem. If a back arc is encountered during a depth-first search of G, then clearly the graph has a loop. Conversely, if directed graph has a loop, then a back arc will always be encountered in any depth-first search of the graph. The combination of DFS and BFS algorithms is then applied to find all the loops.

Algorithm 1 (Loop Searching):
Step 1: Invoke the initialized net subroutine: place[i] \rightarrow out_p[]=the id whose node i has an output arc into a node; place[i] \rightarrow int_p[] $=$ the id whose node i has an input arc from a node; Determine place[i] \rightarrow node_type;

Determine place[i] \rightarrow input; place $[\mathrm{i}] \rightarrow$ visited_flag $=0$;

Step 2: If there no MULTI_INPUT place exists, then there doesn't exist loop(s) and the searching is done;

Else store all the MULTI_INPUT places in loop[]. The number of MULTI_INPUT place is S , and $\mathrm{i}=1$;

Step 3: If $i>S$, then the searching is done;
Step 4: \quad Start from the MULTI_INPUT place loop[i],

Set current queue to 1 (c_queue=1); Put the number of loop[i] in the place[] array of queue 1 , n_queue_no $=1$, and visited_flag $=1$;

Step 5: If n_queue_no of queue 1 is equal to 0 , then all adjacent out place of loop[i] has already been searched, $\mathrm{i}=\mathrm{i}+1$, goto Step 3 ;

Step 6: \quad Search adjacent out place of loop[i]:
If there is only one adjacent out places, store this place number in the place[] of c_queue. The visited_flag of this adjacent output place is incremented by 1 ;

If there are $\mathrm{N}(\mathrm{N}>1)$ adjacent out place, we expand N queues. Put the number of each adjacent out place in the place[] array of each expanded queue. For every expanded queue, p_queue_no=c_queue, n_queue_no $=1$, and visited_flag is incremented by 1 .

The n_queue_no of c_queue is set N , then c_queue=c_queue+N.
Step 7: Check if the adjacent out place of current queue (c_queue) has been searched or not (visited_flag > 1 ?);

If yes, then check if this adjacent out place is the same as the starting MULTI_INPUT place or not?

If yes, then we have a loop and store these numbers of places of this loop in array loops[][]. For current queue, n_queueno is decreased by 1 , goto Step 10 ;

Else this adjacent out place has been searched already.
Therefore the n_queue_no of this current queue is decreased by 1 . Goto Step 10 ;

Else (visited_flag < 1) n_queue_no of c_queue is decreased by 1;
Step 8: \quad Check if the adjacent output place of current queue is a
DESTINATION place or not?

If yes, then the $\mathrm{n}_{\mathbf{\prime}}$ queue_no of current queue is decreased by 1 , goto Step 10;

Step 9: \quad Check if the adjacent output place of current queue is an already searched MULTI_INPUT place or not?

If not, goto Step 5;
Else, the n_queue_no of current queue is decreased by 1 ;
Step 10: Check if the n_queue_no of current queue is zero or not? If yes, we abandon this current queue. The n_queue_no of p_queue_no of this current queue must be decrement by 1. and visited_flag is also decreased by 1 for every place of this current queue; c_queue is decreased by 1 ; If c_queue $=0$ goto Step 5; Else goto Step 10; Else If c_queue=0 goto Step 5; Else goto Step 7.

4.5 Forward Path Searching

A path in a graph is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{n}$, with $\mathrm{n} \geq 1$, such that \exists an arc $\left(v_{i}, v_{i+1}\right)$ for $\mathrm{i} \leq \mathrm{n}-1$, and $v_{i}=v_{j}$ implies that $\mathrm{i}=\mathrm{j}, 0 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}$. The vertex v_{0} is the source of the path and v_{k} its endpoint; the $\mathrm{n}+1$ is the length of the path.

The searching for forward paths starts from a given SOURCE_INPUT place to a given DESTINATION place. First of all, we visit all the adjacent places, and check to see if they are a DESTINATION place. We get a forward path if so. Otherwise, we check to see if it has already been searched. If it has already been searched, then this path is not a simple path, which implies that this is not a forward path. Therefore we abandon this path and choose another adjacent place and repeat the above procedures. This process will continue until all the adjacent places are processed.

Algorithm 2 (Forward Path Searching):
Step 1: Invoke initialized net subroutine: initial queue, visited_flag and current queue;

Step 2: \quad Start to search from the SOURCE_INPUT place. Put the number of SOURCE place into the place[] array in which queue number is $1, \mathrm{t}$ he p_queue_no is set to 0 and n _queue_no is set to 1 , and the visited_flag of this SOURECE_INPUT place is increased by 1 , and c_queue $=1$;

Step 3: If n_queue_no of c_queue is equal to 0 , then the searching is done.
Step 4: \quad Find all adjacent place of c_queue:
If there exists only one adjacent out place, then put this place number into the place $[$ array of c _queue and n_queue_no of c _queue is set to 1. The visited_flag of this adjacent output place is increased by 1 ; If there are N adjacent output place numbers stored in every place[] array of each new queue. Every n_queue_no of these N queues is set to $c_{-} q u e u e+N$; n_queue_no is set to 1 ; ans p_queue_no is set to c_queue. Further, every visited_flag of these $\mathrm{N}(\mathrm{N}>1)$ adjacent output places is increased by 1 . The $n_{\text {_quene_no of current queue is }}$ set to N, and then $c_{-} q u e u e=c _q u e u e+N$;

Step 5: \quad Check if the place in c_queue or the N adjacent output place are a DESTINATION place or not?

If yes, a forward path is obtained. Store this forward path in f_paths[][]. The n_queue_no of current queue is decreased by 1 . Goto Step 7.

Step 6: Check if the visited_flag of these adjacent output place are greater than 1 or not?

If not, goto Step 3;
Else, this adjacent output place has already been searched. Therefore the n_queue_no of current queue is decreased by 1 .

Step 7: Check if the n_queue_no of current queue is equal to zero or not? If not, goto Step 6;

Else, if c_queue is equal to 1 , the searching is done.
Else we abandon this c_queue, and the n_queue_no of p_queue_no of current queue is decreased by 1. Every visited_flag of this place of current queue is decreased by 1 , c_queue=c_queue-1. Then goto Step 7.

4.6 Check Non-touching Loops

Assume we have got n loops by Algorithm 1, and they are stored in array loops[][], A method is, at first, to determine a vector set of combinations of comparing for the nontouching loops. The combinations of k nontouching loops are given by

$$
\frac{n!}{(n-k)!k!} \quad(2 \leq k \leq n)
$$

Then we can check whether each combination of k loops are touching. This algorithm is derived as follows.

Algorithm 3 (Check Non-touching Loops):
${ }^{*}$ Assume c is the index for loop i. n is the number of total loops. k is the number of loops to be compared for the non-touching case. $\mathrm{k}>=2$. */

$$
C[0]=-1 ;
$$

```
for (i=1; i<=K; i++) C[i] = i;
j = 1;
while (j!=0 )
{
    for (i=1; i<=k i++) output_comb_index(C[i]);
    check_nontouching_loops(k);
    j = K;
    while (C[i] = n-k+j) j--;
    C[j]++;
    for (i=j+1; i<=K; i++) C[i] = C[i-1] +1;
    |
```


4.7 Check the Loops Touching Each Forward Path

In order to get Δ_{k} in Mason' formula, we need to find those loops which touch the ith forward path. If a loop $L_{i}(0<i \leq m, m$ is the number of loops) touches the k th forward path $\left(\mathrm{P}_{k}\right)$, then we have $\mathrm{L}_{\mathrm{i}}=0$ in Δ to obtain Δ_{k}. The algorithm for checking loops of touching path P_{k} is below:

Algorithm 4 (Check the Loops Touching Each Forward Path):

```
for ( pi=1; pi<=total_path+number; pi++ )
    { j=0;
    for ( li=1; li<=total_loop_number; li++ )
        { pj=0;
            while ( paths[li][++lj] !=0 )
        { lj=0;
```

```
while ( loops[li][++li] !=0 )
if ( paths[pi][pj]==loops[li][lj] )
    { loop_of_touching_path[pi][++j]=li;
        goto A;
    }
```

 \}
 A: ;
\}
\}

4.8 Complexity Analysis of the Algorithms and the Program

The complexity of these four algorithms can be analyzed as follows. For Algorithm 1, Step 1 has the complexity of $O(M N)$ where M is the maximum number of the loops, and N is the maximum number of nodes, both predefined in the program. Step 2 takes $\mathrm{O}(\mathrm{n})$ where n is the number of nodes in the net; Step 3 takes $\mathrm{O}(1)$; Step 4 takes $\mathrm{O}(\mathrm{MN})$. Step 5 consists of assignment statements (i.e., $\mathrm{O}(1)$). Since in the worst case, the 'goto step 5 ' statement in Step 10 will be executed up to S time, we consider the complexity of Step 5 is $\mathrm{O}\left(\mathrm{S}^{*}\right)$) (S is the maximum number which current queue is equal to 0); Step 6 takes $O\left(n_{a}\right)$ where n_{a} is the total number of output arcs in a node, which is less than the node number, i.e., n ; Step 7 takes $\mathrm{O}\left(\mathrm{M}_{\mathrm{qc}}{ }^{*}{ }^{*}{ }^{*}\right.$) (where, j is the count number for searching a valid loop queue, r is the number of adjacent output places in a current queue, M_{qc} is the maximum number which the current queue is not equal to 0 , and in the worst case the "goto step 7 " statement in the step 10 will be executed up to M_{qc} time). Note that $\mathrm{j}<\mathrm{m}$, the number of loops, and $r<n$. Step 8 has complexity $O(1) ; \operatorname{Step} 9$ takes $O\left(n_{b}\right)$ where $n_{b}(<n)$ is the total number of the MULTI_INPUT place in the net; and Step 10 takes $\mathrm{O}\left(\mathrm{M}_{\mathrm{qc}}{ }^{*} \mathrm{r}\right)$. Therefore, the overall complexity of Algorithm 1 is $\mathrm{O}\left(\mathrm{MAX}\left(\mathrm{MN}, \mathrm{M}_{\mathrm{qc}} *_{j}{ }^{*} \mathrm{r}\right)\right.$).

Similar analysis can be conducted for the other three algorithms. Algorithm 2 has the same complexity as Algorithm 1, i.e., $\mathrm{O}\left(\operatorname{MAX}\left(\mathrm{MN}, \mathrm{M}_{\mathrm{qn}} \mathrm{j}^{*}{ }^{*}\right)\right.$), $\mathrm{O}\left(\mathrm{a}^{\mathrm{n}}\right)$ for algorithm 3 (when it is invoked until $\mathrm{k}=\mathrm{n}$ time), where a is the cost of check_nontouching_loops(k)(It is $\mathrm{O}\left(\mathrm{i}^{2 *} \mathrm{k}\right)$), and $\mathrm{O}\left(\mathrm{m}^{2} \mathrm{n}^{2}\right)$ for Algorithm 4.

Based above analysis, Algorithm 3 has the exponential growth with the number of loops. Therefore, the program will have a larger cost on the time when solving Mason's rule. When n grows large, the computer resources will be used up and thus this is not applicable for a very large system if we do not select an optimal algorithm to implement the checking non-touching loops.

Since Algorithm 3 has a larger amount of time cost (i.e., exponential growth), we present a procedure (Algorithm 5) for the chech_nontouching_loops(k) function to reduce the cost of the program in Algorithm 3 as follows:

Algorithm 5 (Reduce time cost when checking non-touching loops):

Step 1: \quad Obtain the combinations for $\mathrm{k}=2$;
Step 2: If all the combinations of $\mathrm{k}=2$ are the non-touching loops, then all the combinations of $3 \leq k \leq n$ are also non-touching loops (so that it is not necessary to continue to check the combinations of $3 \leq k \leq n$), and searching is done;

Step 3: If all the combinations of $\mathrm{k}=2$ are touching loops, there are not any non-touching loops, and searching is done;

Step 4: If there are C nontouching combinations ($\mathrm{C} \geq 3$) for all the combinations of $\mathrm{k}=2$, we continue to check that if there are any combinations of the non-touching loops for $k=3, \ldots$, $n-1$), (i.e., invoke chech_nontouching_loops(k) function for $\mathrm{k}=3, \ldots,(\mathrm{n}-1)$.

Similarly, we can derive the wost-cast complexity of algorithm 5 has the exponential growth $\left(\mathrm{O}\left(\mathrm{b}^{\mathrm{n}}\right)\right.$). But, if the program invokes algorithm 5 instead of algorithm 3, its cost of checking non-touching loops will be greatly reduced. Thus, this result implies our scheme can be available for a more complicated net for the solution of Mason's rule.

CHAPTER 5

DESIGN SPECIFICATIONS OF CIMR

5.1 Development Environment of CIMR

The cimr is developed in UNIX using C language. UNIX provides us a very good programming environment. It can run on a range of computers from microprocessors to the largest mainframes. It is a good operating system, especially for programmers. C is a modern programming language and provides a fairly complete set of facilities for dealing with a wide variety of applications. C has all the useful data types, operators, control structures and a standard run-time library that includes useful functions for input/output, storage allocation, string manipulation, and other purposes. C programs are efficient and are generally quite portable across different computer hardware. The design of C also makes it natural to use top-down planning, structured and modular programming.

A utility program 'cimr' runs under UNIX shell, cimr can process an input file while describes a state machine Petri net written by State Machine Petri Net Language (SMPNL), and creates an output file to describe transfer functions. The cimr also inspects the grammars of input file and create an error information list file.

5.2 Modules of CIMR

The functions of cimr are described as follows:
main(argc, argv):
read_input file():
initial():
print_matrix():
the main model of the program; process input file of SMPNL;
build the adjacency matrix and adjacency list queue for a net; output the matrix elements;

build_adj_list():	build adjacency list queue;
initial_place_info field():	initialize the information fields of structure 1 in section 4.3;
initial_qrow():	initialize the information fields of structure 2 in section 4.3;
initial_visited_flag():	initialize the check flag unit for searching forward paths and loops;
find_self_loops():	search all loops for a net;
check_same_loops():	check if there are any same loops;
find forward_paths():	search all forward paths for a net;
combination(n_loop, k):	
	check that these loops which are touching or not;
check_nontouching_loops():	check non-touching loops for a net;
output_nontouching_loops():	output all non-touching loops to an output file and CRT;
loops_of_touching_path():	find all loops which touch any paths in a net;
appli_mason_formula():	solve Mason's formula;
calculate_delta():	solve the determinant of the graph of a net;
calculate_delta_i():	solve the cofactor of the path of a net.

CHAPTER 6

APPLICATION EXAMPLES OF CIMR

6.1 An Example of Performance Analysis of SPN

An application example is used to show application of Mason's rule to performance analysis of flexible manufacturing system (FMS). FMS is a system with automated machines, interconnected by automated material handling. The design, operation and control of these systems have to take into account numerous interactions occurring between concurrent and nondeterministic activities. The system is categorized as a discrete-event dynamic system. In these systems, the important performance parameters are machine utilizations, production rates, average queue size and waiting times.

Figure 6.1 A flexible manufacturing system

Figure 6.1 [3] is consider as a FMS, which has two work-states $\left(\mathrm{WS}_{1}\right.$ and WS_{2}) and two robots (R_{1} and R_{2}). The workstations do identical job, which is, assembly of
parts with the help of both robots. We assume that each workstation acquires its right robot first and then the robot on its left, to assemble the parts.

Now, let's derive transfer functions by using CIMR method for performance evaluation of this system.

Figure 6.2 is an ASPN model for the system and its reachability graph. Firing of transition t_{1} and t_{5} leads to a system deadlock. The dash arcs and transition t is for the resolution of the deadlock. The deadlock rate can be found with the moment generating function based method.

t: Deadlock resolution

$$
\operatorname{mo}(1,0,0,0,1,0,0,0,1,1) \mathrm{T}
$$

Figure 6.2 (a) An ASPN model

Figure 6.2 (b) The reachability graph of the ASPN in (a)

Figure 6.2 A Petri net model and its reachability graph

Time delays of transitions $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{5}, \mathrm{t}_{6}$ and t_{7} are exponentially distributed random variables, and the firing times of transitions $\mathrm{t}_{4}, \mathrm{t}_{8}$, and t are constants: $\mathrm{c}_{1}, \mathrm{c}_{2}$ and c_{3}. The state machine Petri net (Figure 6.3) of the system is given from its reachability graph and assume the transfer functions of the each transition are derived as $\mathrm{W}_{\mathrm{i}}(\mathrm{i}=1 \ldots . .11)$ [3].

Figure 6.3 The state machine Petri net

In order to derive the deadlock rate, let the SOURCE place be M_{0} and the DESTINATION place $\mathrm{M}_{0}{ }^{\prime}$ as shown in Figure 6.4. In order to apply the Mason's rule, we map a state machine Petri net into a directed graph with weight of W_{i} (Figure 6.5).

Figure 6.4 A net for deadlock rate by Source-Sink Solution

Figure 6.5 A mapped directed graph for the deadlock rate

The structures and information fields for the graph in Figure 6.5 are given in Table 1.

Table 6.1. Node structures and information fields for Figure 6.5

	place[0]	place[1]	plecer 2]	pleod3]	piacel4]	place[5]	placo[6]	place[7]	placel 8]	place[$0^{\prime \prime}$]
${ }^{\text {d }}$	0	1	2	3	4	5	6	7	8	9
node_type	SOURCE	MULTI	SNGEE	SINGEE	SNGLLE	SINGLE	SINGLE	SINGLE	MULTI	SINGE
mput	0	2	1	1	1	1	1	1	2	1
m_pl]		$\begin{aligned} & \text { in_p }[0]=4 \\ & \text { in_p } p(1)=7 \end{aligned}$	$\mathrm{m}_{-p}[0]=1$	$\mathrm{m}_{\text {_ }}(0)=2$	m_p $[0]=3$	m_p $[0]=1$	in_p ${ }^{(0)}=5$	in_p ${ }^{\text {P }}$ ($]=6$	$\begin{aligned} & \text { min_p }[0]=2 \\ & \text { in_p }[1]=5 \end{aligned}$	$\mathrm{m}_{-} \mathrm{p}(0)=8$
cut_p []	out_p 0] $=1$	$\begin{aligned} & \text { out_p }(0)=2 \\ & \text { out_p }(1)=5 \end{aligned}$	$\begin{aligned} & \operatorname{cout}_{\text {_p }} 0=3 \\ & \text { out_p }=3 \end{aligned}$	cout $\mathrm{p}^{\text {P }}$ O] $=4$	cout.p(0) = 1	$\begin{gathered} \text { out_p }[0]=6 \\ \text { out_p }(1)=8 \end{gathered}$	Out pi 0] $=7$	out_pl 0) $=1$	out_p(0] $=9$	
visied_f	0	0	0	0	0	0	0	0	0	0

The transfer function form input M_{0} to output $\mathrm{M}_{0}{ }^{\prime}$ for the deadlock rate is derived by our computer algorithms for Mason's rule.
/**/
/* filename: exl.i
/*

```
/* This is an input file by using SMPN language. It describes */
/* a State Machine Petri Net for Mason's rule application. After */
/* running command 'cimr filename.i[return]', you can get an */
/* output file(filename.o), which records some useful information*/
/* of transfer function for performance analysis of a net. */
/* Any text errors will reported to an output file(filename.e) */
/* after compiling. */
/* */
/******************************************************************/
net=9; /* the total place numbers of the net place */
input=1; /* determine the id of an input place */
output=9; /* determine the id of an output place */
/* Determine the parameters of the State Machine Petri Net */
/* node=(ptr1,ptr2,ptr3), where, 'ptr1' refers to id of input */
/* place, 'ptr2' refers to id of output place, and 'ptr3' */
/* refers to the index of transfer function variables. */
node=(1, 2,1);
node=(1,5,2);
node=(2,3,3);
node=(2,8,4);
node=(3,4,7);
node=(4,9,8);
node=(5,6,6);
node=(5,8,5);
node=(6,7,9);
node=(7,1,10);
node=(8,1,11);
```

Figure 6.6 An input file of state machine Petri net

A description language of State Machine Petri Net is written as an input file of net (Figure 6.6). Use running command 'cimr' under UNIX shell environment blow: \$cimr filename

After running the above command we can obtain an output file (filename.o) which presents all solutions related to evaluation of the Mason's rule for a net (Figure 6.7).

```
Output file: ex1.o
The adjacncy matrix(9x9):
0100020000
0}0030000004
0007000000
8000000000
000006050
0000000900
1000000000
0}000000000001
000000000
* The elements which are not equal to zero in the matrix refer to the
index of the transfer function (Wi).
Adjacency List Queue:
(1) --> w1 (2) --> w2 (5)
(2) --> w3(3)--> w4(8)
(3) --> w7 (4)
(4) --> w8 (1)
(5) --> w6(6) --> w5 (8)
(6) --> w9(7)
(7) --> w10(1)
(8)--> w11(9)
(9)
* Wi refers to the transfer function.
Loop(s):
L1: (1) -> (5) -> (6) -> (7) -> (1)
    (W2 W6 W9 W10 )
L2: (1) -> (2) -> (3) -> (4) -> (1)
    (W1 W3 W7 W8 )
```

```
The forward path(s) from node 1 to node 9:
P1: (1) -> (5) -> (8) -> (9)
    (W2 W5 W11 )
P2: (1) -> (2) -> (8) -> (9)
    (W1 W4 W11 )
Combinations for checking nontouching loops:
k=2:
Non-touching_loops:
Loops touching forward path:
Loops of touching path P1: L1 L2
Loops of touching path P2: L1 L2
SOLUTION OF MASON'S RULE FOR THE INPUT NET:
DELTA = 1-(L1+L2)
DELTAI = 1-(0+0)
DELTA2 = 1-(0+0)
MASON'S VALUE (out/in): T(s) = (P1 * DELTA1 + P2 * DELTA2 ) / DELTA
End of Execution!
```

Figure 6.7 A output file of Mason's rule computer implementation

Therefore, we get:
The first forward path: $\quad P_{1}=w_{1} w_{4} w_{11}$,
The second forward path: $\quad P_{2}=w_{2} w_{5} w_{11}$,
There are two self-loops: $\quad L_{1}=w_{1} \quad w_{3} \quad w_{7} w_{8}$, $L_{2}=w_{2} w_{6} w_{9} w_{10}$.

Non-touching loops: None

Where, $\operatorname{loop} \mathrm{L}_{1}$ touches loop L_{2}. Therefore, the determinant is

$$
\Delta=1-\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)
$$

The cofactor of the determinate alone path $\left(\mathrm{P}_{1}\right)$ is evaluated by removing the loops that touch path (P_{1}) from Δ (or P_{1} touches all loops). Therefore, we have

$$
\begin{aligned}
& P_{1}=0, \\
& P_{2}=0, \\
& \Delta_{1}=1-0=1,
\end{aligned}
$$

Similarly, since P_{2} touches all loops, the cofactor for path 2 is

$$
\begin{aligned}
& P_{1}=0, \\
& P_{2}=0, \\
& \Delta_{2}=1-0=1
\end{aligned}
$$

Total gain $\left(\mathrm{M}_{0} \rightarrow \mathrm{M}_{0^{\prime}}\right): \quad \mathrm{T}=(1 / \Delta) \sum_{\mathrm{k}=1} P_{k} \Delta_{k}$
Thus, the transfer function from source place $\mathrm{M}_{0}(\mathrm{~s})$ to sink place $\mathrm{M}_{0}{ }^{\prime}(\mathrm{s})$ is:

$$
\begin{aligned}
W_{E}(s) & =\frac{M_{0}^{\prime}(s)}{M_{0}(s)} \\
& =\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta} \\
& =\frac{P_{1}+P_{2}}{1-L_{1}-L_{2}} \\
& =\frac{\left(w_{1} w_{4}+w_{2} w_{5}\right) w_{11}}{1-w_{1} w_{3} w_{7} w_{8}-w_{2} w_{6} w_{9} w_{10}}
\end{aligned}
$$

Its moment generating function is

$$
\mathrm{M}_{\mathrm{E}}(\mathrm{~s})=\frac{\mathrm{W}_{\mathrm{E}}(\mathrm{~s})}{\mathrm{W}_{\mathrm{E}}(0)}
$$

Then the mean recurrence time from initial state to deadlock state:

$$
\mathrm{TR}=\frac{\partial \mathrm{ME}_{\mathrm{E}}(\mathrm{~s})}{\partial \mathrm{s}} \mathrm{I}_{\mathrm{s}=0}
$$

The mean sojourn time is

$$
\mathrm{TS}=\frac{\partial \overline{\mathrm{M}}_{\mathrm{E}}(\mathrm{~s})}{\partial \mathrm{s}} \mathrm{I}_{\mathrm{s}=0}
$$

where $\overline{\mathrm{M}}_{\mathrm{E}}$ is the moment generating function by replacing the transfer functions $\mathrm{w}_{\mathrm{i}}(\mathrm{s})$ ($\mathrm{i} \neq 11$) with one. Therefore, the deadlock rate is

$$
\mathrm{R}_{\mathrm{d}}=\frac{\mathrm{TS}}{\mathrm{TR}}
$$

Supposing the deadlock resolution time is a parameter, we can lead to a deadlock rate of the closed-form [3].

6.2 An Example of A Linear System

The example (Figure 3.1) in Chapter 2 can be solved by cimr for deriving transfer function as shown in Figure 6.8 and Figure 6.9, where

$$
\begin{aligned}
& \mathrm{W}_{1}=1, \quad \mathrm{~W}_{2}=\mathrm{G}_{1}, \mathrm{~W}_{3}=\mathrm{G}_{2}, \\
& \mathrm{~W}_{4}=\mathrm{G}_{3}, \mathrm{~W}_{5}=\mathrm{G}_{4}, \mathrm{~W}_{6}=\mathrm{G}_{5}, \\
& \mathrm{~W}_{7}=\mathrm{G}_{6}, \mathrm{~W}_{8}=\mathrm{G}_{7}, \mathrm{~W}_{9}=\mathrm{G}_{8}, \\
& \mathrm{~W}_{10}=-\mathrm{H}_{4}, \mathrm{~W}_{11}=-\mathrm{H}_{1}, \mathrm{~W}_{12}=-\mathrm{H}_{2}, \\
& \mathrm{~W}_{13}=-\mathrm{H}_{3}, \mathrm{~W}_{14}=1
\end{aligned}
$$

```
/************************************************************************/
/* filename: ex2.i */
/* */
/* This is an input file by using SMPN language. It describes */
/* a State Machine Petri Net for Mason's rule application. After */
/* running command 'cimr filename.i[return]', you can get an */
/* output file(filename.o), which records some useful information */
/* of transfer function for performance analysis of a net. */
/* Any text errors will reported to an output file(filename.e) */
```

```
/* after compiling. */
/* */
/*******************************************************************/
```

net=9; $/ *$ the total place numbers of the net $* /$
input=1; /* determine a source id of a place */
output=9; $/ \star$ determine a destination id of a place $\star /$
/* Determine the parameters of the State Machine Petri Net */
/* node=(ptr1,ptr2,ptr3), where, 'ptr1' refers to id of input */
/* place, 'ptr2' refers to id of output place, and 'ptr3' */
/* refers to the index of transfer function variables. */
node $=(1,2,1)$;
node $=(2,3,2)$;
node $=(3,4,3)$;
node $=(4,5,4)$;
node $=(4,7,8)$;
node $=(5,6,5)$;
node $=(6,5,10)$;
node $=(6,7,6) ;$
node $=(6,8,9)$;
node $=(7,3,12)$;
node $=(7,8,7)$;
node $=(8,2,13)$;
node $=(8,6,11)$;
node $=(8,9,14)$;
figure 6.8 Description file of the net shown in figure 1

```
Output file: ex2.o
The adjacncy matrix(9x9):
010000000
0 02000000
0 0 0 3 0 0 0 0 0
0 0 0 0 4 0 8 0 0
0000005000
```

0000100690
0012000070
$\begin{array}{lllllllll}0 & 13 & 0 & 0 & 0 & 11 & 0 & 0 & 14\end{array}$
0000000000

* The elements which are not equal to zero in the matrix refer to the index of the transfer function(Wi).

Adjacency List Queue:
(1) --> w1 (2)
(2) --> พ2 (3)
(3) --> w3 (4)
(4) --> w4 (5) --> w8 (7)
(5) --> w5 (6)
(6) --> w10(5) --> w6(7) --> w9 (8)
(7) --> w12 (3) --> w7 (8)
(8) --> w13 (2) --> w11 (6) --> w14 (9)
(9)

* Wi refers to the transfer function.

Loop (s):

L1: (2) $->$ (3) $->$ (4) $->(7)->(8)->(2)$
(W2 W3 W8 W7 W13)
L2: (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) \rightarrow (6) \rightarrow (8) \rightarrow (2)
(W2 W3 W4 W5 W9 W13)
L3: (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) $\rightarrow>(6)->(7) \rightarrow(8)->(2)$
(W2 W3 W4 W5 W6 W7 W13)
L4: (3) \rightarrow (4) \rightarrow (7) \rightarrow (3)
(W3 W8 W12)
L5: (3) \rightarrow (4) \rightarrow (5) \rightarrow (6) \rightarrow (7) \rightarrow (3)
(W3 W4 W5 W6 W12)
L6: (5) \rightarrow (6) \rightarrow (5)
(W5 W10)
L7: (6) \rightarrow (8) \rightarrow (6)
(W9 W11)
L8: (6) \rightarrow (7) \rightarrow (8) \rightarrow (6)
(W6 W7 W11)

```
The forward path(s) from node 1 to node 14:
P1: (1) -> (2) -> (3) -> (4) -> (7) -> (8) -> (9)
    (W1 W2 W3 W8 W7 W14 )
P2: (1) }->>⿱(2) -> (3) -> (4) -> (5) -> (6) -> (8) -> (9
    (W1 W2 W3 W4 W5 W9 W14 )
P3: (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9)
    (W1 W2 W3 W4 W5 W6 W7 W14 )
Nontouching_loops:
k=2:{ L1 L6 },{L4 L6},{L4 L7 }
Loops touching forward path:
```

```
Loops of touching path PI: L1 L2 L3 L4 L5 L7 L8
```

Loops of touching path PI: L1 L2 L3 L4 L5 L7 L8
Loops of touching path P2: L1 L2 L3 L4 L5 L6 L7 L8
Loops of touching path P2: L1 L2 L3 L4 L5 L6 L7 L8
Loops of touching path P3: L1 L2 L3 L4 L5 L6 L7 L8
Loops of touching path P3: L1 L2 L3 L4 L5 L6 L7 L8
SOLUTION OF MASON'S RULE FOR THE INPUT NET:
DELTA = 1-(L1+L2+L3+L4+L5+L6+L7+L8)+(Ll*L6+L4*L6+L4*L
DELTA1 = 1-(0+0+0+0+0+L6+0+0)+(0*L6+0*L6+0*0)
DELTA2 = 1-(0+0+0+0+0+0+0+0)+(0* 0+0* 0+0*0)
DELTA3 = 1-(0+0+0+0+0+0+0+0)+(0* 0+0* 0+0*0)
MASON'S VALUE(Out/in): T(s) = (P1 * DELTA1 + P2 * DELTA2 + P3 * DELTA3
) / DELTA
End of Execution!

```

Figure 6.9 Computer solution of Mason's rule for the net shown in Figure 3.1

\subsection*{6.3 An Example of A Complicated Net}

Figure 6.10 is a net graph that has 25 loops and 5 forward paths. There are 19 places, Input is node 1 and output is node 19. The more loops, the more complicated to derive the transfer functions for a net graph. Therefore it is not easy to do that by hand. We use cimr to derive the transfer functions for the net. The results of cimr are shown in Figure 6.11 (Input file of cimr) and Figure 6.12 (Output file of cimr).


Figure 6.10 A Complicated Net
```

/***
/* filename: ex3.i */
/* */
/* This is an input file by using SMPN language. It describes */
/* a State Machine Petri Net for Mason's rule application. After */
/^ running command 'cimr filename.i[return]', you can get an */
/* output file(filename.o), which records some useful information */
/* of transfer function for performance analysis of a net. */
/* Any text errors will reported to an output file(filename.e) */
/* after compiling. */
/* */

```

```

net=19;	$/ *$ the total numbers of the net place
input $=1 ;$	$/ *$ to determine the id of an input place */
output $=19 ;$	$/ *$ to determine the id of an output place $* /$

/* Determine the parameters of the State Machine Petri Net */
/* node=(ptr1,ptr2,ptr3), where, 'ptr1' refers to id of input */
/* place, 'ptr2' refers to id of output place, and 'ptr3' */
/* refers to the index of transfer function variables. */
node=(1,2,1);
node=(2,3,2);
node=(3,4,3);
node=(4,5,4);
node=(5,6,5);
node=(6,7,6);
node=(7, 8,7);
node=(8,9,8);
node=(9,10,9);
node=(10,11,10);

```
```

node=(11,12,11);
node=(5,13,12);
node=(13,14,13);
node=(13,7,14);
node=(14,8,15);
node=(15,16,16);
node=(10,15,17);
node=(10,16,18);
node=(11,16,19);
node=(16,1, 20);
node=(5,17,21);
node=(5,7,22);
node=(17,7,23);
node=(18,2,24);
node=(12,1,25);
node=(11,18,26);
node=(12,19,27);

```

Figure 6.11 Input file of cimr in Figure 6.10
```

Output file: ex3.o
The adjacncy matrix(19x19):

0110}000000000000000000000000
0}022000000000000000000000000
00003000}0000000000000000000

```

```

0 0 0 0 0 5 22 0 0 0 0 0 12 0 0 0 21 0
0}00000000600000000000000000
00000000}0070000000000000000
0}000000000008000000000000000
0}00000000000090000000000000
0}000000000000010 00 0 0 17 18 0 0 0,
0}00000000000000011000001901260
250000000}0000000000000000002
0}000000001400000000013000000
0000000001500010000}
0}0000000000000000000016000
2000000000}000000000000000000

```


```

0}0000000000000000000000000000

* The elements which are not equal to zero in the matrix refer to the index of the transfer function(Wi).

```

\section*{Adjacency List Queue:}
(1) --> w1 (2)
(2) --> w2 (3)
(3) --> w3 (4)
(4) \(-->\) w 4 (5)
(5) --> w5 (6) --> w22 (7) --> w12 (13) --> w21 (17)
(6) --> w6(7)
(7) --> w7 (8)
```

(8) --> w8(9)
(9) --> w9(10)
(10) --> w10(11) --> w17(15) --> w18(16)
(11)--> w11(12) --> w19(16) --> w26(18)
(12) --> w25(1) --> w27(19)
(13) --> w14(7) --> w13(14)
(14) --> w15(8)
(15) --> w16(16)
(16) --> w20(1)
(17) --> w23(7)
(18) --> w24(2)
(19)

* Wi refers to the transfer function.
Loop (s):

```
L1: (1) \(->(2) \rightarrow(3)->(4)->(5)->(13)->(14)->(8)->(9)->(10)->(16)->(1)\)
    (W1 W2 W3 W4 W12 W13 W15 W8 W9 W18 W20 )
L2: (1) \(->(2)->(3)->(4)->(5)->(13)->(14)->(8) \rightarrow>(9)->(10)->(15)->(16)-\)
\(>(1)\)
(W1 W2 W3 W4 W12 W13 W15 W8 W9 W17 W16 W20 )
L3: (1) \(\rightarrow>(2)->(3)->(4) \rightarrow>(5)->(13)->(14)->(8)->(9)->(10)->(11)->(16)-\) \(>(1)\)
(W1 W2 W3 W4 W12 W13 W15 W8 W9 W10 W19 W20 )

L4: \((1) \rightarrow\) (2) \(\rightarrow\) - \((3) \rightarrow>(4) \rightarrow>(5) \rightarrow>(13) \rightarrow>(14) \rightarrow>(8) \rightarrow(9) \rightarrow>(10)->(11)->(12)-\) \(>(1)\)
(W1 W2 W3 W4 W12 W13 W15 W8 W9 W10 W11 W25 )

(W1 W2 W3 W4 W22 W7 W8 W9 W18 w20 )
L6: \((1) \rightarrow>(2) \rightarrow>(3) \rightarrow(4) \rightarrow>(5) \rightarrow>(7) \rightarrow>(8) \rightarrow>(9) \rightarrow>(10) \rightarrow>(15) \rightarrow>(16)->(1)\) (W1 W2 W3 W4 W22 W7 W8 W9 W17 W16 W20 )

L7: \((1) \rightarrow>(2) \rightarrow>(3) \rightarrow>(4) \rightarrow>(5) \rightarrow>(7) \rightarrow>(8)->(9) \rightarrow>(10) \rightarrow>(11)->(16)->(1)\) (W1 W2 W3 W4 W22 W7 W8 W9 W10 W19 W20 )

L8: (1) \(\rightarrow\) (2) \(\rightarrow\) (3) \(\rightarrow\) (4) \(\rightarrow\) (5) \(\rightarrow\) (7) \(\rightarrow\) ( 8 ) \(\rightarrow\) (9) \(\rightarrow\) (10) \(\rightarrow\) (11) \(->(12)->(1)\)
(W1 W2 W3 W4 W22 W7 W8 W9 W10 W11 W25 )
L9: (1) \(\rightarrow>(2) \rightarrow>(3) \rightarrow>(4) \rightarrow>(5) \rightarrow>(6) \rightarrow>(7) \rightarrow>(8)->(9) \rightarrow>(10) \rightarrow>(16)->(1)\)
(W1 W2 W3 W4 W5 W6 W7 W8 W9 W18 W20 )
L10: (1) \(->(2)->(3)->(4) \rightarrow>(5) \rightarrow>(6) \rightarrow>(7) \rightarrow>(8) \rightarrow>(9) \rightarrow>(10)->(15)->(16)-\) \(>(1)\)
(W1 W2 W3 W4 W5 W6 W7 W8 W9 W17 W16 w20 )
L11: \((1) \rightarrow>(2) \rightarrow>(3) \rightarrow>(4)->(5) \rightarrow>(6) \rightarrow>(7) \rightarrow>(8) \rightarrow>(9) \rightarrow>(10)->(11) \rightarrow>(16)-\) \(>(1)\)
(W1 W2 W3 พ4 W5 W6 W7 W8 W9 W10 W19 W20 )
L12: \((1) \rightarrow>(2) \rightarrow(3) \rightarrow>(4) \rightarrow>(5) \rightarrow>(6)->(7) \rightarrow>(8) \rightarrow>(9) \rightarrow>(10)->(11)->(12)-\) \(>(1)\)
(W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W25 )
L13: \((2) \rightarrow(3)->(4) \rightarrow>(5)->(13) \rightarrow>(14)->(8) \rightarrow>(9) \rightarrow>(10)->(11) \rightarrow(18)->(2)\)
(W2 W3 W4 W12 W13 W15 W8 W9 W10 W26 W24 )
L14: \((2) \rightarrow>(3) \rightarrow>(4) \rightarrow>(5) \rightarrow>(7) \rightarrow>(8) \rightarrow>(9) \rightarrow>(10) \rightarrow>(11)->(18)->(2)\)
(W2 W3 W4 W22 W7 W8 W9 W10 W26 W24 )
L15: (2) \(\rightarrow>(3) \rightarrow>(4) \rightarrow>(5) \rightarrow>(6) \rightarrow>(7)->(8) \rightarrow>(9) \rightarrow>(10) \rightarrow>(11)->(18)->(2)\)
(W2 W3 W4 W5 W6 W7 W8 W9 W10 W26 W24 )
L16: \((7) \rightarrow>(8) \rightarrow>(9) \rightarrow(10)->(16)->(1)->(2)->(3)->(4)->(5)->(17)->(7)\)
(W7 W8 W9 W18 W20 W1 W2 W3 W4 W21 W23 )
L17: (7) \(->(8) \rightarrow>(9)->(10) \rightarrow>(16) \rightarrow>(1)->(2) \rightarrow>(3) \rightarrow>(4) \rightarrow>(5)->(13)->(7)\)
(W7 W8 W9 W18 W20 W1 W2 W3 W4 W12 W14 )
L1 8: (7) \(\rightarrow>(8) \rightarrow>(9) \rightarrow>(10)->(15) \rightarrow>(16) \rightarrow>(1) \rightarrow>(2) \rightarrow>(3)->(4)->(5)->(17)-\) \(>(7)\)
(W7 W8 W9 W17 W16 W20 W1 W2 W3 W4 W21 W23 )
 \(>\) (7)
(W7 W8 W9 W17 W16 W20 W1 W2 พ3 W4 w12 W14 )
L20: (7) \(\rightarrow>(8) \rightarrow>(9) \rightarrow>(10) \rightarrow>(11) \rightarrow>(18) \rightarrow>(2) \rightarrow>(3) \rightarrow>(4)->(5)->(17)->(7)\)
(W7 W8 W9 W10 W26 W24 W2 W3 W4 W21 W23 )
L21: (7) \(\rightarrow\) ( 8 ) \(\rightarrow\) ( 9 ) \(\rightarrow\) (10) \(\rightarrow\) (11) \(\rightarrow>(18) \rightarrow>(2) \rightarrow>(3) \rightarrow>(4) \rightarrow>(5)->(13)->(7)\)
(W7 W8 W9 W10 W26 W24 W2 W3 W4 W12 W14 )
L22: (7) \(\rightarrow\) ( 8 ) \(\rightarrow\) ( 9 ) \(\rightarrow\) (10) \(\rightarrow>(11) \rightarrow>(16) \rightarrow>(1) \rightarrow>(2) \rightarrow>(3) \rightarrow>(4)->(5)->(17)-\) \(>(7)\)
(พ7 W8 W9 W10 W19 W20 W1 W2 พ3 W4 W21 W23 )
L23: (7) \(\rightarrow\) ( 8 ) \(\rightarrow\) (9) \(\rightarrow>(10) \rightarrow>(11) \rightarrow>(16) \rightarrow>(1)->(2) \rightarrow>(3) \rightarrow>(4)->(5)->(13)-\) \(>(7)\)
(W7 W8 W9 W10 W19 W20 W1 W2 W3 W4 W12 W14 )
L24: (7) \(\rightarrow>(8) \rightarrow>(9) \rightarrow>(10) \rightarrow>(11) \rightarrow>(12) \rightarrow>(1)->(2)->(3)->(4)->(5)->(17)-\) \(>(7)\)
(W7 W8 W9 W10 W11 W25 W1 W2 W3 W4 W21 W23 ) L25: (7) \(\rightarrow\) ( 8 ) \(\rightarrow\) ( 9 ) \(\rightarrow\) (10) \(\rightarrow\) (11) \(\rightarrow>(12) \rightarrow>(1) \rightarrow(2) \rightarrow>(3)->(4)->(5)->(13)-\) \(>(7)\)
(W7 W8 W9 W10 W11 W25 W1 W2 W3 W4 W12 W14 )
```

The forward path(s) from node 1 to node 19:

```

P1: \((1) \rightarrow>(2) \rightarrow>(3) \rightarrow>(4)->(5) \rightarrow>(17) \rightarrow>(7) \rightarrow>(8) \rightarrow>(9) \rightarrow>(10)->(11)->(12)-\) \(>(19)\)
(W1 W2 W3 W4 W21 W23 W7 W8 W9 W10 W11 W27 )
P2: (1) \(->(2) \rightarrow>(3) \rightarrow>(4)->(5) \rightarrow>(13) \rightarrow>(14)->(8) \rightarrow>(9) \rightarrow(10) \rightarrow>(11)->(12)-\) \(>\) (19)
(W1 W2 W3 W4 W12 W13 W15 W8 W9 W10 W11 W27 ) P3: \((1)->(2)->(3)->(4)->(5) \rightarrow>(13)->(7) \rightarrow>(8) \rightarrow>(9)->(10)->(11)->(12)-\) \(>\) (19)
(W1 W2 W3 W4 W12 W14 W7 W8 W9 W10 W11 W27 )
P4: (1) \(->(2) \rightarrow>(3) \rightarrow>(4) \rightarrow>(5) \rightarrow>(7) \rightarrow>(8) \rightarrow>(9) \rightarrow>(10) \rightarrow>(11) \rightarrow>(12)->(19)\)
(W1 W2 W3 W4 W22 W7 W8 W9 W10 W11 W27 )

P5: (1) \(->(2) \rightarrow>(3) \rightarrow>(4)->(5) \rightarrow>(6) \rightarrow>(7) \rightarrow>(8)->(9)->(10)->(11) \rightarrow>(12)-\) \(>(19)\)
(W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W27 )

Combinations for checking non-touching loops:
\(\mathrm{k}=2\) :

Non-touching_loops:

Loops touching forward path:

Loops of touching path P1: L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25

Loops of touching path P2: L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13
L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25

Loops of touching path P3: L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Lil L12 L13

L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25

Loops of touching path P4: L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13
L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25
```

Loops of touching path P5: L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13
L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25
SOLUTION OF MASON'S RULE FOR THE INPUT NET:
DELTA = 1-(L1+L2+L3+L4+L5+L6+L7+L8+L9+L10+L11+L12+L13+L14+L15+
L16+L17+L18+L19+L20+L21+L22+L23+L24+L25)
DELTA1 = 1-(0+0)
DELTA2 = 1-(0+0)
DELTAS = 1-(0+0)
DELTA4 = 1-(0+0)
DELTA5 = 1-(0+0)
MASON'S VALUE(out/in): T(s) = (P1 * DELTA1 + P2 * DELTA2 + P3 * DELTA3

+ P4 * DELTA4 + P5 * DELTA5) / DELTA
End of Execution!

```

Figure 6.12 Output file of cimr in Figure 6.10

\section*{CHAPTER 7}

\section*{CONCLUSIONS AND FURTHER RESEARCH}

This thesis has presented an approach to implementation of the computerized solution for Mason's rule, and it is a part of software tool development for study, evaluation and analysis of ASPN. An executable program (cimr) written by C language has been developed. It is able to evaluate the Mason's rule under UNIX environment. A complicated example in which it is very difficult to derive transfer functions is also tested. The implementation will play a very important role in the automation of performance analysis using moment generating function based approach for arbitrary stochastic Petri nets. The results can also find their applications in reduction of linear control systems.

The methodology of Petri Net is a graphical tool for modeling and analysis of discrete system. However, the modeling, design and analysis for Petri nets need be automated with the help of the synthesis methodologies and computer software technology. In order to implement computerized performance evaluation, modeling and system analysis for nets, our further and partially completed research and development for a software package are as follows:
a) ASPN language

In order to implement a computerized performance evaluation, modeling and analysis, we define and describe an ASPN language as discrete event dynamic system programming language. The method of definition employed is referred to as BackusNaur form [46], or NBF. We present a BNF description of the ASPN language as the grammar of Petri net language. The BNF definition of ASPN language includes:
- program definition (program, heading and block)
- variable definition (integer, float and character type)
- constant definition (letter, digit, integer, real, sign, string)
- statement definition (assignment statement, place statement, arc statement, marking statement, net input and output statement, function call statement, compound statement, empty statement etc.)

There are several main advantages to define an ASPN language:
- We can design, model and analyze a Petri net by using the methodology of programming language;
- A language of PN benefits to the computerized processing for the complicated net construct;
- The combination of the language and graphical methodologies will be helpful to develop a new and efficient software tool for DEDS.
b) Compiler of ASPN language

A compiler needs to be developed to transfer source code of ASPN program describing an ASPN into its object program code run under UNIX. The development of the compiler can be implemented by using a UNIX tool, yacc [45]. yacc is a parser generator, that is, a program for converting a grammatical specification of a language.
c) Reachability Graph Generator ( \(R G G\) )

The reachability graph of a PN is a set of all reachable markings (states) from an initial marking \(m_{0}\) (initial state). Given a PN, we can obtain as many new markings as the number of enabled transitions. From each new marking, we can reach more markings. This process results in a tree representation of the markings, which is known as the Reachability Graph. The generation of reachability graph in the program is done by the function firing( ) [42]. It is one of the key functions of the program and calls several other functions during execution. It also calls itself for next firings until it terminates upon some conditions [42].
d) Library of ASPN function (LAF)

It is necessary to develop a library of ASPN function. These functions shall include:
- PN property class
- PN analysis class
- Transfer function class
- Performance evaluation class
e) Computer Implementation of Mason's Rule (CIMR)

A running program 'cimr' has been completed. It can be either as a command of a new software tool or as the function call of ASPN language.

\section*{f) Graphical User Interface and Environment}

Our goal is to design a Graphical User Interface (GUI) to put the modeling and performance analysis of ASPN into a window environment with a better look and feel. GUI describes a user interface that makes use of windows, menus, and other graphical objects and that, to a large extent, allows users to interact with the application by pointing and cliking mouse button. From an application developer's point of view, a GUI is a combination of a window manager, a style guide, and a library of routines (toolkit) that can be used to build the interface [43].

X -window is a windowing system capable of organizing graphics output in a hierarchy of windows on the screen. This capability and the ability to accept inputs from keyboard and mouse make X -window ideal for handling user interaction [43].

A GUI has four components:
- Window system

The graphical window system organizes output on the display screen and performs the basic text and graphics drawing functions.
- Window manager

The window manage provides the mechanism by which, when several window are on the screen, users can indicate the window with which they intend to interact.
- Toolkit

The toolkit is a library of routines with a well-defined programming interface.
- Style guide

The style guide specifies the appearance and behavior of the user interface of an application.

The X programming interface, Xlib, allows you to create window and handle basic input and output to build any graphical user interface you want. It is used to design and build a GUI for modeling and analyzing of ASPN. Figure 7.1 shows basic functional blocks for development of ASPN software.

Generally, a new software tool for ASPN based on above will be the integration of Petri nets, moment generating function concepts, programming design and graph environment. It will result in a powerful and unified tool for DEDS.


Figure 7.1 Basic functional blocks for development of ASPN software.

\section*{APPENDIX - SOURCE CODE OF CIMR}
```

 #ifndef LINT
 static char sccsid[] = "@(#)Computer Implementation of Mason's
 Rule V.1.00 02/15/92 ";
3 \#endif
4
5
6
7
/**/
1 9
\#define FALSE 0
27
\#define TRUE 1
28 \#define MAX_NODE 50
29 \#define MAX1 20
30
\#define MAX2 1000
31 \#define MAX_PATH 100
32 \#define MAXLINE 128
33 \#define DEFAULT NO 30

```
    #define SOURCE 10
    #define SINGLE 11
    #define MULTI }1
    #define DESTIN 13
    void read_input_file();
    void initial();
    void print_matrix();
    void build_adj_list();
    void initial_place_info_field();
    void initial_qrow();
    void initial_visited_flag();
    void find_loops();
    void check_same_loops();
    void find_forward_paths();
    void combination();
    void check_nontouching_loops();
    void output_nontouching_loops();
    void loops_of_touching_path();
    void appli_mason_formula();
    void calculate_delta();
    void calculate_delta_i();
    struct list_node
    {
        struct list_node *next;
        int id;
        int w;
        int node_type;
        int input;
        int in_p[MAX1+1];
        int out_p[MAX1+1];
        int visited;
        };
```

100 char filename[20];
101 char filename_o[20];

```
```

```
71 struct list_node *talloc();
```

```
71 struct list_node *talloc();
72 struct list_node *place[MAX_NODE+1],*ptr;
```

72 struct list_node *place[MAX_NODE+1],*ptr;

```
```

 struct operate
 { int qno;
 int pqno;
 int nqno;
 int place[MAX1+1];
 };
 struct operate qrow[MAX2+1];
 unsigned int loopmat[MAX2+1][MAX_NODE+1];
 unsigned int w_of_loop[MAX2+1][MAX_NODE+1];
 unsigned int pathmat[MAX_PATH+1][MAX_NODE+1];
 unsigned int w_of_path[MAX_PATH+1][MAX_NODE+1];
 unsigned int comb_mat[MAX_NODE+1];
 int nontouching_loops[51][MAX_NODE+1];
 int loop_of_touch_path[MAX_PATH+1][MAX_NODE+1];
 unsigned int matrix[MAX_NODE+l][MAX_NODE+1];
 int cqueue;
 int multi_place=0;
 unsigned int ji, x,y,n,t=1;
 unsigned int total_loop_number;
 unsigned long int touching_index=0;
 unsigned int nontouching_index=0;
 int loop_in_delta[MAX2];
 int check_nontouching_done=FALSE;
 char filename_e[20];
 char filename_m[20];
 char strings[]="more -d ";
    ```

105 char stringsi[]="SOLUTION OF MASON'S RULE FOR THE INPUT NET: \n";

106 char
strings2[]="===========================================1n";
107 char strings3[]="* Wi refers to the transfer function. \(\ln\) ";
108 char strings 4[]\(=" *\) The elements which are not equal to zero
in the metrix refer to the \(\backslash n\) index of the transfer function(Wi).";
109
110 FILE *fp_o;
111 FILE *fp_i;
112 FILE *fp_e;
113 FILE *fp_m;
114
115
116
117
118 main(argc,argv)
119 int argc; char *argv[];
120 \{
121 int i=0;
122 char c;
123 char *p;
124
125 if (argc<2)
126 \{ printf( "Usage: cims filename\n");
127 exit(1);
128
\}
129
if ( (fp_i=fopen (argv[1], "r")) \(==\) NULL)
( printf( "append: error opening file os \({ }^{\circ}\) (n", argv[1]); exit(1);
\}
\(133 \mathrm{p}=\) strchr(argv[1],'.');
134 if ( \(\mathrm{p}!=\mathrm{NULL}\) ) strcpy \(\left(\mathrm{p}, \| \backslash 0^{\prime \prime}\right)\); /* get the file name before the part of '.' */

135
136 strcpy(filename_o,argv[1]);

137
138
139 strcat(filename_o, ".0"); /* get the file name of output file */

140 strcat (filename_e, ".e"); /* get the file name of error info. file */

141 strcat(filename_m, ".m"); /* get the file name of Mason' rule solution info. file */

142
143 fp_o=fopen(filename_o, "w");
144 fprintf(fp_o,"Output file: \%s \(\left.\backslash n \backslash n ", f i l e n a m e \_o\right) ;\)
145 fp_e=fopen (filename_e, "w");
146
147
148
149
150 read_input_file();
151 initial();
152 initial_place_info_field();
153 printf( "Start to search self loops ...");
154 find_loops();
155 printf( "\nobtain \(\frac{\circ}{\circ} d\) loops \(\backslash n "\),total_loop_number);
156 printf( "Start to search paths ...");
157 find_forward_paths();
158 printf( "\nObtain \% paths \(\backslash\) n", pathmat [0][0]);
159
160 printf( "Start to check nontouching loops ...");
161 fprintf(fp_o,"Combinations for checking nontouching loops: (n");
 (n");

163 for (ji=2;ji<=total_loop_number; ji++)
164
165
166
167
1
            fprintf(fp_o, "k=\%d: ",ji);
            printf( "\nK = osd,",ji);
            combination(total_loop_number,ji);
```

 if (check_nontouching_done==TRUE) goto D;
 }
 D: printf("\nChecking nontouching loops done\n");
 output_nontouching_loops();
 loops_of_touching_path();
 appli_mason_formula();
 fclose(fp_o);
fclose(fp_e);
fclose(fp_i);
fclose(fp_m);
strcat(strings,filename_o);
system(strings);
exit(0);
}
void read_input_file()
{
int line,i,j,jj,e,c;
int error_line_no[500];
int number;
int par_1,par_2,par_3;
char string[128];
char par[20];
char namel[20];
char ascii[20];
char *error[500];
char buffer[128];
char *pptr;
char *alloca();
clear_matrix();
line=i=e=0;

```
```

 204
 */
while (fgets (buffer, MAXLINE,fp_i)!=NULL) /* read a line */

```

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
206

09
string \([i+2]==1 \backslash 0^{\prime}\) )
225
226
227
228
229
230
231
232
233
234
235
236
```

(++line;
error[e]=alloca (128);
pptr=buffer;
for ($i=1 ; i<=128 ; i++$)
string[i]='\0';
$i=0$;
$j=0$;
while (buffer[i]!='\n') /* move out '\t' and ' ' */ \{
if (buffer[i]!=' ' \&\& buffer[i]!='\t')
string[j++]= buffer[i];
i++;
}
string[j]='\0';
if (string[0]=='/' \&\& string[1]=='*')
1 /* check expaination statment */
i=1;
while (string[++i]!='\n' \&\& i<=128)
if (string[i]=='*' \&\& string[i+1]=='/' \&\&
)
| c=4;
goto A;
}
goto B;
}

```
```

if (string[0]=='\0'|| string[0]=='\n')

```
if (string[0]=='\0'|| string[0]=='\n')
        { c=4;
        { c=4;
        goto A; /* if it is a space line */
        goto A; /* if it is a space line */
    }
```

 }
    ```

237
/* check if there are explaination statments after a
statment*/
\(238 \quad i=0\);
239 while ( string[i++]!=';') ;
240 if (string[i]!='\0')
string[i+1]=='/' \& \& string[i+2]=='\0' )

247
248
249
250
251
252
253
254
255
256 C: if ( string[j-1]!=';') goto B; /* check if miss a ';' */

257
258
259
260
\(1 \quad j=i ;\)
if (string[i]=='/' \&\& string[i+1]=='*') 1
i++;
while ( string[++i]! \(=^{\prime} \backslash n^{\prime} \& \& \quad i<=128\) )
if (string[i]=='*' \&\&
string \([i+1]==1 /\) / \(\alpha \&\) string \([i+2]==1 \backslash 0^{\prime}\) )
\(i=0\);
while ( string[i]!= '=' \&\& \(i<20\) )
name1[i++]=string[i];

261
262
263
264
265
266
267
namel \([i++]=1 \backslash 0^{\prime} ;\)
if (stromp (name1, "net") \(==0\) ) \(c=0\);
else if (strcmp(name1,"input")==0) \(c=1\);
else if (stromp (namel, "output") \(==0\) ) \(c=2\);
else if (strcmp(name1, "node") ==0) \(c=3\);
else \(c=\) DEFAULT_NO;
```

 269 A: switch (c)
 270 | case 0:
 271 j=0;
 272 while (string[i]!=';')
 273 {
 274 if (string[i]<'0' || string[i]>'9') goto
 B;

```

275
276
277
278
node no. of the net */
279
280
281
282
283
284
B;
285
286
287
288
source node id */
289
290
291
292
293
294
B;
295
296
297
298
break;
case 1:
\(j=0\);
while ( string[i]!=';')
\(\{\)
if ( string[i]<'0' || string[i]>'9') goto
ascii \([j++]=s t r i n g[i++] ;\)
\}
ascii[j]=string[i];
if ((x=atoi(ascii))>n) goto B; /* get a
break;
case 2:
j=0;
while ( string[i]!=';')
1
if ( string[i]<'0' || string[i]>'9') goto
ascii[j++]=string[i++];
\}
ascii[j]=string[i];
if ((y=atoi (ascii))>n) goto B; /* get a
```

destination node id */

```

299
300
301
302
303
304
B;
break;
\[
\text { case } 3:
\]
if ( string[i++]!='(') goto B;
\(j=0\);
while ( string[i]!=', ')
if ( string[i]<'0' || string[i]>'9') goto
the first parameter for node statment */

309
310
311
B;
312
313
314
315
\(\mathrm{j}=0\);
while ( string[i]!=',') if ( string[i]<'0' || string[i]>'9') goto
        else ascii \([j++]=s t r i n g[i++]\);
    ascii[j]='\0';
    i++;
    if \((\) (par_2=atoi (ascii) \()>n\) ) goto B; /* get the
second parameter for node statment */

316
317
318
B;
319
320
321
for node statment */
322
goto B;
323
324
325
326
327
\(j=0 ;\)
while ( string[i]!=')') if ( string[i]<'0' || string[i]>'9') goto else ascii \([j++]=s t r i n g[i++] ;\)
ascii[j]='\0';
par_3=atoi(ascii); /* get the 3 th parameter
if ( string[i]!=')' || string[i+1]!=';')
matrix[par_1][par_2]=par_3;
break;
case 4: break;
B: default: error[e]=stropy (error[e],pptr);
error_line_no[e++]=line;

328
329
330
331
332
333 error_line_no[j], error[j]);

334 fprintf(fp_e, "***** ERROR: line \%d: \%s \(\frac{\%}{} \mathrm{n}^{\prime}\) ", error_line_no[j],error[j]);

335
336
337
338
339
340
341
342
343

344
345 void initial()
346 1
347 int i,j;
348
349
350 build_adj_list();
351 ।
352
353
354

355
356 clear_matrix()
357 \{
358 int i,j;
359
```

for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
matrix[i][j]=0;
}
void print_matrix()
{
int i,j;
fprintf(fp_o, "The adjacncy matrix(%dx%d):\n", n, n);
fprintf(fp_o, "-----------------------------\n");
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
{
fprintf(fp_o, "%d ",matrix[i][j]);
if (j==n)
{
fprintf(fp_o, "\n");
}
}
fprintf(fp_o,"%s",strings4);
}

```
    void build_adj_list()
    1
    int i,j;
    for ( \(i=1 ; i<=n ; i++\) )
```

 394
 395
 396
 if (place[i]==0) { printf("\n***** ERROR: invalid
 address!\n");
397
exit(1); }
398
ptr=place[i];
399 ptr->id=i;
400 for (j=1; j<=n; j++)
4 0 1
I
402
4 0 3
404
4 0 5
406
if (ptr->next==0) { printf("\n***** ERROR: invalid
address!\n");

```
```

 exit(1); }
    ```
                                    exit(1); }
                    ptr=ptr->next;
                    ptr->id=j;
                    ptr->visited=0;
                    }
                    }
        ptr=NULL;
        }
    fprintf(fp_o, "\n\nAdjacency List Queue:\n");
    fprintf(fp_o, "-----------------------\n");
    for (i=1;i<<n;i++)
        {
        ptr=place[i];
        while (ptr!=NULL && ptr->id!=0 )
        {
            if (ptr->w==0)
                    fprintf(fp_o, "(%d)",ptr->id);
        else
            fprintf(fp_o, "(%d)--> w%d",ptr->id,ptr->w );
        ptr=ptr->next;
```

```
        }
        fprintf(fp_o, "\n");
        }
    fprintf(fp_o,"%s",strings3);
    }
```

```
void initial_place_info_field()
{
int i,j,r;
for (i=1;i<=n;i++)
        {r=0;
            for (j=1;j<=n;j++)
                if (matrix[i][j]!=0) place[i]->out_p[r++]=j;
        }
    for (j=1;j<=n;j++)
    { r=0;
        for (i=1;i<=n;i++)
                if (matrix[i][j]!=0) place[j]->in_p[r++]=i;
    }
    for (i=1;i<=n;i++)
    { r=0;
            while ( place[i]->in_p[r++]!=0) place[i]->input++;
    }
for (i=1;i<=n;i++) place[i]->visited=0;
for (i=1;i<=n;i++)
    if (place[i]->input>1) place[i]->node_type=MULTI;
    else place[i]->node_type=SINGLE;
```

463
464
465 \}
466
467
468

469
470 struct list_node *talloc()
471
472
473
474
475
476
477

478
479 /*
480 void copy_matrix()
481 \{
482 int i,j;
483
484 for ($i=1 ; i<=n ; i++$)
485 for ($j=1 ; j<=n ; j++$)
486
487
488 \}
489 */
490
491

492
493 void find_loops()
494
495 1
int i,j,r,pi=1,pj=1;
int $N 1, k, s=0$;
int multi_place=FALSE;
int loop[MAX_NODE+1];
int pqindex[MAX2+1];
L1: ;
initial_qrow();
initial_visited_flag();
for ($i=0 ; i<=M A X 2 ; i++)$
for ($\left.j=1 ; j<=M A X _N O D E ; j++\right)$
loopmat[i][j]=0;
cqueue=1;
place[x]->node_type=MULTI;
L2: for ($i=1 ; i<=n ; i++$)
if (place[i]->node_type==MULTI)
\{ loop[++s]=place[i]->id;
multi_place=TRUE;
\} /* there are multi-places */
loop [0] $=\mathrm{s}$;
if (multi_place==FALSE) goto L12;
$i=1$;
L3: if (i>s) goto L11;
L4: initial_qrow();
initial_visited_flag();
$r=0$;
cqueue $=1$;
qrow[1]. qno=cqueue;
qrow[1].pqno=0;
qrow[1]. nqno=1;
qrow[1].place[r]=loop[i];
place[loop[i]]->visited=1;
$\mathrm{k}=0$;
pqindex $[++k]=1$;

```
    532 L5: if (qrow[1].nqno<=0)
```

533
534
535
536
537
538
539
540

```
    | i++;
        goto L3;
    }
L6: ;
    if (place[qrow[cqueue].place[r]]->out_p[0]==0) goto L7;
    if (place[qrow[cqueue].place[r]]->out_p[0]!=0 &&
                                    place[qrow[cqueue].place[r]]->out_p[1]==0)
            { qrow[cqueue].place[r+1]=
place[qrow[cqueue].place[r]]->out_p[0];
```

541
542
543
544
545
546
547 place[qrow[cqueue].place[r]]->out_p[N1-1];

549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
qrow [cqueue +N 1] . qno= cqueue +N 1 ;
qrow[cqueuetN1]. nqno=1;
qrow [cqueue+N1].pqno=cqueue;
place[qrow[cqueue+N1].place[0]]->visited++;
\}
qrow [cqueue]. nqno=N1-1; cqueue $=$ cqueue $+N 1-1$; $r=0$; pqindex $[++k]=$ cqueue;
)

L7: if (place[qrow[cqueue].place[r]]->visited>1)
if (qrow[cqueue].place[r]==loop[i])
\{ /* get a loop */
$\mathrm{pj}=0$;
for ($j=1 ; j<=k ; j++$)
($r=0$;
while (qrow[pqindex[j]].place[r]!=0)

566

loopmat [pi] [++pj]=qrow[pqindex[j]].place[r++];
567 \}

568
569 if (loopmat[pi][1]==loopmat[pi][pj])
570
1
/*don't need the last node because
it is also the first node of the loop. */
571 loopmat[pi][pj]=0;
572 loopmat[pi][0]=pj-1;

573
574
575
576
clear it. */
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
qrow[cqueue].nqno--;
goto L10;
\}
else \{ qrow[cqueue].nqno--;
goto L10;
\}
L8: if (qrow[cqueue].place[r]==y)
\{ qrow[cqueue].nqno--;
goto L10;
J
L9: for ($j=1 ; j<=100 p[0] ; j++$)
if (qrow[cqueue].place[r]==100p[j] \&\& place[qrow[cqueue].place[r]]->visited >1)
(qrow[cqueue].nqno--; goto L10;
\}
goto L5;
L10: if (qrow[cqueue].nqno $==0$)
\{ qrow[qrow[cqueue].pqno].nqno--;
$r=0$;
while (qrow[cqueue].place[r]!=0)
place[qrow[cqueue].place[r++]]->visited--;

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632

```
        qrow[cqueue].qno=0; /* clear current queue */
```

 qrow[cqueue].qno=0; /* clear current queue */
 qrow[cqueue].pqno=0;
 qrow[cqueue].pqno=0;
 qrow[cqueue].nqno=0;
 qrow[cqueue].nqno=0;
 for (}j=0;j<=MAXI;j++
 for (}j=0;j<=MAXI;j++
 qrow[cqueue].place[j]=0;
 qrow[cqueue].place[j]=0;
 cqueue--;
 cqueue--;
 if (cqueue<=0) goto L5;
 if (cqueue<=0) goto L5;
 pqindex[k]=cqueue;
 pqindex[k]=cqueue;
 if (pqindex[k]==pqindex[k-1]) k--;
 if (pqindex[k]==pqindex[k-1]) k--;
 r=0;
 r=0;
 goto L10;
 goto L10;
 J
 else { if (cqueue<=0) goto L5;
 else { if (cqueue<=0) goto L5;
 goto L7;
 goto L7;
 }
 }
 L11: loopmat[0][0]=pi-1;
 check_same_loops();
 fprintf(fp_O, "\n\nLoop(s):\n");
 fprintf(fp_o, "--------\n");
 fprintf(fp_m, "\n\nLoop(s):\n");
 fprintf(fp_m, "--------\n");
 i=0;
 j=0;
 k=0;
 for (r=1;r<=loopmat[0][0];r++)
 {
 while (loopmat[++i][j+1]!=0)
 {
 fprintf(fp_o, "L%d: ", ++k);
 fprintf(fp_m, "L%d: ", k);
 while (loopmat[i][++j]!=0)
 fprintf(fp_o, "(%d)->", loopmat[i][j]);
 j=0;
 /* output the 1th id of the loop, because a loop will return
 to its initial place */
6 3 3
fprintf(fp_0, "(%d)\n",loopmat[i][1]);

```
/* get the transfer functions for each path. The transfer
function is noted as varible 'Wi'. 'strct list_node' has
recorded the 'Wi' in the list queue of a state machine Petri
net. Note: 'Wi' is a function vriable of 's' and is noted as
Wi(s) in Moment Generating Eunction -based method.
```

*/

```
            \(j=0\);
            fprintf(fp_o, " (", i);
            while ( loopmat [i][++j]!=0)
            1
            ptr=place[loopmat[i][j]];
            if (loopmat[i][j+1]!=0)
                while ( ptr->next->id!=loopmat[i][j+1]) ptr=ptr-
            else \{ /* The loop come back to the lth node id */
                    while ( ptr->next->id!=loopmat[i][1]) ptr=ptr-
                    \}
                w_of_loop[i][j]=ptr->w; /* obtain the index of 'Wi'
            fprintf(fp_o, "W\%d ", w_of_loop[i][j]);
            fprintf(fp_m, "W\%d ", w_of_loop[i][j]);
            \}
        \(j=0\);
        fprintf(fp_o, ") \n");
        fprintf(fp_m, "\n");
        \}
    )
    fprintf(fp_o, "\n");
        return;
L12: printf( "There doesn't exist any loop(s) in the net.");
1
void check_same_loops()
\{
unsigned long int add_sum[MAX2+1];
unsigned long int mult_sum[MAX2+1];
int i, \(j=1, v=0, k, r\);
unsigned int lp[MAX2+1][MAX_NODE+1];
for ( \(i=1 ; i<=M A X 2 ; i++\) )
    1
        add_sum[i] \(=0\);
        mult_sum[i]=1;
        \}
    for ( \(i=1 ; i<=1\) oopmat [0] [0];i++)
    \{
        while ( loopmat[i][j]!=0)
            add_sum[i]=add_sum[i]+loopmat[i][j++];
        \(j=1 ;\)
        \}
        \(j=1 ;\)
        for ( \(i=1 ; i<=1\) oopmat [0][0];i++)
        \{
            while ( loopmat[i][j]!=0)
                    mult_sum[i]=mult_sum[i]*loopmat [i][j++];
            j=1;
        \}
        \(\mathrm{v}=0\);
        for ( \(i=1 ; i<=100 p m a t[0][0] ; i++)\)
            for ( \(j=1 ; j<=1\) oopmat \([0][0] ; j++\) )
```

 if (i!=j && loopmat[j][0]!=0 && loopmat[i][0]!=0 &&
    ```
loopmat[i][0]==loopmat[j][0] )
    702 if (add_sum[i]==add_sum[j] \&\&
mult_sum[i]==mult_sum[j] )
    703
        \{

704
705
706
707
708
709
\(\operatorname{lp}[j][++r]=1\) oopmat [j] [v++];
710
lp[j][++r]=loopmat[j][v];

711
712
713
714
715 /*
716 if ( \(\mathrm{v}==1\) )
717
718
719
720
721
722
723
724
725
726
727
728
\(729 \quad \mathrm{v}=0\);
730 \}
731 */
732
\}
\{
\(\mathrm{v}=0\);
fprintf(fp_m, "\%d: ",i);
while ( loopmat[i][v]!=0)
fprintf(fp_m, "\%d->", loopmat[i][v++]);
fprintf( fp_m,"\n");
\(\mathrm{v}=0\);
fprintf(fp_m, "\%d: ",j);
while ( loopmat[j][v]!=0 )
fprintf(fp_m, "\%d->", loopmat[j][v++]);
fprintf( fp_m,"\n");
fprintf(fp_m, "\%d\n",j);
\[
\mathrm{v}=0 \text {; }
\]

733
734
735
736
737
738
739
740 for ( \(i=1 ; i<=1\) oopmat [0][0];i++)
741
742
743
744
745
746
must clear zeao behind their varible. */
747 j++;
\(748 \quad r=0\);
749
750 total_loop_number= --j;
751 loopmat[0][0]=j++;
752 for ( \(i=j ; i<=\operatorname{MAX} 2 ; i++\) )
753 for ( \(r=0 ; r<=M A X \_N O D E ; r++\) )
754
755
756 \}
757
758
759
760
761

762
763
764 void find_forward_paths()
765 1
766 int \(i, j, r=0, k, p i=1, p j=1\);
```

 int N1;
    ```
    int N1;
    int pqindex[MAX2+1];
    int pqindex[MAX2+1];
    P1: initial_qrow();
    P1: initial_qrow();
    initial_visited_flag();
    initial_visited_flag();
    cqueue=1;
    cqueue=1;
    for (i=1;i<=MAX_PATH;i++)
    for (i=1;i<=MAX_PATH;i++)
        { pqindex[i]=0;
        { pqindex[i]=0;
            for (j=1; j<=MAX_NODE; j++)
            for (j=1; j<=MAX_NODE; j++)
                pathmat[i][j]=0;
                pathmat[i][j]=0;
        }
        }
    P2: r=0;
    P2: r=0;
        qrow[1].place[r]=x;
        qrow[1].place[r]=x;
        qrow[1].qno=cqueue;
        qrow[1].qno=cqueue;
        qrow[1].pqno=0;
        qrow[1].pqno=0;
        qrow[1].nqno=1;
        qrow[1].nqno=1;
        place[x]->visited++;
        place[x]->visited++;
        cqueue=1;
        cqueue=1;
        k=0;
        k=0;
    pqindex[++k]=1;
    pqindex[++k]=1;
    P3: if (qrow[cqueue].nqno==0 ) goto P8;
    P3: if (qrow[cqueue].nqno==0 ) goto P8;
    p4: if ( place[qrow[cqueue].place[r]]->out_p[0]==0) goto P5;
    p4: if ( place[qrow[cqueue].place[r]]->out_p[0]==0) goto P5;
        if (place[qrow[cqueue].place[r]]->out_p[0]!=0 &&
        if (place[qrow[cqueue].place[r]]->out_p[0]!=0 &&
        place[qrow[cqueue].place[r]]->out_p[1]==0 )
        place[qrow[cqueue].place[r]]->out_p[1]==0 )
        { qrow[cqueue].place[r+1]=
        { qrow[cqueue].place[r+1]=
place[qrow[cqueue].place[r]]->out_p[0];
    7 9 3
    7 9 4
    7 9 5
    7 9 6
    797
    798
!=0)
    7 9 9
    qrow[cqueue] . nqno=1;
    qrow[cqueue] . nqno=1;
        place[qrow[cqueue].place[++r]]->visited++;
        place[qrow[cqueue].place[++r]]->visited++;
        goto P5;
        goto P5;
            }
            }
        else { N1=0;
        else { N1=0;
        while (place[qrow[cqueue].place[r]]->out_p[N1++]
        while (place[qrow[cqueue].place[r]]->out_p[N1++]
                        {
                        {
qrow[cqueue+N1].place[0]=place[qrow[cqueue].place[r]]->out_p[N1-1];
```

819
820

```
pathmat[pi][++pj]=qrow[pqindex[i]].place[r++];
```

```
pathmat[pi][++pj]=qrow[pqindex[i]].place[r++];
```

```
pathmat[pi][++pj]=qrow[pqindex[i]].place[r++];
```

```
                qrow[cqueue+N1].qno=cqueue+N1;
```

 qrow[cqueue+N1].qno=cqueue+N1;
 qrow [cqueue+N1] . nqno=1;
 qrow [cqueue+N1] . nqno=1;
 qrow[cqueue+N1].pqno=cqueue;
 qrow[cqueue+N1].pqno=cqueue;
 /* place[qrow[cqueue+N1].place[0]]->visited++; */
 /* place[qrow[cqueue+N1].place[0]]->visited++; */
 }
 }
 qrow[cqueue].nqno=N1-1;
 qrow[cqueue].nqno=N1-1;
 cqueue=cqueue+N1-1;
 cqueue=cqueue+N1-1;
 place[qrow[cqueue].place[0]]->visited++;
 place[qrow[cqueue].place[0]]->visited++;
 r=0;
 r=0;
 pqindex[++k]=cqueue;
 pqindex[++k]=cqueue;
 }
 }
 P5: if (qrow[cqueue].place[r]==y)
 P5: if (qrow[cqueue].place[r]==y)
 1 /* get a path */
 1 /* get a path */
 pj=0;
 pj=0;
 for (i=1;i<=k;i++)
 for (i=1;i<=k;i++)
 | r=0;
 | r=0;
 while (qrow[pqindex[i]].place[r]!=0)
 while (qrow[pqindex[i]].place[r]!=0)
 }
 }
 }
 pi++;
 pi++;
 pi++;
 qrow[cqueue] .nqno--;
 qrow[cqueue] .nqno--;
 qrow[cqueue] .nqno--;
 goto P7;
 goto P7;
 goto P7;
 }
 }
 }
 P6: if (place[qrow[cqueue].place[r]]->visited > 1)
P6: if (place[qrow[cqueue].place[r]]->visited > 1)
P6: if (place[qrow[cqueue].place[r]]->visited > 1)
{ qrow[cqueue].nqno--;
{ qrow[cqueue].nqno--;
{ qrow[cqueue].nqno--;
goto P7;
goto P7;
goto P7;
}
}
}
else goto P3;
else goto P3;
else goto P3;
P7: if (qrow[cqueue].nqno==0)
P7: if (qrow[cqueue].nqno==0)
P7: if (qrow[cqueue].nqno==0)
{
{
{
if (cqueue==1) goto P8;
if (cqueue==1) goto P8;
if (cqueue==1) goto P8;
else /* abandon this current queue */
else /* abandon this current queue */
else /* abandon this current queue */
{ qrow[qrow[cqueue].pqno].nqno--;
{ qrow[qrow[cqueue].pqno].nqno--;
{ qrow[qrow[cqueue].pqno].nqno--;
r=0;

```
                r=0;
```

 r=0;
    ```
```

while (qrow[cqueue].place[r]!=0)
place[qrow[cqueue].place[r++]]->visited--;
for (i=0;i<=MAX1;i++)

```
                    qrow[cqueue] .place[i]=0;
                    cqueue--;
                    if ( qrow[cqueue]. nqno==1) /* or say it !=0 */
                                    place[qrow [cqueue].place[0]]->visited++;
                    pqindex[k]=cqueue;
                    if (pqindex[k]==pqindex[k-1]) k--;
                    \(r=0\);
                    goto P7;
            )
                                \}
                            else goto P6;
                            P8: fprintf(fp_o,"\n\nThe forward path(s) from node \%d to
node \(\% d:(n ", x, y) ;\)
    851 fprintf(fp_o,
---\n");
    852 fprintf(fp_m,"\n\nThe forward path(s) from node qd to

    853 fprintf(fp_m,
---(n");
    \(854 \quad i=0\);
    \(855 \quad j=0\);
    856 while ( pathmat \([++i][++j]!=0\) )
    857 I
    858
    859
    860
    861
    862
    863
    864
    865 /* get the transfer functions for each path. The transfer
    866 function is noted as varible 'Wi'. The 'strct list_node' has
recorded the 'Wi' in the list queue of a state machine Petri net. Note: 'Wi' is a function of vriable 's' and is noted as Wi(s) in Moment Generating Function -based method. */
\[
j=0 ;
\]
```

 fprintf(fp_o, " (", i);
    ```
            while ( pathmat [i][++j]!=0)
                1
                if (pathmat[i][j+1]!=0)
                    l
                    ptr=place[pathmat[i][j]];
                while (ptr->next->id!=pathmat[i][j+1]) ptr=ptr-
                w_of_loop[i][j]=ptr->w; /* obtain the index of
                    fprintf(fp_o, "W\%d ", w_of_loop[i][j]);
                fprintf(fp_m, "w\%d ", w_of_loop[i][j]);
                \}
                \}
                    \(j=0\);
            fprintf(fp_o, ")\n");
            fprintf(fp_m, "\n");
                \}
                                fprintf(fp_o, "\n\n");
                                    fprintf(fp_m, "\n\n");
                                    pathmat[0][0]=i-1;
                                    return;
\}

900
901 void initial_qrow()
902 i
903 int i,j;
904
905 for ( \(i=1 ; i<=\) MAX2;i++)
906 \{
907 qrow[i].qno=0;
908 qrow[i].pqno=0;
909 qrow[i].nqno=0;
910 for ( \(j=1 ; j<=M A X 1 ; j++\) )
911 qrow[i].place[j]=0;
912 \}
913 return;
914 \}
915
916
917

918
919
920 void initial_visited_flag()
921 1
922
923
924
925
\}
926
927
928

929
/* This combination algorithm is to check touching and
931 non-touching loops in the implementation of Mason's rule. We
932 can assign each loop an array index (cc[i]), where i=1,2,...n.
933 Then, we have to decide that which combination of \(k\) value be
```

 934 compared for the touching and non-touching cases.
 935 */
 936
 937
 938 void combination(n_loops,k)
 939
 940 int k, n_loops;
 941 {
 942 int i,j,r,cc[100];
 943
 944
 945 cc[0]=-1;
 946 for (i=1;i<=k;i++) cc[i]=i;
 947 j=1;
 948 while (j!=0)
 949
 950
 comb_mat[k][1]. com_mat[][] will be update when call the combination
function each time. */
951
952 /*
953 fprintf(fp_o, "(");
954 */
955 for (i=1;i<=k;i++)
956 {
957 comb_mat[i]=cc[i];
958 /*
959 fprintf(fp__o, "L%d ",comb_mat[i]);
960 */
961 }
962 /*
963 fprintf(fp_o, "), ");
964 */
965 check_nontouching_loops(k);
966
967 j=k;

```

968

970
```

```
            while ( cc[j]==n_loops-k+j)
```

```
```

 while (cc[j]==n_loops-k+j)
    ```
```

 j--;
    ```
    j--;
        cc[j]++;
        cc[j]++;
        for (i=j+1;i<=k;i++)
        for (i=j+1;i<=k;i++)
        cc[i]=cc[i-1]+1;
        cc[i]=cc[i-1]+1;
        }
        }
        /* we have got a set of combinations for k */
        /* we have got a set of combinations for k */
        fprintf(fp_o, "\n\n");
        fprintf(fp_o, "\n\n");
        /* we output the ID of the touching loops for k case */
        nontouching_loops[0][0]=nontouching_index;
        if (nontouching_loops[0][0]==0)
check_nontouching_done=TRUE;
    980 /* after checking k=2, if all loops of k=2 are
nontouching, the check done */
    981
    982 t=touching_index+1;
    983 }
    984
    985
    /*******************************************************************/
        986
        /* After getting a combination of IDs of k loops, this
        988 function will check if touching or non-touching for these
        989 loops. After checking, we get a touching combination and save
        990 the IDs of touching loops in touchin_loops[i][j], and begin
        at i=1, j=1 */
            992
            993
        void check_nontouching_loops(k)
        994
        int k;
        995 1
            996 int i,j,ii,iii,s;
        997
        998 i=0, iii=1;
        999 j=1;
```

```
    1000 /* begin to compare the elments of two loops to check them
if touching each other. */
    1001 while ( ++j<=k )
    1002 I
    1003 while ( loopmat[comb_mat[iii]][++i]!=0 )
    1004 {
    1005 ii=0;
    1006 while ( loopmat[comb_mat[j]][++ii]!=0 )
    1007 if (loopmat[comb_mat[iii]][i]==
loopmat[comb_mat[j]][ii] )
1009
1010
1 0 1 1
1012
1013
1014
1015
1016
1017
1018
1 0 1 9
1020
/********************************************************************/
1 0 2 1
1022
/*
1023 void output_touching_loops()
1024 {
1025 int i,j,k;
1026
1027 i=1;
1028 k=2;
1 0 2 9
1030 fprintf(fp_o, "\nTouching_loops:\n");
1031 fprintf(fp_o, "---------------");
1 0 3 2
```

1008

```
    1033
    1034
    1 0 3 5
    1 0 3 6
    1037
    1038
    1039
    1040
    1041
touching_loops[i][j] );
1042
1043
1044
1045
1046
1047
1048
1049
1050 }
1051 */
1052
1 0 5 3
/* There are k=2,3,4,\ldots. combinations of nontouching loops.
1055 We have obtained that the total number of nontouching loops
stored in array varible 'nontouching_loops[0][0]'.
1057 'nontouching_loops[i][0]' stores the value 'k' of the
        combination case of each nontouching loop. This subroutin is
        to output each nontouching loop and their combination case
        value 'k'. */
1061
1062 void output_nontouching_loops()
1063 {
1064 int i,j,k;
1065
1066 i=1;
```

```
    1067 k=2;
    1068
    1069 fprintf(fp_o, "\nNon-ouching_loops:\n");
    1070
    fprintf(fp_o, "------------------");
    1 0 7 1
    1072 while ( i<=nontouching_loops[0][0])
    1073 {
    1074 fprintf(fp_o, "\nk=%d: ",k );
    1075 while (nontouching_loops[i][0]==k)
    1076 {
    1 0 7 7
    1078
    1079
    1080
",nontouching_loops[i][j]);
1 0 8 1
1082
1083
1084
1085
1086
    fprintf(fp_o, "\n\n");
1087
1088 }
1089
1090
    /*************************************************************************)
1091 /* This function gets the loops of touching a path. We check
each path and see if there are any loops which touch this
    path. Array 'loop_of_touch_path[pi][j]' stores the id of
1098
1099 {
1100 int pi,pj,li,lj;
``` these loops */
```

    void loops_of_touching_path()
    ```
```

    void loops_of_touching_path()
    ```
```

/* This function gets the loops of touching a path. We check each path and see if there are any loops which touch this path. Array 'loop_of_touch_path[pi][j]' stores the id of these loops, where 'pi' is the id of paths, 'j' is the id of

```

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
```

int i,j;

```
```

    fprintf(fp_o, "\n\nLoops touching forward path:\n");
    fprintf(fp_o, "--------------------------------------
    for (pi=1;pi<=pathmat[0][0];pi++)
        {
            fprintf(fp_o, "\nLoops of touching path P%d: ",pi);
        j=0;
        for (li=1;li<=total_loop_number;li++)
        { pj=0;
            while ( pathmat[pi][++pj]!=0)
                { lj=0;
                    while ( loopmat[li][++1j]!=0)
                    if ( pathmat[pi][pj]==loopmat[li][lj])
                    { loop_of_touch_path[pi][++j]=li;
                                    fprintf(fp_o, "L%d ",li);
                                    goto D;
                            }
                1
    D: ;
                }
            }
    fprintf(fp_o, "\n\n");
    }

```
 /* output the terms behind the 1 th term */

1133
1134 void appli_mason_formula()
1135 (
```

int i,ii;

```
return;
1161
\}
1162
1163
 \{
 \}
 fprintf(fp_o, "\n\n\%s\%s\n", strings1,strings2);
 fprintf(fp_m, "\%s\%s",stringsl,strings2);
 calculate_delta();
 fprintf(fp_or " f n");
 for (ii=1;ii<=pathmat[0][0];ii++)
 calculate_delta_i(ii);
 fprintf(fp_o, "\n");
 fprintf(fp_o, "\n\nMASON'S VALUE(out/in): \(T(s)=(") ;\)
 fprintf(fp_m, "\n\nMASON'S VALUE (in/out): \(T=(") ;\)
 for (i=1;i<pathmat[0][0];i++)
 fprintf(fp_o,"P\%d * DELTA\%d + ",i,i);
 fprintf(fp_m,"p\%d * DELTA\%d + ",i,i);
 fprintf(fp_o,"P\%d * DELTA\%d) / DELTA\n",i,i);
 fprintf(fp_m, "P\%d * DELTA\%d) / DELTA\n",i,i);
 fprintf(fp_o, "\n\nEnd of Execution!");

1164 /* We need to determin the value of each loop for each DELTAi. If a loop touches the ith path, then the value of the loop is zero or the state of the loop is ' -1 ' (We use '-1' in this function and the expresstion of the loops is refered to loop_in_delta[]'). The loop will be removed from DELTA, if it is ' \(0^{\prime}\) or ' \({ }^{\prime}\) '' \(^{\prime}\). The meanning about this see the definition of Mason's rule.
```

    1171 */
    1172 void calculate_delta_i(pi)
    1173 int pi;
    1174 {
    1175 int i,j,r;
    1176
    1177 for (i=1;i<=total_loop_number;i++)
    1178 {
    1179 j=1;
    1180 while (i!=loop_of_touch_path[pi][j] &&
    loop_of_touch_path[pi][j]!=0) j++;
1181 if (loop_of_touch_path[pi][j]==0 )
1182 loop_in_delta[i]=j; /* loop j does not touch the
ith path */
1183 else loop_in_delta[i]= -1; /*loop touches the ith path
and it will be removed from DELTA. */
1184
1185 }
1186 loop_in_delta[i]=0; /* the last unit is set to zero */
1187
1188
1189
/*******************************************************************/
1 1 9 0
1191 /* We have already obtained the loops for DELTAi, i.e. if a
1192 loop touches the ith path, it will be removed from DELTA (
1193 where Li=-1 or Li=0). Therefore we can get DELTAi as follows:
1194 */
1195 j=0;
1196 if ( total_loop_number>0 )
1197 {
1198 fprintf(fp_o, "DELTA%d = 1-(",pi);
1199 fprintf(fp_m, "DELTA%d = 1-(",pi);
1 2 0 0
1201 /* ouptput the lth loop behind '(' */
1202
if (loop_in_delta[++j]!= -1 \&\& loop_in_delta[j]!=0)

```

1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224 /* output the multiply of nontouching loops */
1225
1226
1227
1228
1229
1
fprintf(fp_o, "L\%d",j);
fprintf(fp_m, "Lofd",j++);
\}
else if (loop_in_delta[j++]!=0)
1
fprintf(fp_o,"0");
fprintf(fp_m,"0");
\}
```

if ( total_loop_number>=j )

```
if (total_loop_number>=j)
 for (i=j;i<=total_loop_number;i++)
 if (loop_in_delta[i]!= -1)
 l fprintf(fp_o, "+L%d",i);
 fprintf(fp_m, "+L%d",i);
 }
 else {
 fprintf(fp_o, "+0");
 fprintf(fp_m, "+0");
 }
 if (nontouching_loops[0][0]>0)
 {
 j=1;
 i=1;
 /* output the lth term for the multip. of
nontouching loops */
 1230 if (loop_in_delta[nontouching_loops[i][j]]!= -1)
 1231 { /* is not the state '-1' */
 1232
fprintf(fp_o,")+(L%d",nontouching_loops[i][j]);
 1233
fprintf(fp_m,")+(L%d",nontouching_loops[i][j]);
 1234
 1235
 else { fprintf(fp_o,")+(0");
```

1236
1237
1238
1239
$1240 / * * * * * *$ output the terms behind the 1 th term $* * * * * * * * /$
1241 for ( $i=1$;i<=nontouching_loops[0][0];i++)
1242
1243
1244
1245 -1 )

```
1246
1247
"*L\%d", nontouching_loops[i][j]);
1248 fprintf(fp_m,
"*L\%d", nontouching_loops[i][j]);
```

1249
1250
1251
1252
1253
1254
1255 if ( nontouching_loops[i+1][1]!=0 \&\& i<=
nontouching_loops[0][0])
1256 1
1257 if
(loop_in_delta[nontouching_loops[i+1][1]]!=-1 )
1258
1259
fprintf(fp_o,"+L\%d", nontouching_loops[i+1][1]);
1260
fprintf(fp_m,"+L\%d", nontouching_loops[i+1][1]);
1261
1262 else $\{$ fprintf(fp_o,"+0");
1263
1264
\}
else $\{$ fprintf(fp_o,"*0");
fprintf(fp_m,"*O");
\}
1
\{ /* is not the state ${ }^{\prime}-1$ ' */ fprintf(fp_o,

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283

```
 j=1;
 l
 }
 }
 fprintf(fp_o, ")\n");
 fprintf(fp_m, ")\n");
 l
 else { fprintf(fp_o, "DELTA%d = 1\n",pi);
 fprintf(fp_m, "DELTA%d = 1\n",pi);
 }
 }
```

```
 1300
 1301 if (nontouching_loops[0][0]>0)
 1302 { /* output the multiply of nontouching
loops */
 1 3 0 3
 j=1;
 1304 i=1;
 1305 fprintf(fp_o,")+(L%%d",nontouching_loops[i][j]);
 1306 fprintf(fp_m,")+(L%d",nontouching_loops[i][j]);
 1 3 0 7
 1308
 1 3 0 9
 1310
 1311 fprintf(fp_o, "*L%d",
nontouching_loops[i][j]);
 1312 fprintf(fp_m, "*L%d",
nontouching_loops[i][j]);
 1313 }
 1314 if (nontouching_loops[i+1][1]!=0)
 1315 { if (nontouching_loops[i+1][0]%2==0)
 1 3 1 6
 1317
nontouching_loops[i+1][1]);
 1318 fprintf(fp_m, "+L%d",
nontouching_loops[i+1][1]);
1319
1320
1321
nontouching_loops[i+1][1]):
 1 3 2 3
nontouching_loops[i+1][1]);
 1324
 1325
 1326
 1327
 1328
}
}
}
```

```
 fprintf(fp_o, ")\n");
```

        fprintf(fp_o, ")\n");
            fprintf(fp_m, ")\n");
            fprintf(fp_m, ")\n");
        }
        }
    else {
    else {
            fprintf(fp_o, "DELTA = 1\n");
            fprintf(fp_o, "DELTA = 1\n");
            fprintf(fp_m, "DELTA = 1\n");
            fprintf(fp_m, "DELTA = 1\n");
        }
        }
    1 3 3 8

```

\section*{REFERENCES}
[1] Guo, D. L., F. DiCesare, and M. C. Zhou. "Moment Generating Function Approach to Performance Analysis of Extended Stochastic Petri Nets," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1309-1314, Sacramento, CA, 1991.
[2] Guo, D. L, F. DiCesare, and M. C. Zhou. "A Moment Generating Function Based Approach for Evaluating Extended Stochastic Petri Nets," To appear in IEEE Trans. Automatic Control, 1992
[3] Zhou, M. C., D. L. Guo and F. DiCesare. "Integration of Petri nets and Moment Generating Function Approaches for System Performance Evaluation," To appear in J. of System Integration, 1993.
[4] Molloy, M. K.. "Discrete Time Stochastic Petri Nets," IEEE Transaction on Software Engineering, 11(2), pp. 417-423, 1985.
[5] Holiday, M. A. and M. K. Vernon. "A Generalized Timed Petri Net Model for Performance Analysis," in IEEE Proc. Int. Workshop on Timed Petri Nets, Torino, Italy, July, 1985.
[6] Petri, C. A. "Kommunikation mit Automaten." Bonn: Institute fur Instrumentelle Mathematik, Schritten des IIM Nr. 3, 1962. Also, English translation, "Communication with automata" New York: Griffiss Air Force Base. Tech. Rep. RADCTR-65-377, vol. 1, Suppl. 1, 1996.
[7] Dorf, R. C. Modern Control Systems, Addison-Wisley, 1990.
[8] Kamen, E. Introduction to signals and Systems, MacMillan, New York, 1987.
[9] Aho, A. V., J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms, The Southeast Book company, 1983.
[10] Wang, C. H. "Computer-aided-manipulation of Mason's formula and its applications," Pros. of IEEE Int. Conf. On Systems, Man and Cybernetics, Charlottesville, VA, pp.493-500, 1991.
[11] Berlioux, P., and P. Bizard. Algorithms 2: Data Structures \& Algorithms, John Wiley \& Sons Ltd., 1990.
[12] Al-Jaar, R. Y., and A. A. Desrochers. "Petri Nets in Automation and Manufacturing," in Advance in Automation and Robotics (ed. G. N. Saridis), JAI Press, Greenwich, Conn., Vol. 2, 1991.
[13] Al-Jaar, R. Y., and A. A. Desrochers. "A Survey of Petri Nets in Flexible Manufacturing Systems," Proceedings of the 1988 IMACS Conference, Paris, France, July 1988.
[14] Peterson, T. L. Petri Net Theory and the Modeling of Systems, PrenticeHall, Inc. Englewood Cliffs, 1981.
[15] Sifakis, J. "Use of Petri Nets for Performance Evaluation," in Measuring, Modeling, and Evaluating Computer Systems, Acta Cybernet, Vol. 4, No. 2, pp. 185-202, 1978.
[16] Cohen, G., D. Dubois, J. P. Quadrat, and M. Viot. "Linear System Theory for Discrete Event Systems," Proceedings of the 23rd IEEE Conference on` Decision and Control, Las Vegas, Nev., pp. 539-544, Dec., 1984.
[17] Cohen, G., D. Dubois, J. P. Quadrat, and M. Viot. "A Linear-system -Theoretic View of Discrete Event Processes and Its Use for Performance Evaluation in Manufacturing," IEEE Transactions on Automatic Control, Vol. AC-30, No. 3, pp. 210-220, March 1985.
[18] Molloy, M. K. "Performance Analysis Using Stochastic Petri Nets," IEEE Tansactions on Computers, Vol. C-3, No. 9, pp. 913-917, 1982.
[19] Agerwala, T., and Y. Choed-Amphai. "A Synthesis Rule for Concurrent Systems," Proc. of Design Automation Conference, pp. 305-311, 1978.
[20] Murata, T. "Petri Nets: Properties, Analysis and Application," Proc. of the IEEE, Vol 77, No.4, pp.541-580, 1989.
[21] Valette, R. "Analysis of Petri Nets by Stepwise Refinements," J. of Comp. and Syst. Sci., 18, pp. 35-46, 1979.
[22] Chen, P., S. C. Bruell, and G. Ballo, "Alternative Methods for Incorporating Non-exponential Distributions into Stochastic Timed Petri Nets," The third IEEE Int. Workshop an Timed Petri nets and Performance Models, Tokyo, pp. 187-197, 1989.
[23] Cox, D. R. "A Use of Complex Probabilities in the Theory of Stochastic Process," Proc. Cambridge Philosophical Society, 51, pp. 313-319, 1955.
[24] Ho, Y. C. "Performance Evaluation and Perturbation Analysis of Discrete Event Dynamic Systems," IEEE Trans. on Automatic Control, 32(7), pp. 563-572, 1987.

Florin, G., and S. Natkin. "Necessary and Sufficient Ergodicity Condition for Open Synchronized Queuing Networks," IEEE Transactions on Software Engineering, Vol. 15, No.14, pp. 367-380, 1989.

Dugan, J. B., A. Bobbio, A. Ciardo, and K. S. Trivedi. "The Design of a Unified Package for Solution of Stochastic Petri Net Models," International Workshop on Timed Petri Nets, Torino, Italy, pp.6-13, 1985.
[29] Gressier, E. " A Stochastic Petri Net Model for Ethernet," Proceedings of Int. Workshop on Timed Petri Nets, Torino, Italy, pp. 296-303, 1985.
[30] Dugan, J. B., A. Bobbio, and A. Ciardo. "Stochastic Petri Net Analysis of A Replicated File System," Proc. of Int. Workshop on Petri Nets and Performance Models, Wisconsin, 1987.
[31] Zhou, M. C., and F. DiCesare. "Adaptive Design of Petri Net Controllers for Error Recovery in Automated Manufacturing Systems," IEEE Trans. on Systems, Man, and Cybernetics, SMC-19, pp.963-973, 1989.
[32] Viswanadham, N., and Y. Narahari. "Stochastic Petri Net Models for Performance Evaluation of Automated Manufacturing Systems," Information and Decision Technologies, 14, pp. 125-142, 1989.

Florin, G., and S. Natkin. "Evaluation Based upon Stochastic Petri Nets of the Maximum Throughput of A Full Dulex Protocol," Informatic Fachberichte,
C. Girault and W. Reisig(eds.), 1982.
[34] Molloy, M. K. On the Integration of Delay and Throughput Measure in Distributed Processing Models, Ph. D. Thesis, UCLA, 1981.
[35] Marsan, M. A., G. Balbo, and G. Conte. "A Class of Generalized Stochastic Petri Nets for Performance Analysis of Multi-processor Systems," ACM TOCS Vol. 2, No. (2), pp. 93-122, 1984.

Marsan, M. A., and G. Chiola. "On Petri Nets with Deterministic and Exponentially Distributed Firing Times," Lecture Notes in Computer Science, No. 254, pp. 132-145, 1986.

Dugan, J. B., K. S. Trivedi, R. M. Geist, and V. F. Nicola. "Extended Stochastic Petri Nets: Application and Analysis," Proc. PERFORMANCE 84, pp. 507-519, Paris, France, 1984.
[38] Howard, R. A. Dynamic Probabilistic Systems, Jone Wiley, New York, NY, 1971.
[39] Kleirock, L. Queueing Systems, Wiley-Interscience. NY, 1975.
[40] Cumani, A. "ESP - A Package for the Evaluation of Stochastic Petri Nets with Phase-type Distributed Transition Times," Proc. IEEE Int. Workshop on Timed Petri Nets, Torino, Italy, 1985.
[41] Leung, Y. T., and R. Suri. "Performance Evaluation of Discrete Manufacturing Systems," IEEE Control Systems, 10(4), pp. 77-86, 1990.
[42] Jamwal, A. U. "Software Development for Analysis of Stochastic Petri Nets Using Transfer Function," Master thesis, NJT, 1991.
[43] Barkakati, N. X Window System Programming, SAMS, 1991.
[44] Zhou, M. C., F. DiCesare and A. A. Desrochers (1992). "A Hybrid Methodology for Synthesis of Petri Net models for manufacturing systems," IEEE Trans. on Robotics \& Automation, 8, pp. 305-361, 1992.
[45] Kernighan, B. W., and R. Pike. The UNIX Programming Environment, Prentice-Hall, Inc., 1984.```

