
166

TEKNIKA, Volume 12(2), Juli 2023, pp. 166-172

ISSN 2549-8037, EISSN 2549-8045

DOI: 10.34148/teknika.v12i2.634

Siswantoro, M.Z.F.N., et.al.: Software Defect Prediction Based on Optimized

Machine Learning Models: A Comparative Study

Software Defect Prediction Based on Optimized Machine

Learning Models: A Comparative Study

 Muhammad Zain Fawwaz Nuruddin Siswantoro1*, Umi Laili Yuhana2

1,2 Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya, Jawa Timur

Email: 1* 6025222009@mhs.its.ac.id, 2 yuhana@if.its.ac.id

 (Naskah masuk: 24 Mei 2023, direvisi: 18 Jun 2023, diterima: 21 Jun 2023)

Abstract

Software defect prediction is crucial used for detecting possible defects in software before they manifest. While machine learning

models have become more prevalent in software defect prediction, their effectiveness may vary based on the dataset and

hyperparameters of the model. Difficulties arise in determining the most suitable hyperparameters for the model, as well as

identifying the prominent features that serve as input to the classifier. This research aims to evaluate various traditional machine

learning models that are optimized for software defect prediction on NASA MDP (Metrics Data Program) datasets. The datasets

were classified using k-nearest neighbors (k-NN), decision trees, logistic regression, linear discriminant analysis (LDA), single

hidden layer multilayer perceptron (SHL-MLP), and Support Vector Machine (SVM). The hyperparameters of the models were

fine-tuned using random search, and the feature dimensionality was decreased by utilizing principal component analysis (PCA).

The synthetic minority oversampling technique (SMOTE) was implemented to oversample the minority class in order to correct

the class imbalance. k-NN was found to be the most suitable for software defect prediction on several datasets, while SHL-MLP

and SVM were also effective on certain datasets. It is noteworthy that logistic regression and LDA did not perform as well as

the other models. Moreover, the optimized models outperform the baseline models in terms of classification accuracy. The

choice of model for software defect prediction should be based on the specific characteristics of the dataset. Furthermore,

hyperparameter tuning can improve the accuracy of machine learning models in predicting software defects.

Keywords: Machine Learning Models, Software Defect Prediction, Random Search, Principal Component Analysis,

Hyperparameter Tuning.

I. INTRODUCTION

As technology has advanced and consumer expectations

for software have risen, the software development process has

gotten increasingly intricate [1]. As a result, software engineers

must now focus on improving their ability to detect and

prevent software defects [2]. Software Defect Prediction

(SDP) is a crucial technique that identifies potential software

defects before they occur. In software engineering, SDP is an

important and challenging task. Better software quality and

reduced development costs are both linked to early defect

detection in software development [3], [4].

Recently, machine learning models have been widely used

to detect defects in software. This is because machine learning

models have the ability to find patterns automatically from data

by recognizing defects in software [5]. Predicting software

defects using machine learning models has been demonstrated

to be useful in several studies, such as decision tree (DT) [6],

Naïve Bayes (NB) [7], K-nearest Neighbors (k-NN) [8], [9],

Artificial Neural Network (ANN) [10], and Support Vector

Machine (SVM) [11]. Different datasets and model

hyperparameters can result in widely varying model

performances in machine learning. A common challenge in

machine learning is selecting the optimal model

hyperparameters. However, almost all studies in SDP using

machine learning models did not perform hyperparameter

tuning to obtain the optimal model hyperparameters.

Another issue in SDP using a machine learning model is

selecting prominent features to use as input to the classifier.

The optimal feature subset has been chosen to use several

feature selection techniques to avoid a decline in the

performance of classification models for SDP caused by

redundant and irrelevant features, as reported in [12]–[14]. The

quality of results obtained by feature selection techniques is

very dependent on datasets. Principal Component Analysis

(PCA) is another approach that can be used to reduce irrelevant

features. In machine learning, PCA reduces data

dimensionality while maintaining as much information as

possible to find patterns [15]. To achieve optimal classification

167

TEKNIKA, Volume 12(2), Juli 2023, pp. 166-172

ISSN 2549-8037, EISSN 2549-8045

Siswantoro, MZFN., et.al.: Software Defect Prediction Based on Optimized

Machine Learning Models: A Comparative Study

DOI: 10.34148/teknika.v12i2.634

performance, however, it is necessary to determine the optimal

number of selected components.

This paper compares the optimized machine learning

models for SDP on NASA MDP (Metrics Data Program)

datasets [16]. Some traditional machine learning models were

used to classify 12 datasets from NASA MDP datasets: k-

nearest neighbors (k-NN), decision trees (DT), logistic

regression (LR), linear discriminant analysis (LDA), single

hidden layer multilayer perceptron (SHL-MLP), and support

vector machine (SVM). The hyperparameters of the model

were optimized using random search [17] to obtain the best

classifier for each dataset. Before being input to the classifier,

the dimensionality of the features was reduced using PCA. The

number of selected components was also optimized using

random search. The synthetic minority oversampling

technique (SMOTE) was used as an oversampling strategy for

the minority class to deal with unbalanced samples on NASA

MDP datasets [18].

The remaining sections of the paper are structured as

follows: Section two provides a theoretical foundation for the

study by reviewing the relevant literature. Section three

explains the methods used in this study. Following that, the

findings and discussion of their implications will be presented

in Section 4. Finally, a summary of the key findings and

suggestions for avenues for future research will be provided in

the last section.

II. LITERATURE REVIEW

Iqbal et al. [5] analyzed the effectiveness of several

machine learning models for SDP using NASA MDP datasets.

The performance of ten machine learning models was

measured using a variety of evaluation metrics. These models

included k-NN, DT, LR, MLP, SVM, radial basis function

(RBF), one rule (OR), kStart (PART), and random forest (RF).

The findings indicate that the metrics used to evaluate the

performance of the model change depending on the dataset,

except for the ROC area score. Based on the ROC area score,

RF achieved higher performance compared to other models.

A novel method for SDP based on a weighted naive Bayes

classifier was proposed by Ji et al. [6]. The authors leverage

the concept of information diffusion to assign weights to the

features used in the classifier, resulting in improved prediction

accuracy compared to traditional naive Bayes classifiers.

While the approach shows promise, the authors' experimental

evaluation could benefit from larger and more diverse datasets

to better demonstrate the method's effectiveness.

Marian et al. [7] proposed a new approach to predicting

software defects using fuzzy decision trees. The authors claim

that this approach outperforms standard DT in AUC scores.

While the concept of fuzzy decision trees is intriguing, the

study lacks sufficient information about the implementation

and evaluation processes, such as the selection of input features

and the selection criteria for the best model. In addition, the

dataset used in the experiments is limited to two software

projects, which casts doubt on the generalizability of the

proposed method.

Hammad et al. [8] presented a machine learning approach

to predict software faults using k-NN. The authors conducted

experiments and achieved promising results, with an accuracy

rate of up to 87%. Kumar et al. [9] proposed a new approach

for predicting software defects in Aspect-Oriented

Programming (AOP). The authors use a combination of fuzzy

c-means clustering with genetic algorithms (FCM-GM) and k-

NN. The experimental results show that the proposed FCM-

GM outperforms traditional FCM and k-NN. However, the

classification models in [8], [9] were only evaluated using five

datasets and one dataset from NASA MDP datasets,

respectively.

Rong et al. [10] proposed a new method for software defect

prediction using SVM and a bat algorithm with centroid

strategy (CBA). CBA was used to optimize the parameters of

SVM to enhance the accuracy of the prediction model. The

central concept of the optimization algorithm involves treating

SVM parameters as particles in CBA, which then undergoes

self-updating until the algorithm achieves its final condition.

The experimental results show that the proposed method

outperforms other classifiers, including standard SVM.

However, the proposed method was only evaluated with four

datasets from the NASA MDP datasets.

Jayanthi et al. [11] proposed a method for SDP that uses an

ANN and an enhanced version of PCA. Their improvement

involves merging PCA with maximum likelihood in order to

minimize the PCA reconstructed data. The experimental

results reveal that the proposed approach surpasses other

existing models, reaching an AUC of 97.20% and substantially

improving classification accuracy. However, the authors did

not explain how to decide on the number of principal

components chosen in PCA and the ANN architecture used for

each dataset, despite claiming that their method achieves good

performance.

Nevertheless, most studies using traditional machine

learning models for SDP did not perform hyperparameter

tuning to obtain the best classifier. The number of components

used in PCA was also not optimized so that the best

performance was achieved by each model. Therefore, this

research attempts to compare the performance of several

traditional machine learning models by performing

hyperparameter tuning both on the classifier and PCA to obtain

the best classification performance.

III. METHODS

This research involved multiple steps to conduct a

comparative analysis of optimized traditional machine

learning models. These procedures consisted of gathering a

dataset, oversampling the minority class, using PCA for

dimensionality reduction, training various traditional machine

learning models for classification with hyperparameter tuning,

and evaluating the models as illustrated in Figure 1. The

subsequent subsections provide a comprehensive explanation

of each step.

168

TEKNIKA, Volume 12(2), Juli 2023, pp. 166-172

ISSN 2549-8037, EISSN 2549-8045

Siswantoro, MZFN., et.al.: Software Defect Prediction Based on Optimized

Machine Learning Models: A Comparative Study

DOI: 10.34148/teknika.v12i2.634

Figure 1. Steps for Conducting the Research.

A. Dataset

This research employed the dataset from the NASA

Metrics Data Program (MDP) to evaluate the classification

model used. The NASA MDP is a dataset about software

defects in different NASA projects. This includes information

like how many defects were found in each project, how big the

code base is, and how much work it took to make the software.

Software engineers frequently use this dataset to examine how

different software metrics relate to software defects. The MDP

dataset comprises both public and confidential data. The

former provides information on 24 NASA software projects,

while the latter contains additional project information that is

accessible only to authorized users [19]. This research used the

clean version of NASA MDP datasets from D” collection as

described in [16]. The datasets consisted of datasets from 12

projects, namely CM1, JM1, KC1, KC3, MC1, MC2, MW1,

PC1, PC2, PC3, PC4, and PC5. The number of features varies

in each dataset but has the same number of classes, namely

defective Y and defective N. Table 1 shows the detailed

description of the 12 datasets used in this research.

Table 1. The Description of 12 NASA MDP

Dataset
 Instances

Features
Total Non-defective Defective

CM1 327 285 42 37

JM1 7782 6110 1672 21

KC1 1183 869 314 21

KC3 194 158 36 39

MC1 1988 1942 46 38

MC2 125 81 44 39

MW1 253 226 27 37

PC1 705 644 61 37

PC2 745 729 16 36

PC3 1077 943 134 37

PC4 1287 1110 177 37

PC5 1711 1240 471 38

B. Oversampling Strategy

As can be seen in Table 1, the number of defective

instances is significantly smaller than the number of non-

detective instances in all datasets. This condition is considered

a class imbalance problem. If this condition is not addressed, it

will affect the performance of the machine learning model.

Therefore, this research applied an oversampling strategy to

the minority class using the synthetic minority oversampling

technique (SMOTE) [18]. SMOTE is a popular oversampling

technique used in machine learning to address the class

imbalance problem. SMOTE works by creating synthetic

instances of the minority class by interpolating between the

instances of the minority class. Specifically, SMOTE selects a

minority class instance and finds its k-nearest neighbors in the

feature space. It then creates synthetic instances by randomly

selecting one of the k-neighbors and interpolating between the

minority sample and the selected neighbor. This creates a new

instance that is similar to the minority class but is not an exact

copy of any existing instance.

C. Dimensionality Reduction

The presence of numerous features for training a machine

learning model does not guarantee its good performance.

Furthermore, a high number of features can also increase the

amount of time and computational resources needed during the

training process [20]. Therefore, this research employed

principal component analysis (PCA) [15] to reduce the

dimensionality of features. PCA is a commonly used technique

in machine learning for dimensionality reduction. PCA is an

unsupervised dimensionality reduction method that can reduce

the high dimensionality of features into fewer significant and

uncorrelated principal components while retaining the

essential information of the original features [20]. PCA seeks

to identify the most significant features or variables in a dataset

and depict them in a space with fewer dimensions.

Reducing feature dimensions is done by transforming the

features into new variables that are not correlated with each

other but can still explain as much of the variation in the

original data as possible. These variables are called principal

components. PCA employed the covariance matrix of the

original data to determine the principal components and the

amount of variance explained by each component by

calculating the eigenvectors and the eigenvalues of the matrix,

respectively. The dataset can be projected onto a lower n-

dimensional space by choosing only the top n eigenvectors,

where n is the desired number of dimensions (primary

components). In this research, the value of n was determined

using a random search from {𝑛 ∈ ℕ|5 ≤ 𝑛 ≤ 𝑁} such that the

best performance of the model is achieved, where 𝑁 is the

number of features. Before being inputted to the classifier

selected components were scaled into intervals [0,1] to avoid

the dominance of certain components using equation (1),

 𝑥𝑠 =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 (1)

where 𝑥𝑠 is scaled component, 𝑥 is the original component,

min (𝑥) and max (𝑥) are the minimum and maximum of the

selected component, respectively.

D. Classification

In this research, six traditional machine learning models

were employed to classify 12 datasets from NASA MDP

datasets into two classes: defective Y and defective N. The

models used include k-nearest neighbors (k-NN), logistic

regression (LR), decision tree (DT), linear discriminant

analysis (LDA), support vector machine (SVM), and single

hidden layer multi-layer perceptron (SHL-MLP) [21].

169

TEKNIKA, Volume 12(2), Juli 2023, pp. 166-172

ISSN 2549-8037, EISSN 2549-8045

Siswantoro, MZFN., et.al.: Software Defect Prediction Based on Optimized

Machine Learning Models: A Comparative Study

DOI: 10.34148/teknika.v12i2.634

Parameters are a part of every model; these are not learned by

the model during training but rather are established by the user

beforehand. Hyperparameters are another name for this type of

parameter. Therefore, the model's hyperparameters must be

adjusted for optimal performance.

This research employed random search [17] to determine

the optimum hyperparameters for each model. Finding the

optimal value of a function with random search optimization is

a straightforward and efficient process. Several points are

generated randomly at predetermined intervals. The function

value is then evaluated at these points to determine the

optimum point. This process is carried out iteratively until the

stopping criterion is met. Random search optimization is a

simple method that is easy to implement because it does not

require a lot of information about the functions being

optimized including function derivatives. The tuned

hyperparameters and the search domains for each model are

tabulated in Table 2.

E. Model Evaluation

To evaluate the classification models, each dataset was

divided into two parts, which are the training data and the

testing data, with a ratio of 70:30, using stratified random

subsampling [22]. Stratified random subsampling ensured that

every class in the dataset was equally represented in both the

training and testing datasets, maintaining the same proportion

as the original dataset. The main objective of employing this

method was to ensure that the training and testing datasets

reflected the overall dataset in its entirety. The model was then

trained and evaluated using the training data and the testing,

respectively. The model's performance was also measured

using the testing data.

Table 2. Tuned Hyperparameters and Search Domains

Model
Hyper-

parameter
Description

Search

Domain

k-NN k
The number of

nearest neighbors
[1,10]

LR

Penalty Norm of penalty

{'l1', 'l2',

'elasticnet',

'none'}

C
Regularization

parameter
(1,1000)

Solver
Optimization

algorithm

{'sag', 'saga',

'newton-

cholesky', 'lbfgs',

'liblinear',

'newton-cg' }

DT Criterion
Measurement

function for split

quality

{'gini', 'entropy'}

LDA Solver
Estimation

algorithms

{'svd', 'lsqr',

'eigen'}

SVM

C
Regularization

parameter
(1,1000)

Kernel Kernel function
{'rbf','poly',

'sigmoid'}

Gamma
Kernel

coefficient
(0.01,1)

SHL-

MLP

Activation
The hidden

layer’s activation

function

{'identity',

'logistic','tanh',

'relu'}

Neurons
The number of

neurons in the

hidden layer

{5,6, … ,1000}

Solver
Optimization

algorithm

{'lbfgs','sgd',

'adam'}

Several metrics were employed to evaluate the

performance of the models using the testing dataset, including

accuracy, precision, recall, and F1 score. Equation (2) was

used to determine the classification accuracy, which is the

proportion of right predictions throughout the whole dataset,

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2)

where 𝑇𝑃 is the number of instances that are actually positive

and classified as positive, 𝑇𝑁 is the number of instances that

are actually negative and classified as negative, 𝐹𝑃 is the

number of instances that are actually negative but classified as

positive, and 𝐹𝑁 is the number of instances that are actually

positive but classified as negative. Precision measures the

proportion of true positive predictions out of all positive

predictions and is calculated using equation (3).

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3)

Recall measures the proportion of true positive predictions

out of all actual positive instances and is calculated using

equation (4).

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4)

Lastly, the F1 score is the harmonic mean of precision and

recall and is calculated using equation (5).

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (5)

In this research, all models were trained and evaluated

using Python language programming with some open source

Python libraries, namely pandas [23], imbalanced-learn [24],

and Scikit-learn [25]. Pandas were used to import the dataset

from a source file. Imbalanced-learn was used to perform

oversampling on minority classes using SMOTE. Scikit-learn

was used for training and testing all machine learning models,

as well as tuning the hyperparameters.

IV. RESULTS AND DISCUSSION

This section presents the experiment results that aimed to

compare the performance of various traditional machine

learning models in predicting software defects. The accuracy,

170

TEKNIKA, Volume 12(2), Juli 2023, pp. 166-172

ISSN 2549-8037, EISSN 2549-8045

Siswantoro, MZFN., et.al.: Software Defect Prediction Based on Optimized

Machine Learning Models: A Comparative Study

DOI: 10.34148/teknika.v12i2.634

precision, recall, and F1 score of each model that are used to

evaluate the effectiveness of the model in predicting software

defects are presented in this section. The classification

accuracy of the optimized models on all datasets is tabulated

in Table 3.

As can be seen in Table 3, k-NN achieved the highest

accuracy on seven datasets, which are JM1 77.91%, KC1

79.31%, KC3 91.58%, MC1 98.97%, MC2 83.67%, PC3

93.46%, and PC5 83.06%. In second place, SVM achieved the

highest accuracy on four datasets, which are CM1 97.66%,

KC3 91.58%, MW1 98.53%, and PC4 93.69%. In third place,

SHL-MLP achieved the highest accuracy on three datasets,

which are MC1 98.97%, PC1 96.12%, and PC3 93.46%.

Logistic regression and decision tree achieved the highest

accuracy only on a dataset, MC2 83.67% and PC2 98.86%,

respectively. While LDA never achieved the highest accuracy.

Based on the accuracy scores in Table 3, it can be concluded

that k-NN consistently performs well across most datasets,

achieving high accuracy rates. Additionally, SVM and SHL-

MLP also demonstrate competitive performance in terms of

accuracy.

Table 3. The Accuracy of Optimized Models on All Datasets

Dataset

Accuracy (%)

k-NN LR DT LDA SVM
SHL-

MLP

CM1 96.49 80.12 87.13 84.21 97.66 97.08

JM1 77.91 64.24 71.47 63.99 67.35 71.09

KC1 79.31 63.79 73.37 65.13 71.84 73.37

KC3 91.58 85.26 82.11 83.16 91.58 88.42

MC1 98.97 87.05 97.68 85.76 98.63 98.97

MC2 83.67 83.67 73.47 69.39 77.55 75.51

MW1 95.59 80.15 93.38 80.15 98.53 97.06

PC1 95.09 86.56 91.21 83.98 95.35 96.12

PC2 98.17 92.92 98.86 91.78 98.63 97.95

PC3 93.46 81.98 87.10 80.92 88.87 93.46

PC4 91.89 86.49 89.19 82.43 93.69 92.49

PC5 83.06 71.77 78.63 71.51 79.17 76.21

Table 4 shows the precision of the optimized models on all

datasets. As can be seen in Table 4, k-NN achieved the highest

precision on seven datasets, which are JM1 78.51%, KC1

79.70%, KC3 91.64%, MC1 98.99%, MC2 83.86%, PC3

93.70%, and PC5 83.28%. In second place, SVM achieved the

highest precision on four datasets, which are CM1 97.68%,

KC3 91.64%, MW1 98.57%, and PC4 94.05%. In third place,

SHL-MLP achieved the highest precision on two datasets,

which are MC1 98.99% and PC1 96.27%. The decision tree

achieved the highest precision only on a dataset PC2 98.86%.

While logistic regression and LDA never achieved the highest

precision. Based on the precision values in Table 4, it can be

concluded that k-NN consistently achieves high precision

values across various datasets. These results indicate the

effectiveness of k-NN in correctly identifying positive

instances across all positive predictions. In addition, SVM and

SHL-MLP also perform well in most of the datasets. However,

when compared, LR, DT, and LDA show relatively lower

precision values.

Table 5 shows the recall of the optimized models on all

datasets. As can be seen in Table 5, k-NN achieved the highest

recall on seven datasets, which are JM1 77.91%, KC1 79.31%,

KC3 91.60%, MC1 98.97%, MC2 83.75%, PC3 93.46%, and

PC5 83.06%. In second place, SVM achieved the highest recall

on four datasets, which are CM1 97.67%, KC3 91.60%, MW1

98.53%, and PC4 93.69%. In third place, SHL-MLP achieved

the highest recall on three datasets, which are MC1 98.97%,

PC1 96.13%, and PC3 93.46%. The decision tree achieved the

highest recall only on a dataset PC2 98.86%. While logistic

regression and LDA never achieved the highest recall. Based

on the recall values in Table 5, it can be concluded that k-NN

consistently achieves the highest recall rate across all datasets,

followed by SVM and SHL-MLP. Logistic Regression, DT,

and LDA generally show lower recall rates compared to k-NN,

SVM, and SHL-MLP. These results indicate k-NN is more

effective in correctly identifying positive examples across all

actual positive data.

Table 4. The Precision of Optimized Models on All Datasets

Dataset

Precision (%)

k-NN LR DT LDA SVM
SHL-

MLP

CM1 96.70 80.26 87.31 85.27 97.68 97.22

JM1 78.57 65.17 71.53 64.55 68.03 71.09

KC1 79.70 63.88 73.85 65.66 72.08 73.38

KC3 91.64 85.31 82.24 83.22 91.64 88.43

MC1 98.99 87.27 97.69 86.52 98.66 98.99

MC2 83.86 83.67 73.82 69.42 77.59 75.50

MW1 95.95 80.31 93.47 80.15 98.57 97.10

PC1 95.35 86.58 91.22 83.98 95.65 96.27

PC2 98.24 93.80 98.86 92.94 98.67 98.03

PC3 93.70 82.25 87.18 81.11 89.34 93.66

PC4 92.51 86.49 89.28 82.79 94.05 92.57

PC5 83.28 72.14 78.63 71.73 79.19 76.21

Table 5. The Recall of Optimized Models on All Datasets

Dataset

Recall (%)

k-NN LR DT LDA SVM
SHL-

MLP

CM1 96.51 80.14 87.15 84.26 97.67 97.09

JM1 77.91 64.24 71.47 63.99 67.35 71.09

KC1 79.31 63.79 73.37 65.13 71.84 73.37

KC3 91.60 85.28 82.07 83.13 91.60 88.43

MC1 98.97 87.05 97.68 85.76 98.63 98.97

MC2 83.75 83.67 73.58 69.42 77.50 75.50

MW1 95.59 80.15 93.38 80.15 98.53 97.06

171

TEKNIKA, Volume 12(2), Juli 2023, pp. 166-172

ISSN 2549-8037, EISSN 2549-8045

Siswantoro, MZFN., et.al.: Software Defect Prediction Based on Optimized

Machine Learning Models: A Comparative Study

DOI: 10.34148/teknika.v12i2.634

PC1 95.10 86.57 91.22 83.98 95.36 96.13

PC2 98.17 92.92 98.86 91.78 98.63 97.95

PC3 93.46 81.98 87.10 80.92 88.87 93.46

PC4 91.89 86.49 89.19 82.43 93.69 92.49

PC5 83.06 71.77 78.63 71.51 79.17 76.21

Table 6 shows the F1 score of the optimized models on all

datasets. As can be seen in Table 6, k-NN achieved the highest

F1 score on six datasets, which are JM1 77.78%, KC1 79.24%,

KC3 91.58%, MC1 98.97%, MC2 83.67%, and PC5 83.04%.

In second place, SVM achieved the highest F1 score on four

datasets, which are CM1 97.66%, KC3 91.58%, MW1

98.53%, and PC4 93.69%. In third place, SHL-MLP achieved

the highest F1 score on three datasets, which are MC1 98.97%,

PC1 96.12%, and PC3 93.46%. Logistic regression and

decision tree achieved the highest F1 score only on a dataset

MC2 83.67% and PC2 98.86%, respectively. While logistic

regression and LDA never achieved the highest F1 score.

Based on the F1 scores in Table 6, it can be concluded that k-

NN generally performs well and LR and LDA achieve lower

scores. In addition, SVM and SHL-MLP demonstrate good

performance on most datasets but are not consistently superior

to other algorithms. These results indicate k-NN performs well

in terms of both correctly identifying positive instances and

capturing all positive instances.

Table 6. The F1 Score of Optimized Models on All Datasets

Dataset

F1 Score (%)

k-NN LR DT LDA SVM
SHL-

MLP

CM1 96.49 80.10 87.12 84.10 97.66 97.07

JM1 77.78 63.68 71.45 63.64 67.04 71.08

KC1 79.24 63.73 73.24 64.84 71.76 73.37

KC3 91.58 85.26 82.07 83.14 91.58 88.42

MC1 98.97 87.03 97.68 85.69 98.63 98.97

MC2 83.67 83.67 73.43 69.39 77.51 75.50

MW1 95.58 80.12 93.38 80.15 98.53 97.06

PC1 95.08 86.56 91.21 83.98 95.34 96.12

PC2 98.17 92.89 98.86 91.72 98.63 97.94

PC3 93.45 81.94 87.10 80.89 88.84 93.46

PC4 91.86 86.49 89.18 82.38 93.68 92.49

PC5 83.04 71.66 78.63 71.43 79.16 76.21

The results presented in Tables 3-6 provide insights into the

performance of various optimized traditional machine learning

models for software defect prediction. It can be observed that

k-NN, SVM, and SHL-MLP are the most effective algorithms

for predicting software defects, based on the highest accuracy,

precision, recall, and F1 scores achieved on several datasets. k-

NN outperformed all other algorithms in terms of accuracy,

precision, recall, and F1 score on seven datasets, including

JM1, KC1, KC3, MC1, MC2, PC3, and PC5. This suggests

that k-NN is a suitable algorithm for software defect prediction

and can be relied upon for accurate and precise predictions on

these datasets.

SVM achieved the highest accuracy, precision, recall, and

F1 score on four datasets, including CM1, KC3, MW1, and

PC4. SHL-MLP achieved the highest accuracy, precision,

recall, and F1 score on three datasets, including MC1, PC1,

and PC3. This suggests that SVM and SHL-MLP are other

effective models for software defect prediction and can be used

in scenarios where k-NN may not be the best choice. It is also

interesting to note that logistic regression and LDA never

achieved the highest accuracy, precision, recall, or F1 score on

any of the datasets. This suggests that these algorithms may not

be the best choice for software defect prediction, at least in the

context of the datasets used in this research.

Furthermore, most of the classification accuracy of the

optimized machine learning models significantly outperforms

the baseline models reported in [5] which do not employ

hyperparameter tuning, as tabulated in Table 7. For example,

the accuracy of optimized k-NN ranges from 77.91% to

98.97%. On the other hand, the accuracy achieved by k-NN in

[5] ranges from 69.34% to 97.27%. Similarly, the optimized

SVM achieved higher accuracy between 79.31% and 98.53%,

when compared to the SVM accuracy reported in [5], which is

between 62.16% and 90.82%. Therefore, the optimized models

are much more accurate and reliable than the baseline models.

Table 7. The Accuracy of Unoptimized Models on All

Datasets Reported in [5]

Dataset

Accuracy (%)

k-NN DT SVM
SHL-

MLP

CM1 77.55 77.55 90.82 86.73

JM1 73.96 79.10 79.19 80.35

KC1 69.34 75.64 75.36 77.36

KC3 75.86 75.86 82.76 82.76

MC1 97.27 97.61 97.61 97.61

MC2 72.97 64.86 62.16 64.86

MW1 86.67 86.67 89.33 90.67

PC1 92.65 93.14 95.10 96.57

PC2 96.77 97.70 97.70 96.77

PC3 24.00 86.39 86.39 83.86

PC4 85.83 86.88 88.19 89.76

PC5 73.03 75.00 74.21 74.21

V. CONCLUSION

This paper presents a comparative study of optimized
machine learning models for software defect prediction on
NASA MDP datasets. The hyperparameters of models were
optimized using random search to obtain the best classifier for
each dataset. Before input to the classifier, the dimensionality
of features was reduced using PCA, and the number of selected
components was also optimized using random search. The

172

TEKNIKA, Volume 12(2), Juli 2023, pp. 166-172

ISSN 2549-8037, EISSN 2549-8045

Siswantoro, MZFN., et.al.: Software Defect Prediction Based on Optimized

Machine Learning Models: A Comparative Study

DOI: 10.34148/teknika.v12i2.634

experiment results showed that k-NN achieved the highest
accuracy, precision, and recall on the majority of the datasets,
followed by SVM and SHL-MLP. These findings suggest that
optimized machine learning models, combined with
dimensionality reduction, can improve the effectiveness of
software defect prediction, which can reduce costs and
improve the quality of software products. To improve the
performance of traditional machine learning models, the use of
classification ensembles should be considered for further
research.

REFERENCES

[1] M. K. Thota, F. H. Shajin, and P. Rajesh, “Survey on

software defect prediction techniques,” Int. J. Appl.

Sci. Eng., vol. 17, no. 4, pp. 331–344, 2020.

[2] P. Roy, G. S. Mahapatra, P. Rani, S. K. Pandey, and K.

N. Dey, “Robust feedforward and recurrent neural

network based dynamic weighted combination models

for software reliability prediction,” Appl. Soft

Comput., vol. 22, pp. 629–637, 2014.

[3] Z. Xu et al., “Software defect prediction based on

kernel PCA and weighted extreme learning machine,”

Inf. Softw. Technol., vol. 106, pp. 182–200, 2019.

[4] T. Hall, S. Beecham, D. Bowes, D. Gray, and S.

Counsell, “A systematic literature review on fault

prediction performance in software engineering,”

IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1276–

1304, 2011.

[5] A. Iqbal et al., “Performance analysis of machine

learning techniques on software defect prediction

using NASA datasets,” Int. J. Adv. Comput. Sci. Appl.,

vol. 10, no. 5, 2019.

[6] Z. Marian, I.-G. Mircea, I.-G. Czibula, and G. Czibula,

“A novel approach for software defect prediction using

fuzzy decision trees,” in 2016 18th International

Symposium on Symbolic and Numeric Algorithms for

Scientific Computing (SYNASC), 2016, pp. 240–247.

[7] H. Ji, S. Huang, Y. Wu, Z. Hui, and C. Zheng, “A new

weighted naive Bayes method based on information

diffusion for software defect prediction,” Softw. Qual.

J., vol. 27, no. 3, pp. 923–968, 2019.

[8] M. Hammad, A. Alqaddoumi, and H. Al-Obaidy,

“Predicting software faults based on k-nearest

neighbors classification,” Int. J. Comput. Digit. Syst.,

vol. 8, no. 5, pp. 462–467, 2019.

[9] P. Kumar and S. K. Singh, “Defect prediction model

for aop-based software development using hybrid

fuzzy c-means with genetic algorithm and k-nearest

neighbors classifier,” Int. J. Appl. Inf. Syst, vol. 11, no.

2, pp. 26–30, 2016.

[10] R. Jayanthi and L. Florence, “Software defect

prediction techniques using metrics based on neural

network classifier,” Cluster Comput., vol. 22, pp. 77–

88, 2019.

[11] X. Rong, F. Li, and Z. Cui, “A model for software

defect prediction using support vector machine based

on CBA,” Int. J. Intell. Syst. Technol. Appl., vol. 15,

no. 1, pp. 19–34, 2016.

[12] S. Liu, X. Chen, W. Liu, J. Chen, Q. Gu, and D. Chen,

“FECAR: A feature selection framework for software

defect prediction,” in 2014 IEEE 38th Annual

Computer Software and Applications Conference,

2014, pp. 426–435.

[13] A. O. Balogun, S. Basri, S. J. Abdulkadir, and A. S.

Hashim, “Performance analysis of feature selection

methods in software defect prediction: a search method

approach,” Appl. Sci., vol. 9, no. 13, p. 2764, 2019.

[14] A. O. Balogun et al., “Impact of feature selection

methods on the predictive performance of software

defect prediction models: an extensive empirical

study,” Symmetry (Basel)., vol. 12, no. 7, p. 1147,

2020.

[15] I. T. Jolliffe, Principal Component Analysis, Ke-2.

Springer, 2011.

[16] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data

quality: Some comments on the nasa software defect

datasets,” IEEE Trans. Softw. Eng., vol. 39, no. 9, pp.

1208–1215, 2013.

[17] J. Bergstra and Y. Bengio, “Random search for hyper-

parameter optimization,” J. Mach. Learn. Res., vol. 13,

no. 1, pp. 281–305, 2012.

[18] N. V Chawla, K. W. Bowyer, L. O. Hall, and W. P.

Kegelmeyer, “SMOTE: synthetic minority over-

sampling technique,” J. Artif. Intell. Res., vol. 16, pp.

321–357, 2002.

[19] D. Gray, D. Bowes, N. Davey, Y. Sun, and B.

Christianson, “Reflections on the NASA MDP data

sets,” IET Softw., vol. 6, no. 6, pp. 549–558, 2012.

[20] J. Siswantoro, H. Arwoko, and M. Widiasri,

“Indonesian fruits classification from image using

MPEG-7 descriptors and ensemble of simple

classifiers,” J. Food Process Eng., vol. 43, no. 7, pp.

1–13, 2020, doi: 10.1111/jfpe.13414.

[21] C. M. Bishop, Pattern recognition and machine

learning. springer, 2006.

[22] E. Alpaydin, Introduction to machine learning, 2nd ed.

Cambridge, Massachusetts: MIT press, 2014.

[23] W. McKinney, “Data structures for statistical

computing in python,” in Proceedings of the 9th

Python in Science Conference, 2010, vol. 445, no. 1,

pp. 51–56.

[24] G. Lemaître, F. Nogueira, and C. K. Aridas,

“Imbalanced-learn: A python toolbox to tackle the

curse of imbalanced datasets in machine learning,” J.

Mach. Learn. Res., vol. 18, no. 1, pp. 559–563, 2017.

[25] F. Pedregosa et al., “Scikit-learn: Machine learning in

Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830,

Oct. 2011.

