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Robust energy-maximising control of wave energy systems under input
uncertainty

Nicolás Faedoa, Giuliana Mattiazzoa and John V. Ringwoodb

Abstract— Motivated by the ubiquitous presence of input
uncertainty in the wave energy control problem, we propose,
in this paper, a robust energy-maximising framework which
explicitly considers potential wave excitation force deviations in
the computation of the optimal control law, while systematically
respecting state and input constraints. In particular, this is
achieved by a suitable moment-based characterisation for the
input uncertainty, taking into consideration an appropriate
convex uncertainty set. The concept of moments is combined
with well-known robust optimisation principles, by proposing
a worst-case performance approach. We show that this novel
moment-based robust optimal control framework always admits
a unique global energy-maximising solution, hence leading to a
computationally efficient robust solution. The performance of
the proposed controller is illustrated by means of a case study,
considering a heaving point absorber WEC.

I. INTRODUCTION

Energy-maximising control of wave energy converters
(WECs) has proven to be a fundamental stepping stone
towards effective commercialisation of wave energy tech-
nology [1]. The control problem for WECs naturally lends
itself towards optimal control theory: the energy-maximising
control design procedure for WECs can be cast as an
optimal control problem (OCP), where the objective is to
maximise the absorbed energy from incoming ocean waves,
while respecting the physical limitations associated with both
device, and power take-off (PTO) actuator, characteristics.

Though system uncertainty is effectively ubiquitous within
hydrodynamic WEC modelling (see [2]), is not the only
source of error inherently present in the WEC energy-
maximising optimal control problem: Given that the wave
excitation force, which is a key variable in the OCP, is, in
general, not measurable, approximations are virtually always
required, computed by means of input estimation (instanta-
neous values) and forecasting (future values) techniques (see
[3]). In other words, input uncertainty is also ubiquitous.
Moreover, to the best of the authors’ knowledge, robustness
with respect to errors in the estimation and forecasting of
the excitation effect, i.e. input uncertainty, has not been yet
explicilty addressed in the WEC control literature.

Motivated by the discussion provided above, we propose,
in this paper, an energy-maximising moment-based frame-
work which explicitly considers input uncertainty in the
computation of the optimal control law, while systematically
respecting motion and PTO (state and input) constraints. In
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particular, and inspired by the robust approach for WECs
under parametric uncertainty presented in [4], this is achieved
by a suitable moment-based characterisation for the input
uncertainty, taking into consideration an appropriate uncer-
tainty set, written in terms of a convex polytope defined over
a real vector space. To this end, the concept of moments is
combined with the robust optimisation principles considered
in [5], [6], by proposing a worst-case performance (WCP)
approach. We show that this novel moment-based robust
optimal control framework always admits a unique global
energy-maximising solution, preserving all the appealing
characteristics of the (nominal) strategy developed in [2],
hence leading to a computationally efficient robust control
solution for WECs. The performance of the proposed con-
troller is illustrated and analysed by means of a case study,
considering a heaving point absorber WEC.

A. Notation

Nq indicates the set of all positive natural numbers up to
q, i.e. Nq = {1, 2, . . . , q}. 1n×m is used to denote a n×m
Hadamard identity matrix. The spectrum of a matrix A ∈
Rn×n is denoted by λ(A). The symbol

⊕
denotes the direct

sum of n matrices, i.e.
⊕n

i=1Ai = diag(A1, A2, . . . , An).
The Kronecker product between two matrices M1 and M2 is
denoted by M1 ⊗M2. The Kronecker sum of two matrices
P1 ∈ Rn×n and P2 ∈ Rk×k is denoted as P1⊕̂P2. The
convolution between two functions f and g is denoted as
f ∗ g. The symbol eqij ∈ Rq×q denotes a matrix with 1 in
the ij-entry and 0 elsewhere, while εn ∈ Rn denotes a vector
with odd entries equal to 1 and even entries equal to 0.

II. PRELIMINARIES ON MOMENT-BASED THEORY

We provide, in this section, a brief summary of moment-
based theory for linear systems [7]. Let us consider a single-
input single-output system, defined, for t ∈ R+, by the
following set of differential equations1

ẋ = Ax+Bu, y = Cx, (1)

where x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, and the triple of
(constant) matrices (A,B,C) is dimensioned accordingly.
Assume that system (1) is minimal. Let the external input u,
be written as the output of the so-called signal generator:

ξ̇ = Sξ, u = Lξ, (2)

with ξ(t) ∈ Rν , S ∈ Rν×ν and Lᵀ ∈ Rν .

1The dependence on t is dropped when clear from the context.



Lemma 1. [7] Consider system (1) and the autonomous
signal generator (2). Assume that the triple (L, S, ξ(0)) is
minimal, λ(A) ⊂ C<0, λ(S) ⊂ C0 and the eigenvalues of
S are simple. Then, there is a unique matrix Π ∈ Rn×ν
which solves the Sylvester equation AΠ + BL = ΠS, and
the steady-state response of the output of the interconnected
system (1)-(2) is yss(t) = CΠξ(t).

Definition 1. The matrix Y = CΠ is the moment of system
(1) at the signal generator (2).

Remark 1. From now on, we refer to the matrix Y as the
moment-domain equivalent of y.

III. OPTIMAL CONTROL OF WECS: FUNDAMENTALS

This section briefly recalls linear control-oriented mod-
elling for a 1-degree-of-freedom (DoF) device2 (see, for
instance, [9]). The equation of motion for such a WEC can
be expressed in terms of the following system Σ:

Σ :
{
z̈ =M (−kr∗ ż − shz + fe − u) , y = ż. (3)

where z : R+ → R, t 7→ z(t), is the device excursion
(displacement), fe : R+ → R, t 7→ fe(t), the wave excitation
force (external uncontrollable input due to the incoming wave
field), kr : R+ → R, t 7→ kr(t), is the (causal) radiation
impulse response function containing the memory effect of
the fluid response, sh ∈ R denotes the hydrostatic stiffness,
which depends upon the device geometry, and M∈ R>0 is
the inverse of the generalised mass of the device (see [9]).
The control input u : R+ → R, supplied by means of the
so-called power take-off (PTO) system, plays a key role in
the optimisation of the operation of wave energy devices, as
further discussed in Section III-B.

A. Nominal moment-based representation of a WEC

Aiming to consider the results recalled in Section II for
this 1-DoF WEC case, the nominal equation of motion char-
acterising the WEC system Σ is written using the following
equivalent representation:

Σ0 :
{
ẇ = Aw +B(fe − kr∗Cw − u), y0 = Cw, (4)

for t ∈ R+, where w(t) =
[
z(t) ż(t)

]ᵀ ∈ R2 contains
displacement and velocity for the (single) DoF involved in
the equation of motion, and the (constant) matrices A ∈
R2×2, B ∈ R2 and Cᵀ ∈ R2 are defined as

A =

[
0 1

−Msh 0

]
, B =

[
0
M

]
, C =

[
0
1

]ᵀ
. (5)

The mappings corresponding to both external inputs, i.e. fe

and u, are written in terms of a signal generator (analogously
to the case of equation (2)), i.e.

G :
{
ξ̇ = Sξ, fe = Leξ, u = Luξ, (6)

for t ∈ R+, with ξ(t) ∈ Rν , S ∈ Rν×ν and Lᵀ ∈ Rν .
Recalling that ocean waves are commonly represented as a

2We consider a 1-DoF device since an analogous analysis can be carried
out for multi-DoF devices, by following e.g. [8].

finite sum of harmonics of a (sufficiently small) fundamental
frequency ω0 [10], we define the finite-set F = {pω0}fp=1 ⊂
R+, with f ∈ N≥1, and let S in (6) be

S =

f⊕
p=1

[
0 pω0

−pω0 0

]
, (7)

where ν = 2f , and hence λ(S) = (jF ) ∪ (−jF ) ⊂ C0.
Without any loss of generality, the initial condition on the
signal generator is chosen as ξ(0) = εν ∈ Rν . Finally, we
introduce the following two assumptions.

Assumption 1. The pair (S,Le − Lu) is observable.

Assumption 2. The zero equilibrium of ẇ = Aw−kr∗Cw
is asymptotically stable.

Assumption 2 is, in practice, without loss of generality (see
[11]). We now recall the following result from [2].

Lemma 2. [2] Suppose Assumptions 1 and 2 hold. Then,
the moment-domain equivalent of the output y0 of system (4)
can be uniquely determined as

Y 0 = (Le − Lu)Φᵀ
R, (8)

where the matrix ΦR ∈ Rν×ν is defined as

ΦR = (Iν⊗C)(S⊕̂A+Rᵀ⊗−BC)−1(Iν⊗−B), (9)

and the block-diagonal operator R ∈ Rν×ν , characterising
the radiation effects in the moment-domain, is given by

R =

f⊕
p=1

[
<{Kr(pω0)} ={Kr(pω0)}
−={Kr(pω0)} <{Kr(pω0)}

]
, (10)

with Kr : R → C, ω 7→ Kr(ω), the (well-defined) Fourier
transform of the impulse response function kr.

B. Optimal control problem for WECs

The WEC control design entails an energy-maximisation
criterion, where the objective is to maximise the absorbed
energy from incoming ocean waves over a finite time interval
T = [0, T ] ⊂ R+. This procedure can be cast as an OCP,
with objective function J : R→ R, u 7→ J(u), defined as

J (u) =
1

T

∫
T
u(τ)ż(τ)dτ. (11)

Given the control objective function defined in (11) and
the governing dynamics of the WEC in (3), the energy-
maximising OCP can be formally posed as follows3.

Problem 1 (Energy-maximising OCP). Find an optimal
control input uopt : T → R such that

uopt = arg max
u
J (u), s.t. : WEC dynamics (3), (12)

3State and input constraints are included to the OCP in Section IV.



IV. MOMENT-BASED CONTROL UNDER INPUT
UNCERTAINTY

This section details a moment-based energy-maximising
control framework which is robust with respect to input
uncertainty. From now on, the approximated wave excitation
force signal (also referred as either wave excitation force
estimate or simply wave excitation force, when clear from
the context), arising from both estimation and forecasting
processes, is denoted as f̃e. To be precise, suppose now
that the input mapping f̃e is uncerain, and let the so-called
nominal signal generator G0 be defined as,

G0 :
{
ξ̇ = Sξ, f̃0

e = L0
e ξ, u = Luξ, (13)

where S and Lu are defined as in (6), and L0
e ∈ R1×ν

characterises the nominal wave excitation force f̃0
e .

Remark 2. From now on, the matrix L0
e is referred to as

the nominal output vector for the wave excitation force,
associated with the nominal signal generator (13).

Suppose now that the excitation force affected by uncer-
tainty, denoted as f̃∆

e , is defined in terms of ξ as f̃∆
e = L∆

e ξ,
with L∆

e ∈ R1×ν . To be precise with respect to the ‘type’ of
(input) uncertainty considered, the definition of the so-called
uncertain signal generator G∆ is now provided.

Definition 2 (Uncertain signal generator). Let S and Lu be
as in (6). The exogenous system G∆ is termed an uncertain
signal generator if it is described by the set of equations,

G∆ :
{
ξ̇ = Sξ, f̃∆

e = (L0
e + L0

e ∆)ξ, u = Luξ, (14)

where L0
e is as in equation (13), and ∆ ∈ Rν×ν is such that,

L0
e ∆ = L∆

e − L0
e . (15)

Definition 2 can be interpreted from a ‘traditional’ robust
control theory viewpoint. In particular, it stems directly from
considering that the nominal signal generator G0 is affected
by a multiplicative output uncertainty [12] in the output
associated with the wave excitation force. This output uncer-
tainty is characterised by a stable and minimal linear time-
invariant (LTI) system H∆, with input f̃0

e (i.e. the nominal
excitation force), and where the moment-domain equivalent
of its output d∆ can always be uniquely4 computed as
D∆ = L0

e ∆, with ∆ ∈ Rν×ν .
Remark 3. From now on, the matrix L∆

e is referred to as
the uncertain output vector for the wave excitation force,
associated with the uncertain signal generator (14).
Remark 4. The computation of the matrix ∆ follows im-
mediately from Lemma 1. Furthermore, given the specific
structure of the matrices involved in (13), it is straightforward
to show that the matrix ∆ can always be written as,

∆ =

f⊕
p=1

[
pδ+ pδ−

−pδ− pδ+

]
, (16)

where {pδ+, pδ−}fp=1 ⊂ R.

4Uniqueness of D∆ is a direct consequence of the linearity and internal
stability of H∆ (see Section II).

Not only is ∆ always structured as (16), but it can also
be fully characterised in terms of a vector δ ∈ Rν , which
is especially useful for the upcoming results. The nature of
this vector is formalised in the following. Let δ ∈ Rν be the
uncertainty vector, defined as δ =

∑f
p=1 e

f
p ⊗

[
pδ+ pδ−

]ᵀ
.

Following Remark 4, it is clear that the matrix ∆ can always
be written in terms of the uncertainty vector δ, provided
a suitable mapping δ 7→ ∆ is defined. In particular, the
following mapping Γ : Rν → Rν×ν , δ 7→ Γ(δ), is proposed:

Γ(δ) =

f⊕
p=1

(
δᵀ e2f

2p−1

)
I2+

(
δᵀ e2f

2p

)[ 0 1
−1 0

]
= ∆. (17)

Remark 5. The mapping Γ is linear in the argument δ. As
discussed in Section IV-B, the linearity of the mapping Γ
plays a fundamental role in the tractability of the proposed
robust moment-based energy-maximising procedure.

To pose a robust moment-based energy-maximising for-
mulation for WECs under input uncertainty, we now provide
an expression for the moment-domain equivalent of the
device velocity Y , considering the uncertain wave excitation
force f̃∆

e . This is, indeed, straightforward to compute from
the result of Lemma 2, by introducing the following standing
assumption.

Assumption 3. The pair (S,L0
e +L0

e ∆−Lu) is observable.

Suppose Assumptions 2 and 3 hold. Then, the moment-
domain equivalent of the WEC velocity under the effect of
input uncertainty can be directly computed via Lemma 2, i.e.

Y = (L0
e + L0

e ∆− Lu)Φᵀ
R, (18)

where the matrix Φᵀ
R is defined as in (9).

A. Formulation of the OCP using moments

Given a fixed uncertainty vector δ, the results presented
in Section IV can be used to approximate the energy-
maximising OCP of Problem 1 for the case of an uncertain
wave excitation force f̃∆

e , by making explicit use of the
connection between moments and the steady-state behaviour
of the corresponding perturbed system. In the following, we
show that the OCP (12) can be approximated in terms of
a finite-dimensional strictly concave QP problem, using the
associated moment-based representations.

Assumption 4. Let ψp = C(jpω0I2 − Tp)−1B, with Tp =
A−BKr(pω0)C. Then, <{ψp} > 0, for all p ∈ Nf .

Proposition 1. Consider the OCP (12) and suppose Assump-
tions 2 and 3 hold. Then, given a fixed uncertainty vector δ,
the optimal control law uopt, which maximises the objective
function J for the uncertain signal generator G∆, can be
approximated in the moment-domain as uopt = Lopt

u ξ, where
Lopt

u is the solution of the QP problem

Lopt
u = arg max

Lᵀ
u ∈Rν
−1

2
LuΦᵀ

RL
ᵀ
u +

1

2
L0

e (Iν+Γ(δ))Φᵀ
RL

ᵀ
u (19)

Proposition 2. Suppose Assumption 4 holds. Then, the
QP problem defined in (19) has a unique global energy-
maximising solution.



Remark 6. The condition expressed in Assumption 4 coin-
cides with the condition for global optimality for the nominal
WEC system presented in [2]. In particular, sign{<{ψp}} =
sign{<{K(pω0)}} > 0 holds for all p ∈ Nf as a conse-
quence of the passivity property of radiation forces [9], so
that Assumption 4 is, in practice, without loss of generality.
Remark 7. Unlike the case of [4], the QP formulation pre-
sented in (19) is always strictly concave independently on the
definition of the uncertainty δ: Given any fixed uncertainty
vector δ, there exists a unique global energy-maximising
solution for the moment-based WEC optimal control problem
under input uncertainty as formulated herein.

B. Robust formulation under input uncertainty

In this section, the moment-domain optimisation problem
(19) is re-formulated based on the underlying principles of
robust optimisation theory, developed in key studies such
as [6]. The underpinning concept behind this approach
originates in the field of decision theory, and is known as
Wald’s Minimax (Maximin) paradigm [13], also commonly
referred to as the Worst-Case Performance (WCP) method.
We now introduce the following standing assumption.

Assumption 5. The uncertainty vector δ is such that δ ∈
P , where P ⊂ Rν is a convex V-polytope5, defined as the
convex hull of a finite set of NV points (vertices) in space
Vδ = {δV1 , . . . δVNV }, i.e. P = conv{Vδ}.

Problem 2 (Robust energy-maximising OCP under input un-
certainty). Suppose Assumptions 2-5 hold. Find the optimal
WCP control input uRC = LRC

u ξ, with LRC
u the solution of the

maximin problem

LRC
u = arg max

Lᵀ
u ∈Rν

arg min
δ∈P
−1

2
LuΦᵀ

RL
ᵀ
u +

1

2
L0

e (Iν + Γ(δ))Φᵀ
RL

ᵀ
u .

(20)

Remark 8. Assumption 5 plays a fundamental role in the
definition of Problem 2: as a direct consequence of the
linearity of the mapping Γ, (20) is affine in δ. Taking
into account that the QP problem in Lu is always strictly
concave for any δ under Assumption 4 (see also Remark 7),
the solution of the moment-based robust formulation under
input uncertainty (20) is reached on the convex hull of the
uncertainty set P . Since P is convex by Assumption 5, the
solution of (20) lies precisely at one of the vertices of P ,
and it is sufficient to solve (20) only for the finite-set of NV
vertices Vδ (see [14], [15]).

Two main conclusions can be directly extracted from
Remark 8. Firstly, the robust energy-maximising framework,
defined in Problem 2, always admits a unique globally
optimal solution. Secondly, the optimisation problem to be
solved is tractable, i.e. it is sufficient to solve (20) for a
small number of ‘points’, characterising the vertices of the
uncertainty polytope. This directly implies that (20) can be
solved using efficient minimax optimisation routines.

5The reader is referred to [12] for further detail in convex polytopes and
their use in robust control applications.

C. Handling of state and input constraints

We now consider constraints on both the displacement and
velocity of the WEC, and the exerted control force, and we
map these using their respective moment-domain equivalents
under input uncertainty6, as

C :


|z(t)| ≤ Zmax,

|ż(t)| ≤ Ymax,

|u(t)| ≤ Umax,

7→


|Y S−1ξ(t)| ≤ Zmax,

|Y ξ(t)| ≤ Ymax,

|Luξ(t)| ≤ Umax.

(21)

with t ∈ T , and where {Zmax, Ymax, Umax} ⊂ R+. Let Tc =
{ti}Nc

i=1 ⊂ T , be a finite set of (specified) uniformly-spaced
time instants, with Nc ∈ N≥1. The constraints defined in
(21) can be enforced at the set Tc, i.e. using a collocation
approach, via the definition of the following matrices: Let
Λ ∈ Rν×Nc and Υ ∈ Rν×2Nc be

Λ =
[
ξ(t1) . . . ξ(tNc)

]
, Υ =

[
Λ −Λ

]
. (22)

Remark 9. Given that it is sufficient to solve the robust
formulation defined in Problem 2 only at the finite-set of
vertices of the convex polytope P (see Remark 8), we
incorporate state constraints into Problem 2 such that these
are satisfied at every element of the set Vδ . This effectively
ensures that the state constraints in (21) are consistently
fulfilled for every δ ∈ P [14], [15].

Proposition 3. Consider Problem 2 and the set of constraints
C in (21). The state and (control) input constrained robust
moment-based energy-maximising control law uRC = LRC

u ξ,
can be computed in terms of the maximin problem,

LRC
u = arg max

Lᵀ
u ∈Rν

arg min
δ∈Vδ
−1

2
LuΦᵀ

RL
ᵀ
u +

1

2
L0

e (Iν + Γ(δ))Φᵀ
RL

ᵀ
u ,

s.t. :
{
LuARC

ż ≤ BRC
z , LuARC

ż ≤ BRC
ż , LuAu ≤ Bu,

(23)

where the pair of matrices (Au,Bu) is as in (25),

ARC
z = Az ⊗ 11×NV , BRC

z =
[
Bδ

V
1
z . . . Bδ

V
N
z

]
,

ARC
ż = Aż ⊗ 11×NV , BRC

ż =
[
Bδ

V
1

ż . . . Bδ
V
N

ż

]
,

(24)

with Az = −Φᵀ
RS
−1Υ, Aż = −Φᵀ

RΥ, and

Bδ
V
i
z = Zmax11×2Nc + L0

e (Iν + Γ(δVi ))Az,

Bδ
V
i

ż = Ymax11×2Nc + L0
e (Iν + Γ(δVi ))Aż,

(25)

for all δVi ∈ Vδ .

V. CASE STUDY

This section analyses and illustrates the performance of the
robust moment-based energy-maximising control framework,
presented in this paper, for the case of WECs under input
uncertainty. To be precise, a spherical heaving point absorber
WEC is considered, with a radius of 2.5 [m] (see [2] for a
detailed description of the device). Motivated by the analysis

6Note that the moment-domain equivalent of the displacement z can be
expressed as Y S−1, following the result of [16, Proposition 1].



performed in [17], the existence of errors in the instantaneous
phase (i.e. time-delays) of the wave excitation force is first
considered, in Sections V-A and V-B, to characterise the
input uncertainty. This error source can cause significant
losses in terms of energy-maximising performance for the
case of the nominal controller, if the time delay is sufficiently
large [17]. Finally, Section V-C considers constant deviations
in instantaneous amplitude, showing that the presented robust
strategy is able to consistently fulfill constraint specifications
for the defined uncertainty set.

A. On the definition of the uncertainty polytope P
We outline a methodology to compute the polytope charac-

terising input uncertainty, arising from the presence of errors
in the instantaneous phase of the wave excitation force. Note
that an analogous procedure can be followed for any other
source of uncertainty, as long as it can be represented in
terms of an LTI system H∆ (as per discussed in Section IV).

Suppose the dynamic matrix S ∈ Rν×ν is given, and let
f̃0

e be the nominal excitation force, generated in terms of
the nominal signal generator G0 (see equation (13)). Let the
‘perturbed’ excitation be defined as f̃∆

e = f̃0
e (t−τ), i.e. as a

‘delayed’ version of the nominal wave excitation f̃0
e . Suppose

τ ∈ F ⊂ R, where, for this case study, F = [−1.25, 0.75] [s]
(which corresponds with a shift in time τ between −1.25 and
0.75 seconds). To consider the robust moment-based control
framework the input uncertainty generated by the set F needs
to be written in terms of an uncertain polytope P . Before
proposing a method to compute such a set P , note that the
following relation,

f̃0
e (t− τ) = L0

ee
S(t−τ)ξ(0) = L0

ee
−Sτξ(t), (26)

holds, so that, for a given τ ∈ F , the matrix ∆ ∈ Rν×ν ,
characterising the so-called uncertain signal generator G∆

(see Definition 2 and equation (15)), can be directly obtained
as ∆ = e−Sτ . Based on the discussion provided above, we
propose the following procedure.

1) Discretise the set F , i.e. construct the finite-set F∆ =
{τi}N

∆

i=1 ⊂ F , containing N∆ ∈ N≥1 possible values
for the wave excitation input delay.

2) Compute the set of matrices {∆i}N
∆

i=1 ⊂ Rν×ν , corre-
sponding with each delay τi in the set F∆, using the
relation posed in equation (26).

3) Construct the set of uncertainty vectors {δi}N
∆

i=1 ⊂ Rν ,
corresponding with each matrix in the set {∆i}N

∆

i=1,
which can be done straightforwardly following the
structure of ∆ in (16).

4) Finally, compute the polytope P as the convex hull of
the set {δi}N

∆

i=1, and extract the corresponding set of
vertices, i.e. construct the set Vδ .

B. Performance: Energy-absorption in regular seas

This section evaluates the performance of the robust
moment-based framework proposed throughout Section IV,
driven by a regular uncertain wave excitation. From now on,
the following convention is adopted, to define two different
assessment (performance) scenarios:

• Nominal performance (nominal control - uncertain in-
put): the optimal control input is computed using the
nominal wave excitation force input, and the WEC
system is driven by the uncertain signal generator G∆,
characterised by the uncertainty vector δ.

• Robust performance (robust control - uncertain input):
the optimal control input is computed using the robust
approach proposed in this paper, i.e. the control law
explicitly considers the knowledge of the (input) uncer-
tainty polytope P , and the WEC system is driven by
the uncertain signal generator G∆, characterised by δ.

Figure 1 shows (state and input unconstrained7) nominal
and robust performance results, in terms of energy absorption
for different ‘levels’ of uncertainty in the delay parameter τ
(in seconds), where the input waves are regular, with height
Hw = 2 [m], and different wave periods Tw ∈ [6, 10] [s].
The case of nominal performance is denoted with black
circles. The robust performance (denoted with diamonds),
corresponds with the robust moment-based controller com-
puted with the uncertainty polytope P , considering a signal
generator according to each Tw analysed. Note that the WCP
occurs when the delay takes the boundary value −1.25 [s].

-1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
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Fig. 1. Nominal performance (circles), and robust performance (diamonds),
as a function of the input delay τ (in seconds), for input waves with Tw ∈
[6, 10] [s]. The performance for the nominal wave input (i.e. with zero
delay) is indicated with a vertical dashed line. A value below zero (solid-
blue line) indicates negative energy absorption.

Remark 10. For τ < −1, the nominal performance drops
below zero, i.e. the controlled device ‘drains’ energy from
the grid, which is effectively consistent with the sensitivity
results presented in [17]. In contrast, the robust controller is
always able to deliver positive energy absorption even in a
worst-case scenario, for each of the wave periods analysed.
This is effectively a fundamental feature of the proposed
framework, which always guarantees positive results in terms
of absorbed energy, as a consequence of WCP approach.

7Almost identical conclusions can be drawn for the constrained case.



Remark 11. Following the discussion provided immediately
above, note that the robust performance case is conservative
by definition, given that it optimises for the worst-case
scenario, in terms of the (defined) uncertainty.

C. Performance: Constraint satisfaction in irregular seas

We now analyse the performance of the robust moment-
based strategy in terms of constraint satisfaction, under
irregular wave excitation. In particular, we analyse the per-
formance of the strategy subject to state constraints. The
uncertainty is now considered to be defined in terms of the
instantaneous amplitude of the excitation force, i.e. f̃∆

e =
τ f̃0

e (t), with τ ∈ F ⊂ R, and where F = [0.75, 1.25].
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Fig. 2. Displacement results for nominal (dotted) and robust (solid)
moment-based control techniques, for different uncertain signal generators,
all of which have been computed by a random generation of input uncer-
tainty. The state constraints are indicated with dash-dotted horizontal lines.

The results presented in this section are computed con-
sidering irregular input waves, generated from a JONSWAP
SDF Sw [18] with significant wave height H̄w = 2 [m],
peak period T̄w = 9 [s], and peak enhancement factor
γ = 3.3. Figure 2 shows time-snippets of displacement,
for both nominal (dotted), and robust (solid) moment-based
control strategies, for different uncertain signal generators,
all of which have been computed by a random generation
of uncertainty vectors δ in the defined polytope P . To be
precise, each of these systems corresponds with a different
value of instantaneous amplitude, lying in the set F . Unlike
the motion results arising from the nominal moment-based
controller, the presented robust framework is able to consis-
tently respect the defined state constraint Zmax = 2 [m].

VI. CONCLUSIONS

We present a robust moment-based approach which ef-
fectively incorporates input uncertainty in the WEC OCP,
by a suitable definition of an uncertainty polytope in the
moment-domain, and exploiting the underpinning concept of
the WCP method. The proposed control law is computed in
terms of an optimisation procedure, formulated as a minimax
problem, which has to be solved only at the set of vertices
of the polytope, as a result of the nature of the objective
function, arising from mapping the state variables, and both
the external and control inputs, into their respective moment-
based representations. As a result, the presented framework
provides a computationally efficient robust optimal control
method, which is able to maximise energy absorption while

consistently respect state and input constraint limitations
under the presence of input uncertainty.
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