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Abstract—Hand movement recognition via surface electromyo-
graphic (sEMG) signal is a promising approach for the advance
in Human-Computer Interaction. However, this field has to deal
with two main issues: (1) the long-term reliability of sEMG-based
control is limited by the variability affecting the sEMG signal
(especially, variability over time); (2) the classification algorithms
need to be suitable for implementation on embedded devices,
which have strict constraints in terms of power budget and
computational resources. Current solutions present a performance
over-time drop that makes them unsuitable for reliable gesture
controller design. In this paper, we address temporal variability
of sEMG-based grasp recognition, proposing a new approach
based on Temporal Convolutional Networks, a class of deep
learning algorithms particularly suited for time series analysis
and temporal pattern recognition. Our approach improves by
7.6% the best results achieved in the literature on the NinaPro
DB6, a reference dataset for temporal variability analysis of
sEMG. Moreover, when targeting the much more challenging inter-
session accuracy objective, our method achieves an accuracy drop
of just 4.8% between intra- and inter-session validation. This
proves the suitability of our setup for a robust, reliable long-term
implementation. Furthermore, we distill the network using deep
network quantization and pruning techniques, demonstrating that
our approach can use down to 120× lower memory footprint
than the initial network and 4× lower memory footprint than a
baseline Support Vector Machine, with an inter-session accuracy
degradation of only 2.5%, proving that the solution is suitable for
embedded resource-constrained implementations.

I. INTRODUCTION

Decoding muscular activation analyzing surface electromyo-
graphic (sEMG) signal is a widely accepted method for ad-
vanced Human-Machine Interfaces (HMI) design. [1]. This
method enables several applications, such as robot interaction,
industrial robot control, game and mobile interfaces, and control
of poliarticulated prostheses [2], [3].

Several approaches are gaining traction to decode hand
gestures by analyzing sEMG activation patterns, ranging from
blind source separation of the motoneuron activation [3] to
machine learning-based approaches [4]. Such solutions surpass
80% accuracy on classifying several hand gestures (from 4
to 12), making them suitable for the design of a human-
machine interface. However, the sEMG signal is affected by
high variability, originating from perspiration, changes in the
skin-to-electrode interface, user’s adaptation or fatigue, and
especially from electrode shifts in multi-day usage [5], [6], [7].
These variability sources are a major limit for the long-term use
and reliability of EMG-based gesture recognition. For instance,
in [6], an inter-session (morning-to-afternoon) accuracy loss
higher than 25% was observed, while in [8] it was shown a
30% accuracy drop with a single training session and multiple

classification sessions.
To tackle these issues, the proposed solutions mostly rely

on training dataset augmentation, as shown in [5], where one
subject performs 10 discrete gestures on 121 sessions over 21
days, and the training dataset collected on the latest 5 sessions
reduces the average error rate from 27% down to 13%. Such a
solution represents a step towards a robust gesture control in-
terface, but the performance drop and the lack of generalization
are still hampering the deployment of these solutions in reliable,
commercially available systems. Moreover, increasing training
dataset is labor-intensive and requires active user engagement,
which could be an obstacle for widespread adoption.

In recent years, Deep Learning (DL) techniques have been
successfully used in biosignal application scenarios, also pro-
viding a promising perspective for hand gesture recognition,
since some works reach an accuracy comparable with the SoA
approaches [9], [10]. One of the significant advantages of DL
approaches is that they need no handrafted feature extraction,
since deep models learn the best features intrinsically at training
time. This is especially convenient for signals characterized
by a very high variability like the sEMG, resulting in an
improved generalization after more extensive training, which
is particularly useful in multi-day performance analysis.

In this work, we address the challenge of the inter-session
generalization of sEMG-based grasp recognition using the Tem-
poral Convolutional Network (TCN), a DL method which is
gaining widespread traction in classification of temporal series
data. Exploiting the very challenging NinaPro Database 6 [6],
specifically utilized to investigate the algorithm adaptation over
multiple sessions, we tested several multi-session training set
compositions to minimize the accuracy loss over non-training
data. Moreover, we evaluate our TCN-based approach against
other well-established ML methods to explore the performance
drop over multi-day testing sessions. Finally, we evaluated
the network quantization to allow the network deployment on
platforms with a reduced memory budget (i.e., < 512 kB). Our
work brings a twofold contribution:
• We demonstrate that our approach can yield an inter-session

classification accuracy of 49.4% on the NinaPro Database
6, improving by 7.6% the results achieved in literature,
and outperforming by 4.4% the results yielded by a RBF-
SVM based on RMS feature, a widely used baseline for
gesture recognition. Our solution reaches 4.8% accuracy drop
on unseen data after 5 training sessions, demonstrating the
feasibility of a reliable and robust controller.

• We verify that the implemented network can be distilled
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Fig. 1: sEMG signal of the first grasp of NinaPro DB6, preceded
and followed by the rest position. The beginning and the end
of the grasp exhibit the strong transients typical of the dataset.

using data quantization and pruning, which allow deployment
on resource-constrained real-time platforms, a fundamental
requirement in next-generation design for wearable HMI. We
show that a model which can fit a 512 kB memory, yet
achieves 1.9% higher inter-session accuracy than the SVM,
exhibiting 4× lower memory footprint than the SVM and
120× lower memory footprint compared to the complete
network.

II. MATERIALS AND METHODS

A. EMG signal

The electromyographic (EMG) signal [11], [12], [13] is the
biopotential that arises from the current generated by the flow
of ions through the membrane of the muscular fibers. Hence,
it is a significant indicator of muscular activity. The origin
of this potential is the electrical stimulus that starts from the
central nervous system and passes through the motoneurons of
the muscular tissue, giving rise to the Action Potentials (APs).
The typical amplitude and bandwidth of the EMG signal are
10 µV ÷ 10mV and ∼ 2 kHz, respectively. Furthermore, the
EMG is affected by several noise sources, including motion
artifacts, floating ground noise, crosstalk, and power line inter-
ference [14]. These make the EMG a very challenging signal.

EMG signal can be collected either via invasive or non-
invasive techniques. In this work, we focus on surface elec-
tromyography (sEMG), a non-invasive method based on surface
electrodes placed on the skin surface. APs are detected via an
instrumentation amplifier with the positive and negative termi-
nals connected to two metal plates positioned on the surface of
the skin: the sEMG signal is the superposition of all the APs
detected by the amplifier [7]. For Human-Machine Interfaces,
basing gesture recognition on sEMG analysis is among the
most promising approaches, because non-invasiveness is a main
requirement in several HMI scenarios.

B. NinaPro Database 6

The Non-Invasive Adaptive hand Prosthetics Database 6
(NinaPro DB6) [6] is a public sEMG dataset exploring the
robustness of sEMG-based hand gesture recognition over time.

The dataset comprises 10 able-bodied subjects (3 females, 7
males, average age of 27 ± 6 years). For each subject, data
were recorded in 10 sessions (5 days, twice a day: morning
and afternoon), each entailing 12 repetitions of 7 grasps. The
grasps were chosen from the rehabilitation and robotics fields,
selecting movements typical of the Activities of Daily Living.
Each repetition lasts approximately 6 s, followed by 2 s of rest.
The sEMG signals were acquired with 14 Delsys Trigno sEMG
Wireless electrodes on the higher half of the forearm, sampling
at 2 kHz.

Figure 1 shows the sEMG trace of a grasping gesture,
indicating the rest, transient, and steady grasp stages. It is
noteworthy that the gesture execution exhibits, before and after
the steady contraction, strong transient stages, characterized by
signal amplitudes and RMS up to 5× greater than the steady
signal.

Remarkably, the NinaPro DB6 has been under-exploited in
literature [6], [15], as it is made very challenging by the similar
nature of the grasps, and by the aforementioned strong transient
states caused by the impulsive movements. Results obtained by
Palermo et al. [6], applying Random Forest (RF) on Waveform
Length (WL), showed high inter-session (morning-to-afternoon)
accuracy loss: training on morning data (for each day, for each
subject) yields a 52.4% average accuracy on morning data,
but a 25.4% average accuracy when validating on afternoon
data. These results were improved by Cene et al. [15], who
used Extreme Learning Machines (ELM), achieving 69.8%
accuracy on the morning sessions used for training, and 41.8%
accuracy in the afternoon. This represents, to the best of our
knowledge, the State of the Art (SoA) on the NinaPro DB6. Its
main limitation is that the temporal variability is not properly
addressed since the setup is limited to single-session training.
In this work, we improve the SoA with a new setup, including
multi-session training.

C. Temporal Convolutional Networks

In this work, we approach the sEMG signal as a time series,
employing a small Temporal Convolutional Network to classify
fixed-size sEMG time windows. This is significantly different
from previous works in sEMG-based gesture recognition, which
are framed as single-sample classification [7] or image classifi-
cation [9].

Temporal Convolutional Networks (TCNs) are sequential
models capable to learn time dependencies in the input signal.
TCNs represent the SoA in many tasks of sequence modeling,
surpassing Recurrent Neural Networks (RNNs) [16], which are
more complicated and expensive to train. The idea behind TCNs
resides in the 1d-convolutional layers (Conv. layers) operating
along time. The two main features of this network topology are:
i) causality: each output yn only depends on convolutions on
earlier inputs xi with i < n; and ii) dilation: a fixed step d is
inserted between the filter inputs. Hence, a TCN’s Conv. layer
has the form of

y(o)
n = Conv (x) =

L−1∑
l=0

K−1∑
i=0

W
(o,l)
i · x(l)

n−d i

y(o)
n = Conv (x) =

L−1∑
l=0

K−1∑
i=0

W
(o,l)
i · x(l)

n - d·i
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Fig. 2: Temporal Convolutional Network architecture. Three main blocks are used: the Dilated Conv. Block for temporal feature
extraction, the Locally Conv. Block for local feature extraction, and the FC Block for the final classification.

with x input feature map and y output feature map, W
the filter weights, n the time index, L the number of input
channels, o the output channel, K the filter size, and d the
dilation. For classification tasks, a sequence of time-distributed
fully connected (FC) layers on top of the Conv. layers compute
the final label.

Figure 2 displays the architecture of the proposed TCN:
1) the Dilated Conv. Block is composed of 2 Conv. layers with
3×1×64 filters, and dilation 4, to exploit the temporal sequence
extracting information on the time-relationship of the samples;
2) the Locally Conv. Block is composed of 2 Conv. layers with
1×1×64 filters, to capture the cross-information of the different
channels;
3) finally, the FC Block is made of 3 FC layers, with dropout
(pdropout = 0.5) to help regularization [17], which flatten the
input information to assign a label to the input sequence.
All layers have ReLU non-linearity as activation function, and
are equipped with Batch-Normalization to counter the internal
covariate shift [18].

III. EXPERIMENTAL RESULTS

In this work, we address temporal variability and generaliza-
tion to new sessions by developing a multi-session setup, which
we use to compare a set of conventional ML algorithms, namely
Linear Discriminant Analysis (LDA), Random Forest (RF) and
Radial Basis Function-kernel Support Vector Machine (RBF-
SVM), against DL models, namely the proposed TCN and its
distilled versions.

To analyze the ability to generalize to never-seen sessions, we
adopt an incremental training protocol, where 1 to a maximum
of 5 sessions are used for training, and the remaining 5 for
testing. In this sequential scenario, training sessions always
precede testing sessions, preserving temporal coherence.

We employ an internal 2-fold cross-validation, stratified (i.e.,
each fold contains an equal number of grasp repetitions from
each training session). The 2-fold cross-validation is necessary
to evaluate our algorithm also on the same sessions used for
training (i.e., without the temporal variability). Hence, we use
alternately one fold of the training sessions to train the model
and the other to test it.

We evaluate our method on two criteria: (1) the intra-session
validation accuracy, calculated as the average accuracy on the
fold not used for training (alternately), and (2) the inter-
session validation accuracy, computed as the average accuracy
on sessions 6-to-10, never included in the training.

A. Classical Machine Learning

First, we apply our multi-session training setup on three well-
established ML approaches: LDA, RF and RBF-SVM, imple-
mented with Python 3.5 and Scikit-learn (version 0.20.0) [19]

using the modules sklearn.discriminant_analysis,
sklearn.ensemble and sklearn.svm, respectively. All
are fed the Root Mean Square (RMS) of the 14-channel sEMG
signal, computed on 60ms time windows. This approach was
chosen as a baseline as it is a widely used setup.

For all the three classifiers, adding training sessions gradually
improves the recognition of the last 5 never-seen sessions, with
the 5-session training yielding the best accuracy, as reported in
Table I. This behavior is due to the regularizing effect of multi-
session training: showing the classifier more heterogeneous data
improves generalization.

In particular, the RBF-SVM (trained with C=1 and
gamma=‘scale’) yields the best results, shown in the left
panel of Figure 3. With 5-session training, the SVM achieves
an average intra-session validation accuracy of (51.4 ± 0.6)%
and an average inter-session validation accuracy of (45.0 ±
0.8)%, thus with a 6.4% accuracy drop on never-seen sessions.
Sweeping from 1-session to 5-session training increases the
intra-session validation accuracy by 1.1% and the inter-session
validation accuracy by 8.2%, and reduces the inter-session
accuracy drop by 7.1%. This inter-session validation accuracy
outperforms by 3.2% the SoA represented by [15] mentioned
in Section II.

B. Temporal Convolutional Network

We implement our TCN-based approach using Python 3.5
and the PyTorch 1.1 framework [20], specialized for DL de-
velopment. The TCN is fed with 150ms sliding (15ms) time
windows of the raw 14-channel sEMG signal, in sharp contrast
with the classical ML methods. The TCN is trained with cross-
entropy as loss function, and stochastic gradient descent for
20 epochs (minibatch size 64) with initial learning rate 0.001,
divided by 10 after epochs 9 and 19. L2-regularization is
applied with PyTorch weight_decay=1e-4, corresponding
to λ = 5 · 10−5.

Even though the training is done off-line, our setup fully
allows for online inference, since our TCN neither relies on
feature extraction nor on the removal of sEMG transients (as
instead popular in both inter-subject [21] and inter-session [5],
[22], [23] studies, including the SoA on NinaPro DB6 [15].

The recognition accuracies obtained adding training sessions
are shown in the right panel of Figure 3, which provides a
detailed comparison between the RBF-SVM and the TCN.

Multi-session training gradually increases the performance
on the last 5 never-seen sessions, minimizing the inter-session
accuracy drop, with the best results for the 5-session training
strategy. This means that including more sessions enables the
TCN to leverage more heterogeneous samples to learn a more
robust representation. This behavior is the same as for the
classical ML algorithms but with higher accuracy. Passing



time [session] time [session]

RMS + RBF-SVM Temporal Convolutional Network

Ac
cu

ra
cy

[%
]

Ac
cu

ra
cy

[%
]

intra-sess. val.
inter-sess. val.

tr. sess. 1-to-1
tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.
inter-sess. val.

tr. sess. 1-to-1
tr. sess. 1-to-2

tr. sess. 1-to-5

Fig. 3: Classification accuracy of the baseline SVM and our proposed TCN on the different sessions of NinaPro DB6. The 5
multi-session training strategies incrementally improve the generalization to never-seen sessions, with better results for the TCN.

from 1-session to 5-session training improves the intra-session
validation accuracy by 1.8% and the inter-session validation
accuracy by 11.1%, and reduces the inter-session accuracy drop
by 9.3%. The 5-session training achieves an average intra-
session validation accuracy of (54.2±0.6)% (2.8% higher than
the SVM), and an average inter-session validation accuracy of
(49.4 ± 0.9)% (4.4% higher than the SVM). The inter-session
validation accuracy is better-than-SoA by 7.6% [15].

Our lower-than-SoA intra-session accuracy is due to the fact
that [15] (1) uses single-session training with feature extraction,
prone to overfitting to the single sessions; (2) applies very
aggressive signal filtering over 200ms time windows, thus sig-
nificantly smoothing the transients discussed in Section II; and
(3) embeds outlier removal into the algorithm, thus excluding
the transients from the accuracy. For a fair comparison, we
evaluated our RBF-SVM and TCN discarding the transients,
obtaining results comparable to the SoA. Validated on the steady
segments, the RBF-SVM yielded 69.2% intra-session accuracy
(just 0.6% below SoA) and 60.4% inter-session accuracy, while
the TCN achieved 71.3% intra-session accuracy (1.5% above
SoA) and 65.0% inter-session accuracy.

The improvement we achieve in inter-session accuracy is
due to the successful regularization provided by multi-session
training, as for the classical ML algorithms. Moreover, the
higher results compared to classical ML corroborate the initial
assumption that TCNs are able to achieve superior generaliza-
tion thanks to their higher ability to process raw data and to
handle the variability of the sEMG signal between sessions.

C. TCN distillation

On top of evaluating the accuracy performance of our TCN-
based approach, we discuss the memory requirements of the
proposed solution to understand how it can be deployed on a
resource-constrained platform. We distill three new networks
from the initial one, applying (1) a stride factor s in the first
two convolutional layers (s1 = 2 in the first and s2 = 4 in
the second), (2) 16-bit quantization for the Conv. layers and 8-
bit quantization for the FC layers, and (3) the pruning of the
network weights.

Table I reports the memory occupancy and the accuracy of
the different configurations of the network, compared to the
baseline SVM. Remarkably, introducing the strides, quantiz-
ing, and pruning, we only lose 4.7% intra-session and 2.5%

TABLE I: Memory footprint and best intra-/inter-session accu-
racy of the proposed methods compared to the SVM baseline.

Intra-/inter-session Memory
accuracy footprint

State of the Art [15]
ELM 69.8%1/ 41.8%1 n.a.

Classical ML
LDA 47.5% / 38.3% negligible
RF 46.3% / 43.4% negligible
RBF-SVM 51.4% / 45.0% 1.3MB
RBF-SVM on steady 69.2% / 60.4% 1.3MB

Proposed DL methods
Full TCN 54.2% / 49.4% 38.8MB (30×)
Full TCN on steady 71.3% / 65.0% 38.8MB (30×)
Full TCN q. and prun. 53.0% / 49.3% 2.0MB (1.5×)
Strided TCN 52.0% / 48.7% 6.0MB (4.6×)
Strided TCN q. and prun. 49.5% / 46.9% 0.33MB (0.25×)

1With transient removal by outlier rejection (see Section III-B).

inter-session accuracy. This lowest-area configuration requires
120× less memory than the initial configuration, and 4× lower
memory footprint compared to the SVM, yet demonstrating an
inter-session accuracy higher than the SVM. In addition, neural
networks can benefit from a far better parallelization compared
to SVMs, leading to lower delay in the recognition.

IV. CONCLUSION

In this work, we addressed the temporal variability affecting
the inter-session generalization of sEMG-based grasp recog-
nition. We propose a new approach that uses a Temporal
Convolutional Networks (TCN), a novel deep learning algorithm
for time-series analysis. Our approach, validated on the NinaPro
Database 6, proves that the best training set composition is
the one including the highest number of sessions, producing
an inter-session classification accuracy of 49.4.%, surpassing
by 4.4% the results from a reference SVM, and by 7.6% the
results achieved in literature. The accuracy drop of just 4.8%
between intra- and inter-session validation allows the design of
a robust long-term sEMG controller. Moreover, we distilled the
TCN using deep network quantization and pruning techniques,
showing that our approach reaches as little as 120× lower
memory footprint than the starting full network, with an inter-
session accuracy decrease of only 2.5%, which makes it very
suitable for implementation on resource-constrained platforms.

Future work will explore other network topologies, as well as
the reliability of the approach on a more extended dataset and



the aggressive optimization for low-power embedded computing
platforms.
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