
11 February 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Microcontroller is All You Need: Enabling Transformer Execution on Low-Power IoT Endnodes / Burrello, A; Scherer,
M; Zanghieri, M; Conti, F; Benini, L. - (2021), pp. 84-89. (Intervento presentato al convegno 2021 IEEE International
Conference on Omni-Layer Intelligent Systems (COINS)) [10.1109/COINS51742.2021.9524173].

Original

A Microcontroller is All You Need: Enabling Transformer Execution on Low-Power IoT Endnodes

Publisher:

Published
DOI:10.1109/COINS51742.2021.9524173

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978569 since: 2023-05-16T17:04:48Z

IEEE

A Microcontroller is All You Need:
Enabling Transformer Execution

on Low-Power IoT Endnodes
Alessio Burrello1, Moritz Scherer2, Marcello Zanghieri1, Francesco Conti1, Luca Benini1,2

Abstract—Transformer networks have become state-of-the-art
for many tasks such as NLP and are closing the gap on other tasks
like image recognition. Similarly, Transformers and Attention
methods are starting to attract attention on smaller-scale tasks,
which fit the typical memory envelope of MCUs. In this work,
we propose a new set of execution kernels tuned for efficient
execution on MCU-class RISC-V and ARM Cortex-M cores. We
focus on minimizing memory movements while maximizing data
reuse in the Attention layers. With our library, we obtain 3.4×,
1.8×, and 2.1× lower latency and energy on 8-bit Attention
layers, compared to previous state-of-the-art (SoA) linear and
matrix multiplication kernels in the CMSIS-NN and PULP-NN
libraries on the STM32H7 (Cortex M7), STM32L4 (Cortex M4),
and GAP8 (RISC-V IMC-Xpulp) platforms, respectively. As a
use case for our TinyTransformer library, we also demonstrate
that we can fit a 263 kB Transformer on the GAP8 platform,
outperforming the previous SoA convolutional architecture on the
TinyRadarNN dataset, with a latency of 9.24 ms and 0.47 mJ
energy consumption and an accuracy improvement of 3.5%.

Keywords—TinyML, Transformers, Deep Learning, Internet of
Things

I. INTRODUCTION

In the last few years, there has been a consistent trend
towards moving computing workload from centralized facil-
ities towards the extreme edge of the Internet of Things (IoT),
improving privacy, decreasing latency, and decongesting com-
munication networks [1]. IoT endpoints have been changing
from simple Microcontroller Units (MCUs) dedicated to sen-
sor data collection and transmission towards more advanced
devices capable of performing near-sensor data analytics with
traditional [2] and emerging Deep Learning algorithms [3] –
while still being subject to the same strict power, performance,
and cost constraints of much simpler MCUs.

For this reason, an extensive amount of research has been
conducted on how to squeeze complex analytics algorithms
into such constrained devices, with particular emphasis on
Deep Neural Networks (DNNs) (by topological changes [4],
data quantization [5], and pruning [6]). This set of efforts
is often collectively labelled as TinyML. Even in TinyML,
Convolutional Neural Networks (CNNs), a particular class of
DNNs, are dominating for most tasks, from computer vision to
temporal series analysis. On the other hand, Transformer [7],
another class of Deep Learning algorithms, has emerged in
the last few years competing and, in some cases starting to

1A. Burrello, M. Zanghieri, F. Conti, and L. Benini are with the Department
of Electrical, Electronic and Information Engineering, University of Bologna,
40136 Bologna, Italy. name.surname@unibo.it

2M. Scherer and L. Benini are with the Department of Information Tech-
nology and Electrical Engineering at ETH Zurich, 8092 Zurich, Switzerland.
lbenini@iis.ee.ethz.ch

outmatch SoA CNNs. In 2017, Vaswani et al. [7] published
the first results on the Transformer architecture, which out-
performed SoA algorithms in different machine translation
benchmarks. Transformers are composed mainly of stacks of
Attention layers, a computational pattern that relates input
elements together, regardless of their distance within the
input sequence. Following their success in Natural Language
Processing (NLP), Transformers have been successfully ap-
plied to tasks previously dominated by DNNs such as image
classification [8]. However, Transformer models have so far
been considered too large and too complex (requiring tens
to hundreds of millions of parameters) to be executed on
constrained platforms, such as MCUs, and have been applied
only to large-scale problems unsuited to execution at the
extreme edge of the IoT.

With this work, we aim to pave the way to the execution of
Transformers on MCU-class devices – while simultaneously
showing that Tiny Transformers can achieve high performance
for realistically sized extreme-edge tasks. To this end, we
present what, to the best of our knowledge, is the first effort
to bring Transformer models on three commercial low-power
MCUs – the single-core Cortex-M-based STM32H71 (M7)
and STM32L42 (M4), and the 9-core (RISC-V IMC-Xpulp)
GreenWaves Technologies GAP83. More in detail, we propose
the following novel contributions:

• We introduce a novel library of Attention kernels4, which
minimizes expensive data marshalling operations, such
as reshaping and permutations, by using data layout and
loop reordering tailored to each Attention sub-node.

• We compare our novel Attention kernels library for
inference operations with implementations based on SoA
public libraries, PULP-NN [9], and CMSIS-NN [10], on
the STM32H7, the STM32L4, and GAP8. We obtain a
speed-up of 3.4×, 1.8×, and 2.1×, respectively, reaching
0.61, 0.18, and 11.3 MAC/cycle.

• We show a pipeline to fuse CNNs with Transformer
quantization and map full precision (fp32) architectures
to ultra-low-power embedded devices. We reduce both
memory occupation and complexity using int8 quanti-
zation. Specifically, we integrate I-BERT [11] quantiza-
tion strategies with the NEMO pipeline [12].

To demonstrate our Tiny Transformer flow on an end-to-end
use case, we propose a novel Transformer-based architecture

1www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html
2www.st.com/en/microcontrollers-microprocessors/stm32l4-series.html
3www.greenwaves-technologies.com/gap8 smart sensors/
4The library is released open source at

https://github.com/pulp-platform/pulp-transformer978-1-6654-3156-9/21/$31.00 ©2021 IEEE

Fig. 1. Multi-Head Attention module.

for the TinyRadarNN dataset [13], which outperforms the
baseline temporal DNN model presented in the same work by
3.5% in detection accuracy. When deployed onto GAP8 using
our library, it consumes 0.47mJ with a latency of 9.24ms,
9.6× lower than the baseline with 6.3× lower latency [13]
and per-frame detection accuracy of 77.15%, an increase of
3.5% over the baseline.

II. BACKGROUND & RELATED WORK

A. Attention & Transformers

We call attention, in general, any layer used in machine
learning models to emphasize “important” parts of data and
depress “unimportant” ones, imitating the cognitive mecha-
nism with the same name. Here we focus on Multi-Head Self-
Attention (MHSA), introduced by [7]. Sequence-to-sequence
Transformers [14], [15] are mostly composed of stacks of
MHSAs, and other kinds of Transformers also follow this
line [8]. MHSA takes as input a tensor X of sequential data,
with sequence length S and organized in E channels usually
called embeddings; it produces an output of the same shape
S × E.

Internally, MHSA uses a set of H mutually independent par-
allel heads, all of which perform an identical set of operations
divided into three steps. In the first step, each element of the
sequence X is projected from the space of embeddings of size
E to three separate projection spaces each of size P , known
as queries Q, keys K and values V – using three trainable
linear transforms:

Q = XWquery K = XWkey V = XWvalue (1)

where Wquery , Wkey and Wvalue are all matrices of size
E × P . In the second step, Q, K and V are used as inputs
to the core attention mechanism, scaled dot-product attention,
which is defined as

Attention(Q,K,V)
.
= AV

.
= SoftMax

over keys

(
QKT
√
P

)
V (2)

where A is an S × S matrix called the attention matrix. The
intuition behind this is that MHSA can learn to understand
which elements in the sequence are relevant with respect to
one another (through A), and can use this information to gate
V. Finally, in the third step, the output of scaled dot-product
attention from all heads is projected back to the original
embedding space with another linear layer, resulting in an
output of size S × E.

MHSAs can be expressed with three input Linear layers,
the scaled dot-product attention, and one output Linear layer
by properly reorganizing the dimensions at each step. Fig. 1
shows a MHSA module expressed in this way, indicating the
shape of all tensors (including the H dimension) and the
required reshape/transpose operations.

B. Related Works

1) Vision Transformers: After the breakthroughs in NLP-
related tasks [14], [15], Transformers have been applied in
other fields, most remarkably in computer vision. For in-
stance, [8] divides images into patches, compresses the intra-
patch 2D space with a single convolutional layer, and uses a
Transformer architecture to classify the image as a sequence
of patches. [16] uses pointwise convolutions to compare pixel
images with keys intended as prototypes. In addition, [17]
explores ways to add more convolutions while preserving the
Transformer’s efficiency. In this work, we propose a Tiny
Transformer module for radar-based gesture recognition. To
the best of our knowledge, we are the first to apply such a
Transformer-based architecture to a small-scale edge-related
task, namely gesture recognition.

2) Quantized Transformers: I-BERT5 [11] was the first
integer-only quantization scheme for Transformers, but it does
not push an actual device-level implementation. It quantizes
both weights and activations to 8 bit; its quantization is
uniform (i.e., the relationship between real and quantized
values is linear), and symmetric around 0. I-BERT Softmax
is the only kernel computed in 32 bit, though always integer
(int32). Previously, only fake-quantization (also called sim-
ulated quantization) schemes were proposed, which are not
fully integerized since they still keep float32 computations
for some layers or stages (e.g., the Softmax). Q-BERT [18]
executes the whole inference in floating-point, quantizing only
the outputs of Attention modules. Also, Q8-BERT [19] applies
weights quantization to 8 bit, but keeps float32 operations.
LQ-NET [18] uses non-uniform quantization, which can better
approximate the uneven distributions of weights and activa-
tions compared to uniform approaches. For a more detailed
overview of these quantization schemes for Transformers, we
refer to [11] and [20].

III. METHODS

A. Self-Attention Kernels

As shown in Fig. 1, the Multi-Head Self-Attention operator
comprises four Linear and two Matmul layers, each followed
by memory marshalling operations such as transposition,
reshape, and concatenation, which can cause performance
overheads up to 20% [21], [22]. Even when these kernels are

5https://github.com/kssteven418/i-bert

Fig. 2. Linear layer data flow for HPS and HSP out data layouts. Output
matrices are filled from left to right, top to bottom.

individually optimized using state-of-the-art libraries [9], [10],
they result in low data reuse and non-optimal parallelization
scaling. Further, parallelizing a kernel on a dimension smaller
than the number of cores leads to suboptimal speed-up. We
present a new set of tailored kernels for each of the internal
operations to address these issues. All kernels work on 8 bit
input and output tensors, following I-BERT [11].

1) Linear Layers: Fig. 2 depicts two distinct implementa-
tions for the three input Linear layers, i.e., layers that can be
reduced to a matrix-matrix multiplication. Implementation 1 ,
which we call Weight-Reuse Linear (WRL), is used to project
the V tensor from X, while 2 , called Input-Reuse Linear
(IRL), is used for Q and K. These two kernels differ in i)
loop ordering and ii) data layouts. We force the WRL kernel
to produce output data in the HPS layout to remove the data
reshaping operator (see Fig. 1). Therefore, we order the loop
as H → P → S → E, from outermost to innermost. When
targeting multi-core platforms such as GAP8, we parallelize
our kernel on the H dimension, thus splitting the outermost
loop across cores.

On the other hand, the IRL’s required layout is HSP , and
thus we force the loop nest to H → S → P → E, from
outermost to innermost. In this kernel, at every iteration of
the S loop, a single input time sample (1 × E) is multiplied
by a weight-head (E × P). The parallelization is identical to
the WRL case.

The last Linear layer, which projects the output tensor of
the matrix multiplication to the final output, uses the S →
E → H × P loop order, parallelizing on E.

2) Matrix Multiplications: To optimize matrix multiplica-
tions, we optimally order the loop executions and parallelize
over the outermost dimensions to improve performance. Fig.
3 reports two different implementations for the two matrix
multiplications in the Self-Attention kernel. The Softmax-
Matmul 3 merges the matrix multiplication with the Softmax
operator; it uses the S → H → S loop order; P is
the dimension over which the reduction is performed. After
completing each iteration of the H loop, the Softmax is applied

Fig. 3. Matrix multiplication designed to work with multiple heads with
different data layouts.

to the data produced (e.g., the first one, S0H0). We store
the output data in the SHS data layout to allow the second
Matmul 4 to ingest data sequentially. This implies reading
input data for the Softmax-Matmul layer in non-sequential
order, but still with a regular stride, thus not impairing the
performance. For instance, a set of weights, H0 (dimensions,
P ×S), is multiplied with the corresponding activation buffer,
H0S0 (dimensions, 1 × P). Then, the set of weights H1 is
multiplied with the input H1S0, which is stored S input buffers
after the first one (with a stride of S × P). After all head
positions relative to sequence S0 are multiplied with the K
matrix, the cycle is repeated for each Si of Q input.

Matmul 4 produces the final tensor, which is then fed to the
output projection Linear layer. Given the design of the previous
layers 1 and 3 , its implementation is straightforward. The
loop execution order is S → H → P , with P as innermost
dimension. The reduction dimension is the innermost S of the
M1 matrix.

3) Kernel execution loops: We follow three primary guide-
lines for kernel optimizations: i) keep the parallelization (when
available on the target platform) as much as possible on the
H dimension; ii) exploit output stationarity; and iii) produce
the output tensors sequentially (i.e., element i + 1 in the
innermost dimension is always generated immediately after
the i-th element).

The first guideline is particularly convenient when a low
number of cores is available, given the typically low number
of heads present in networks (e.g., eight heads in original
transformer [7]). Furthermore, the heads dimension is present
in all the kernels6. The second guideline allows saving memory
by avoiding the storage of many intermediate int32 accu-
mulators for the partial outputs, as described in [23]. Besides
the memory saving, output stationarity enables optimal ex-

6The output Linear layer represents an exception, as we parallelize on E
to maintain output stationarity.

1 Inputs: I, W; Outputs: Q, K, V
2 C = H / CORES
3 Hstart = min(C * COREID, H); Hend = min(Hstart + C, H)
4 LH: for (h = Hstart; h < Hend; h++)
5 LP: for (p = 0; p < P/2; p++)
6 LS: for (s = 0; s < S/4; s++)
7 S0...7 = {0};
8 LE: for (e = 0; e < E/4; e++)
9 A1 = I(4s); A2 = I(4s + E);

10 A3 = I(4s + 2E); A4 = I(4s + 3E);
11 B1 = W(hpE + 2pE); B2 = I(hpE + (2p+1)E);
12 S0 += sdot4(A1,B1); S1 += sdot4(A1,B2);
13 S2 += sdot4(A2,B1); S3 += sdot4(A2,B2);
14 S4 += sdot4(A3,B1); S5 += sdot4(A3,B2);
15 S6 += sdot4(A4,B1); S7 += sdot4(A4,B2);
16 O(h,2p,4s) = quant(S0);
17 O(h,2p,4s+1) = quant(S1);
18 O(h,2p,4s+2) = quant(S2);
19 O(h,2p,4s+3) = quant(S3);
20 O(h,2p+1,4s) = quant(S4);
21 O(h,2p+1,4s+1) = quant(S5);
22 O(h,2p+1,4s+2) = quant(S6);
23 O(h,2p+1,4s+3) = quant(S7);

Listing 1: Example of kernel pseudocode of sub-layer 1 .

ploitation of the dot-product Single Instruction Multiple Data
(SIMD) instructions, as demonstrated in [9]. Finally, produc-
ing output tensors sequentially prevents undesired additional
operations in the innermost loop to compute storage locations.

Listing 1 reports an example of the pseudocode of layer 1
with the RV32IMCXpulpV2 ISA and GAP8 target. In the
innermost loop, we exploit the sdot4 operator to perform
4 Multiply-and-Accumulate (MAC) operations in a single in-
struction. Further, inspired by [9], we perform 8 sdot4 oper-
ations in the same loop iteration, thus eliminating Read-After-
Write (RAW) hazards and performing just 6 load operations
(4 activations buffers and 2 weights buffers), better exploiting
the data reuse in the register file. Incrementing the number of
produced output values in a single iteration, e.g., to 16, would
cause an increase in the number of utilized registers to 24 (16
for outputs, 4 for inputs, 4 for weights), causing additional load
and store operations to spill variables from the register file to
the stack to make room for operands. Conversely, reducing
the number of registers employed causes a reduction in the
MAC/load ratio and impairs the performance.

B. Quantization

Since commercial off-the-shelf MCUs feature memory in
the order of hundreds of kilobytes up to one megabyte,
quantization of both weights and activations is typically used
to reduce the memory footprint of trained networks [6],
[24]. Besides saving precious memory space on these tightly
constrained devices, quantization to 8 bit allows specialized
microcontrollers to leverage SIMD instructions, which lead
to significant speed-up with respect to floating-point compu-
tations. To quantize the Self-Attention layers and allow for
deployment onto commercial MCUs using our kernels as well
as the baseline kernels, we use the NEMO toolchain [12]. The
NEMO toolchain is used to perform post-training quantization
on the floating-point model to an 8 bit integer model after
training. We add dedicated quantized operators (e.g., Softmax)
from I-BERT [11] to quantize the Self-Attention layers fully.

16
32

64 1
38
4

11111 32 5 32 5 32 5 32 5 32 5 32 5 32 5 10

MH

LN

MH

MH

+

MH

LN

5
96

FF

96
32

FF

+

Fig. 4. Overall architecture of the proposed network. The front end is
composed of 3 blocks of pointwise convolution, depthwise convolution and
pooling, followed by a Linear layer. Each of the six encoder blocks (in purple)
consists of layer norm layers (LN), a Multi-Head Attention layer (MH) and
Linear layers (FF).

C. TinyRadar Transformer

We use the TinyRadar network and its corresponding
dataset [13] as a use case to demonstrate both the feasibility
and the advantages of porting Transformers on edge using the
proposed kernels. TinyRadarNN consists of a CNN stage, a
Temporal Convolutional Neural Network (TCN) stage and a
dense layer stage [13]. The TinyRadar dataset consists of a to-
tal of over 10000 recordings of 11 hand gestures by 26 people
made with a short-range radar. In the original paper, the data is
arranged in spatio-temporal windows that contain samples of
the radar reflection amplitude sampled after different amounts
of time-of-flight, called range points, on the columns, with
consecutive distance samples concatenated along the rows.
The working principle of the network architecture is based on
the splitting of spatial and temporal modelling of the gesture
recognition problem.

Here, we preserve this structure but replace the TCN stage,
which models the long-term temporal dependencies, with a
more sophisticated 6-layer transformer encoder architecture.
Special care was taken to fit the tight memory constraints
of the GAP8 MCU, which features 512 kB of L2 RAM.
The proposed architecture is shown in Figure 4. We use a
CNN stage with 3 blocks of convolutions, each followed by
a batchnorm, ReLU6 activation layer and pooling. At each
block, the input resolution is reduced while the number of
output channels scales from 16 to 64. A final Linear layer
projects the input sample to the embedding dimension E = 32.
In the second and third stage, we replace the convolutional
layers of TinyRadarNN with separable convolutions made up
of a depthwise layer followed by pointwise convolution, like
in MobileNetV1 [4]. This allows to significantly reduce the
size and the number of operations of the convolution frontend.
Using S = 5 processed input time samples as a sequence, a
5× 32 input is fed to the Transformer backend. The 6 layers
which constitute the backend are identical to the ones of [8],
with S = 5, E = 32, P = 32, and H = 8. Finally, the
output of the encoder is fed to a dense layer which is used as
a classifier, returning a prediction for each time step.

Besides the changes in architecture, we down-sample the
inputs by employing 1 sensor and 246 range points instead of
2 sensors and 492 range points to reduce the total number of
operations without impairing accuracy.

IV. EXPERIMENTAL RESULTS

For the sake of space, here we report the results of our
kernels on a single Multi-Head Self-Attention layer with
H = 16, P = 64, E = 64, and S = 32. Note that
we benchmark our library in a wide range of (H,P,E, S)
tuples, obtaining similar results. As benchmarking platforms,
we selected three state-of-the-art single and multi-core MCUs;
i) the STM32H7 and the STM32L4, comprising one core
ARM M7 and one core ARM M4, respectively. ii) GAP8, a
commercial PULP SoC including a RISC-V processor (fabric
controller) and a cluster of 8 additional RISC-V cores, using
the RV32IMCXpulpV2 Instruction Set Architecture (ISA);
We set the operating frequencies of the GAP8, STM32H7, and
STM32L4 at 100MHz, 480MHz, and 80MHz, with a corre-
sponding average power consumption of 51mW, 234mW,
and 10mW, respectively. We choose these three operating
points as they are the most energy-efficient ones according
to [23].

A. Kernel performance
Column ‘Our Work’ of Table I details the performance of

our library on top of the three MCUs. The layer analyzed
with H = 16, P = 64, E = 64, and S = 32 has
10.48MMAC and 262 k parameters and thus fits the on-
chip memory of all three platforms. Overall, our library
allows Attention layers to achieve performance comparable
to the best performing convolutional layers with both ISAs,
achieving 11.29MAC/cycle and 0.61MAC/cycle on GAP8
and STM32H7, respectively, compared to 12.86MAC/cycle
and 0.71MAC/cycle for convolutions [23]. The benchmark
layer runs on the three platforms in 929 kcycles, 59.4Mcycles,
17.2Mcycles, respectively, with a latency of 9.29ms (GAP8),
35.77ms (STM32H7), and 741.93ms (STM32L4). This per-
formance gap is caused mainly by two factors: first, GAP8
has 8 cores vs the single-core in STM32L4/STM32H7,
with a maximum speedup of 8×. Second, we fully exploit
RV32IMCXpulpV2 ISA 8 bit SIMD operations to speed
up our code. At the same time, with ARM ISA, we are
limited to 16 bits SIMD, which results in a reduction of peak
single-core performance of 2× and also requires additional
data casting7. The remaining speedup of GAP8 (18.5× vs
STM32H7, and 63.9× vs STM32L4 in MACs/cycle) is at-
tributable to RV32IMCXpulpV2 micro-architectural features
such as hardware loops.

1) Comparison with the state-of-the-art: We compare our
transformer deployment with state-of-the-art CNN libraries,
CMSIS-NN [10] and PULP-NN [9]. In particular, we exploit
the optimized Linear layer kernels of these libraries as a
base function for the matrix multiplications and projection
layers, adding extra external loops, the SoftMax operator and
the memory marshalling operators. Fig. 5 depicts a detailed
study on performance improvement of every single part of
the Attention layer. On the STM32L4, GAP8, and STM32H7,
we obtain a speedup of 1.8×, 2.1×, and 3.3×, respectively.
However, the different sublayers demonstrate different speeds-
up on the three platforms. Starting from GAP8, the three
different components, Linear layers, matrix multiplications,

7The new generation ARM M55 and the new ARM ISA will also support
8bits SIMD instructions.

Fig. 5. Performance description of baselines and our kernels on the three
different platforms. The x scales are different for each platform given the
extremely different upper limits.

Fig. 6. Parallelization of the attention layer with 1, 2, 4, and 8 cores on
GAP8.

and Softmax, demonstrate a speedup of 1.7×, 2.0×, and 4.0×,
respectively. These speedups are due to better data reuse
and the removal of reshaping layers. Furthermore, with the
parallelization scheme on heads, with each core taking care
of a portion of the heads of the Multi-Head Attention, we can
speed up the SoftMax execution by up to 8×. On the other
hand, parallelizing on S requires synchronization of all the
cores after the computation of a single parallelized sequence
S of data8. Fig. 6 details further the speedups on GAP8 of
our library compared to the PULP-NN baseline. While the
baseline only achieves 4.73× speedup with 8 cores compared
to one, we can reach 7.16×, with an improvement of 1.51×.

On the STM32 platforms, the speedup is solely concen-
trated in Linear and matrix multiplication layers. Remarkably,
despite using the same ISA, we observe a dramatic higher
speedup of 3.3× compared to 1.8× between the STM32H7 to
the STM32L4. This difference is mostly given by exploiting
the dual-issue pipeline and the cache refill on the H7. Our
kernels significantly boost data locality and reuse, allowing
for better cache utilization than the CMSIS-NN baseline. To
confirm this fact, disabling the caches reduces the relative
speedup of our kernels compared to the baseline from 3.3×
to 2.4×.

B. TinyRadar Transformer performance

We compare the proposed TinyRadar Transformer architec-
ture both with the original TinyRadarNN and with a modified
TCN architecture where we apply all changes explained in
Section III-C, but we keep the TCN encoder, resulting in a

8We observe a speedup of only 4× in this case since we execute four tiles
with 4 heads on GAP8 due to the memory constraint of using L1 [23].

TABLE I
COMPARISON OF OUR KERNEL LIBRARY WITH PULP-NN AND CMSIS-NN ONTO THREE COMMERCIAL MCUS.

MCU 1×RISC-V + 8×RISC-V 1×CortexM4 1×CortexH7
Power [mW]/ Freq. [MHz] 51 mW / 100 MHz 10 mW / 80 MHz 234 mW / 480 MHz
Kernels Our Work PULP-NN+Reshape Our Work CMSIS-NN+Reshape Our Work CMSIS-NN+Reshape
Layer: Attention - Heads: 16, Projection: 64, Sequence: 32, Embedding: 64, Operations: 8.4M
Cycles 929k 1.95M 59.4M 103.59M 17.17M 57.0M
Time/Inference [ms] 9.29 19.52 741.93 1294.92 35.77 118.74
Energy[mJ] 0.47 1.00 7.42 12.95 8.37 27.79
MACs/cycle 11.29 5.37 0.18 0.10 0.61 0.18
Throughput [GMAC/s] 1.13 0.54 0.014 0.008 0.29 0.09
En.Efficiency [GMACs/s/W] 22.13 10.53 1.41 0.81 1.25 0.38

TABLE II
PERFORMANCE OF OUR PROPOSED ARCHITECTURE AT FR = 100MHZ ON

GAP8 PLATFORM. ABBREVIATIONS: AT.: ATTENTION. FF: LINEAR
LAYERS IN TRANSFORMER BACKEND.

PULP-NN + Reshape Our Work
CNN Att. FF CNN Att. FF

MACS [#] 1.87M 1.06M 185k 1.87M 1.06M 185k
Cycles 717.4k 261.6k 94.5k 717.4k 112.5k 94.5k
Lat. [ms] 7.17 2.62 0.95 7.17 1.12 0.95
E. [mJ] 0.37 0.13 0.05 0.37 0.06 0.05

very small network (∼30.7 kparam). We report all accuracy
values post-quantization at int8 precision. Our transformer-
based network architecture achieves an accuracy of 77.15% on
the TinyRadar dataset, outperforming the original architecture
by 3.5% and the modified TCN architecture by ∼5%.

This is achieved without sacrificing deployability: the
TinyRadar Transformer contains a total of 263 k parameters,
which fits the L2 on-chip memory of GAP8. Tab. II reports
the network’s performance running on GAP8 at 100MHz. The
network achieves as low as 9.24ms latency and 0.47mJ, 9.6×
and 6.3× lower than the original TinyRadarNN. Specifically,
using our new library, we improve the performance of the
Attention part of 2.32×, with a 14% direct reduction of the
overall cycles of the network. We remark that the indirect
effect of the insertion of the Transformer back-end is much
more dramatic: speed-oriented architectural changes such as
replacing standard convolutions with separable ones would
not be attractive due to the related accuracy loss – but the
Transformer back-end more than compensates this effect.

V. CONCLUSIONS

In this work, we paved the way to the deployment of
Transformer networks on MCUs, with a set of optimized
yet general kernels, which exploit ARM and RISC-V ISA to
improve attention layers’ performance. We showed a speed-
up from 1.8× to 3.3× on three commercial MCUs compared
to State-of-the-Art (SoA) convolutional libraries augmented
with data reshaping and operators needed by the attention
algorithm. Furthermore, we demonstrate with a use case the
application of transformers to the TinyML field, improving
the SoA performance on the TinyRadar dataset by 3.5%.
Deploying this Tiny Transformer on the GAP8 platform, we
reach a latency of 9.24ms, with an energy consumption of
0.47mJ per classification, with an an improvement 9.6×, 6.3×
over the performance and energy of the previous SoA network,
which is fully dominated.

REFERENCES

[1] S. Madakam et al., “Internet of Things (IoT): A Literature Review,”
Journal of Computer and Communications, vol. 3, no. 05, p. 164, 2015.

[2] A. Burrello et al., “Embedded Streaming Principal Components Analysis
for Network Load Reduction in Structural Health Monitoring,” IEEE
Internet of Things Journal, 2020.

[3] D. Rossi et al., “4.4 A 1.3 TOPS/W@ 32GOPS Fully Integrated 10-
Core SoC for IoT End-Nodes with 1.7 µW Cognitive Wake-Up From
MRAM-Based State-Retentive Sleep Mode,” in 2021 IEEE International
Solid-State Circuits Conference (ISSCC). IEEE, 2021.

[4] A. G. Howard et al., “Mobilenets: Efficient Convolutional Neu-
ral Networks for Mobile Vision Applications,” arXiv preprint
arXiv:1704.04861, 2017.

[5] J. Choi et al., “PACT: Parameterized Clipping Activation for Quantized
Neural Networks,” 2018.

[6] S. Han et al., “Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding,” in Proc.
International Conference on Learning Representations, 2016.

[7] A. Vaswani et al., “Attention is All You Need,” arXiv preprint
arXiv:1706.03762, 2017.

[8] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale,” arXiv preprint arXiv:2010.11929, 2020.

[9] A. Garofalo et al., “PULP-NN: Accelerating Quantized Neural Networks
on Parallel Ultra-Low-Power RISC-V Processors,” Philosophical Trans-
actions of the Royal Society A, vol. 378, no. 2164, p. 20190155, 2020.

[10] L. Lai et al., “CMSIS-NN: Efficient Neural Network Kernels for Arm
Cortex-M CPUs,” arXiv preprint arXiv:1801.06601, 2018.

[11] S. Kim et al., “I-BERT: Integer-only BERT Quantization,” arXiv preprint
arXiv:2101.01321, 2021.

[12] F. Conti, “Technical Report: NEMO DNN Quantization for Deployment
Model,” 2020.

[13] M. Scherer et al., “TinyRadarNN: Combining Spatial and Temporal
Convolutional Neural Networks for Embedded Gesture Recognition with
Short Range Radars,” IEEE Internet of Things Journal, pp. 1–1, 2021.

[14] J. Devlin et al., “Bert: Pre-training of deep bidirectional transformers
for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[15] Y. Liu et al., “Roberta: A robustly optimized bert pretraining approach,”
arXiv preprint arXiv:1907.11692, 2019.

[16] B. Wu et al., “Visual Transformers: Token-based Image Representation
and Processing for Computer Vision,” 2020.

[17] H. Wu et al., “CvT: Introducing Convolutions to Vision Transformers,”
2021.

[18] D. Zhang et al., “LQ-Nets: Learned Quantization for Highly Accurate
and Compact Deep Neural Networks,” 2018.

[19] O. Zafrir et al., “Q8bert: Quantized 8bit Bert,” arXiv preprint
arXiv:1910.06188, 2019.

[20] S. Singh et al., “The NLP Cookbook: Modern Recipes for Transformer
based Deep Learning Architectures,” 2021.

[21] A. Ivanov et al., “Data Movement is All You Need: A Case Study on
Optimizing Transformers,” arXiv e-prints, pp. arXiv–2007, 2020.

[22] H. Wang et al., “SpAtten: Efficient Sparse Attention Architecture with
Cascade Token and Head Pruning,” preprint arXiv:2012.09852, 2020.

[23] A. Burrello et al., “DORY: Automatic End-to-End Deployment of Real-
World DNNs on Low-cost IoT MCUs,” IEEE TComp, 2021.

[24] S. Han et al., “Learning Both Weights and Connections for Efficient
Neural Networks,” in Proc. NIPS, 2015, p. 1135–1143.

