
Doctoral Dissertation
Doctoral Program in Computer and Control Engineering (35𝑡ℎcycle)

Cybersecurity and Quantum
Computing: friends or foes?

By

Ignazio Pedone

Supervisor(s):
Prof. Antonio Lioy, Supervisor

Doctoral Examination Committee:
Prof. Sokratis Katsikas, Referee, Norwegian University of Science and Technology
David Arroyo, Ph.D., Referee, Consejo Superior de Investigaciones Científicas
Prof. Stefano Pirandola, University of York
Marco Gramegna, Ph.D., Istituto Nazionale di Ricerca Metrologica
Prof. Bartolomeo Montrucchio, Politecnico di Torino

Politecnico di Torino
2023

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my own
original work and does not compromise in any way the rights of third parties, including those
relating to the security of personal data.

Ignazio Pedone
2023

* This dissertation is presented in partial fulfillment of the requirements for Ph.D. degree in
the Graduate School of Politecnico di Torino (ScuDo).

Abstract

The introduction of Quantum Technologies (QTs) has a dual impact on cybersecurity: on
the one hand, Quantum Computing jeopardises current classical public-key cryptosystems,
such as RSA and ECDH, and on the other hand, Quantum Cryptography can be a powerful
countermeasure against quantum attacks and also a building block for next-generation cryp-
tography. The objective of this thesis work is to explore the current relationship between QTs
and cybersecurity in three central aspects: the use of Quantum Cryptography and Quantum
Key Distribution (QKD) to protect modern Software-Defined infrastructures (SDIs) against
quantum attacks, the adoption of Quantum Annealing techniques to optimise SDIs that can
be used as a mean to deploy and manage responsive on-demand network security services,
and the analysis of the impact of Quantum Computing on current cryptosystems. As the first
result of this work, the reader can appreciate the design and development of a software stack
to integrate QKD in SDIs, the Quantum Software Stack (QSS). The QSS is a cloud-native
application that can be easily integrated into SDIs and includes a QKD simulator based on a
quantum circuit model simulation. A second result is the introduction of a generic Quadratic
Unconstrained Binary Optimisation (QUBO) formulation to describe Virtual Network Func-
tions Embedding Problems (VNFEPs). These optimisation problems are part of SDIs, and
solving them helps telecommunication providers optimise the management of their infras-
tructures. The presented QUBO formulation has been validated using a quantum annealer,
compatible with this type of formulation, and classical solvers. The final result, even if it can
be considered as a preliminary study, regards the analysis of Shor’s algorithm for solving
Discrete Logarithm Problem (DLP) and Elliptic Curve DLP (ECDLP). The main objective is
to analyse the available optimisation for Shor’s algorithm and estimate the required resources
to run it on real hardware. The implementation of the related quantum algorithms uses Qiskit
as a toolkit for describing and simulating quantum circuits.

Contents

1 Introduction 1

2 Background 5

2.1 Quantum Computing . 5
2.1.1 Qiskit toolkit . 7

2.2 Quantum Computing vs Cybersecurity . 8
2.2.1 The Quantum Computing threat 8
2.2.2 Quantum Computing positive impact on cybersecurity 10

2.3 Quantum Error Correction . 11
2.3.1 Heavy Hexagon Code . 11

2.4 Quantum communication and networks 13
2.5 Quantum Key Distribution . 15

2.5.1 BB84 protocol . 17
2.5.2 E91 protocol . 18
2.5.3 ETSI QKD GS . 20
2.5.4 Standardisation efforts beyond ETSI 21

2.6 Software-Defined Infrastructures . 22
2.6.1 Network Function Virtualisation 23

2.7 Quantum Annealing . 24

3 Quantum Key Distribution in Software-Defined Infrastructures 27

Contents v

3.0.1 Methodology . 27
3.0.2 General SDI quantum threat model 28

3.1 Quantum Software Stack architecture . 30
3.1.1 Use case scenarios . 32

3.2 QKD Module . 33
3.2.1 Architecture . 34

3.3 Quantum Key Server . 35
3.3.1 Architecture . 37

3.4 QKD simulator . 38
3.4.1 BB84 implementation . 44
3.4.2 E91 implementation . 46

3.5 REST APIs and general workflow . 48
3.5.1 QKDM interfaces . 48
3.5.2 QKS interfaces . 49
3.5.3 General workflow . 50

3.6 QKD simulator Testing . 51
3.7 Related work comparison . 53

4 Quantum Software Stack improvements 57

4.1 Kubernetes operators . 57
4.2 Quantum Software Stack 1.0 . 58
4.3 Quantum Software Stack 2.0 . 59

4.3.1 Asynchronous Approach . 60
4.3.2 Trusted Repeaters . 61
4.3.3 Routing . 61

4.4 QSS in a Kubernetes Cluster . 63
4.4.1 Quantum Software Stack Operator 64
4.4.2 Resource Creation and Key Exchange 65

vi Contents

4.4.3 Applications to Suitable Use Cases 67
4.5 Testing . 69

4.5.1 Exchange time and key rate . 69
4.5.2 Routing . 71

5 QKD simulation over distributed infrastructures: QuaSi 74

5.1 Simulation process design and objectives 74
5.2 High-level Architecture . 76
5.3 Data model and workflow . 78
5.4 Test and Validation . 79
5.5 Applications, extensions, and future work 81

6 Quantum Annealing to optimise Software-Defined Infrastructures 82

6.1 Quantum Annealing-based SDI optimisation 82
6.1.1 VNF Embedding Problem . 83

6.2 Problem Formulation . 84
6.2.1 Substrate Network . 85
6.2.2 Service Function Chains . 85
6.2.3 Problem Variables . 85
6.2.4 Cost Function . 86
6.2.5 Constraints . 86
6.2.6 Full VNFEP QUBO Formulation 87
6.2.7 Discretization and Slack Variables 88

6.3 Methodology . 89
6.3.1 QUBO formulation validation through classical solvers 92
6.3.2 Quantum Annealing Effectiveness 93

6.4 Results and Discussion . 94
6.4.1 QUBO formulation validation through classical solvers 94

Contents vii

6.4.2 Quantum Annealing Effectiveness 96

7 Quantum Offensive Security: the impact of Shor’s Algorithm 101

7.0.1 Methodology . 101
7.1 Shor’s algorithm overview . 102

7.1.1 Quantum Fourier Transform . 104
7.1.2 Quantum Phase Estimation . 105
7.1.3 Shor’s overall quantum circuit . 106

7.2 Shor’s algorithm in-depth analysis . 109
7.3 Shor’s algorithm optimisation . 113

7.3.1 Sequential QFT . 113
7.3.2 In-place addition . 113
7.3.3 Ekerå and Håstad’s Algorithm . 116

7.4 Summary on resource estimation . 117
7.5 Implementation and experimental results 118

7.5.1 Validation of the Qiskit-based Shor’s improvements 119
7.5.2 Noise models . 122
7.5.3 Rigetti simulator . 123

8 Shor’s algorithm and Elliptic Curve Discrete Logarithm Problem 129

8.1 Quantum algorithm overview . 129
8.2 Underlying building blocks . 132

8.2.1 Modular addition and doubling . 133
8.2.2 Modular multiplication . 134
8.2.3 Modular inversion . 136

8.3 Analysis of the required resources . 138
8.4 Quantum algorithm improvements . 138

8.4.1 Qiskit circuit implementation and contributions 140

viii Contents

8.5 Tests on ECDLP quantum circuits . 140

9 Conclusion 144

References 146

Chapter 1

Introduction

Over the last few years, Quantum Computing (QC) has attracted more and more attention
due to the increasing hype for the development of a quantum computer powerful enough
to run valuable applications for several fields, among others: physics, finance, chemistry,
computer science, and molecular biology. The advent of this new computational paradigm is
undoubtedly promising, even though it still requires significant efforts to become a reality.
For instance, it is not yet clear which the best type of technology for manufacturing quantum
processors is (e.g., superconducting qubits, ion trap, photons), how to deal with quantum
noise and decoherence to create physical qubits stable enough for running complex quantum
algorithms, and the progress of Quantum Error Correction (QEC), which is an extremely active
research field, pivotal to achieve the ultimate goal of the fault-tolerant quantum computation.
Quantum computing is not the only cutting-edge quantum technology (QT) that gained
hype and became of interest to multiple research fields. Indeed, one can count quantum
communication, cryptography, and sensing, among others, as equally relevant fields. For
some of them, even practical applications are available on the market or close to becoming
commercially accessible.

One of the central questions in this thesis work is how the rapid evolution of these
technologies is related to cybersecurity. Moreover, what impact in terms of benefits and
disadvantages the introduction of this revolutionary advancement may cause. Cybersecurity
is a vibrant field, especially for research and development, and, at least for the classical
part, it is presently relevant from a technological standpoint. From a general perspective,
in recent years, security awareness has increased in different aspects, including software
protection, secure communication in computer networks, privacy, protocols and algorithm
standardisation, and the introduction of the security-by-design approach where systems

2 Introduction

are oriented at security starting from their very first design. As an attempt to answer the
previous question, the first impact of QC on cybersecurity regards Cryptography, one of its
building blocks. In particular, Shor’s algorithm jeopardises the current classical Public-Key
Cryptography (PKC) algorithms, i.e., with a quantum computer powerful enough, one can
break these cryptosystems with a catastrophic impact on a massive number of operating
IT systems. As a reaction, currently, efforts exist to replace those algorithms, e.g., the
introduction of Post-Quantum Cryptography (PQC, subsection 2.2.1). Beyond this harmful
effect, QT’s impact on security has many bright sides. Quantum Cryptography, a branch
of Quantum Communication (section 2.4), proposes techniques that allow going beyond
the limit of classical cryptography. One example is Quantum Key Distribution (QKD),
which enables information-theoretic security for cryptography key exchange and counteracts
Quantum Computing’s advent as an alternative to PQC.

Another question central to this thesis is how simple integrating Quantum Cryptography
into current IT systems is. As an example, more and more distributed systems are based
on Software-Defined Infrastructure (SDI) which represents the future of managing and
scaling distributed infrastructures and applications. Notably, SDIs are, by definition, flexible
and not tied to special-purpose hardware. Current cybersecurity solutions for SDIs, in
terms of software protection, monitoring, and secure communication, try to preserve this
flexibility. Quantum Cryptography and available QKD solutions, instead, require a significant
commitment to special-purpose hardware. This makes the effort of integrating QKD and
similar technologies in SDIs a non-trivial task.

The third question indirectly involves how QTs can support cybersecurity by improving
SDIs. Moreover, Quantum Computing is particularly valuable in solving complex optimisa-
tion problems beyond classical capabilities, e.g., NP-Hard problems with Quantum Annealing
strategies (section 2.7). Cybersecurity primarily relies on SDIs to offer on-demand security
services, unlocking a relevant opportunity to improve the infrastructures that manage these
services.

This thesis work provides a view on all these aspects. First, it discusses the design and
implementation of a framework to integrate QKD in SDI. Second, it provides an example of a
QKD simulator based on quantum circuit model simulation. This simulator can be integrated
into SDI. Third, it presents a formulation for a class of problems related to SDI optimisation
and uses it with a quantum annealer as a solver. Fourth and final, it provides an in-depth
analysis of the quantum threat posed by Shor’s algorithm and an attempt to estimate the
resources needed to break current cryptosystems.

3

The core results of this work show how it is possible to integrate QKD in SDI with a
cloud-native software framework designed and implemented by the author. They also provide
evidence of how this is appropriate in modern infrastructures, a validation for the QKD
simulator, and a full integration into the current de facto standard for managing distributed
infrastructures. Beyond the thesis’s core results, other achievements come from the opti-
misation of SDI through Quantum Annealing. The author demonstrates the feasibility of
solving SDI-related optimisation problems with a specific formulation and the QPU solver by
D-Wave. He also provides a quantitative comparison with alternative classical solvers. Finally,
the ultimate results show the analysis of Shor’s algorithm for solving Discrete Logarithm
Problem (DLP) and Elliptic Curve DLP (ECDLP). This activity also delivered as outcomes
the implementation of different variants of Shor’s algorithm with the Qiskit toolkit from IBM
and a performance comparison among them.

In more detail, the rest of the work is organised as in the following:

• Chapter 2: contains a brief background review on QTs and SDIs. This helps the
reader find the necessary references to revisit the base knowledge to appreciate this
work better.

• Chapter 3: is one of the core chapters and introduces the first design and implemen-
tation of the QKD integration in SDI. It also presents the first version of the QKD
simulator.

• Chapter 4: describes the first major improvement of the software stack to integrate
QKD in SDI. It introduces the first integration with the current de facto standard
container orchestration platform and several new features.

• Chapter 5: discusses a new version of the QKD simulator, enhanced for what concerns
the infrastructural aspects. This version allows for distributed simulations.

• Chapter 6: introduces a class of optimisation problems relevant to SDI and cyberse-
curity. The author proposes a formulation for these problems and discusses the results
of tests with both quantum and classical solvers.

• Chapter 7: introduces Shor’s algorithm, its impact on current cryptography, available
and proposed optimisation, a Qiskit implementation, and an attempt to resource esti-
mation for its execution on real hardware. The reader may wonder why the chapters
on the impact of QTs on modern cryptography are at the end of the work. The first
reason is that the three main subtopics of the thesis are decoupled and can be treated

4 Introduction

independently. The second reason is the choice first to treat the core argument of the
thesis.

• Chapter 8: extends the work of the previous chapter to ECDLP by presenting the state
of the art on the topic and potential implementations.

• Chapter 9: this chapter concludes the thesis discussing outcome and future work.

Chapter 2

Background

This chapter provides a brief and general background for the concepts, topics, and technologies
discussed in this thesis work. Beyond the introduction to concepts, the references provided in
this chapter are helpful for revisiting some details that allow appreciating this work better.
As a remark for the reader, since this thesis investigates many subtopics, in the following
chapters, it is also possible to find additional preliminary details on each examined topic.

2.1 Quantum Computing

Quantum computing (QC) is a vibrant field for both academia and businesses. QC is widely
considered a ground-breaking area with the potential to address issues previously intractable
using traditional computing. One may find examples confirming that from several scientific
disciplines, including physics, chemistry, molecular biology, computer science, and cryp-
tography. Unfortunately, QC impact on these fields may not always be an improvement, but
sometimes can also be a risk for classical systems. As an example, it jeopardises existing
cryptosystems with its capability of solving, in polynomial time, problems that were believed
to be untractable in terms of computational complexity. This clearly has a significant short-
to-medium-term impact on current technologies and also society. In order to stress more
the increasing relevance of this emerging paradigm, in 2021, the government of the United
States funded QC research and development with $1.2 billion over five years via the National
Quantum Initiative Act [1].

From a technical standpoint, the authors of [1–3] presented a technical and detailed expo-
sition of the basics of QC, such as the definition of a qubit as a unit of quantum information,

6 Background

quantum mechanical principles such as superposition, decoherence, and entanglement as
well as application and quantum algorithms. In this work, since we discuss several aspects of
quantum information, computing and communication, we assume that the reader is familiar
with these fundamental concepts as well as with the definition of state vector, density matrix
and quantum measurements. However, it is possible to follow the references provided at the
beginning and in the following for a complete and consistent introduction to the various QTs.

A qubit is a basic unit for quantum information corresponding to the classical analogue
bit and can be represented using a two-dimensional Hilbert space. A pure state of a qubit,
in general, can be defined as |Ψ⟩ = 𝑎 |0⟩+ 𝑏 |1⟩ in the computational basis, where 𝑎,𝑏 ∈ ℂ
and |𝑎|2+ |𝑏|2 = 1. One may also adopt different bases. As an example replacing 𝑎 = 1∕

√

2
and 𝑏 = ±

√

2, one obtains the so-called conjugate basis. In practice, a qubit can be realized
by associating a two-dimensional space or a subspace of a physical system with it, e.g.,
a photonic system. Certain conditions, such as the interaction with the environment, can
decrease a qubit’s purity, leading to a different qubit representation, a statistical mixture of
pure quantum states (mixed state). A general description of a state can then be obtained using
a positive operator 𝜌, called the density operator (density matrix). Unitary transformations
can be applied to a single qubit and describe reversible, probability-preserving operations on
qubits (quantum gates). Examples of these gates are the Pauli gates (X, Z, Y) that have the
effect of a phase flip, a bit flip, and a combination of the two, respectively. Other single-qubit
gates have been defined, as well as multi-qubit gates [2] to form complex quantum circuits
for describing quantum algorithms. The measurement process on a quantum system in a state
𝜌 can be generally described by a set of linear (Kraus) operators [4]. The outcome of such a
measurement is a value with a certain probability of occurrence.

From a more general point of view, there are different quantum computation models. The
most adopted is the quantum circuit model, which we briefly introduced and is discussed in [1]
and that we adopted in section 3.4, for the QKD simulator, and in chapter 7, for the analysis of
Shor’s algorithm. In this model, one can start from a quantum register, initialised to a specific
value, apply a series of quantum gates [2] that represent the quantum state evolution and
measure the final result. Quantum algorithms can be expressed using this model, e.g., Grover,
Deutsch–Jozsa, Shor, Simon, and Quantum Phase Estimation [2]. Other possible quantum
computation models exist, such as Quantum Turing Machines, Adiabatic Quantum Computing
(from which the quantum annealing discussed in section 2.7 derives), quantum walks model
and dissipative quantum computing. Several technologies are available to implement qubits
in practical architectures: superconducting qubits, in which many companies such as D-Wave,
Rigetti Computing, Google and IBM are investing; trapped ions, where we have Quantinuum,

2.1 Quantum Computing 7

IonQ; photonics with Xanadu and PsiQuantum; neutral atoms; Nuclear Magnetic Resonance
(NMR); Nitrogen vacancy defects in diamond [1].

The toolkit generally adopted for our works, Qiskit, is based on the quantum circuit model
and has a reference hardware architecture from IBM. Qiskit textbook [2] is a valuable resource
for getting details about quantum gates, algorithms, noise models, and practical programming
examples generally tied to the IBM architecture.

2.1.1 Qiskit toolkit

In the following chapters, the reader will find several implementations based on the quantum
circuit model and, in particular, the Qiskit toolkit1. This section briefly presents Qiskit and
gives useful references to collect more in-depth details about this technology.

Qiskit is a software toolkit that works with quantum computers in terms of quantum
circuit simulations, algorithms, and pulses. This toolkit allows simulating quantum circuits
locally and submitting jobs to IBM Q backends2. The main components of Qiskit are:

• Terra: all other Qiskit components are built on top of this. Terra offers a layer for
creating quantum programmes using quantum circuits or pulses, a module for optimising
circuits according to particular device constraints, and interfaces to improve end-
user usability and enable access to various backends for simulation or actual device
execution.

• Aer: it offers a high-performance quantum circuit simulator that may be used to model
circuits created by Terra. This is helpful for rapidly evaluating and confirming the
functionality of the created quantum circuits. Additionally, it has programmable noise
models that may be used to create accurate noisy simulations of errors on actual devices.

• Ignis (Qiskit Experiments): it is a module that offers resources for better characterising
errors and operating circuits when noise is present. Recently it has been replaced by
Qiskit Experiments. It was created to be used with quantum error correction codes.

• Aqua: quantum algorithms might be applied to a variety of fields, including finance,
chemistry, and artificial intelligence. Aqua was a software library that made possible
to evaluate the advantages of using quantum computing in the relevant fields and
create unique solutions on top of the suggested methods. Recently Aqua has been

1https://qiskit.org
2https://www.ibm.com/quantum-computing/

8 Background

deprecated and divided into several more specific software components: Finance,
Nature, Optimisation, and Machine Learning.

Even though Qiskit and IBM Q are leading technologies for this sector, it is worth
mentioning that several other toolkit for Quantum Computing are available. Examples are
Cirq3, PennyLane4, and Rigetti forest5.

2.2 Quantum Computing vs Cybersecurity

In this section, the reader can find a high-level description of the threats and benefits of QTs.

2.2.1 The Quantum Computing threat

Shor’s algorithm [5], presented by Peter Shor in 1994, showed for the first time how it would
be possible to solve integer factorisation and Discrete Logarithm Problem (DLP) by using a
quantum computer in polynomial time. This event unlocked a plethora of scenarios where
classical cryptosystems, particularly those based on specific problems (e.g., RSA, Diffie-
Hellman), became potentially insecure against a future full-fledged quantum computer. At
that time, the idea of building such a powerful quantum computer was far away in time; in
contrast, today, we are closer and closer to that achievement. This is clear looking at the
roadmap to implement quantum hardware by manufacturers such as IBM [6] and the concern
about the matter shown by several government agencies [7]. In addition to this concern, many
optimisations and possible implementations of Shor’s algorithm have been presented so far,
as well as extensions [8] to make it work on other cryptosystems based on Elliptic Curve
DLP (ECDLP), such as ECDH.

It is currently impossible to run Shor’s algorithm to break the state-of-the-art classical
cryptosystems due to a lack in terms of quantum hardware maturity. Nevertheless, to prepare
fsdeuture cryptosystems for the so-called “Q-day” (when a quantum computer powerful
enough will be available), two main approaches have been proposed: one based on quantum
mechanics and related to the field of Quantum Cryptography, the other based on classical
algorithms and called Post-Quantum Cryptography (PQC).

3https://quantumai.google/cirq
4https://pennylane.ai
5https://pyquil-docs.rigetti.com/en/v2.7.2/

2.2 Quantum Computing vs Cybersecurity 9

Quantum Cryptography is a branch of Quantum Communication (section 2.4) which
explores secure communication. Quantum Key Distribution (QKD) (section 2.5) is one of
the few approaches of Quantum Cryptography available today which can be implemented
in practical systems. QKD is generally based on the no-cloning theorem and - for specific
protocols - on entanglement [9].

PQC is an alternative to Quantum Cryptography against the quantum threat, which
relies on developing classical quantum-resistant algorithms to substitute the current Key
Encapsulation Mechanisms (KEM) and algorithms for digital signature.

In 2016, the National Institute of Standards and Technologies (NIST) started the standard-
isation process of these algorithms, announcing a call for proposals6. Several algorithms have
been proposed during the first three rounds, which are based on the specific mathematical
problem considered: lattice-based, code-based, multivariate, hash-based and isogeny-based.
Recently NIST has announced the first group of winners: CRYSTALS-Kyber as KEM
(lattice-based), CRYSTALS-Dilithium and Falcon for digital signatures (lattice-based), and
SPHINCS+ (hash-based) also for digital signatures. NIST also announced a fourth round of
selection for the following KEM algorithms: BIKE, Classic McEliece, HQC (code-based),
and SIKE (isogeny-based). As a remark for the reader, after the NIST announcement, a
vulnerability of the SIKE scheme has been found [10]. This vulnerability compromises the
current version of the algorithm.

Beyond PKC schemes and Shor’s algorithm, there is another quantum algorithm that, in
principle, may represent a threat to cybersecurity, particularly to symmetric algorithms and
hash functions: Grover’s algorithm. The latter is an algorithm for unstructured search (e.g.,
unsorted database) that can succeed with high probability performing (

√

𝑁) queries instead
of the (𝑁) of the classical case. As a remark for the reader, since Grover’s algorithm can
only provide at most quadratic speedup over the classical solution for unstructured search and
classical NP-complete problems require an exponential-time algorithm to be solved, Grover
can only offer for this problem quadratic speedup; thus it cannot solve them in polynomial
time.

For symmetric cryptography, as shown in [11, 12], this result means a reduction of the
security of a key to half: AES-256 (key of 256 bits) will be secure as the current AES-
128. AES-256 so far is considered to be quantum-safe7 especially looking at the resource
estimations provided by [13, 14]. These estimations highlight how to break the security of

6https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
7https://media.defense.gov/2022/Sep/07/2003071836/1/1/0/CSI_CNSA_2.0_FAQ_.PDF

10 Background

AES-256, a quantum circuit with a depth of roughly 2145 is required, which translates into a
reasonable security level according to NIST.

Grover’s algorithm can also threaten hash functions [15, 16]: quadratic improvement
of the classical pre-image and birthday paradox attacks. Despite these improvements and
considering, as in the case of symmetric cryptography, the resource estimation of the required
quantum circuit, the SHA-3 family of algorithms is assumed quantum-safe.

For this reason, our work only focuses on PKC and Shor’s algorithm. According to PKC,
there is an increasing interest in Adiabatic Quantum Computation and Quantum Annealing that
might represent a threat since these are promising approaches to solving NP-hard problems.
An example worth mentioning is the work on speeding up factoring large integers with
quantum SAT solvers presented in [17].

2.2.2 Quantum Computing positive impact on cybersecurity

Beyond QTs’ negative aspects and impact on cybersecurity, many benefits to cybersecurity
should be briefly discussed. First, Adiabatic Quantum Computation and, in particular, Quan-
tum Annealing, as already mentioned, play an essential role in solving NP-hard problems,
commonly optimisation problems. Many branches of cybersecurity beyond cryptography,
directly or indirectly, leverage this class of problems to counteract potential threats and design,
implement, and optimise cyber defences.

A tangible example is the work presented in chapter 6, where Quantum Annealing is
used to optimise the allocation of virtual security functions. Another interesting example,
considering the role and the possible application of bloom filters in network security [18],
is the quantum version of bloom filters. This has interesting applications in cybersecurity
for privacy-preserving issues [19]. Moreover, it is also worth mentioning the work related
to QUBO reformulations for the Maximum k-Colourable Subgraph problem (MkCS) [20]
and its applications to cybersecurity. An example of application is the case of fault diagnosis
for multiprocessor systems [21]. Obtaining a QUBO formulation paves the way towards
solving these problems using a quantum annealer, as demonstrated for a different problem in
chapter 6. Last but not least, Quantum Machine Learning (QML) techniques can leverage
either the classical gate/circuit model or quantum annealers to mitigate, through intrusion
detection, Distributed Denial of Service (DDoS) attacks [22, 23].

2.3 Quantum Error Correction 11

2.3 Quantum Error Correction

Noise, decoherence time, and other factors depending on the specific hardware technology
adopted may cause errors that affect the computation results in terms of the final state of
the physical qubits. For this reason, it is pivotal to have efficient Quantum Error Correction
(QEC) techniques whose objective is to create robust logical qubits out of several fragile
physical qubits. The author of [24] proposes an introduction to QEC and a presentation of
the basic techniques available. QEC techniques may also vary depending on the specific
hardware and the topology of the quantum processor. As for the classical case, the notion of
code distance is the minimum Hamming distance, i.e., the minimum distance between any
two codewords or the number of bits one must flip to obtain another codeword. The reader
can find in subsection 2.3.1 a brief presentation of the Heavy Hexagon Code proposed and
implemented by IBM. This presentation helps understand some of the estimations provided
in chapter 7.

2.3.1 Heavy Hexagon Code

The heavy hexagon code [25] is a surface/Bacon-Shor code [26] mapped into a hexagonal
lattice that includes all the ancilla qubits required for fault-tolerant error correction. IBM
proposed this code and has planned to adopt it in its devices’ current and future versions.
Figure 2.1 shows how 3∕5 of the qubits presents a degree (number of edges adjacent to
that node/qubit) equal to 2, and the other 2∕5 has a degree equal to 3. IBM intends to use
cross-resonance gates, considering that they achieved a gate fidelity of around 99%. A low
degree value allows mitigating frequency collision, and crosstalk [27]. As a remark for the
reader, certain quantum gates, such as the controlled phase shift, require qubit frequency to
be different from all its neighbours and chosen from an available set. In order to minimise
frequency collisions, this code outputs a set of only three frequencies present in the device.

The following equation [25] gives the total number of qubits 𝑛𝑝 for a given code distance
𝑑:

𝑛𝑝 =
5𝑑2−2𝑑−1

2
(2.1)

As a reminder for the reader, this equation will be relevant for the resource estimation in
chapter 7. The code distance will strongly influence the logical error rate as it depends on the
probability that ⌊(𝑑−1)∕2⌋ errors co-occur in the underlying physical qubits.

The logical error rate should not exceed a threshold conditional on the desired circuit’s
depth; otherwise, the final result of a quantum circuit execution may report inconsistent data.

12 Background

Fig. 2.1 Heavy hexagon code with d = 5 for one logical qubit. Yellow vertices are the data qubits,
white vertices represent the flag qubits, and dark vertices describe ancillae to measure bit-flip errors
(red zones) and sign-flip errors (blue zones). Source: [25]

From this starting point, one can decide the value of the code distance and the number of
required physical qubits. As an example for the reader, considering a depth of 106, a width
of 50, a Physical Error Rate (PER) of 10−4, and a required fidelity of the quantum circuit of
90%, the final error probability is given by the equation:

𝜌 ≃ 1−0.9
depth = 10−7 (2.2)

Choosing a code distance 𝑑 = 7 and according to Equation 2.1, the whole circuit would
require 115 physical qubits for each logical one for a total of 5750. Correcting three errors
for each logical qubit at each step, one can estimate the error probability on each logical qubit
𝜌𝐿,𝑑=7 using Binomial distribution:

𝜌𝐿,𝑑=7 = 1−
3
∑

𝑘=0

(

115
𝑘

)

(PER)𝑘(1−PER)115−𝑘 = 6.85 ⋅10−10 (2.3)

The probability of error at each step 𝜌𝑑=7 is therefore:

𝜌𝑑=7 = 1−(1−𝜌𝐿,𝑑=7)50 = 3.42 ⋅10−8 (2.4)

That code distance is sufficient considering that 𝜌𝑑=7 < 𝜌. Several IBM quantum processors,
such as Falcon, Hummingbird, and Montreal already adopt this QEC approach.

2.4 Quantum communication and networks 13

2.4 Quantum communication and networks

Quantum communication is a field that leverages quantum mechanics principles to transfer
information, typically encoding it in quantum states. Quantum communication nowadays,
even if it mainly refers to the technologies related to Quantum Key Distribution (QKD),
includes several branches of research that study how certain principles of quantum mechanics,
such as entanglement can improve classical communication and cryptographic techniques.
As an example for the reader, in the following, there is a list of various branches of quantum
communication (QKD will be discussed in detail in section 2.5):

• Quantum Teleportation: this technique allows transferring an unknown quantum state
among two distant particles by using an entanglement pair, projective measurements
and two classical bits.

• Quantum secret sharing: is the quantum version of the classic secret sharing, where
a secret is shared among many actors. Only when a minimum number of them agree
to cooperate the final secret is revealed. It has been adopted in various techniques,
particularly in quantum money and distributed quantum computing.

• Quantum secure direct communication (QSDC): even if this branch has not yet con-
sistent, practical application, this is one of the most active in quantum communication
beyond QKD. QSDC allows secure communication directly over a quantum channel,
contrary to QKD, without exchanging a secret in advance [28].

• Quantum identity authentication (QIA): quantum communication needs identity
authentication. This is typically implemented, as in the QKD case, with classical
techniques allowing to avoid attacks such as the man-in-the-middle ones. QIA includes
many approaches [28] leveraging quantum resources that aim at reaching uncondition-
ally secure schemes. One class of particular interest is the quantum-based Physical
Unclonable Functions (PUFs), e.g., PUFs challenged using quantum states.

• Quantum signature: this branch proposes quantum-resistant digital signature schemes
alternative to the classical one [28].

• Quantum bit commitment: bit commitment is a fundamental cryptographic protocol
used to implement schemes, such as coin tosses, zero-knowledge proofs, and electronic
voting. A bit commitment protocol is usually divided into two phases: commit and
reveal. Alice sends Bob information reflecting the bit value she selected, without
exposing it, during the commit phase. Afterwards, Alice reveals the bit value she

14 Background

picked to Bob during the unveiling phase. Bob utilises Alice’s previously supplied
information to determine whether Alice is speaking the truth or lying. Unconditionally
secure Quantum bit commitment schemes have been proved impossible to achieve, but
there are potential advantages over the classical counterpart [28].

• Quantum coin flipping: is the quantum version of the classical coin tossing primitive
where two players that distrust each other have to agree on a random bit by leveraging
message exchanges between them. Quantum coin flipping as a primitive allows the
building of much more complex protocols, such as the Quantum Byzantine agreement
[28].

• Quantum oblivious transfer: is a quantum version of the classical oblivious transfer,
where messages are sent from a sender to one or more receivers so that the sender
remains unaware of if one or more messages have been transferred while other messages
are kept private from the receivers. There exist versions of oblivious transfer with mul-
tiple senders. Quantum oblivious transfer cannot be implemented with unconditional
security, i.e., by only relying on quantum physics laws [28].

• Secure multi-party quantum computation: is the quantum version of the classical
secure multi-party quantum computation, where two or more participants want to
compute a publicly known function on their private data without disclosing their inputs.
Compared to the classical version, the quantum has shown to be more robust in terms
of security and eavesdropper detection.

Another essential concept is the one of “quantum networks”. A quantum network is a
network with nodes capable of exchanging quantum information, generally encoded as qubits,
leveraging a quantum channel. In practical use cases, those networks need to interact with
classical networks to implement actual protocols. This leads to a hybrid scenario where both
classical and quantum networks shall coexist. A really neat view of the quantum network’s
evolution is available from the authors of [29], where it is explained how the long-term goal
for quantum communication is to build the so-called Quantum Internet, which may intensively
cooperate with the classical one. This roadmap also provides a discussion of the intermediate
stage of this evolution as well as a description of the possible application and protocol for
each stage.

Currently, quantum networks, from a practical perspective, mainly involve the implemen-
tation of QKD networks. Nevertheless, there are many tools to simulate quantum networks
beyond QKD and with different purposes. Among the others, the most relevant are; Simu-
laQron [30], NetSquid [31], QuISP [32], QuNetSim [33], and SeQUeNCe [34]. For some

2.5 Quantum Key Distribution 15

of them, there is a brief comparison against one of the solutions discussed in this thesis, the
QKD simulator.

2.5 Quantum Key Distribution

QKD is a technique which allows leveraging quantum phenomena and principles, such as
entanglement and the no-cloning principles, to build cryptographic protocols able to reach
Information-Theoretic Security [35]. In particular, the task that allows achieving is the secure
exchange of cryptographic keys among parties. Commonly QKD requires two channels on
which parties can exchange information: a quantum channel where parties can send and
receive quantum information (typically encoded as photons); a classical authenticated channel
where they can exchange additional information, e.g., data to coordinate the post-processing
of the keys or for authentication purposes.

Typically, one can divide QKD systems into Discrete-Variable QKD (DV-QKD) and
Continuous-Variable QKD (CV-QKD). The first type performs encoding and decoding lever-
aging qubits or other quantum systems with finite-dimensional Hilbert space. Because of this,
one can also call it qubit-based QKD. CV-QKD systems encode information in quadratures of
the quantised electromagnetic field and decode it using coherent detections [36]. Such detec-
tion methods are valuable in modern QKD apparatuses as they are compatible with existing
telecom equipment and show elevated detection efficiencies without requiring cooling [9]. As
a remark for the reader, in this thesis work, one can refer only to a subset of DV-QKD systems
for the QKD simulator part (section 3.4) for the remainder of the discussions, they can apply
to both classes since QKD is treated as a black box. Examples of DV-QKD protocols are
BB84, E91, SARG04, BBM92, COW [35], and T12 [37], where COW belongs to a particular
class, known as distributed phase-reference pulse [38].

Another helpful classification may differentiate them depending on the particular adopted
scheme: prepare-and-measure, entanglement-based, or Measurement-Device-Independent
QKD (MDI-QKD). As for the first scheme, we have two entities, Alice and Bob, one preparing
the quantum information encoded as qubits and the other receiving it through a quantum
channel and performing opportune measurements. Other schemes usually involve another
actor, such as Charlie. Charlie is a third-party module which acts as an untrusted entangled-
pairs sender in entanglement-based protocols and an untrusted receiver in MDI-QKD.

16 Background

Several companies commercialise actual QKD systems, such as ID Quantique8 and
Toshiba9. They are mainly point-to-point QKD devices (e.g., Cerberis XG), and in the
Toshiba case, it relies on a decoy-state version of BB84.

The author of [39, 40] proposes a composable security definition for QKD, which is
rigorously articulated and widely accepted. Many composable security proofs are known
[35, 9, 41, 42] for DV-QKD and CV-QKD. A remark for the reader is that QKD protocols
assume authentic classic channels in their security proofs. According to the definition
of composable security, one can utilise composable Information-Theoretic Security (ITS)
authentication for the classical channel with 2-universal hash functions [43] or adopt an
efficient authentication scheme employing 2-almost strongly universal hash functions. This
approach provides the final security parameter 𝜖 by the composability statement of the
respective security proofs of QKD, and ITS authentication [44]. As a remark for the reader, 𝜖
indicates that the final key is epsilon-close to the ideal one.

Another critical remark is that in section 3.4, the reader finds out that in our work,
we introduced other authentication methods whose security proofs have not been proven
composable in strictly theoretical terms. However, so far, there are no known or possible
attacks to break them and they appear to be more flexible applied to modern or software-
defined infrastructures. One example might be the combination of QKD and PQC, where
adopting PQC for authentication, no shared secret is required for the parties at the very
beginning of their configuration. An elegant perspective would also be the possibility of
leveraging a Post-Quantum Public-Key Infrastructure (PKI) [45].

Another essential issue to introduce is the long-distance QKD exchanges. Point-to-Point
(PTP) QKD works fine under a certain distance range (e.g., usually a hundred kilometres), and
this range depends on the specific classes, the scheme and the protocols chosen. Clearly, many
factors lead to this loss in efficiency, e.g., attenuation of the laser beam. To overcome this
issue, trusted repeaters have been introduced. These devices act as trusted relays (intermediate
node of a QKD network in subsection 4.3.2), being able to transfer the cryptographic material,
e.g., using a store and forward strategy [46]. Clearly, there is a significant impact on security
because all the intermediate nodes have to be trusted, and this is not a trivial assumption in
large networks. An alternative strategy, which is not yet practically implementable in current
commercial systems, is to use quantum repeaters. These repeaters use entanglement swapping
to entangle particles far away from each other, which allows for verifying the presence of an
eavesdropper from the endpoint’s perspective.

8https://www.idquantique.com
9https://www.toshiba.co.jp/qkd/en/products.htm

2.5 Quantum Key Distribution 17

Table 2.1 BB84 protocol steps. (source:[49])
QUANTUM CHANNEL
Alice’s random bits 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1
random sending bases D R D R R R R R D D R D D D R
photons Alice sends ⤢ ↕ ⤡ ↔ ↕ ↕ ↔ ↔ ⤡ ⤢ ↕ ⤡ ⤢ ⤢ ↕
random receiving bases R D D R R D D R D R D D D D R
bits as received by Bob 1 1 1 0 0 0 1 1 1 0 1
PUBLIC AUTH CLASSICAL CHANNEL
Bob reports bases of received bits R D R D D R R D D D R
Alice says which bases were correct ✓ ✓ ✓ ✓ ✓ ✓

presumably shared information (if no eavesdrop) 1 1 0 1 0 1
Bob reveals some key bits at random 1 0
Alice confirms them ✓ ✓

FINAL KEY
remaining shared secret bits 1 0 1 1

As another remark for the reader, QKD systems may be susceptible to side-channel
attacks, and a particular category of attacks called quantum attacks, which involve leveraging
the vulnerabilities of the imperfection of the physical implementation. The authors of [35]
presented a comprehensive list of these possible attacks and possible countermeasures.

Finally, some relatively recent proposals and experimental developments in the field of
QKD can be found in [47], where the authors presented the Twin-Field QKD (TF-QKD).
TF-QKD is based on a measurement-device-independent QKD (MDI-QKD) scheme [48]
and is remarkable because, as the basic MDI-QKD, it preserves the advantage of removing
all detector side-channels and also offers a novel approach to overcome the rate-distance limit
of QKD. TF-QKD is pivotal for designing future long-distance QKD systems.

2.5.1 BB84 protocol

The authors of [49] proposed the BB84 protocol which is discussed in this section and
summarized in Table 2.1.

BB84 depends on the no-cloning theorem, leading to the result that an eavesdropper on
a quantum channel can be detected if he performs measures on this channel. This action
will introduce errors that the involved parties can identify. BB84, like other QKD protocols,
needs a quantum and a classical channel to be run.

The first step for BB84 is encoding a string of qubits taken from a random string of
classical bits. The encoding process requires the sender, Alice, to randomly choose a string of
bases representing the reference frame one uses for the measurement. After this step, Alice

18 Background

sends the encoded quantum states to Bob, who randomly chooses other bases to measure the
qubits and perform that measurement.

More in detail, as reported in Table 2.1, the chosen bases are either “Rectilinear” (R) or
“Diagonal” (D). This convention arrives from a real use case connected to the linear polariza-
tion of photons, which can be used as a mean to encode these quantum states. Rectilinear
means using the basis of vertical (↕) and horizontal (↔), corresponding to the polarization
angles of 0° and 90°. Diagonal means using the basis of (⤢) and (⤡), corresponding to the
polarization angles of 45° and 135°. Four possible encoded states arise in BB84: ↔ and ⤢

for 0 in Rectilinear and Diagonal bases, and ↕ and ⤡ for 1 in Rectilinear and Diagonal bases.
Bob retrieves a raw version of the final key by measuring the qubits sent by Alice.

After these steps, classical post-processing actions have to be performed. Alice and
Bob share data about their bases and cancel out the bits corresponding to the non-matching
bases in the Key Sifting step. Leaving out non-idealities, such as noise on the quantum
channel, the presence of Eve can be detected by sacrificing part of the exchanged key, sharing
that information publicly and measuring a metric called Quantum Bit Error Rate (QBER),
which indicates the error introduced by the eavesdropper in this case. Assuming that all
the qubits were measured independently by Eve, we would get a QBER of 25%. In a real
scenario, one needs to consider both noise and Eve acting simultaneously on the quantum
channels and strategies beyond the simple intercept-resend attack. For this reason, classical
Error Correction (EC) techniques are applied as post-processing procedures and Privacy
Amplification (PA), in turn, to correct errors and decrease the quantity of information Eve
retrieves from the quantum channel. One can refer to this last step as Key Distillation.

2.5.2 E91 protocol

The author of [50] proposed E91, which can be defined as an entanglement-based protocol.
E91 leverages a source of spin-1/2 particles in a singlet state, maximally entangled and
anti-correlated:

𝜙 = 1
√

2
(|↑𝐴↓𝐵⟩− |↓𝐴↑𝐵⟩) (2.5)

For clarity, one can observe that if particle A is in the state |0⟩, particle B will be in |1⟩ and
vice versa. This coordination is beyond any classical equivalent, i.e., when a measurement
is applied to one of the particles, the other will assume the opposite state even if these are
farther away from each other.

2.5 Quantum Key Distribution 19

Once generated, Alice and Bob receive one particle each, and they proceed with the
measurement phase, which relies on bases expressed by unit vectors 𝑎𝑖 and 𝑏𝑗 where 𝑖, 𝑗 =
1,2,3. Considering an x-y-z reference frame and assuming the particles travel according to
the z direction, then 𝑎𝑖 and 𝑏𝑗 lie on the x-y plane and can be described, starting from the
x-axis, by the following angles: on Alice’s side {𝜙𝑎1 = 0°, 𝜙𝑎2 = 45°, 𝜙𝑎3 = 90°}, on Bob’s side
{𝜙𝑏1 = 45°, 𝜙𝑏2 = 90°, 𝜙𝑏3 = 135°}.

Alice and Bob’s analysers can be distinguished by the superscripts 𝑎 and 𝑏. The choice
of the orientation angle has to be performed randomly, and the probability of selecting a
particular value is 1∕3. Equation 2.6 describes Alice and Bob’s measurement correlation
adopting as bases 𝑎𝑖 and 𝑏𝑗 .

𝐸(𝑎𝑖, 𝑏𝑗) =𝑃++(𝑎𝑖, 𝑏𝑗)+𝑃−−(𝑎𝑖, 𝑏𝑗)

−𝑃+−(𝑎𝑖, 𝑏𝑗)−𝑃−+(𝑎𝑖, 𝑏𝑗)
(2.6)

𝑃±±(𝑎𝑖, 𝑏𝑗) represents the joint probability of obtaining a ±1 (+1 for |0⟩, -1 for |1⟩) along
𝑎𝑖 and 𝑏𝑗 . When Alice and Bob choose the same orientation (bases), as for (𝑎2, 𝑏1) and
(𝑎3.𝑏2), one can observe a total anticorrelation in the results: 𝐸(𝑎2,𝑎1) = 𝐸(𝑎3, 𝑏2) = −1.
When the orientation is different among them, one can calculate the quantity Equation 2.7,
which represents the sum of all correlation coefficients. Such a correlation is one of the
CHSH inequality, one form of Bell’s inequalities.

𝑆 = 𝐸(𝑎1, 𝑏1)−𝐸(𝑎1, 𝑏3)+𝐸(𝑎3, 𝑏1)−𝐸(𝑎3, 𝑏3) (2.7)

For maximally entangled particles, according to quantum mechanics, this correlation
value has to be equal to Equation 2.8, which is also known as Tsirelson’s bound.

𝑆 = −2
√

2 (2.8)

Disobeying the CHSH inequality (Equation 2.9), which provides classical correlation
boundaries, demonstrates that the system exhibits a quantum correlation and that the two
particles are entangled.

|𝑆| ≤ 2 (2.9)

20 Background

The authors of [50] also demonstrated that for every eavesdropping strategy and direction
of Eve’s measurements, the inequality 2.10 holds. Violating the bound in Equation 2.8 demon-
strates that Bell’s inequalities can be adopted as a valuable means to check an eavesdropper’s
presence.

−
√

2 ≤ 𝑆 ≤
√

2 (2.10)

After the measurement phase ends, Alice and Bob exchange data about the bases (orienta-
tions). They can leverage those data to separate the resulting bit string into two sets: one with
all compatible choices and another with the reminder of all other measurements. The final
secret key is obtained using the first set, and the correlation for Eve’s detection is calculated
using the second one. As mentioned before, the detection through correlation is related to the
bound in Equation 2.8, and, for practical purposes, one can establish a threshold to verify
whether the result is close to that bound.

2.5.3 ETSI QKD GS

The European Telecommunications Standards Institute (ETSI) started the standardisation
process of QKD for many aspects, from the low-level devices for the PTP QKD to the
design of the software stack needed to integrate those systems in modern infrastructures.
The specification group dedicated to this standardisation is the ETSI ISG QKD 10. One can
also count additional efforts from different standardisation bodies such as CEN-CENELEC
and ITU, among others [51]. Regardless of the particular specification, the ETSI QKD
standardisation is relatively immature and still needs efforts to define better the interaction
with modern infrastructure and clear architecture that can be used as a guideline for integrating
QKD systems. One favourable aspect is that this standardisation process has accelerated
during the past years because of the competing standard bodies proposing their specifications.
The first interesting contribution of this work (section 3.1) aims to target that integration and
analyse practical aspects that might be crucial to evolving the current standards.

Relevant to the core section of this thesis work, the reader can find in the following the
principal ETSI QKD specifications adopted as references:

• ETSI GS QKD 004 V2.1.1 [52]: namely “QKD; Application Interfaces”, this specifica-
tion proposes a general software interface to the physical device;

10https://www.etsi.org/committee/qkd

2.5 Quantum Key Distribution 21

• ETSI GS QKD 014 V1.1.1 [53]: namely “QKD; Protocol and data format of REST-based
key delivery API”, this specification proposes a high-level interface from the security
applications willing to use QKD-produced key material and the management systems of
the QKD networks, which in turn contacts the QKD devices with the previous interface;

• ETSI GS QKD 015 V1.1.1 [54]: namely “QKD; Control Interface for Software-Defined
Networks”, this specification represents an attempt to include Software-Defined Quan-
tum Key Distribution (SD-QKD) in the standardisation promises. This promising
approach combines the flexibility of Software-Defined Networking with the high level
of protection guaranteed by QKD systems.

2.5.4 Standardisation efforts beyond ETSI

Beyond the standardisation efforts from ETSI (subsection 2.5.3), promoter of the Industry
Specification Group on QKD (ETSI ISG-QKD) and the Technical Committee Cyber Secu-
rity Working Group on Quantum-Safe Cryptography (ETSI TC CYBER WG QSC), other
standardisation bodies are working on specifications on QTs, Quantum Networks, Quantum
Cryptography, and QKD. The following are the primary bodies involved in the standardisation
process and their contribution:

• CEN-CENELEC: is a standardisation body of the EU and EFTA member states, pro-
moter of the Focus Group on Quantum Technologies (FGQT)11. It counts 150 partici-
pants, and the main objective is to ensure interaction between relevant stakeholders to
standardise QTs. This group actively contribute to the Quantum Flagship initiative.

• ISO/IEC: the International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC), that operate at a global level, contribute through
the ISO/IEC JTC 1/SC 27 “IT Security”12, which stands for Joint Technical Committee
1 of ISO and IEC and Sub-Committee 27. This is involved in standardising IT security,
cybersecurity, and privacy protection. QKD is included in the Working Group (WG3),
which also works on ISO/IEC 15408 "Common Criteria for Information Technology
Security Evaluation (CC)". The standards ISO/IEC 23837-1 and 23837-2 are dedicated
to QKD security as special applications of the Common Criteria.

• ITU: the International Telecommunications Union (ITU) is a body of the United Nations.
It promotes the standardisation of QKD and QTs through the Study Groups ITU-T/SG

11https://www.cencenelec.eu/areas-of-work/cen-cenelec-topics/quantum-technologies/
12https://www.iso.org/committee/45306.html

22 Background

1313, ITU-T/SG 1714, and the Focus Group FG-QIT4N15. The Working items related
to QKD are prefixed with "Y.QKDN".

• IETF: the Internet Engineering Task Force (IETF) and the Internet Research Task
Force (IRTF) contribute through two research groups: the Quantum Internet Research
Group (QIRG)16, focusing on the general architecture of the prospective Quantum
Internet, and the Crypto Forum Research Group (CFRG)17, discussing cryptographic
mechanisms.

• IEEE: the IEEE Standards Association (SA) contributes through the IEEE SA Quan-
tumComm, Software-Defined Quantum Communication18, promoting the definition of
a common classical interface for quantum communication devices.

• GSMA: the Groupe Speciale Mobile Association (GSMA) also started research on the
threat and challenges of QTs through the GSMA Internet Group19.

2.6 Software-Defined Infrastructures

Software-Defined Infrastructures (SDI) are a fundamental building block for almost all modern
computation paradigms and network technologies such as Cloud-, Edge-, Fog-computing,
Network Functions Virtualization (NFV), and Internet of Things (IoT). SDI allows the
creation, management and scaling of an IT infrastructure with minimum human intervention
by embedding the logic beyond operations to build and maintain the infrastructure in the
software.

A remark for the reader is that currently, a large portion of the distributed applications
and services available for a final end-user runs leveraging the concepts of microservice
and container. The first is an approach to divide a classical monolithic application into
several and more simple software components that can be managed as independent processes
and can communicate among each other using a classical TCP/IP network, among other
strategies. The second is an isolated environment in which those software components can
run, leveraging specific capabilities granted by the kernel of operating systems. Using this

13https://www.itu.int/en/ITU-T/about/groups/Pages/sg13.aspx
14https://www.itu.int/en/ITU-T/about/groups/Pages/sg17.aspx
15https://www.itu.int/en/ITU-T/focusgroups/qit4n/Pages/default.aspx
16https://irtf.org/qirg
17https://irtf.org/cfrg
18https://standards.ieee.org/ieee/1913/11105/
19https://www.gsma.com/aboutus/workinggroups/internet-group-3

2.6 Software-Defined Infrastructures 23

approach, sometimes informally addressed as cloud-native, for developing and operating
distributed software benefits all the above paradigms. Several platforms and technologies
are available for managing these entities’ creation and life-cycle management. Probably, the
current de facto standard in terms of orchestration platform is Kubernetes (section 4.1).

An essential aspect of SDI is security in terms of software and networking. The first is
not thoroughly addressed in this thesis work because the focus is more on cryptographic
aspects that are more relevant to network security and communication. Nevertheless, both are
pivotal for SDI and are often deeply tied to each other. QC, in this regard, jeopardises most
of the high-level security protocols adopted by SDI to build secure communication among
their physical and virtual components and applications. Examples of these protocols for the
reader are Transport Layer Security (TLS), Internet Key Exchange (IKE) for Virtual Private
Networks (VPNs), and Secure Shell Protocol (SSH).

Because of this, integrating quantum-resistant mechanisms in SDI, for instance, by intro-
ducing QKD, represents a non-negotiable priority for the evolution of these technologies.

2.6.1 Network Function Virtualisation

This section briefly analyses NFV as it is one of the most recent approaches for building
highly flexible and scalable network infrastructures, and telecommunication providers are
gradually adopting it. As a remark for the reader, NFV is also relevant for the work presented
in chapter 6, where it is discussed a general optimisation problem related to this paradigm in
a Security-as-a-Service (SECaaS) scenario. SECaaS is a service model oriented to network
security and it provides an end user with highly configurable and scalable security services.
One can think of SECaaS as the synthesis of the current most advanced technologies in terms
of network infrastructures based on NFV and complex security scenarios, where not only the
enforcement of rules and configuration on security functions (e.g., firewall) is enough, but
also the detection and the immediate response to an attack are pivotal to assure a consistent
security service. Typically Artificial Intelligence and Machine Learning techniques are also
introduced to improve and facilitate the detection phase.

Beyond the opening about the motivation for adopting NFV, one can find the roots of
his introduction in the practical necessity of the telco providers to go beyond the traditional
implementation of network and security functions. Indeed, these functions were usually
implemented as a strict combination of special-purpose software and hardware, a strategy that
led to the impossibility of cooperation among different vendors’ devices, a lack of standardis-
ation of the software for diverse apparatuses, and a massive reduction of the infrastructure’s

24 Background

scalability. Because of this, NFV introduced a decoupling between hardware and software
so that general-purpose commodity servers can be adopted as standard hardware, on top
of which arbitrary software-based network functions, namely Virtual Network Functions
(VNFs), can be run. NFV can also leverage Software-Defined Networking (SDN), a similar
paradigm, but in this case, related to the networking and the approach of decoupling the data
plane (low-level traffic forwarding) and the control plane (logic for managing the rules to
forward the traffic). This is possible by using an SDN controller, which is a central entity that
knows the network topology, can run software applications to optimise the logic of traffic
flows against chosen metrics, and can enforce the derived policies/rules to the low-level
devices through a standard interface (e.g, using OpenFlow protocol).

This is relevant because, with those two paradigms combined, it is possible to manage
end-to-end communication between two endpoints, implementing the network functions as
VNFs (e.g., firewall, IDS) and connecting them using SDN. Clearly, this requires another
level of orchestration and management which is described in the ETSI specification on NFV
[55]. The same approach can be simply extended for network security, where VNFs are
network security functions, and one obtains the infrastructural base for implementing the
SECaaS service model.

Finally, NFV can be related to quantum technologies in different ways. The most trivial
is considering the impact of quantum technologies and Shor’s algorithm on this paradigm
and the repercussion of SECaaS. Another one, which is the core of this thesis work, is related
to the countermeasures provided by the Quantum Cryptography techniques, which have to
be integrated with SDI and, as a result, in NFV. The third, less obvious, more general, but
equally relevant, considers quantum-based optimisation techniques (e.g., using Quantum
Annealing) to improve NFV infrastructures with an indirect benefit for security through the
SECaaS optimisation.

2.7 Quantum Annealing

Quantum Annealing (QA) is a metaheuristic that can be adopted for solving optimisation
problems and leverages the adiabatic theorem [56]. From this theorem, one can assert that a
quantum state will stay in its ground state if the Hamiltonian of that system changes slowly
enough. These changes are clearly correlated to the gap between the ground state and the
first exited state (minimum gap) [56].

2.7 Quantum Annealing 25

One way this can be used for computation is to prepare a quantum system in the ground
state of a trivial initial Hamiltonian and change the Hamiltonian slowly to a complex one
[56]. Because of this, the system will remain in the ground state and effectively solve the
Hamiltonian. As mentioned before, the adiabatic theorem and, in particular, the model known
as adiabatic quantum computing is equivalent to the quantum circuit: it can simulate any
quantum circuit and is a universal quantum computing paradigm.

Being capable of modelling an optimisation problem as an evolution from an initial known
Hamiltonian to a final hamiltonian allows one to solve - not necessarily in polynomial time -
complex problems such as in the NP-hard and NP-complete classes (the solution is the ground
state of the final or target Hamiltonian).

A possible method of formulating an optimisation problem suitable for a quantum annealer
is using a Quadratic Unconstrained Binary Optimisation (QUBO) formulation [56].

D-Wave Systems is a company producing quantum annealer processors which is widely
adopted for testing in both academia and industry. The reader can find in the following the
general step for solving an optimisation problem with a D-Wave quantum annealer (adopted
in chapter 6):

• QUBO formulation and Graph representation: this formulation is widely adopted
for describing optimisation problems for quantum annealers. It might be an uncon-
strained optimisation, or constraints can be introduced in the form of penalty and
weighted using lagrangian multipliers (chapter 6). This formulation is then converted
to a graph in which nodes are binary variables and links the interaction among them.

• Minor-embedding: mapping the QUBO formulation on the QPU require an embed-
ding process that can be itself an optimisation problem and for which classic meta-
heuristic exist. In this process, several physical qubits are used to represent logical
variables, and the coupling between them represents the interaction among variables.

• Programming: in this phase, one configures the annealer parameters to solve the
optimisation problem, such as the weight of the single qubits and the strength of the
interaction between them.

• Initialisation: initialisation of the known trivial Hamiltonian.
• Annealing process: in this phase, there is the transition from the initial to the final

Hamiltonian. The optimisation problem is solved.

26 Background

• Readout: following the annealing process, the qubits seen as a quantum state are
in a superposition of eigenstates, each representing a possible minimum of the final
Hamiltonian. Here the readout of the solution takes place, and the result is stored
classically.

• Resampling: due to the heuristic nature of the quantum annealing, the annealing and
readout phases are repeated to pick the best candidate as the solution.

Chapter 3

Quantum Key Distribution in
Software-Defined Infrastructures

This Chapter discusses the adoption of QKD in Software-Defined infrastructures, presenting
a complete software stack, namely Quantum Software Stack (QSS), compliant with QKD
ETSI standards and capable of easing the integration of QKD in this domain. The low-level
layer of this stack offers a QKD simulator to provide a fast and consistent alternative to
expensive QKD physical devices during testing. This simulator, even supporting different
backend extensions, is based on IBM’s Qiskit toolkit. This work has been published in the
IEEE Access international journal [57].

3.0.1 Methodology

This section briefly summarises the methodology adopted for integrating QKD in SDI and
the work on the QKD simulation. The clear objective of the work is to fill the gap between
the advanced capabilities of the current SDIs and the rigid constraints of QKD protocols
and devices. Moreover, the QKD simulation is required to test both key exchanges between
nodes within a QKD network and specific attack scenarios. This work required two iterations,
followed by a first and a second software release. The first has been a joint iteration regarding
the QSS and QKD simulator, as described in this chapter (chapter 3). The second iteration,
described in chapters 4 and 5, involved the QSS and QKD simulator separately. More in
detail, the first iteration comprised the following activities:

1. analysis of the QKD background, techniques, protocols, and ongoing standardisation
efforts.

28 Quantum Key Distribution in Software-Defined Infrastructures

2. Study of SDIs and definition of a threat model.
3. Design of the preliminary application, breaking it down into several components and

well-defined interfaces.
4. Selection of the technologies and strategies to adopt for the development according to

the state-of-the-art technological landscape.
5. Implementation of the first prototype with essential functionalities such as PTP key ex-

change, basic QKD simulation support, limited orchestration support, key management,
key storage and public channel authentication.

6. Testing PTP exchange capabilities, particularly regarding the QKD simulator and attack
simulations adopting appropriate metrics such as key rate and QBER.

The second iteration for the QSS involved:

1. code refactoring to support an asynchronous approach.
2. Support for routing on large QKD networks.
3. Support for Multi-Hop (MH) exchange with trusted repeaters.
4. Orchestration capability and deployment on cloud-native infrastructures.
5. Testing of end-to-end performance and bottlenecks.

The second iteration for the QKD simulator involved:

1. support for large networks.
2. Code refactoring to support an asynchronous approach.
3. Automatic QKD network deployment and reconfiguration.
4. Testing to show the improvement of PTP exchange performance.

3.0.2 General SDI quantum threat model

The majority of PKC techniques lie on the premise that certain mathematical problems are
computationally unmanageable for modern classical computers (e.g. prime number factorisa-
tion in RSA). Quantum computing disproves this premise, rendering such issues "simple," i.e.
reducing their mathematical complexity to polynomial (for instance, Shor’s method may be
used to attack RSA). Less revolutionary, but nevertheless a major risk-increasing factor for

29

symmetric-key cryptography, is the power of QC to study a 2𝑛-dimensional solution space in
2(𝑛∕2) steps.

An SDI consists of several virtualisation actors and agile deployment components (such as
hypervisors, orchestrators, and containers) that interact in a complex form and may be attacked
(both in terms of single components and the communication channels among them). The
majority of these attacks’ defences rely on authentication and confidentiality countermeasures,
which are often built directly or indirectly on PKC and PKI. Assuming QC is accessible, no
SDI can depend on conventional PKC since private keys based on standard methods would
become insecure and susceptible. The raison d’être of the QKD is to offer Information-
Theoretic Security to the key distribution process, allowing for strong security even after the
introduction of real quantum computers.

Due to the intrinsic nature of quantum cryptography, a QKD based on quantum cryp-
tography is especially susceptible to Denial-of-Service (DoS) attacks. If the error rate of an
exchanged key exceeds a certain threshold across an ideal channel, this indicates an eaves-
dropping action. A comprehensive security technique consists of discarding the key and
re-executing the exchange. Thus, it would suffice for an attacker to "read" the transaction to
refuse service. While some degree of DoS possibility is accepted in nearly every real-world
scenario (e.g., any local wireless communication can be drastically reduced by relatively
inexpensive and easy-to-obtain WiFi jammers), a robust architecture must address this as-
pect with the appropriate countermeasures, such as the presence of Intrusion Detection and
Prevention systems to identify and isolate the attack source.

Even though the adoption of QKD guarantees Information-Theoretic Security in theory,
implementations might contradict theoretical assumptions; hence, many developed QKD
systems include security vulnerabilities. The proposed architecture is independent of the
actual implementation of quantum devices. Therefore, while we do not cover actual device
issues, we recommend that effective security implementations back theoretical key strength.
Specifically, there is a huge amount of work analysing actual device vulnerabilities and how
to handle realistic defects to eliminate physical side channels [35].

In addition to the issues regarding cryptography, a software-defined infrastructure still
faces typical key management and usage problems. Common key vulnerabilities include
insufficient entropy (the key is too short and/or was generated by a poor RNG), inappropriate
reuse, both in terms of use in multiple scenarios and encrypting a large amount of data
(since it compromises forward secrecy and increases the likelihood of brute-force attacks
and key-relevant information leakage), and insecure storage (obviously on Hard Disk but
even in device RAM, since in the absence of countermeasures even central memory could be

30 Quantum Key Distribution in Software-Defined Infrastructures

accessed with well know vulnerabilities like, for example, Heartbleed and Spectre). In our
approach, we assume the availability of either a True Random Number Generator (TRNG) or
a Quantum Random Number Generator (QRNG) capable of producing random numbers with
a high entropy source. Similar to the preceding point, a real implementation of these modules
may have security vulnerabilities; however, this is outside the scope of our investigation.
In our architecture, key reuse is handled with flexibility. Due to the fact that we present
several possibilities based on the situation, a suitable security policy should be suggested to
ensure an adequate lifespan for the generated keys, as is the case in modern organisations.
Operating systems and applications may include implementation defects, but this is outside
our analysis’s scope.

Even with strong QKD, a key may be compromised (e.g., owing to an implementation
flaw), hence a process to destroy it (i.e., safely erase the key and its traces beyond recovery)
must be supplied. This last component might be difficult because it clashes with the necessity
to document the key lifespan in order to detect potential security breaches, implement revoca-
tion and destruction options, and conduct forensics investigations. The implementation of
QKD for generating the master secret to generate cryptographic keys has no effect on this
element, which is governed by the organization’s established regulations.

Key access must be restricted on a need-to-use basis and reinforced by separation-of-roles-
based access control in order to prevent unauthorised access to the key vault (e.g., an entity
that uses a key should not be the entity that stores that key). Secure backup and recovery
methods must ensure key recoverability after unintentional loss. Best practice recommends
internal custody of keys (or service at a comparable degree of security) maintained by central
key storage technology. The Quantum Key Server, a flexible component that may adopt
numerous configurations to comply with organisational security requirements, such as log
level and approved QKD methods, manages this key feature of our design. It can also leverage
different current safe secret management systems (e.g, Vault, in the concrete testbed described
in this work).

3.1 Quantum Software Stack architecture

Our architecture’s primary objective is to enable the implementation of QKD in Software-
Defined infrastructures (e.g., cloud environments). Creating the software stack presented in
Figure 3.1 advances this objective. Four logical levels and components represent the issue of
key exchange between two cloud instances or services:

3.1 Quantum Software Stack architecture 31

Secure
Application
Entity (SAE)

Quantum Key Server
(QKS)

QKD Module
(QKDM)

QKD simulator

QKD Module
(QKDM)

QKD device

Secure
Application
Entity (SAE)

Secure
Application
Entity (SAE)

Quantum Key Server
(QKS)

QKD Module
(QKDM)

QKD device

QKD Module
(QKDM)

QKD simulator

Secure
Application
Entity (SAE)

Infrastructure A Infrastructure B

Public authenticated channel

Southbound Interface

Northbound Interface

TCP/IP secure communication Quantum Channel

Fig. 3.1 QSS high-level architecture.

• QKD device: the physical QKD device that can execute QKD protocols on a real or
simulated quantum channel. Since we built and implemented a QKD simulator that
could be incorporated into our software stack, the current level may be also referred to
as the "QKD simulator".

• QKD Module (QKDM): an abstraction of the low-level QKD device and offers a com-
mon interface for communicating with various devices. Regardless of the technology
used to execute the QKD, further monitoring, management, and use capabilities are
offered for the underlying devices.

• Quantum Key Server (QKS): at this level, QKD management across several nodes
occurs. Specifically, coordination between distinct QKSs is essential to set up the
key exchange process across dispersed infrastructures. QKS offers an interface for
high-level security applications that need cryptographic keys and identifies the optimal
route to take in situations involving several nodes between the two ends of the key
exchange.

• Secure Application Entity (SAE): this is the highest level and represents the security
applications willing to use the QKD for certain objectives (i.e., to set up a VPN).

The presented architectural framework adheres to ETSI standards [53]. Considering a
point-to-point QKD connection, as seen in Figure 3.1, two infrastructures may be outfitted

32 Quantum Key Distribution in Software-Defined Infrastructures

with QKD devices able to exchange keys at a certain pace. These devices must share a
quantum and a classical authorised channel to execute a QKD protocol. In our approach,
the QKD device (or simulator) represents the actual system, and the QKDM provides an
abstraction for running it.

If we go to a more sophisticated situation in which a full QKD network is in place, then we
must handle several facets of this network’s coordination. In addition, we must offer methods
to effectively store the exchanged keys, routing features to permit the exchange across all
possible SAE combinations, and monitoring systems to track important QKD-system lifecycle
events. Here, the QKS comes into action. Each infrastructure must expose at least one QKS,
the central management unit of the QKD systems. SAEs operating atop the infrastructure can
only see the QKS as a component, which from their viewpoint, delivers QKD-as-a-Service.
In reality, they are capable of exchanging quantum keys with all other peers inside the QKD
network.

The underlying QKD network architecture might change dependent on infrastructure
decisions at a basic level. Switched QKD and trusted repeater networks are two standard
implementations [46]. An SDN controller dynamically modifies the paths between endpoints
(QKD devices) in a typical switched QKD network. A network with trusted repeaters generates
an alternate chain of intermediary trusted nodes that must be visited to complete the exchange.
Regardless of the topology, it is assumed that any device using the QKD protocol utilises
both a quantum and a classical channel.

If physical devices enable many connections simultaneously (i.e., multiple quantum chan-
nels), then numerous QKDMs might be associated with the same device. The fundamental
concept is to establish an abstraction in which a QKDM pair identifies a single key stream
through a quantum channel. These key streams and QKDMs may be effectively managed by
a QKS tasked with determining when a key exchange must begin, end, and when higher-level
applications must obtain keys. In our design, we identified two key interfaces: the Northbound
Interface and the Southbound Interface. In turn, they enable SAEs-QKS and QKS-QKDMs
communication. In sections 3.2, 3.3, and 3.4, we describe the subcomponents of the software
stack in further depth. In subsection 3.5.3, we discuss the interplay between them in full.

3.1.1 Use case scenarios

This section discusses the possible uses of our software stack as well as its underlying
assumptions and constraints. Currently, our software stack consists of Docker containers
deployed on an SDI using Docker Compose. Our development is a cloud-native application

3.2 QKD Module 33

that can run on minimal infrastructures (i.e., edge-, fog- computing and IoT scenarios). This
enables the infrastructure to operate QKD as a cloud service needing on-demand keys (from
a security application perspective).

The end-user of this service is obviously an SAE inside the infrastructure. Almost certainly,
a security application needs the QKD keys to establish a secure channel with another SAE in
the same QKD network. This procedure may use protocols like TLS and IKE [58]. These
protocols must be altered in order to be improved by QKD, and our technology might ease
this process by offering a controllable method of accessing the keys. Even in this instance,
the arbitrary combination of these protocols with QKD must be handled carefully from a
security standpoint (chapter 2).

Integration of our software stack with Infrastructure-as-a-Service (IaaS) platforms such
as OpenStack or container orchestrators such as Kubernetes is an even more viable use case.
Similar to OpenStack, this sort of platform already handles secrets, keys, and certificates
using some of its unique services (such as Barbican1). In addition, OpenStack has VPN-
as-a-Service and other tools for creating site-to-site VPNs with other data centres. These
utilities are integrated with Barbican to facilitate the administration of the cryptographic data
needed by the protocols (e.g., IKE). The integration of our software stack within the scope
of these platforms and the provision of a means for these utilities to use QKD-exchanged
keys directly might be a viable option. Due to the simplicity and adaptability of our system,
this kind of integration is both viable and straightforward. In the following Sections 3.2, 3.3,
and 3.4, the assumptions and constraints of the existing programme, including the available
authentication procedures, are outlined. Regardless of the scale of the infrastructure and the
unique context, our solution provides for a variety of connections and usages as long as we
remain within the scope of SDIs.

3.2 QKD Module

This section begins discussing the QKD integration software stack for SDI. The QKD module
is an abstraction inside an architecture that seeks to offer a standardised interface for quantum
devices. As shown in section 3.4, the QKD node indicates the actual device (or simulator)
that executes the QKD low-level exchange (e.g., ID Quantique Clavis3). The QKD simulator
offers a consistent alternative to using actual devices for this task. QKD Module serves as
a wrapper for the QKD node, exposing the standard API conforming with the ETSI QKD

1https://wiki.openstack.org/wiki/Barbican

34 Quantum Key Distribution in Software-Defined Infrastructures

standard [52], and offering high-level functionality to the higher layers, such as obtaining
a key exchanged with low-level devices. The precise implementation and vendor-specific
devices used do not affect the interaction between the QKS and the QKDM in our approach.
Following is a description of the APIs that must be provided and the methods that must be
implemented or altered to offer the anticipated quantum device functionality. We created a
template of QKDM based on this method and supplied a GitHub repository that could be
cloned to develop a new QKDM for a particular device. The concept is that each device
or simulator has its own QKDM, but the work required to build it consists of overriding a
handful of the methods shown below. QKDM has been created with contemporary cloud-
native application development concepts and Docker container technologies in mind. This
facilitates the incorporation of the QKDM component into cloud-native infrastructures (such
as Kubernetes). Following subsection 3.5.1 contains a comprehensive explanation of the
QKDM APIs.

3.2.1 Architecture

The QKDM architecture consists of four distinct submodules, as represented in Figure 3.2:
QKD node, Key manager, Sync interface, and Southbound interface. In addition to integrating
the QKD simulator into this architecture, which is shown as the QKD simulator in Figure 3.1,
we also included the quantum device simulation component. This gives a comprehensive
overview of the QKDM’s potential interactions with the underlying components.

Fig. 3.2 QKD module architecture.

The QKD node represents the quantum device. This component is identical to the one
described in section 3.4; it consists of a core component (for QKD protocol simulation)

3.3 Quantum Key Server 35

and a REST interface for communicating with other QKD nodes during the exchange (i.e.,
for the key sifting process). In a real-world use case scenario, the communication between
devices and the execution of protocols are reliant on the technology used. In this situation,
the QKD node may be treated as a black box with a supplied interface. The Key Manager
is the central component of the QKDM and is responsible for mapping requests from the
Southbound Interface to the QKD node’s instructions. It is also responsible for maintaining
exchange-generated keys, often using resources given by the QKS (see Vault in section 3.3).
The Southbound Interface is responsible for facilitating communication between QKS and
QKDM. This interface exposes the ETSI GS QKD 004-proposed REST APIs, particularly
the first three in Table 3.1. The Sync Interface is ultimately a series of REST APIs enabling
the synchronisation of several QKDMs during the key exchange.

3.3 Quantum Key Server

QKDM is an independent component capable of controlling the process of key exchange
inside a node, as defined in section 3.2. In theory, an infrastructure node needs just this
module for point-to-point QKD integration. The QKDM may, in fact, store the acquired keys
in a special secret engine supplied by HashiCorp Vault in addition to the exchange process.
The only prerequisite is that the SAE has access to this engine and obtains a fresh key. This
may not be possible in complicated infrastructures where separate SAEs need exchanging
QKD keys with one or more distinct destinations. In order to centralise the administration of
the exchange process, the key storage, the destination discovery, and the assessment of the
quickest way to reach them, a software layer is necessary between SAEs and QKDMs. This
component is the QKS.

ETSI [53] focuses on the ultimate security applications and anticipates a rigorous binding
between two SAEs belonging to two distinct nodes. This implies that once a key exchange
is necessary and communication between two QKDMs occurs, a key stream is formed, and
only the two concerned SAEs have access to it in order to get keys. The Key Server is
responsible for facilitating this binding and controlling the beginning and end of the key
exchange procedure. Considering the complexity of software-defined infrastructures and
their need for flexibility, our solution takes a new approach. Even though the majority of the
logic governing the interactions between entities, interfaces, and a portion of the data model
is preserved, we modify the function of the Key Server and create our QKS.

The QKS functions similarly to a SAE in that it is responsible for choosing whether or
not a given stream should be generated and is the notional ultimate "endpoint" of all key

36 Quantum Key Distribution in Software-Defined Infrastructures

Fig. 3.3 Quantum Key Server architecture.

exchanges towards the node; however, it is also responsible for managing the exchange and
coordinating with the other QKSs. In our approach, the QKS is a kind of middleware that
gathers all the keys from all the destinations and distributes them to all the registered SAEs,
irrespective of any binding that may exist between two particular SAEs. This enables the
continual exchange of keys between QKDM PTP connections on QKD networks and the
prospective usage of those keys for each SAE-to-SAE pair on the same physical link. This is
a significant benefit for a virtualized environment in which keys may be readily distributed
across many virtual instances.

The QKS was also built as a cloud-native application that could be seamlessly incorporated
into a contemporary infrastructure environment. Noteworthy is its interface with the QKDM
since the QKS might handle several QKD modules that must register with it prior to any
operation. Before gaining access to the key server and requesting any key, the SAEs must also
be authenticated and authorised. In subsection 3.5.3, the reader can find further information on
the relationship between each component. Following is a description of the QKS architecture.

3.3 Quantum Key Server 37

3.3.1 Architecture

In Figure 3.3, one can observe the overall QKS architecture, its three interfaces and four main
components that are described in the following:

• Northbound interface: it supplies the SAEs with an expanded version of the ETSI
API in order to query the QKS. This pertains mostly to the procedure of obtaining keys
from SAEs.

• Southbound interface: it enables the QKS and QKDM to communicate with one
another. According to section 3.2, the implementation efforts are mainly on qkdm.
However, this interface is bidirectional, and QKS exposes a number of functions to
service QKDM.

• External interface: it acts as a synchronisation interface among QKSs. It is essential
for the exchange of data such as the KSID and routing information.

• QKD manager: component responsible for providing all fundamental functionalities,
such as handling Northbound Interface requests and registering new QKDMs. This is
also engaged in the process of key aggregation, which serves the top layer several keys
of variable length.

• Keycloak2 (IAM): extra component that is beneficial in situations involving a high
number of SAEs and QKDMs. Keycloak offers IAM capabilities that enable the
authentication and authorization of SAEs and QKDMs. This is beneficial for both the
Northbound and Southbound Interfaces and may be simply extended to the External
Interface.

• Vault3 (secret mgmt): an HashiCorp solution offering a versatile and scalable method
for handling secrets. This utility enables the development of distinct secret engines
(one for each QKDM) in which to store the keys.

• Database: a component used to hold information about the whole QKD exchange
process, registered QKDMs, and supported QKD protocols.

Keycloak and OpenID connect are used for the authentication and authorization of South-
bound and Northbound interfaces. For the interaction between several QKSs, we have not

2https://www.keycloak.org
3https://www.vaultproject.io

38 Quantum Key Distribution in Software-Defined Infrastructures

yet developed these techniques. Although, we might simply expand the Keycloak solution
also in the case of the External Interface. In a "quantum scenario", even for this interaction,
the communication across a secure channel, within a QKD network, should be protected by
a set of quantum-resistant algorithms and protocols. In the case of the authentication, we
examined numerous alternatives that we would like to incorporate with our solution. First,
we examined integrating post-quantum algorithms, such as SPHINCS+ and NTRU, to set up
a secure TLS channel among QKSs. In this case, Keycloak might still be easily adopted for
authentication and authorisation. Also adopting TLS-PSK, which may be used with the QKD
keys already created at the lower level, is an alternative method. This leverages the QKS
acting as a SAE and demanding additional keys for the communication with other QKSs.

Even the connection between the multiple infrastructure layers (i.e., QKS and QKDM)
must be protected. According to ETSI GS QKD 014 [53] that connection might depend on
the conventional TLS v1.2 as a minimum requirement. We disagree, believing that quantum-
resistant methods in a quantum environment should also care about communication inside
the infrastructure. In addition, it is not required that the QKS needs to be placed on the same
physical node as the quantum device, and this leaves room for various attack tactics. Even
this case can be treated as the external interface.

In subsection 3.5.3, we explain more elements of the interplay between our solution’s
components. The QKS’s code is accessible on GitHub4. This solution is entirely based on a
cloud-native methodology and makes use of Docker technologies. Each subcomponent has
been represented as a distinct Docker container. We further developed a Docker Compose5
descriptor to allow easier deployment. In conclusion, we additionally discuss the QKS APIs
in subsection 3.5.2.

3.4 QKD simulator

To continuously evaluate our solution and provide a novel approach to the modelling of
QKD protocols, we built and tested the following QKD simulator. The present version of
this software is in its infancy and offers the bare necessities for testing the BB84 and E91
QKD protocols. Even if the low-level simulation component must be improved, our design
principles enable us to adapt and grow our simulator to include all the necessary features for
a full-fledged QKD simulator. In theory, it may also be expanded to emulate protocols in the
larger area of Quantum Networks that go beyond QKD.

4https://github.com/ignaziopedone/qkd-keyserver
5https://github.com/docker/compose

3.4 QKD simulator 39

The design of the high-level QKD simulator is illustrated Figure 3.4. Each component has
been developed as its own Docker container. This enables them to operate in lightweight vir-
tual instances and communicate over traditional TCP/IP networks. Using Docker technology
as Container Runtime (CR) offers a straightforward method for scaling the simulation over
several infrastructure nodes. Considering this solution to be installed on a Kubernetes cluster
expedites the testing of complicated QKD network situations. The reader may appreciate a
summary of the QKD components:

• QKD node: a component representing the QKD device. This is one of the parties
involved in the key exchange as defined by QKD (e.g., Alice, Bob). The QKD node is
outfitted with software capable of simulating both the qubit encoding and quantum state
operations. It provides mechanisms for serialising qubit-related data and exchanging
information with other components over a TCP/IP network.

• Quantum channel and Eve: a particular QKD node designed to reproduce the specific
effects of certain entities acting on a quantum channel (e.g., noise, eavesdroppers). It
operates on the qubits encoded by QKD nodes using the particular representation.

• Entanglement pairs generator: a special node that provides pairs of maximally en-
tangled qubits that are still compliant with the chosen representation. This is relevant
within the context of protocols based on entanglement.

• QKD Simulator Manager: a component that implements a central management unit
that collects simulation data and provides a convenient interface for initiating protocol
simulations or configuring QKD nodes. Even though they are still in their infancy, both
command-line and graphical interfaces have been offered.

We utilise Qiskit to simulate quantum encoding, manipulation, and measurement, as
well as to recreate quantum phenomena (chapter 2). The fundamental concept is to use
State Vectors (SVs) for the qubit encoding process and Quantum Circuits to simulate the
development of these SVs in response to Alice, Bob, and Eve’s interaction. In our scope, the
first two act as parties participating in the key exchange, while the third functions as a quantum
channel eavesdropper. We cover many features of our simulation platform regardless of the
protocol utilised. Afterwards, we provide both the BB84 and E91 protocol implementations.

A first noteworthy similarity between the two protocols relates to the qubit encoding,
which we exploited to generate an ensemble of qubits using the class Statevector. This
class lets a qubit vector be initialised with particular values (e.g. |00000⟩) and offers a

40 Quantum Key Distribution in Software-Defined Infrastructures

Fig. 3.4 QKD simulator high-level architecture.

method to evolve its quantum state given a certain quantum circuit. In addition, there exists a
technique for measuring the final state. Only these three macro operations are necessary to
emulate our QKD protocols.

Each component’s capacity to communicate through a TCP/IP network for the exchange
of quantum and classical data is also vital. The plan is to serialise SVs objects and transmit
them over a traditional network using HTTP at the application layer. The Python package
pickle for serialising objects was used for this purpose. After serialising an SV object, we
may insert it into the body of an HTTP request and transmit it to another entity within a QKD
network. This technique applies to any communications inside our simulated network that
entail the exchange of quantum bits. In our approach, we use Flask6 web servers to offer a
REST-based API for peer-to-peer communication. The usage of HTTP and the Flask web
service is optional and readily modifiable in the future, allowing for the implementation of a
tailored application-level protocol.

As shown in Figure 3.4, any communication between participants (Alice and Bob) is
mediated by an entity that represents both the quantum channel and a potential attacker. This
is due to the fact that, directly on a TCP/IP network, we could not simulate the quantum
effects occurring on transmission nor manipulate qubits in the manner of an attacker via a
quantum channel. As a result, we suggested a new entity, Quantum Channel and Eve, capable
of applying these effects on quantum bits. Without a doubt, this method might be expanded

6https://flask.palletsprojects.com/en/2.0.x/

3.4 QKD simulator 41

by adding other intermediary nodes between Alice and Bob and allowing them to influence
the qubits freely. The only feature that both QKD nodes and these special nodes’ must have
is a standard communication technique with the same qubit format.

In chapter 2, we stated that a public classical channel is required to share extra information
during the QKD exchange process. This is valid for all the available protocols. This channel
must be authenticated using a mechanism that is flexible and scalable enough to accommodate
real-world distributed use case situations. We developed and implemented two distinct
strategies: post-quantum algorithm SPHINCS+ and AES with Galois/Counter Mode (AES-
GCM) authenticated encryption. The first option involves signing communications sent
via a public channel. This is a very flexible method since it does not need Alice and Bob
to discuss secrets beforehand and simply requires knowledge of the counterpart’s public
key. The development of a new "Post-Quantum PKI" with post-quantum X.509 certificates
provides a scalable solution to the authentication challenge. It still depends on computational
assumptions, and post-quantum methods, notably SPHINCS+, have not yet been standardised.
Fortunately, authentication must be supplied only during the QKD exchange procedure, which
means that no relevant information about the key could be retrieved from data stolen from
the public channel, and no attack could be carried out using this information in the future.

The second method includes the use of an AES-GCM-secured encrypted and authenticated
channel. This might be accomplished using a pre-shared key that is rotated using a portion of
the key transferred during the QKD procedure. Under the premise that a certain key length is
used, this approach is likewise quantum-resistant, but it requires initial pre-shared secrets
and a priori understanding of those secrets among participants. Additionally, this method
is susceptible to DoS attacks. In fact, if an attacker causes the exchange procedure to fail
repeatedly, the parties will exhaust all pre-shared key material, resulting in a denial of service.
This might be avoided with a backup technique whereby, in the event that the pre-shared key
is compromised, a new secret could be derived using public-key cryptography.

The QKD simulator manager is responsible for overseeing and coordinating the exchange
of keys. This module provides both a command line interface (CLI) and a graphical user
interface (GUI) to initiate the exchange process between parties, define the settings of this
exchange (e.g. protocol, key length, eavesdropper presence), and display the simulation
results. This component might, in theory, serve as an orchestrator for the whole recreated
QKD network. This implies that it might possibly add and set up additional nodes. The
present version is still in its infancy and only supports two protocols for managing Alice and
Bob’s trade. Nevertheless, in light of the technologies that have been used, the simulator
manager’s aspirations for these elements are reasonable.

42 Quantum Key Distribution in Software-Defined Infrastructures

Included inside the QKD node is a module for simulating a QRNG. This enables the
reproduction of the creation of random bits for the transferred key. The module’s basic
implementation consists of a circuit operating on an initialised |0⟩ quantum register. The
evolution of the circuit produces n qubits in the state (|0⟩+ |1⟩)∕

√

2 = |+⟩ when a set of
Hadamard gates is applied to this register (𝐻⊗𝑛), where n is the number of qubits. If we
measure all of these qubits in the computational basis, we will receive either 0 or 1 with
a probability of 50 percent: this is the QRNG. Since this module regularly influences the
performance of the whole system, we also accounted for the possibility of using a traditional
pseudo-random number generator.

The last important factor is the expansion of our simulator to handle more protocols. The
present version of our software offers the abstract class qkd with the following overridable
methods:

• begin: this initialise the connection among two QKD nodes;
• exchangeKey: this starts the key exchange;
• end: this closes the connection among the nodes.

Developing a new version of our simulator that supports different protocols by simply
overriding those functions while retaining all communication-related and underlying Qiskit
framework capabilities is feasible.

Moreover, we are not even bound to the simulation framework we use. Indeed, we might
enhance the QKD node to enable several frameworks, such as those listed in section 3.7.
Then, based on the protocol and simulation needs, the most appropriate libraries may be
used for the particular implementation. For simplicity, we made available on Docker Hub7 a
Docker image including all the current software needed by the QKD node. This image might
be used to install many QKD nodes and execute the simulation code for a particular protocol.
This Docker image might be extended to allow the simulator to embrace more frameworks.
Aside from this, it is permissible to use varied orchestration systems for deploying this image
and generating a simulated QKD network of any design. We automated the deployment of
our solution for this particular purpose using Docker Compose. Code and documentation for
the QKD simulator are available on GitHub8.

7on hub.docker.com: ignaziopedone/qkd:simulator-1.2
8https://github.com/ignaziopedone/qkd-sim

3.4 QKD simulator 43

Fig. 3.5 BB84 simulation workflow.

44 Quantum Key Distribution in Software-Defined Infrastructures

3.4.1 BB84 implementation

In this subsection, one can find our Qiskit implementation of the BB84 protocol, starting from
the scenario in Figure 3.4. Figure 3.5 shows the complete workflow of the BB84 simulation.
As a reminder for the reader, section 2.5 presents an overall view of the BB84 protocol.
Quantum channel and attack simulations require all traffic from Alice to Bob to pass through
Eve’s container, which is in charge of applying noise, measurement, and other possible effects
from the external environment. Each container exposes a single interface on the overlay
network provided by the CNI plugin and used by the CR. All traffic, regardless of the channel
type (quantum vs classical), flows through this interface to make a node able to communicate.

A simulated key exchange starts only when one of the parties requires it; for simplicity,
one can assume that Alice starts the communication. As a first step, Alice generates two
sequences of random numbers: one corresponding to the key bits and the other to the
sequence of randomly chosen bases. Given these two strings, the encoding process involves
the creation of a train of Statevectors which has a fixed length equal to the size of the Qiskit
register. This leads to a first important remark: the number of qubits required for a given
key length (e.g., 256, 4096) is consistently larger than the one currently supported by the
Qiskit local simulator or even the available quantum hardware. Because of this, the reader
can appreciate that a mechanism to manage an arbitrary number of key bits is provided in our
implementation. In particular, the train of Statevectors provides a straightforward method
to divide the complexity of the task and apply the same operations iteratively on shorter
quantum registers. Tests on different register sizes (section 3.6) allowed us to choose the best
size-performance compromise for our experiments (5 qubits). This size can be heuristically
adjusted depending on specific hardware testbeds and experiments.

Figure 3.6 depicts the high-level quantum circuit for BB84 with a quantum register
initialised to |00000⟩ in the computational basis (z-basis). As a remark for the reader, one
can choose as a basis either the computational or the Hadamard (x-basis) one. Such bases
are conjugate; namely, if one encodes a qubit in a z-basis and performs a measurement in
an x-basis, he obtains a 1∕2 probability for a 0 or 1 outcome and vice versa. BB84 requires
four distinct states, and since Qiskit initializes all states to 0, a bit-flip operation is required
to obtain 1 (X gate). Once the string of qubits is set to the randomly chosen values, it is
time to apply the correct basis. Given the second random string and the notion of Qiskit
initialising all Statevectors in the computational basis, one can switch to the Hadamard one
when required by the encoding by simply applying a Hadamard gate (H gate) to the specific
qubits. As a result, one gets the four-state encoding in Figure 3.6: 𝑞0 encodes a 1 in x-basis;
𝑞1 encodes a 0 in x-basis; 𝑞2 encodes a 0 in z-basis; 𝑞3 encodes a 1 in z-basis.

3.4 QKD simulator 45

Fig. 3.6 BB84 quantum circuit with 5-qubit register.

After the encoding, Alice sends the SVs to Bob using the pickle serialisation process.
Bob then chooses random bases and measures the received qubits with them. As a remark
for the reader, choosing a basis is equivalent to applying a Hadamard gate. When Alice and
Bob make the same choice, they get a valid qubit; otherwise, they may introduce an error
with a total probability of 1∕4. This is the principle behind the detection of an eavesdropper
(Eve). In Figure 3.6, the existence of a Hadamard gate for Eve indicates that she has chosen
a wrong basis. Many approaches allow for simulating an intercept-resend attack in BB84:
one can apply randomly chosen bases and measure the resulting states; in our approach, one
considers an additional Hadamard gate when Eve chooses a basis different from Alice.

Once Bob gets his measurement results, Alice and Bob start the Key Sifting process
by sharing their chosen bases and eliminating the related qubit when a mismatch happens.
Figure 3.6 shows how only 𝑞1 and 𝑞3 remain: for 𝑞1, Eve chooses the same basis as Alice,
and no error should be detected (Eve cannot be detected); for 𝑞3, Eve chooses a different
basis, leaving room for a 1∕2 probability of detection. The intercept-resend attack is further
discussed in section 3.6, providing also results of its simulation.

QBER estimation represents the subsequent step after the publication by Alice and Bob
of a portion of the sifted key, in this specific case, half of it. QBER is a valuable metric for
detecting Eve: in literature [59], a known threshold is 11%; in practice, it depends on the

46 Quantum Key Distribution in Software-Defined Infrastructures

key distillation process, i.e., adopting Advantage Distillation techniques [60] may enhance
the performance up to 20%. Since non-idealities and quantum channel noise are not yet
completely treated by the simulator, the only error measured comes from Eve. Given that
all the key qubits have been attacked independently of each other, QBER should be around
25%. As a remark for the reader, the QBER threshold must consider error correction and
privacy amplification. Moreover, both quantum channel noise and Eve’s action introduce
errors that may overlap, and we shall detect and correct them in the case of noise. This
requires being careful in choosing an error correction code and suggests also adopting PA
techniques to reduce the quantity of information gained by Eve and the number of usable keys.
Error correction and privacy amplification are aspects of the simulator under development.
In particular, Cascade protocol [61] for error correction and PA techniques based on Toeplitz
universal hash functions [62] are great candidates to be included in the next version of the
simulator, even though the general workflow already includes these two steps after the QBER
estimation.

3.4.2 E91 implementation

E91 implementation is inspired by Qiskit community9 and represents a primary prototype that
must be enhanced in the coming version of the simulator. Figure 3.7 describes the quantum
circuit adopted for the simulation. To get a singlet state (Equation 2.5), one can initialise 𝑞0
and 𝑞1 to |1⟩, apply a Hadamard gate to the first qubit, and employ a controlled NOT gate
(C-NOT) on the second qubit which is controlled by the first. The reader should notice that a
dedicated distributed module to generate entanglement pairs has been provided. Once ready,
this module sends the pair to the container acting as quantum channel, which is in charge of
performing all the operations on the pair without sharing the representation with Alice and Bob.
This is a mere implementation detail since it makes no sense to distribute the entanglement’s
simulation over different nodes realistically. Because of this, we demanded a central entity to
perform all the operations on the initial state by taking only classical information from Alice
and Bob, who get the final results after the computation. The forthcoming QKD simulator
releases will probably provide more efficient solutions to this problem.

Looking at the details, after the pair generation, the central container performs measure-
ments according to random choices provided by Alice and Bob (section 2.5). Alice and Bob
get three choices each, in turn (𝐴𝑗) and (𝐵𝑗) that are represented as a quantum circuit in
Figure 3.8:

9https://github.com/qiskit-community/qiskit-community-tutorials/tree/master/awards/teach_me_
qiskit_2018/e91_qkd

3.4 QKD simulator 47

Fig. 3.7 E91 quantum circuit.

• Alice: 𝑞0 (𝜙𝑎3 = 90°), 𝑞1 (𝜙𝑎1 = 0°), 𝑞2 (𝜙𝑎2 = 45°);
• Bob: 𝑞0 (𝜙𝑏2 = 90°), 𝑞2 (𝜙𝑏1 = 45°), 𝑞3 (𝜙𝑏3 = 135°).

Eve can perform the same measurements on both Alice and Bob’s branches. Figure 3.7
does not consider Eve’s measurements since they are implicit. Following the measurements,
one can split the obtained bits into two groups (section 2.5): one for the final key and one for
the CHSH inequality verification. One can compute the value in Equation 2.8, also using
Equation 2.7 and Equation 2.6. If the value is close to the correlation (anti-correlation)
desired, one can keep the final key; if not, the key must be discarded.

Fig. 3.8 E91 Alice and Bob’s possible measurements.

48 Quantum Key Distribution in Software-Defined Infrastructures

Table 3.1 Southbound interface API
API ACCESS METHOD ETSI’S METHOD NAME
/api/v1/qkdm/actions/open_connect POST open_connect
/api/v1/qkdm/actions/get_key POST get_key
/api/v1/qkdm/actions/close POST close
/api/v1/qkdm/actions/get_kids GET -
/api/v1/qkdm/available_keys GET -

3.5 REST APIs and general workflow

This section provides an in-depth discussion of the implementation details, such as the overall
workflow in a general use case and the list of the REST APIs exposed by the various interfaces.
As a first remark for the reader, this data are also available in the open GitHub repository of
the project (mentioned before) and the work published in IEEE access [57]. A second remark
lies in the fact that the proposed APIs are an extension of the standard ones from ETSI, hence
where one finds the corresponding ETSI method that indicates that those are ETSI-compliant
in terms of interface.

3.5.1 QKDM interfaces

The southbound interface (QKDMs-QKS) is composed of the following calls:

• /api/v1/qkdm/actions/open_connect: creates a logical key stream between QKDMs,
identified by a Key Stream ID (KSID) and starts the key exchange process among them.

• /api/v1/qkdm/actions/close: ends a key stream flow, preserving the already ex-
changed keys.

• /api/v1/qkdm/actions/get_key: retrieves keys from a key stream given a KSID
and a KIDs, UUID_v4 identifiers acting as handles for the keys.

• /api/v1/qkdm/actions/get_kids: yields a set of KIDs to compose an aggregate
key, given a KSID and the key_info, which are the characteristic of the preferred key.

• /api/v1/qkdm/available_keys: returns the number of available keys.
• /api/v1/qkdm/actions/attach_to_server: registers a QKDM to a QKS.

These are the calls for the Sync Interface:

3.5 REST APIs and general workflow 49

Table 3.2 Northbound interface API
API ACCESS METHOD ETSI’S METHOD NAME
/api/v1/keys/{slave_SAE_ID}/status GET get_status
/api/v1/keys/{slave_SAE_ID}/enc_keys POST get_key
/api/v1/keys/{master_SAE_ID}/dec_keys POST get_key_with_ID
/api/v1/preferences GET -
/api/v1/preferences/{preference_ID} PUT -
/api/v1/information GET -

• /api/v1/qkdm/actions/stream_create: notifies the KSID to a peer QKDM.
• /api/v1/qkdm/actions/sync_KID: notifies the chosen KID to the peer after the

exchange.

3.5.2 QKS interfaces

In the following the Northbound Interface (SAE-QKS):

• /api/v1/keys/{slave_SAE_ID}/status: returns to the master SAE, which starts
the exchange, the status of a target slave SAE.

• /api/v1/keys/{slave_SAE_ID}/enc_keys: yields the keys requested by the master
SAE. The slave QKS shall be informed to reserve those keys for the served SAE.

• /api/v1/keys/{master_SAE_ID}/dec_keys: returns the keys to the slave SAE.
• /api/v1/preferences: gets settings information, such as log levels, selected proto-

cols, and timeouts.
• /api/v1/preferences/{preference_ID}: modifies current settings.
• /api/v1/information: returns QKS specific information, e.g., QKD supported de-

vices.

As a note for the reader, registering a QKDM to a QKS implies giving the QKDM restricted
access to the centralised database and Vault. Finally, the External Interface (QKS-QKS)
provides these calls:

• /api/v1/saes/{slave_SAE_ID}: checks SAE reachability.

50 Quantum Key Distribution in Software-Defined Infrastructures

• /api/v1/kids/actions/reserve_key: reserves a key between two SAEs.
• /api/v1/keys/actions/send_KSID: forwards KSID among two QKSs.

3.5.3 General workflow

The general workflow can be divided into three phases: QKDM registration, key exchange
initialisation, and key request from high-level applications. Figure 3.9 provides a view of
these steps, considering an Alice-Bob key exchange setup.

Initially, Alice and Bob’s QKDMs register to their QKSs by using a register_module
call and providing information about the reachable destinations. QKSs set up the local
environment granting the QKDMs restricted access to the centralised resources. As a note for
the reader, only authorised QKDMs can perform such a request, i.e., they must be registered
to Keycloak.

After the registration, QKDMs are able to exchange keys with each other and store them
as secrets in Vault. As an optimisation, Vault also acts as a buffer continuously refilled with
fresh key material even in the absence of requests. The QKS calls the open_connect on the
QKD module to start the exchange, performs a second check on the destination and sends a
stream_create to the other QKS, adding QoS-related information and a fresh KSID. This
trigger a specular behaviour on the second site, which is then ready to accommodate the
exchange. Since the requirement for aggregated keys is common, the reader can observe that
most of the aggregation strategies can be implemented at the QKDM level.

Finally, Alice and Bob may request a key at the application level. Once the request
hits the QKS, bearing additional information regarding the nature of the desired keys, the
QKS asks for a set of KIDs. Once available, KIDs are reserved on the peer QKS through
a reseve_key so that no other SAEs can claim them. The store-and-reservation process
extends the standard, saving key material and adopting a robust sharing mechanism. When
these preliminary operations are completed, a get_key is performed to propagate keys from
the QKDM to the SAE through the QKS. Then, an aggregate of the key handles, namely
Aggregate Key ID (AKID), is sent to the second SAE, which calls a get_key_with_ID to
retrieve the key material.

3.6 QKD simulator Testing 51

Fig. 3.9 Workflow of the complete solution: a) QKDM registration phase; b) key exchange; c) key
request from a SAE.

3.6 QKD simulator Testing

The QSS version of this chapter is a preliminary version of the latest and more advanced
software stack, presented in chapter 4. Nevertheless, the reader may appreciate all the
underlying design principles which impact and sustain the following advanced version.
Because of this, one can only find quantitative results about the QKD simulator in this section,
leaving the chapter 4 to discuss the performance of the other components. All tests presented
in this section have been performed considering: two bare-metal nodes with an Intel Core
i5-5300U CPU @ 2.30 GHz, 16GB of RAM, an Ubuntu 20.04 LTS server Linux distribution,
Docker Engine CE v20.10.1, and Docker Compose v1.27.4.

52 Quantum Key Distribution in Software-Defined Infrastructures

0 1 2 3 4 5 6 7 8 9 10 11 12

10

20

30

40

50

qubits (#)

tim
e(

s)

100

200

300

400

500

thr
ou

gh
pu

t(b
ps)

Fig. 3.10 Execution time for a 4096-bit key exchange depending on the qubit register size.
Table 3.3 BB84 key exchange rate and time. All values refer to a 4096-bit key exchange except the
last one, which is calculated on a 2048-bit key exchange.

SCENARIO BIT-RATE (BPS) EXCHANGE TIME (S)
Baseline 440.43 9.30
AES-GCM only 419.67 9.76
SPHINCS+ only 338.79 12.09
QRNG + SPHINCS+ 24.75 82.78

As a note for the reader, QBER and throughput (bit-rate) of the exchanged keys are the
metrics involved in all our tests. Figure 3.10 starts analysing the impact of the Qiskit quantum
register size on the performance. The first result was to detect our experiments’ optimum
register size (n=5), which corresponds to a trade-off between performance and computational
complexity. As a remark for the reader, IBM Q offers a remote quantum circuit simulator of
up to 32 qubits; our local system can barely manage twelve qubits.

Assuming the optimum register size and aiming at measuring execution time and key
rate, other experiments have been conducted. In particular, depending on the adoption of a
QRNG and a specific authentication method, one can distinguish the following cases: QRNG
and SPHINCS+; SPHINCS+ only; AES-GCM only; raw exchange without authentication
and QRNG (baseline).

Figure 3.12 and 3.11 show how the key rate grows with the key size, reaching a plateau
once the system resources are drained. Table 3.3 gives an overview of all configuration
plateaus.

3.7 Related work comparison 53

0 5121,024 2,048 4,096
2

4

6

8

10

12

14

key length (# bits)

tim
e(

s)

SPHINCS+

AES-GCM
baseline

Fig. 3.11 BB84 key exchange time depending on the key length.

As remarks for the reader, QRNG simulation is time-consuming since one needs to
simulate several quantum circuits to get every single key. Moreover, key generation can be
considered an orthogonal problem. Because of this, QRNG has been excluded from the other
tests after showing its impact on the performance. As the reader may expect, the baseline
is the one showing the best performance, while adding authentication leads to a necessary
overhead. AES-GCM performs better than SPHINCS+ (SHAKE256-128f variant), which is
another expected result since the large time required for signing and verifying, i.e., 275 ms
and 11 ms on average.

Finally, Figure 3.13 shows the results - consistent with the theory - of a simulated intercept-
resend attack. As a note for the reader, this is the simple version of the attack where all qubits
are attacked independently.

In more detail, QBER is measured for different amounts of attacked qubits during an
8192-bit key exchange. As the number of the attacked qubits grows, the QBER increases,
reaching the value of 1∕4 when all qubits are attacked. This result, in the absence of noise
and under ideal conditions, follows the theory and proves the consistency of the simulator.

3.7 Related work comparison

The reader may appreciate a comparison of this work with the existing literature. One
can divide this evaluation into two aspects: the integration of QKD in software-defined
infrastructures (QSS) and the QKD simulator.

54 Quantum Key Distribution in Software-Defined Infrastructures

0 5121,024 2,048 4,096
0

50
100
150
200
250
300
350
400
450
500
550
600

key length (# bits)

bit
rat

e(
bp

s)

QRNG + SPHINCS+

SPHINCS+

AES-GCM
baseline

Fig. 3.12 BB84 key exchange bit rate depending on the key length.

As an example, a first point is explored in [63], where the authors give an intriguing
perspective from the viewpoint of a telecommunications operator. They demonstrate QKD
integration in current infrastructures by employing Software-Defined networking (SDN) and
provide valuable ideas on actual use case situations. The authors of [64] present a method
for combining QKD with SDN-controlled optical switches in an NFV context. Their study
focuses primarily on reconfiguring the quantum channel, e.g., using programmable switches
rather than the infrastructure’s key management. Using SDN, Lopez et al. [65] demonstrate
a viable QKD integration over a conventional telecommunications network. The authors
of [66] describe the SDQaaS framework, which implements a QKD-as-a-Service (QaaS)
strategy in which the QaaS functions are built inside an SDN controller.

These works use SDN to decouple the control and management plane from the data plane,
i.e. key transmission, within QKD networks. This technique permits dynamic modifications
in a QKD network, maximising the use of available quantum channels. Our approach is
distinctive because it focuses on the software stack necessary inside an infrastructure to
supply quantum keys to security applications. This is accomplished by creating a cloud-
native application that can operate directly on the target infrastructure without requiring the
deployment of SDN. Nonetheless, SDN might still be used to improve the utilisation of the
quantum channel, as stated in [64] and to centralise QKD nodes management. Moreover, our
system may be expanded by using the Software-Defined QKD (SD-QKD) method described
in [54]. This entails that our QKS must interact with an SDN controller, e.g., through
an SDN agent inside the infrastructure, to control the QKD modules. This modifies the
configuration of the modules based on the key exchange requests and stores information
on the participating apps. A more straightforward method might be readily implemented

3.7 Related work comparison 55

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
0

5

10

15

20

25

attacked qubits (#)

QB
ER

(%
)

Fig. 3.13 BB84 intercept-resend attack: QBER estimation.

on restricted infrastructures, and for a variety of use cases. At the same time, SD-QKD
functionality might be added to our solution.

Several publications [67, 68] specifically concentrate on modelling QKD protocols such
as BB84 and B92 for the second part of QKD simulation. These works seek to capture certain
protocols’ characteristics while considering the imperfections of real implementations. Addi-
tionally, the prior studies establish a framework for simulating a key exchange. Comparisons
with actual testbeds have been presented to demonstrate that their answers are consistent. In
contrast, our technique is broader and seeks to replicate quantum nodes that can communicate
via a simulated QKD network, independent of the protocols involved. In this regard, our
approach is not dependent on a particular technology or framework; instead, it aims to offer a
scalable, flexible framework for many use-case situations.

Other efforts [34, 33, 30, 31] approach the topic of Quantum Network simulation. These
studies attempt to match various suggested abstracted quantum network designs [69, 29] and
simulate a Quantum Internet scenario with several quantum nodes. This is a challenging
endeavour since there is no consensus or standard on the development of these networks.
NetSquid [31] is one of the most current and consistent techniques. This is a general discrete-
event-based framework for modelling all elements of quantum networks and modular quantum
computing systems, from the physical to the application level. In addition, the authors of [31]
provide proof of processing nodes based on NV centres in diamond and repeaters based on
atomic ensembles. In this instance, their solutions are more general than those offered by
the QKD simulators. Instead of Quantum Cryptography, they concentrate on the quantum

56 Quantum Key Distribution in Software-Defined Infrastructures

network protocols required to establish a Quantum Internet. Our technology is unique since
it simulates QKD networks and provides a testing tool for QKD in actual infrastructures.
This does not rule out the idea of extending our approach into a more general simulator that
could also use some of these frameworks to simulate Quantum Networks using a particular
technology, e.g., NV centres in diamond.

Chapter 4

Quantum Software Stack improvements

This chapter discusses the evolution of the QSS towards a full-fledged and adaptable software
stack for integrating QKD in SDI. In addition to several enhancements, the reader may also
appreciate the presented use case, which involves the integration of QKD in a Kubernetes
cluster. The presented work has been published in an international journal [70].

4.1 Kubernetes operators

Kubernetes is the de-facto standard for container orchestration and the management of
complex distributed infrastructures. It is relevant to introduce the concept of operator to
better understand the implication of using this objects to deploy, manage and integrate QSS
in SDI. Within an infrastructure, physical or virtual nodes, applications, exposed services,
and configurations are all treated as “resources”. Physical or virtual nodes may be grouped
together, forming one or many clusters. Nodes inside a cluster are designated as masters or
workers according to their function. Masters are deputed to the management while workers
run the user application workloads. For the sake of clarity, one can find in the following a
very short summary of the Kubernetes resources:

• Pod: is the smallest deployable object in Kubernetes and abstracts the application
workload that runs in practice by leveraging a container runtime such as Containerd,
Podman or Cri-o.

• Service: allows exposing services running in the pods by load balancing requests over
one or multiple replicas of the same service.

58 Quantum Software Stack improvements

• Deployment: is a resource which allows aggregating and linking several other resources
under the same descriptor to manage a specific application and automatically respond
to change in the infrastructure state, e.g., the failure of a pod.

• Secret: is a resource that typically contains passwords, keys, certificates and other
sensitive data used by an application.

• Custom Resource (CR): is a resource that can be defined to extend the standard Ku-
bernetes API by declaring a custom descriptor that needs to be managed by a Custom
Controller.

• Custom Controller: is an extension of the standard Kubernetes API and monitors a
specific set of CRs, taking action whenever one of these CR is created or modified.

One of the guiding concepts of Kubernetes is the control loop, in which resources are
defined, and controllers continually monitor them, taking appropriate action when necessary.
The Operator design utilizes CRs and controllers to monitor and manage the life cycle of
distributed applications by instantiating, updating, and customizing them. The ultimate
objective of an Operator in Kubernetes is to imitate the behaviour of a human operator
responsible for managing cluster resources.

4.2 Quantum Software Stack 1.0

For the reader’s convenience, we provide a brief summary of the architecture of the first
QSS version (Figure 4.1), so that the improvements to the QSS 2.0 appear clear and well
organized.

QSS 1.0 was created using four distinct layers: the lowest one includes QKD devices and
simulators; the layer immediately above treats QKDMs; then one can find the layer of the
QKS; finally, on top, there are SAEs. QKDM-QKS communication takes place employing
the southbound interface, while the northbound interface provides connectivity between QKS
and SAEs, and the sync interface allows QKS to QKS coordination.

From the standpoint of QKDM, there is an ongoing flow of key material amongst peers.
One can refer to this flow of keys as the KS. The QKS manages the KS’s life cycle. Each
QKS might have distinct QKDMs for managing multiple devices and thus reaching distinct
destinations. This feature enables QKSs in a QKD network to operate as trusted repeaters.
Additionally, mapping several QKDMs on the same physical device allows various flows

4.3 Quantum Software Stack 2.0 59

SAE

QKS

QKDM

QKD
Device

Node A

SAE

QKS

QKDM

QKD
Device

Node B

QKDM

QKD
Device

SAE

QKS

QKDM

QKD
Device

Node C

(1)

(2)

(4)

(3)

Fig. 4.1 Quantum Software Stack (QSS) presented [57]. Dashed lines represent TCP/IP secure
connections. Thick, double lines indicate the combination of a classical and quantum channel for
the QKD exchange. The numbers enumerate the main interfaces: (1) External Interface; (2) Sync
Interface; (3) Southbound Interface; and (4) Northbound Interface.

when devices support multiple streams. As shown in Figure 4.1, a PTP exchange may occur
between Node A and Node B, or we could access Node C from Node A by way of Node B,
acting as a trusted repeater. This capability was not fully implemented in QKS 1.0.

QKS 1.0 was primarily responsible for fulfilling SAE key requests and informing QKDMs
of where to store produced keys. When one SAE expects to securely connect with another
SAE over the same QKD network, a Key Reservation Process (KRP) is necessary. When a
source SAE (master or mSAE) contacts its QKS and requests key material, the latter provides
the number of keys, their length, and the destination SAE (slave SAE or sSAE). Then, a KRP
occurs between source and target QKSs. When a KRP is successful, the source QKS delivers
the needed keys and their corresponding IDs. Afterwards, mSAE can exchange these IDs
with sSAE, enabling it to obtain the duplicate keys through the QKS on-site.

A QKDM Registration Process (QRP) occurs with Keycloak when a QKDM registers
with a QKS. As a reminder for the reader, QSS utilizes Keycloak as IAM, and the QKDM
must be registered as a user in advance. Only then can the QKDM be configured by the
system administrator, and the QRP may begin through the Southbound Interface.

4.3 Quantum Software Stack 2.0

This section presents the QSS 2.0 and underlines the differences with the original prototype
in terms of architecture and programming approaches. Figure 4.2 depicts with dashed lines

60 Quantum Software Stack improvements

the components introduced or modified from the primary version. All other components
demanded minor changes.

QSS 2.0 introduces a paradigm shift from the synchronous multithreaded approach to
a new asynchronous multiprocessing strategy that well reflects the choice regarding the
programming language of the solution. Additionally, QSS 2.0 allows long-distance QKD
exchanges by using trusted repeaters. Large QKD network scenarios are now treatable by
this solution. The new software stack also includes a routing module, making possible the
discovery of the QKD network topology and finding the best path over trusted repeaters when
a long-distance exchange occurs.

Distributed
Redis cache

Database
(MongoDB)

QKD Manager
(core component)

External
Interface

(QKS to QKS)

Northbound Interface (ETSI GS QKD 014 Extended)

Southbound Interface (ETSI GS QKD 004 Extended)

Routing
module

Secret engine
(Vault)

SAEs

QKDMs

QKSs

IAM
(Keycloak)

Fig. 4.2 QKS 2.0 architecture.

4.3.1 Asynchronous Approach

QKS 1.0 employed a multithreaded synchronous approach with a relevant limit since CPython
interpreter restricts the execution of multiple threads at a time by exploiting the Global
Interpreter Lock (GIL) [71]. Additionally, the QKD Manager inside the QKS is an I/O
bound application, suggesting that it consumes consistent time waiting for results from

4.3 Quantum Software Stack 2.0 61

other applications. Because of this, the old synchronous approach negatively impacted the
overall performances, requiring a completely new strategy for QKS 2.0 totally founded on
an asynchronous pattern (asyncio Python library). Moreover, the QKD Manager exposes
REST APIs leveraging Quart [72], and Hypercorn [73] to serve incoming requests. Both
technologies support the asyncio library. All components, comprising Routing module,
QKDM, and various clients for MongoDB, Vault, and Redis, have been adapted to support
an asynchronous approach. As an essential remark, Hypercorn adoption allows scaling
the application components vertically and horizontally, meaning that when the number of
requests to the QKS grows, one can decide either to statically allocate additional workers
to Hypercorn or dynamically allocate more replicas of the QKD Manager. Finally, as a
cloud-native application, QSS can leverage Kubernetes to manage those scaling processes
automatically.

4.3.2 Trusted Repeaters

Commercial devices for QKD are typically constrained to PTP exchanges and cannot exceed
a hundred kilometres of range. Repeaters become necessary to communicate over a longer
distance. The authors of [46] comment how the lack of quantum repeaters based on entangle-
ment swapping in commercial devices leads to a requirement for trusted repeaters. These
rely on the weak assumption that nodes within a QKD network are trusted, hence functional
as relays to transmit key material.

QKS 2.0 introduces support for trusted repeaters. When a long-distance exchange is
required, according to the available routing information, the best path for the exchange
is selected, and multiple keys are reserved along the path nodes through a KRP. For key
transmission, the “store and forward” approach has been adopted [74], but more sophisticated
strategies can be added as a replacement or an alternative. As a remark for the reader, SAEs
is completely agnostic with respect to the complexity of the multi-hop exchange: PTP and
multi-hop require the exact same interaction between SAE and QKS.

4.3.3 Routing

The Routing Module (RM) provides traffic steering capabilities to the QKS and the entire
QKD network: as long as a path between two topology nodes exists and key material is
available, a key exchange is feasible among them. Each QKS includes an RM, which is able
to share routing information with other RMs in the network.

62 Quantum Software Stack improvements

As in [75, 76], the RM adopts as routing algorithm Dijkstra and implements a modified
version of the Open Shortest Path First (OSPF) protocol [77]. Link State Advertisements
(LSAs) are sent to update the routing information, e.g., exchange information about a SAE
reachable from a specific QKS. Particular events trigger LSAs: registration or removal of
a new SAE, opening of a new KS, and the expiration of the internal RM timer. A timer is
indeed required to solve inconsistencies related to faliures of the signalling mechanism, i.e., a
node becomes unreachable. Table 4.1 shows how RM data are structured in Redis.

Table 4.1 Description of the routing table entries in Redis.

Name Type Description

SAE_ID String name used to identify the destination SAE
next_hop String ID of the next QKS in the path to the destination SAE

dest String ID of the QKS of the destination SAE
cost Integer 𝐶(𝑡) for the path from source SAE to destination

length Integer number of nodes in the path to reach the destination

For message exchange RMs use TCP connections and a custom packet structure (Ta-
ble 4.2). Two packet types are currently supported: “S” packets for the transmission of
SAEs information and “K” packets for QKS related data. The cost function 𝐶(𝑡) for the
routing algorithm is defined by Equation 4.1, where ℙ is the set containing all the links of a
chosen path.

𝐶(𝑡) =
∑

𝑖
𝐾𝑖(𝑡) ∀𝑖 ∈ ℙ. (4.1)

The key load 𝐾𝑖(𝑡), namely the total cost of a link, depends on the available keys on the
same link at time 𝑡 and 𝑡−1. 𝑐0 denotes the maximum cost when there is no key in the peer
buffers (Equation 4.2). A second term adjusts this initial cost value, where 𝐾 is the buffer
size and 𝑘𝑖(𝑡) is the total number of keys at the time 𝑡; an increase of 𝑘𝑖(𝑡) decreases the key
load. A third term is added to the equation, controlling possible rapid variations of 𝑘𝑖(𝑡).
This is an effort to estimate additional cost contributions, such as congestion on a single
connection, given that the only accessible metric information pertains to the available keys
and no Quality-of-Service (QoS) parameters (e.g., error rate, jitter) are known. 𝑤1 and 𝑤2
enable balancing each term’s contribution.

𝐾𝑖(𝑡) = 𝑐0−𝑤1 ⋅
𝑘𝑖(𝑡)
𝐾

−𝑤2 ⋅
𝑘𝑖(𝑡)−𝑘𝑖(𝑡−1)

𝐾
. (4.2)

4.4 QSS in a Kubernetes Cluster 63

An essential remark for the reader is that the RM provides an independent routing manage-
ment, where each QSS can act separately; there is no need to know the topology of the QKD
network a priori and to leverage complex SDN-based scenarios. Alternative approaches [54],
based on SDN, have their own benefits and flaws. They can lead to a consistent reduction
of the traffic exchanged between peers (routing information), manage inconsistencies in the
network faster, and adopt optimization based on multi-path routing. As flaws, one has a
central point of failure that needs to be addressed with resilient and redundant resources, e.g.,
more than one SDN controller; moreover, a centralized managed entity must be carefully
protected since retaining all topology data allows potential breaches to arm the QKD network
in a more precise way, e.g., with DoS attacks. However, SDN approaches can be easily
integrated into our solution as support for control plan management.

Table 4.2 Routing LSA packet structure.

Field Name Description

version protocol version
type type of information, S for SAEs and K for QKDM links
source QKS source ID, address and port
routing source routing module address and port
forwarder ID of the last QKS which forwarded the packet
neighbors list of connected SAEs or active QKDM links (type field)
timestamp packet creation time
authentication data for authentication and integrity checks

4.4 QSS in a Kubernetes Cluster

Integrating the QSS in a Kubernetes Cluster allows enabling application workloads (pods)
to access the QKD key material directly, treating it as a secret type resource. This approach
enables extending the QKD usage to a wide range of use cases, considering that all modern
computing paradigms (e.g., Cloud-, Edge-, Fog-, and Liquid computing), SDN, and NFV
technologies massively use microservices and containers.

Master nodes in Kubernetes manage the resource type secret. Our idea of integration
lies in the assumption of having this centralised secret management system, where each
application inside a cluster can require QKD keys to communicate to an application belonging
to another cluster. The QSS inside the control plane of a cluster act as this manager and

64 Quantum Software Stack improvements

can be integrated as a Kubernetes operator. As a remark for the reader, from the final user’s
perspective, a key request is a simple resource creation (subsection 4.4.2), leaving the whole
complexity of providing the key as a secret to the QSS operator. Once obtained through a
common secret resource, the application workload can access the key.

4.4.1 Quantum Software Stack Operator

The QSS operator, based on the control loop pattern, relies on two CRs: Sae and KeyRequest.
The first maps the creation of a logical SAE to serve a specific application, and the second
models the event of a key request for a specific SAE pairs. The QSS operator manages the life
cycle of these resources and deploys the software logic through a custom controller and the
QSS software stack installed as a deployment resource type in the cluster. Figure 4.3 shows
a PTP exchange between two clusters and subsection 4.4.2 provides further details. Once
a Sae is applied beyond the logical representation of the resource, it registers to Keycloak
and performs a series of health checks to ensure the possibility of operating over the QKD
network. A KeyRequest creates a KRP at the QKS level and requires information on the
keys’ desired number and size.

sae_1

QSS Operator

qks_1

qkdm_1

sae_2

QSS Operator

qks_2

qkdm_2

Cluster 1 Cluster 2

Continuous key
exchange

Key reservation

Secure
communication

QKD secret QKD secret

Fig. 4.3 PTP exchange among clusters.

4.4 QSS in a Kubernetes Cluster 65

After a KeyRequest, one expects to find a new secret in the namespace of the application
workload. Figure 4.4 and 4.5 provides a template of Sae and KeyRequest YAML descriptors.
apiVersion: "qks.controller/v1"
kind: Sae
metadata:
name: sae1

spec:
id: sae_1
registration_auto: true

Fig. 4.4 Sae resource YAML descriptor.

apiVersion: "qks.controller/v1"
kind: KeyRequest
metadata:
name: request1

spec:
number: 1
size: 128
master_SAE_ID: sae_1
slave_SAE_ID: sae_2

Fig. 4.5 KeyRequest resource YAML descriptor.

4.4.2 Resource Creation and Key Exchange

This section analyses the specifics of resource production and the logic behind PTP and MH
exchanges as a whole. Some assumptions must be made about the feasibility of registering
SAEs and executing key requests. First, a QKD network and two or more Kubernetes clusters
are required, as seen in Figure 4.3. In addition to the QKS deployment, each cluster must
also have at least one QKDM deployed. Thirdly, we must instal and configure the QSS
operator on each cluster to utilise the Kubernetes API instead of the QKS interface. The
final assumption is that there is a constant interchange between the participating QKDMs;
hence, all registration procedures and the formation of KSs have been handled as stated
in Sections 4.3 standards and 4.3. Regardless of the kind of exchange, PTP or MH, all
SAEs must be registered on the network using the technique outlined in Figure 4.6. A Sae
resource may be created by an SAE administrator responsible for maintaining SAE resources
in Kubernetes and requires QKD keys. This activity may also be handled without human
participation by a custom operator. After creating the resource, the QSS operator recognises

66 Quantum Software Stack improvements

the new Sae resource and begins registering it with Keycloak. Again, we have two options:
manually register the SAE to Keycloak in advance, or allow the QSS operator to do this step
(automatic registration). This option is selectable in the description shown in Figure 4.4.
Once Keycloak has verified an SAE, the QSS Operator registers it with the QKS, and if
the automated registration procedure is enabled, it acquires the QKS access credentials by
generating a Kubernetes secret. Note that since the scope of the operator is global inside the
cluster, an SAE may exist in a different namespace than the QKS.

SAE admin/
operator

Sae

QSS Operator

QKS core

Keycloak
SAE credentials

SAE namespace QKS namespace

(1)
(2)

(3)

(4)

(5)

Fig. 4.6 SAE registration process. SAE admin/operator creates a resource of type Sae (1). QSS operator
monitors resource creation (2). When it finds the new Sae it starts the registration to Keycloak (3) and
the QKS core (4). At the end of the process it retrieves the SAE credentials (5).

When two registered SAEs want to exchange a key, it is necessary to generate a resource
of type KeyRequest. In particular, the admin/operator is again responsible for applying
the resource (Figure 4.5), supplying the key length, the number of needed keys, mSAE,
and sSAE as arguments. The process in Figure 4.7 is identical to the previous scenario
of SAE registration: the QSS operator detects the formation of the KeyRequest resource,
authenticates the SAE using Keycloak, requests the key material from the QKS, which
initiates the KRP and returns the key material to the QSS operator, and saves the final keys in
a Kubernetes secret.

Regarding Figure 4.3, it is important to note that, given an SAE within Cluster 1 as the
request initiator (or mSAE), the responder SAE (or sSAE) inside Cluster 2 must conduct
another KeyRequest with the IDs of the keys it wishes to receive. This information might
be sent through an authenticated channel, and this procedure could be automated using a
Kubernetes custom operator. After this second request, all affected SAEs have access to a
Kubernetes secret containing the QKD-generated key material.

4.4 QSS in a Kubernetes Cluster 67

SAE admin/
operator

KeyRequest

QSS Operator

QKS core

Keycloak
QKD secret

SAE namespace QKS namespace

(1)
(2)

(3)

(4)

(5)

Fig. 4.7 Key request process. SAE admin/operator creates a resource of type KeyRequest (1). QSS
operator monitors resource creation (2). When it finds the new KeyRequest it starts the authentication
through Keycloak (3) and forward the request to the QKS (4). At the end of the process it retrieves the
QKD secret (5).

The operator also enables MH exchanges, whose method is similar to the one described in
Figure 4.1, where it is indicated that Node A and Node C may exchange keys utilising Node
B as a Trusted Repeater. This conforms to what we described in subsection 4.3.2; hence,
given a QKD network where clusters are the nodes, we may still do exchanges traversing
those clusters and using QSS operators.

4.4.3 Applications to Suitable Use Cases

Using QKD [78] benefits security of several traditional applications. A central session
initiation protocol (SIP) server may share a key with each of its clients, for instance, in a
multi-user smartphone network with a star-type design. In this situation, QKD may provide
these keys to symmetric cryptosystems, such as the Advanced Encryption Standard (AES),
that are used to encrypt communication. Using QKD systems based on free-space optics
technology to secure drone communications is another intriguing possibility [79]. In addition,
QKD may be used in conjunction with other security protocols such as Internet Protocol
Security (IPsec) and Transport Layer Security (TLS) in order to offer trustworthy key material.
This strategy may be accomplished by modifying the latter protocols to use QKD keys through
specific APIs. In several instances, it incorporates versions or extensions of these protocols
(e.g., TLS-PSK).

68 Quantum Software Stack improvements

There is a multitude of cloud-native apps that might directly or indirectly benefit from
our approach. Indeed, security apps operating on a cluster, such as VPN endpoints, may need
QKD keys directly from the Kubernetes Operator in order to create a VPN tunnel between
two endpoints. Some applications may employ specialised microservices known as service
mesh (e.g., Istio [80]) and delegate to them the administration of TLS connections and other
security-related tasks. These objects can act as proxies and serve the upstream application
while remaining unaware of the TLS connection. These microservices might benefit from
our QKD-based TLS protocol security improvement solution.

From this wide variety of potential uses, blockchain technology represents a contem-
porary and compelling example. Blockchains currently serve various applications, from
cryptocurrency to supply chain management. Due to the sensitive data held in a blockchain
and the quantum danger impacting its underlying technologies, it seems appropriate to study
quantum-resistant blockchains. The authors of [81–83] examine the security of blockchain
technology, the implications of the arrival of quantum computing, and potential countermea-
sures from Post-Quantum and Quantum Cryptography. Similar to the preceding examples,
QKD may increase the security of blockchain systems. The Hyperledger project [84], and
in particular, the Hyperledger Fabric architecture, offers a clear example. Nodes inside a
permissioned blockchain network interact with each other using the TLS protocol and al-
gorithms such as RSA and ECDSA. The purpose of QKD for this application is to develop
a quantum-resistant communication protocol between nodes and framework components,
either based on an upgraded version of TLS or a new protocol. Regardless of the protocol’s
choice, our method might offer a consistent mechanism for integrating QKD even in this
case. The Hyperledger Fabric framework may be readily deployed as nodes inside several
Kubernetes clusters, needing no modifications to our present architecture.

Finally, it is essential to note that the QSS Operator has been built to adapt to various
settings and situations. In particular, the QSS operators may function as a central entity in
a large cluster of hundreds or thousands of nodes. In other cases, it can still be efficiently
adopted with fixed resources, such as edge computing and IoT systems. K3s may help deploy
an optimised Kubernetes cluster on a single node with constrained resources. These are the
minimal requirements of our solution.

4.5 Testing 69

4.5 Testing

This section presents the evaluation of QSS 2.0 by using execution time and key rate as
metrics. The reader can appreciate that both PTP and MH exchanges were considered, and
also the performance of the introduced RM was collected.

The scenario adopted for all experiments involves three Kubernetes clusters, each one
deployed on a separate physical node (master and worker on the same node) with the following
specifics: CPU Intel Core i5-5300U 2.30GHz, 16GB of RAM DDR3 1600MHz, Ubuntu
20.04.3 LTS, K3s version 1.22.5 and containerd v1.5.8 as the container runtime. The only
exception is about the RM tests that were performed on a virtual machine with the following
specifics: 16 vCPUs, 40GB of RAM, Ubuntu 18.04.5 LTS, and Docker CE version 20.10.5.
A remark for the reader is that, in this case, all nodes were simulated by Docker containers,
and the metric was the average convergence time of the routing algorithm. This means that
beyond the quantitative results, one wanted to asses the global trend of increasing the number
of nodes in the QKD network.

4.5.1 Exchange time and key rate

The first test evaluated exchange time and key rate under different conditions, i.e., depending
on the variation of the underlying QKD devices exchanges. Two main objectives were
pivotal: understanding the plateau or maximum key rate available for a given architecture
and specifics and comprehending how throttling the QKD devices’ key rate may impact the
overall exchange, e.g., showing blocking errors and system instability.

As a remark for the reader, we used a custom QKDM which simulated a key exchange
at a given rate up to 2 Mbps. The first important result concerned Vault and its role as
the bottleneck in the system. Considering that our solution in the standard configuration
stores 128-bit keys and it takes an average of 5.6ms to save one, the maximum key rate is
around 22.8 Kbps. A simple solution to that would be to scale Vault horizontally since it is a
cloud-native application itself. Despite a reasonable benefit, this solution does not solve the
problem entirely and is resource-consuming. A second option would be to set another size
for the stored key and move the complexity to the following aggregation step. The reason for
a 128-bit size lies in the will to avoid key waste and the simplicity of aggregating keys for
most of the available symmetric algorithms. For the rest of the tests, the reader can consider
22.8 Kbps the upper bound characterising the QKDM level.

70 Quantum Software Stack improvements

Figure 4.8 shows the execution time of a KeyRequest, considering the QKS getKey
operation time (highest impact) and the other operations performed by the QSS operator (QSS
operator time in Figure 4.7). Varying the number of keys requested and the length of those
keys, one can follow an increase in the getKey time despite the constant operator time. The
getKey operation performs KRPs according to the number of keys requested and extracts the
keys from Vault, values that clearly depend on the number and the specifics of the requests.
Vault optimisation strategies are already clear, though the reader may appreciate more details
about concurrency management. As shown in subsection 4.3.1, adopting the asynchronous
framework already benefit this aspect. With a single Hypercorn worker and a single QKS
replica, the throughput is around 56 Kbps (considering that the keys are already available
in the buffer). Scaling this aspect is not an issue since one has two parameters, Hypercorn
workers and QKS replicas, that can support reaching throughput far beyond the one reported
here.

0

500

1000

1500

2000

2500

1-128 1-1024 10-128 10-1024 100-128 100-1024

Ti
m

e
(m

s)

Request (number of keys - key size)

Operator time QKS time

Fig. 4.8 Execution time to handle a KeyRequest resource type.

Figure 4.9 shows another test regarding the success rate of KeyRequests depending on
the QKDM fixed exchange rate and key rate requested. The chosen reference values for the
QKDM key rate were 2 Kbps and 1 Kbps. Clearly, in the first column, having a QKDM rate
which is two times the request rate, leads to no 100% success. Even using the same QKDM
rate leads to a small percentage of loss due to some internal delay in the propagation of the
keys. Increasing the request rate beyond the QKDM rate leads to failure and retransmission
in both cases. The interesting part is that dynamically varying these values shows how the

4.5 Testing 71

system can return to 100% success as soon as normal conditions are restored. Additionally, it
notifies the layers above in case of loss and failure.

0

0,2

0,4

0,6

0,8

1

1,2

1024 2048 4096 8192

Su
cc

es
s r

at
e

Requested bit per second
2048 bit/s device rate 1024 bit/s device rate

Fig. 4.9 Success rate of the getKey requests to the QKS varying the underlying exchange rate.

In the end, Figure 4.10 provides the results of an experiment performed on an MH scenario,
where the cluster in the middle act as a trusted repeater. In particular, one can observe the
values of getKey and getKeyWithId in a PTP and MH comparison. The expected yet
interesting result shows how for the getKey, the execution time depends on the number of
intermediate hops while for the getKeyWithId remains constant.

4.5.2 Routing

The last performed test involves the RM. In this specific case, there is no need for the whole
stack or different physical nodes since the objective is to understand the trend of the average
convergence time of the routing algorithm depending on the number of QKD nodes. Because
of this, one can treat each QKD node as a Docker container that is provided with the RM
code and communicates over a TCP/IP overlay network to reach other nodes. The experiment
consisted in generating random events, such as SAEs and QKDMs registrations and removals,

72 Quantum Software Stack improvements

0

100

200

300

400

500

getKey - 2 hop getKey - 1 hop getKeyWithKeyIDs - 2 hop getKeyWithKeyIDs - 1 hop

Ex
ec

ut
io

n
tim

e
(m

s)

Request type
QKS time Operator time

Fig. 4.10 Execution time of the getKey and getKeyWithId functions for Point-to-Point and Multi-
hop exchanges.

with a time interval of 10 seconds and measuring the convergence time. The first result
demonstrated that each node can correctly form the identical QKD network topology in his
table for every topology represented by a connected graph and can contact all available nodes.

Figure 4.11 illustrates the average convergence time of the algorithm progressively in-
creasing the number of QKD network nodes up to 50. An essential remark for the reader is
that this test has been performed on virtual networks with relatively low latency and large
bandwidth. A test over real large-scale networks may be affected by those parameters, lead-
ing to adjusting the expiration time of LSAs to preserve the convergence. Dijkstra has the
following computational complexity: (|𝐸|+ |𝑉 | log |𝑉 |) where |𝐸| is the number of links
and |𝑉 | is the number of nodes. Large QKD networks may require support for different
autonomous systems [77].

4.5 Testing 73

0

20

40

60

80

100

120

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Av
er

ag
e

co
nv

er
ge

nc
e

tim
e

(m
s)

Number of QKD network nodes

Fig. 4.11 Average convergence time of the routing algorithm depending on the number of nodes in the
QKD network.

Chapter 5

QKD simulation over distributed
infrastructures: QuaSi

This Chapter analyses Quantum Simulator (QuaSi), an evolution of the QKD simulator’s
prototype described in section 3.4. Despite the interesting model for the simulation involving
a distributed cloud-native application, i.e., endpoints and channels as distinct and interchange-
able modules, the first prototype of the QKD simulator presented several flaws. In particular,
the initial idea was to focus on a PTP approach without considering the complexity of possible
quantum network scenarios. Moreover, even promising high scalability, tools and strategies
to orchestrate large network scenarios were not provided yet in the preliminary work [57].
Because of this and other sought performance improvements that the reader can appreciate in
this chapter, QuaSi represents an enhancement and a more stable version of the QKD simula-
tor. In the following sections, one can find a presentation of the overall advantages behind
QuaSi, the overall architecture and the general overflow, and the final test and validation
comparing its performance against its previous version.

5.1 Simulation process design and objectives

As depicted in Figure 5.1, the concept at the very ground of the simulation process does
not change from the old QKD simulator. Alice, Bob, and, more generally, the endpoints
are containerized processes that can communicate with each other over TCP/IP networks.
The simulation of the attacks, as well as the characteristics of the quantum channel, can be
included as an opportune transformation within a third containerized process (Eve) which can

5.1 Simulation process design and objectives 75

filter out the traffic of both classical and quantum channels, hence simulating noise, quantum,
and classical attacks.

Alice
(endpoint A)

Bob

(endpoint B)

Eve

(Channel +

Attacks)

Virtualisation technologies

(e.g., container runtime, CNI, overlay networks)

classical and quantum channels

over TCP/IP connections

Fig. 5.1 Basic PTP simulation strategy within QuaSi.

As important remarks for the reader, one should point out that the very aim of this
simulator at this stage is to provide an efficient tool to scale and manage the QKD simulation
over a distributed infrastructure, not to provide theoretical or heuristic values of metrics such
as the key rate, that even if possible would be just one of the many application of such a
distributed simulator. There are many examples of Quantum network simulators (section 2.4)
either working on low-level simulations based on a discrete event strategy or only focusing on
a specific protocol, e.g. BB84 for the QKD. Our idea is different since we do not want to give
a mere metric as a result but propose a framework that can be shaped as the requirements for
a specific simulation, backend, and protocols arise.

As a first example, we have this distributed concept of endpoints because we do know
that a direct application of the QKD simulation on a QKD network involves a direct interface
with the upper layers, i.e. QKDMs, key managers, and security applications. Because of this,
having a process, an entity that can directly expose an interface to the rest of the quantum
stack, simplifies the interaction with the other components and leaves room to manage all the
post-processing requirements for the QKD that can be developed as part of the distributed
simulator at first and then reused in real use cases by replacing the simulation of the quantum
part with real hardware.

Another important aspect is the possibility of simulating, with different backends, the low-
level part by describing the protocol with the desired precision and model. We adopted - as in
the case of the QKD simulator - Qiskit as the backend, which can be easily replaced with many
alternatives. In particular, our initial simulation for DV-QKD is based on quantum circuits
whose evolution can be computed over distributed processes (e.g., Alice, Bob, Eve). This

76 QKD simulation over distributed infrastructures: QuaSi

allows us to describe attacks as quantum circuits that can act on the opportune representation
of the qubits object of the key exchange.

The reason why we are remarking on this is to inform the reader that our final objective is
not to provide a more precise and technology-dependant simulation of specific protocols but
to propose a general model on how to distribute this simulation, also considering the classical
post-processing, a precise and flexible data model, and a practical framework on which it is
possible to operate.

The only significant difference from the previous version in terms of simulation is related
to the enhancement of the simulation performances. Computing quantum circuits in Qiskit
is a tough task as the size of quantum registers grows and the operation over these qubits
(represented as State Vectors or Density Matrices). In order to improve the simulation and
considering that we used Python, a programming language, we adopted a multiprocess
approach which allowed us to overcome the GIL limitations and measure a positive impact
on the performance. Finally, the containers used for the simulation - that are open-source and
available online - can be executed regardless of the specific container runtime adopted.

5.2 High-level Architecture

So far, the simulation approach has been discussed without considering the significant changes
in terms of architecture and workflow of QuaSi with respect to the previous version of the
simulator. In this section, one can find a description of the overall architecture of QuaSi and
an analysis of the various component and their functionalities.

As depicted in Figure 5.2, QuaSi is based on a modular architecture where the more rele-
vant elements are: a Kubernetes cluster, the Simulator Manager, and RabbitMQ. Kubernetes
provides - as in the case of the software stack - a practical and flexible environment where one
can orchestrate all the available nodes within the topology, endpoints and channels in the form
of pods. Given a YAML representation of a network topology and the base container images
representing the software logic of the various nodes, the idea is to leverage Kubernetes to
deploy at once the whole topology and use specific software components to start, configure,
and manage the simulation. These software components are the Simulator Manager, in charge
of orchestrating the simulation and RabbitMQ, a message broker, in charge of handling and
distributing messages across the nodes.

Starting from the infrastructure, everything is built on top of a Kubernetes cluster that
can be scaled in terms of master and worker nodes as needed. This scaling impact neither the

5.2 High-level Architecture 77

provides

configurations

and starts

a simulation

Simulator
manager RabbitMQ

k8s cluster

master

nodes

user

provides

topology

data

manage

worker
nodes

endpoint

channel

(Eve)

endpoint

endpoint

channel

(Eve)

endpoint

endpoint

channel

(Eve)

endpoint

endpointchannel

(Eve)

endpoint

channel

(Eve)

channel

(Eve)

TCP/IP

connection

to each one

of the node

k8s cluster
worker
nodes

communication

to RabbitMQ mgmt

and to each topology

node

data to external

components

(e.g., QKDM)

network

topology

Fig. 5.2 High-level architecture of QuaSi.

logic nor the communication among topology nodes. As a remark, with topology nodes, we
intend the nodes of the simulated network, e.g., the pods on the worker nodes. For master
and worker nodes, we intend virtual or physical nodes on which the Kubernetes cluster is
built. The additional services, Simulator Manager and RabbitMQ are deployed within the
same cluster on the worker nodes in turn as a Deployment and a Stateful Set.

In more detail, the Simulation Manager is a software component which exposes a REST
API towards the user of the simulator and, eventually high-level third-party application
that wants directly use it (e.g., QSS). Through this REST API, it is possible to provide the
simulator Manager with the deployed topology, start, stop, and manage the exchange process
for the various QKD exchanges (Table 5.1). The simulator Manager, once instructed on the
operational tasks, proceeds by injecting configuration in each node and starting the exchange
processes by leveraging specific message queues on RabbitMQ for Simulator manager-nodes
communication.

URL Access Method
http://{Simulator URL}/getTopology POST
http://{Simulator URL}/distributeKeys POST
http://{Simulator URL}/startKeyExchange POST
http://{Simulator URL}/begin POST
http://{Simulator URL}/end POST

Table 5.1 Simulator Manager REST API for end users and to third-party applications.

78 QKD simulation over distributed infrastructures: QuaSi

RabbitMQ, as anticipated, is used as the message broker for inter-node communication,
connectivity to the Simulator Manager, and extra-cluster communication. In particular,
each message among nodes passes through a specific queue, implementing an asynchronous
communication which replaces the old inter-node REST API and benefits the performance of
the overall systems since, by design, this simulator is an I/O intensive application, i.e., each
node takes time to produce a valuable output for the next node. RabbitMQ exposes, upon a
specific registration process with the Simulator manager, an external queue to retrieve the
data from the simulation for each one of the nodes, i.e., key material exchanged during the
simulation. As an example, a QKDM can be registered as a consumer for a specific topology
node and receive key material as soon as it is produced.

Finally, we want also to underline a technical choice that supports the adoption of this
model for a distributed simulation. As in the case of the QSS and its enhanced version and
integration to a Kubernetes cluster, we developed a Kubernetes Operator for the Simulator
Manager. Because of this, one has an automatic tool for deploying the basic component of
the simulator, i.e. Simulator Manager, RabbitMQ, and all related additional resources. At
the same time, the Simulator Manager can monitor Kubernetes CRs and provide changes
to the infrastructure resulting in complete integration with the Kubernetes cluster itself. As
an example, the Simulator Manager can monitor the creation of a custom resource (control-
loop strategy) related to a network topology so that once they are instantiated through the
Kubernetes control plane, certain operations can be triggered directly on the cluster, such as
the RabbitMQ queues initialisation.

5.3 Data model and workflow

An important new element of QuaSi is the generic data model for inter-node communication.
In order to validate messages, differentiate them, and reserve fields for peculiar additional
information, we proposed the generic model in Table 5.2. Clearly, all the communication
through RabbitMQ queues leverages the Advanced Message Queuing Protocol (AMQP).

5.4 Test and Validation 79

Field Description
Type The type of the message
Source The name of the entity that sent the message
Destination The name of the entity the message is destined to
Metadata Contains the configuration parameters of a Simulation
Body What the source wants sent to the receiver

Table 5.2 Data model of inter-node message exchanges.

As for the workflow, one can summarise the whole QuaSi simulation in the following
phases: deployment, initialisation, starting, and data collection. The first deployment step
involves the user contacting the Kubernetes API and submitting the YAML file describing
the desired topology. Afterwards, the same user, in the initialisation phase, interacts with
the Simulator Manager API providing the same topology and the description of the required
configuration. This allows for the same topology to change various settings and obtain various
instances of the same simulation. Then, in the starting phase, the user asks the simulator
manager to start the simulation of the exchanges for all the PTP links or a subset of them.
In the final phase, the data collection, either the user or an external process (third-party
application case) can collect data from specific RabbitMQ queues and retrieve statistics as
well as key material exchanged.

5.4 Test and Validation

As a remark for the reader and before presenting the test and validation results, we want to
report that the entire implementation of QuaSi is available on this GitHub repository1 as
open-source.

Beyond the intrinsic scalability of the cloud-native approach and the adoption of Kuber-
netes, relevant as quantitative results, one can measure the performance of the system in
terms of key exchange time and key rate in a PTP scenario. This value can be then compared
with the one related to the first version of the QKD simulator. In Figure 5.3, one can observe
key exchange time and key rate depending on the key length, in the case of a single worker
on both endpoints, the size of the Qiskit quantum register set to 5, and a single key exchange.
One can also appreciate the difference between a raw exchange (w/o authentication) and an
exchange using as the authentication method a digital signature using SPHINCS+. Even
in this case, due to the optimisation of the asynchronous approach and the message broker,

1https://github.com/ignaziopedone/QuaSi

80 QKD simulation over distributed infrastructures: QuaSi

0 0.5 1 2 4
0

0.5

1

1.5

2

2.5

key length (Kbits)

tim
e(

s)

w/o auth
SPHINCS+

0 0.5 1 2 4

0.5

1

1.5

2

2.5

key length (Kbits)

bit
rat

e(
Kb

ps)

w/o auth
SPHINCS+

Fig. 5.3 Key exchange time and key rate depending on the key length for the base exchange without
authentication and with SPHINCS+. Quantum register size is set to 5, the number of exchanged keys
to 1, and only 1 worker is available.

1 3 5 8 12 16

20

40

60

80

100

120

140

worker number (#)

tim
e(

s)

SPHINCS+

1 3 5 8 12 16

1

2

3

4

5

6

worker number (#)

bit
rat

e(
Kb

ps)

SPHINCS+

Fig. 5.4 Key exchange time and key rate depending on the number of available workers. Key length is
set to 4096 bits, quantum register size to 5, and the number of exchanged keys is 25.

the performance is slightly increasing with respect to the classical QKD simulator. As we
expected, signing messages with SPHINCS+ introduces an overhead to the total time required
for the key exchange. In Figure 5.4, one can observe the same metrics, but they depend
instead on the number of available workers. In this case, the length of the key is set to 4096
bits, the quantum register size is set to 5, and the number of keys exchanged is 25. The reader
can observe how the multiprocessing approach leads to a significant improvement in terms of
performance (an order of magnitude) with respect to the classical QKD simulator. In this case,
we only show the experiment using SPHINCS+ for authentication. As a note for the reader,
the variant of SPHINCS+ used in these experiments is the same adopted for the test with
the classical QKD simulator. As another remark, this last result leaves room for additional
low-effort improvements since SPHINCS+ is probably the worst-performing algorithm in

5.5 Applications, extensions, and future work 81

terms of signature per second (we are not considering the level of security and the robustness
since the standardisation is still in progress). As an example, choosing CRYSTALS-Dilithium
as the signature algorithm may dramatically improve the performance while maintaining a
high level of security, according to the NIST scale.

5.5 Applications, extensions, and future work

An immediate application of QuaSi lies in the integration with the QSS. One can imagine a
dedicated Kubernetes cluster as a core for simulating an extensive network of low-level PTP
devices and providing the interactive results of this simulation to the QKDMs of the QSS
instances running on top of the QKD network nodes lying on those low-level devices.

As for the extensions, perhaps the most interesting would be to add a feature to calculate
the theoretical maximum key rate achievable for a given protocol and conditions of each PTP
link. This can be obtained as a result of an optimisation problem whose complexity can be
distributed among the very same topology nodes of the network.

Since the significant advancements of the simulator have been towards the infrastructural
aspects, most of the required future efforts need to focus on the simulation part. Probably
adding new backends, QKD protocols support as well as investigating protocols beyond QKD
is a priority for the subsequent developments of this framework.

Chapter 6

Quantum Annealing to optimise
Software-Defined Infrastructures

This chapter provides a QUBO formulation of a generic VNFEP. This formulation is tested
using the D-Wave Advantage Quantum Annealer and, as an alternative, two classical solvers,
based on Tabu search and Simulated Annealing. This work has been published in the proceed-
ings of the third IEEE International Conference on Quantum Computing and Engineering
(QCE22) [85].

6.1 Quantum Annealing-based SDI optimisation

Currently, the ever-expanding market for devices that need internet connectivity and the
provision of sophisticated and diverse network services requires flexible and scalable in-
frastructures. SDI, as mentioned in chapter 2, can help with NFV technologies that may
efficiently manage and orchestrate those services. As a reminder for the reader, NFV aims at
creating network functionalities using software functions called VNFs that can be executed
and allocated flexibly on general-purpose hardware. This eliminates the requirement for
physical special-purpose equipment. Moving network function allocation from hardware
to software substantially increases the network’s adaptability and simplifies its scalability
to meet ever-changing customers’ requirements. VNFs can be developed to serve security
purposes (e.g., Firewall, IDS, and NAT), as in the case of the SECaaS paradigm. Also, in this
case, VNFs can be executed on standard physical resources, such as High Volume Servers
(HVSs) and additional hardware if required, e.g., storage components.

6.1 Quantum Annealing-based SDI optimisation 83

A pivotal optimisation problem in this context, from a service provider’s perspective, is the
VNF Embedding Problem (VNFEP). A VNFEP corresponds to the problem of determining
the best mapping of required logical resources against specific constraints and limits of the
available physical resources. Clearly, an objective or multi-objective function has to be
defined.

In general, the problem’s complexity makes finding an efficient solution difficult since the
solution space expands fast and full exploration is impracticable. As a compromise to lower
the computing effort, earlier studies have developed heuristic ways to obtain high-quality
solutions in an acceptable amount of time [86–89]. However, stochastic approaches do not
ensure optimum solution convergence. Due to the nature of the domain, the optimal method
for resolving a VNFEP is finding a suitable solution in a minimal period of time so that it can
be utilised to adapt quickly to changes.

Quantum Annealers have demonstrated promising capabilities in tackling tasks such as
graph partitioning [90, 91], Support Vector Machines [92], Restricted Boltzmann Machines
[93, 94], feature selection [95, 96] and optimisation problems in particular QUBO. Opti-
misation problems are described using two principal models: Ising and QUBO (Quadratic
Unconstrained Binary Optimisation). Formally, they are equivalent, but the first is more
appropriate for describing problems in physics and the second for problems in computer
science.

The main reason to adopt this technology for solving VNFEPs lies in the remarkable
potential of Quantum Annealers to deal with NP-hard problems. As for the examples pro-
vided in the literature, VNFEPs can benefit from those solvers, even considering the current
limitations of the available quantum processors.

6.1.1 VNF Embedding Problem

According to [97], the VNFEP involves mapping a collection of virtual resources (VNFs)
to a substrate network in which general-purpose servers are represented as physical nodes.
Each node has its attributes, resources, and computing capabilities. A node might be outfitted
with specified CPU, RAM, and storage resources or contain specialised processing units like
hardware accelerators.

In addition, the links connecting the various nodes are distinguished by particular figures
of merit, such as bandwidth and latency (e.g., while having the same capacity, a direct
fibre-optic link may have a much shorter delay than a satellite link). In addition to these
physical limits, other criteria are sometimes imposed, such as the order in which VNFs within

84 Quantum Annealing to optimise Software-Defined Infrastructures

Fig. 6.1 VNF embedding of a SFC of 4 VNFs on a substrate network of 6 HVSs, or physical nodes.

a chain are assigned or restrictions on where VNFs may be hosted. These chains are typically
addressed as Service Function Chains (SFCs) and combine elementary virtual functions to
compose a more complex end-to-end network service. All of these factors must be addressed
during VNF embedding in order to conduct an effective mapping. Given their physical
connections, Figure 6.1 depicts an example of challenge mapping a chain of four VNFs into
a substrate network with six physical resources.

6.2 Problem Formulation

This section describes the proposed QUBO formulation in terms of definitions of the binary
variables, cost function, and constraints of the problem.

6.2 Problem Formulation 85

6.2.1 Substrate Network

The architecture of the substrate network is represented as an undirected graph 𝐺 with nodes
𝑁 representing the HVSs and edges 𝐸 indicating the actual network channels linking them.
Each server 𝑖 ∈𝑁 in the network is capable of delivering distinct sorts of resources 𝑤 ∈𝑊 .
The amount of a resource 𝑤 accessible on a node 𝑖 (e.g., CPUs, RAM, storage) is denoted
by 𝑅𝑤𝑖 , whereas 𝐶𝑤𝑖 denotes its unitary utilisation cost. Each physical network connection
(𝑖, 𝑗) ∈ 𝐸 linking nodes 𝑖 ∈𝑁 and 𝑗 ∈𝑁 is similarly characterised by its bandwidth 𝐵𝑖𝑗 and
the delay 𝐷𝑖𝑗 that it adds. Each link’s bandwidth use has a separate unitary cost, denoted by
𝐶𝑖𝑗 .

𝐶𝑖𝑗 and 𝐶𝑤𝑖 might reflect monetary expenses associated with energy consumption, infras-
tructure provider, geographic location, and technology production.

6.2.2 Service Function Chains

Each problem specifies a collection of SFCs, denoted 𝑃 , comprised of an ordered list of
VNFs. Two characteristics distinguish each SFC 𝑝 ∈ 𝑃 : the maximum permissible delay for
the traffic to go through the chain, denoted by 𝐷𝑝, and the maximum bandwidth it consumes,
denoted by 𝐵𝑝. Each VNF 𝑞 in the chain 𝑝 needs a distinct set of resources 𝑤 ∈𝑊 from the
node on which it operates. 𝑅𝑤𝑝𝑞 represents the amount of each resource needed by 𝑞 in the
chain 𝑝. 𝑞+1 refers to the VNF next to 𝑞, while 𝑞𝐿 refers to the last VNF in the chain to
which 𝑞 belongs.

6.2.3 Problem Variables

A solution to the VNFEP must specify which physical nodes host each VNF for each SFC.
Using a QUBO formulation, binary variables shall represent the final solution to the optimi-
sation problem. In this work’s formulation, the selected binary variables have the form 𝐿𝑖𝑗𝑝𝑞.
This variable equals one if the virtual link between VNFs 𝑞 and 𝑞+1 of chain 𝑝 is hosted by
link (𝑖, 𝑗) in the direction 𝑖→ 𝑗. This indicates the placement of VNF 𝑞 on node 𝑖 and VNF
𝑞+1 on node 𝑗. These variables were selected to prevent the introduction of terms of order
greater than two while expressing the cost function and restrictions.

86 Quantum Annealing to optimise Software-Defined Infrastructures

𝐸𝑐𝑜𝑠𝑡 =
∑

𝑖,𝑗≠𝑖
∑

𝑝
∑

𝑞≠𝑞𝐿
∑

𝑤𝐿
𝑖𝑗
𝑝𝑞 ⋅

(

𝑅𝑤𝑝𝑞 ⋅𝐶
𝑤
𝑖 +𝑅𝑤𝑝𝑞+1 ⋅𝐶

𝑤
𝑗 ⋅ 𝛿𝑝(𝑞+1)

)

+
∑

𝑖,𝑗≠𝑖
∑

𝑝
∑

𝑞≠𝑞𝐿𝐿
𝑖𝑗
𝑝𝑞 ⋅𝐵𝑝 ⋅𝐶𝑖𝑗 (6.1)

6.2.4 Cost Function

The quality of a VNFEP solution is quantified by a cost function that analyses the overall cost
of node and link resource use required by the VNF embedding. The adopted cost function is
presented in Equation 6.1 and is the sum of two terms.

The first term connects to the utilisation cost of allocated node resources needed by VNFs.
If 𝐿𝑖𝑗𝑝𝑞 equals one, the VNF 𝑞 of SFC 𝑝 is allocated on node 𝑖. Consequently, the utilisation
cost of each resource 𝑤 needed by 𝑞 equals 𝑅𝑤𝑝𝑞 ⋅𝐶𝑤𝑖 , which is the product of the resource
quantity and the unitary resource utilisation cost. This product alone does not account for
allocating the last VNF 𝑞𝐿 in each chain. When VNF 𝑞 is the second-to-last element of chain
𝑝, and 𝐿𝑖𝑗𝑝𝑞 equals one, this indicates that 𝑞𝐿 = 𝑞+1 will be put on node 𝑗. Therefore, the cost
of this allocation must be added to the objective function, 𝑅𝑤𝑝𝑞+1 ⋅𝐶𝑤𝑗 . Because of this, the
Kronecker delta 𝛿𝑝(𝑞+1) equals one when 𝑞+1 is the last VNF of the SFC 𝑝.

The second term is associated with link bandwidth costs. If 𝐿𝑖𝑗𝑝𝑞 = 1, the physical link
(𝑖, 𝑗) transports traffic between VNF 𝑞 and VNF 𝑞+1 of SFC 𝑝. Since SFC 𝑝 uses bandwidth
𝐵𝑝, the cost of bandwidth usage on link (𝑖, 𝑗) for this traffic is 𝐵𝑝 ⋅𝐶𝑖𝑗 .

6.2.5 Constraints

Clearly, to obtain a valid solution, some conditions have to be met both in terms of allocation
choices of the SFCs and resource limits of the physical infrastructure. These are the constraints
defined for the proposed formulation:

• Allocation: a VNF shall be allocated exactly on one node; thus, as shown in Equation 6.2
it can be achieved by forcing to one the summation of physical links hosting the virtual
link between two consecutive VNFs.

∀𝑝,𝑞 ≠ 𝑞𝐿,
∑

𝑖,𝑗≠𝑖
𝐿𝑖𝑗𝑝𝑞 = 1 (6.2)

• Continuity: contiguous VNFs in an SFC must be allocated on nodes adjacent to the
substrate network. This is obtained in Equation 6.3 by forcing to zero the difference

6.2 Problem Formulation 87

between the incoming and outgoing contiguous virtual links of the same SFC from
a network node (𝑗), i.e., for all VNFs other than the first and final in the chain, an
incoming and outgoing link must always exist. Excluded are the nodes hosting the
initial and final VNFs in the chain.

∀𝑗,𝑝,𝑞 ≠ 𝑞𝐿,
∑

𝑖≠𝑗
𝐿𝑖𝑗𝑝𝑞 −

∑

𝑘≠𝑗
𝐿𝑗𝑘𝑝,𝑞+1 = 0 (6.3)

• Resources: resource consumption by VNFs hosted on a node cannot exceed the node’s
available resources. Given a node 𝑖 and a resource 𝑤, in Equation 6.4, if 𝐿𝑖𝑗𝑝𝑞 = 1, then
node 𝑖 is consuming amount 𝑅𝑤𝑝𝑞 of resource 𝑤 requested by VNF 𝑞 of SFC 𝑝. The
aggregate of this contribution from all VNFs on the node must be less than or equal
to the amount available, 𝑅𝑤𝑖 . The second term is solely included to account for the
resource consumption of the last VNF in the chain.

∀𝑖,𝑤,
∑

𝑗≠𝑖

∑

𝑝

∑

𝑞≠𝑞𝐿

𝐿𝑖𝑗𝑝𝑞 ⋅𝑅
𝑤
𝑝𝑞 +

∑

𝑗≠𝑖

∑

𝑝
𝐿𝑗𝑖𝑝𝑞𝐿−1 ⋅𝑅

𝑤
𝑝𝑞𝐿

≤ 𝑅𝑤𝑖 (6.4)

• Bandwidth: the bandwidth needed by VNFs assigned to a physical connection cannot
exceed the bandwidth available on that link. Given a physical connection (𝑖, 𝑗), Equa-
tion 6.5 constrains the necessary bandwidth from all SFCs transiting the link in both
directions to be less than or equal to the available bandwidth.

∀𝑖, 𝑗 < 𝑖,
∑

𝑝

∑

𝑞≠𝑞𝐿

(𝐿𝑖𝑗𝑝𝑞 +𝐿
𝑗𝑖
𝑝𝑞) ⋅𝐵𝑝 ≤ 𝐵𝑖𝑗 (6.5)

• Delay: the delay produced by the physical links cannot exceed the maximum delay
permitted by the chain. Given a chain 𝑝, Equation 6.6 constrains the delay produced
by the physical links traversed by 𝑝 to be less than or equal to the maximum delay
permitted for 𝑝.

∀𝑝,
∑

𝑖,𝑗≠𝑖

∑

𝑞≠𝑞𝐿

𝐿𝑖𝑗𝑝𝑞 ⋅𝐷𝑖𝑗 ≤𝐷𝑝 (6.6)

6.2.6 Full VNFEP QUBO Formulation

The comprehensive VNFEP QUBO formulation takes both costs and limitations into con-
sideration. Since the QUBO formulation does not include hard constraints, each constraint

88 Quantum Annealing to optimise Software-Defined Infrastructures

𝑣 ∈ 𝑉 must be connected with a penalty 𝑃𝑣 applied to the cost function when a violation
occurs.

According to the methods described in [98], the formulation of the penalty associated
with restrictions has been completed. Therefore, the penalty for each equality condition is
proportional to the distance squared from the target value. For inequality restrictions, we add
slack variables.

Each penalty is after that weighted by its lagrangian multipliers 𝜆𝑣 and applied to the
cost function as reported in Equation 6.1. Equation 6.7 describes the final formulation of the
global optimisation problem.

𝐸𝑝𝑟𝑜𝑏𝑙𝑒𝑚 = 𝐸𝑐𝑜𝑠𝑡+
∑

𝑣∈𝑉
𝜆𝑣 ⋅𝑃𝑣 (6.7)

6.2.7 Discretization and Slack Variables

Inequality constraints 6.4 on node resources, link resources (6.5) and delay (6.6) require
the introduction of slack variables in order to be represented. This is a clever and simple
workaround to the non-native capability of representing inequalities in the formulation. These
slack variables have to assume values ranging from zero to the constraining limit, thus
avoiding the exclusion of feasible solutions.

Since the variation interval of the slack terms is dependent on the unit of measure of
the particular resource, the effect of the slack terms is discretised by multiplying them by a
discretisation factor that is resource-dependent. This approach reduces the number of slack
variables for resources whose ranges can be large due to the chosen unit of measure, e.g., the
RAM amount represented in megabytes. It also allows for balancing the number of slack
variables needed by the various constraints.

If discretisation is introduced, it must be followed by slack variables and constraining
factors; otherwise, the formulation of the optimisation problem becomes incoherent. Even
if the restriction is not breached, it may become hard to achieve zero energy penalty if the
limitation holds.

6.3 Methodology 89

6.3 Methodology

This section describes the approach adopted to validate the QUBO formulation for the VNFEP.
As a reminder for the reader, the proposed formulation has been tested using a quantum
annealer and two classical solvers. In the following, one can find a description of all the
adopted solvers:

• Quantum Annealing (QA): a metaheuristic implemented employing a quantum device
to find quantum states with low energy. For our analysis, D-Wave Advantage 4.1
Quantum Processing Unit (QPU) has been exploited.

• Tabu Search: a local search metaheuristic that only accepts inferior solutions if no
previously discovered superior option is available [99].

• Simulated Annealing (SA): a known metaheuristic which simulates thermal fluctua-
tions [100]. SA undertakes a local search for better answers and stochastically accepts
bad ones with a probability that relies on a decreasing temperature parameter at each
step.

This decision of these three solvers is supported by the testing methods described below.
One of the first concerns about using the QPU as a solver is the restricted number of available
qubits. Moreover, given a QUBO formulation for a specific VNEFP (also addressed as a
QUBO problem, where topology, SFCs, and parameters are known), an initial evaluation
of the possibility of embedding this problem into the actual QPU has to be performed.
Minor embedding [101] is a technique that allows converting the QUBO problem, generally
represented as a graph, into an equivalent graph where there is a mapping between the binary
variables of the problem and the available qubits and an additional mapping between links of
variable and coupling of the physical qubits. Clearly, these mappings consider the physical
properties of the annealer. As a note for the reader, this work leverages the minorminer
library 1 to solve the minor embedding problem with a heuristic algorithm that executes in
polynomial time.

Often a chain of several qubits may represent a QUBO variable. This is done, for instance,
if the links between QUBO variables do not immediately fit on the quantum annealer hardware.
Clearly, all qubits representing the same QUBO variable must have the same value for a
solution to be consistent. This also implies that the number of qubits needed to solve a QUBO
problem may be much more than the number of variables it contains.

1https://docs.ocean.dwavesys.com/projects/minorminer/en/latest/

90 Quantum Annealing to optimise Software-Defined Infrastructures

In order to improve the clarity of the successive tests, the reader can find the list of the
adopted metrics in the following:

• Chain strength: the chain strength allows controlling how strong the connection between
qubits representing the same QUBO variable is2.

• Energy: energy of the solution, i.e., the value calculated according to Equation 6.7
given the corresponding variable values. This metric is used to assess the quality of a
solution; the lower, the better.

• QUBO variables: the number of QUBO variables required to formulate a specific
VNFEP.

• Qubits: the number of qubits required by the Quantum Annealer to map the QUBO
problem to the QPU, resulting from the minor embedding process.

• Reads: the number of solutions sampled by a solver. The higher the number of Reads,
the more likely it is to find an optimal solution and the longer the time required by the
solver is.

For what concerns the computational cost, the are these additional metrics:

• Solver time: the time required by a solver to find the desired number of solutions, i.e.,
Reads, as measured by the local client. Since the QPU is accessible via a cloud interface,
the QPU solver time only accounts for the time required by the QPU, excluding the
delay incurred to send the problem via the Internet.

• QUBO time: the time required for the QUBO formulation generation according to the
formulation described in section 6.2 for a specific VNFEP.

• QA time: annealing time used by the QPU. As in the case of the number of Reads,
it increases the probability of success in finding a good solution. Clearly, increasing
these values increases the Solver time3.

Obtaining an optimal solution, which corresponds to the lowest energy value, requires
setting various parameters of the quantum annealer, such as the number of reads and the
chain strength. Beyond finding the optimal solution to the same QUBO problem using all

2https://www.dwavesys.com/media/vsufwv1d/14-1041a-a_setting_the_chain_strength.pdf
3https://docs.dwavesys.com/docs/latest/c_qpu_annealing.html

6.3 Methodology 91

random
topology /

params

generation

topology

and NFVI

parameters

.graphml

test
parameters

.yaml
test loader

QUBO

formulation

Tabu

solver

parameters

SA

QA

samples

.png

post-
processing

results.csv

Fig. 6.2 High-level workflow of the testing process. An example of a solution is shown in Figure 6.8
and the additional data in Table 6.4.

Table 6.1 VNFs and constraint requirements for the SFCs.

SFC Name VNFs Bandwidth (Gbps) Delay (ms)
simple secaas NAT, Firewall 1 2
medium secaas Firewall, IDS, 2 3

Reverse proxy
complex secaas NAT, Firewall, IDS, 3 5

Reverse proxy, WAF

solvers, one can also compare the execution time to achieve the final result. In the case of the
quantum annealer, this is one of its points of strength.

The number of SFCs and VNFs representing the demand in terms of allocation is the pri-
mary factor determining the optimisation problem’s size and complexity. Another important
aspect is the size of the topology in terms of the number of nodes and links as well as their
associated costs.

Figure 6.2 shows a summary of the different steps of the testing process. The source code
to replicate all the tests and manage the QUBO formulation is available on GitHub4.

The QUBO formulation module provides an appropriate formulation given a specific
VNFEP (i.e., topology and SFCs to be embedded) as input. This formulation is sent to the
three solvers, adding information on the parameters for their configuration, e.g., the number
of Reads and chain strength. The last step refines and saves the results coming from the
solvers. As a remark for the reader, in this workflow, we also track the time for generating the
QUBO formulation, the number of binary variables for the QUBO problem, and the number

4https://github.com/ignaziopedone/VNFQuantumOptimization

92 Quantum Annealing to optimise Software-Defined Infrastructures

Table 6.2 Resources required by the available VNFs.

Resource Firewall IDS NAT Reverse proxy WAF
CPUs 3 4 1 3 3
RAM (GB) 2 4 2 4 3

Table 6.3 Defined network topologies.

net0 net1 net2 net3 net4 net5

Nodes (#) 4 5 5 10 8 7
Edges (#) 6 8 8 17 11 12

of target variables after the mapping (QPU qubits required). This allows us to present more
consistent results in terms of execution time and better characterise the size of each specific
problem.

As an example, one of the first tests studies the number of QUBO variables according
to specific combinations of network topologies, SFCs, and VNFs. This analysis also allows
determining which subset of networks and demands can fit on the QPU’s limited number of
qubits. The core test and validation can be divided into two parts, detailed in the following
sections: the validation of the QUBO formulation using classical solvers and the tests on the
quantum annealer comparing the results with the classical solvers’ baseline.

6.3.1 QUBO formulation validation through classical solvers

As a part of the first core test, one can observe the analysis of the QUBO formulation in terms
of the computational cost to generate the QUBO problem and the quality of the solution (i.e.,
level of energy) achieved using several networks of growing complexity.

Defining a sequence of topologies as Erds-Rényi graphs with four to thirty nodes and
varying edge formation probability, the first core test solves different QUBO problems of
increasing size (SFCs, VNFs) using classical solvers, i.e., Tabu, SA. To validate the constraints
of the formulation, the VNFEPs have been solved without considering costs for the allocation
of resources so that the expected energy of the optimal solution was zero. Clearly, in this
case, the well-known conditions for the target VNFEPs allow for not breaking the constraints
(Equation 6.1). After the preliminary validation of the constraints, cost components for the
VNFEPs are introduced again so that one can calculate a baseline of results (optimal solutions)
to have a comparison with the quantum annealer solver for the same VNFEPs.

6.3 Methodology 93

6.3.2 Quantum Annealing Effectiveness

The second core test or analysis assesses the feasibility of adopting QA for VNFEPs and the
advantages and disadvantages over the classical solvers.

All tests are conducted using small networks according to the current limitations of QA
hardware. SECaaS is the use case scenario for these tests, assuming a service provider
willing to optimise the allocation of VNFs on its infrastructure to grant on-demand security
services to its customers. This provider has to offer those services to small and medium-
sized enterprises and can choose between three different options: simple secaas, medium
secaas, and complex secaas. Each one of these service options corresponds to an SFC
that can be deployed on the provider infrastructure and contains a specific number of VNFs
as depicted in Table 6.1. More details about the characteristics and resource requirements of
those VNFs are available in Table 6.2.

As a remark for the reader, the QPU solver has three parameters that affect the quality
of the solution, i.e., Reads, QA time and chain strength, that need to be selected. As in the
previous case, parameter selection is optimised to find the best solution. The analysis has
been performed in three steps: starting with a simplified formulation only using part of the
constraints, then including costs, and finally considering the complete VNFEP formulation.

As mentioned before, minor embedding is necessary in the case of QA to map the QUBO
problem on the QPU. As the VNFEP becomes more complex, this procedure requires more
time. It is known that the quality of the minor embedding plays an important role in the
quality of the solutions. Nevertheless, in our case, the full QUBO problem is highly connected
(most of the quadratic terms are nonzero); thus, the usage of a precomputed embedding for a
fully-connected QUBO problem of the desired number of variables and the target QPU is
possible. The provider can also supply such an embedding scheme when he offers access
to the QPU. Because of this, in this work, the minor embedding time is not analysed. A
further comment for the reader is that with the technological advancement of the QPU and
an increase in the number of available qubits, this problem can be automatically mitigated.
section 6.4 provides a quantitative analysis of the results from the tests mentioned above.
As already remarked, all the performed tests, adopted topologies, and in-depth analyses are
publicly available as part of the online material.

94 Quantum Annealing to optimise Software-Defined Infrastructures

6.4 Results and Discussion

This section describes the results of the tests presented in section 6.3.

6.4.1 QUBO formulation validation through classical solvers

As a reminder for the reader, this first group of tests has been performed over a set of randomly
generated QUBO problems (from VNFEPs) of different sizes and complexity (depending
on the number of nodes within the topology, SFCs, and VNFs). Given these inputs, the
first results show the number of QUBO variables required to describe the problem. The
parameters that impact the most are the number of SFCs and, in particular, the number of
VNFs corresponding to the length of the individual SFC.

1

3

0

500

1000

1500

2000

2500

3000

2 3 4 5 6

282
416

550
684

818
417

685
953

1221
1489

552

954

1356

1758

2160

687

1223

1759

2295

2831

SF
Cs

 (#
)

N
um

be
r o

f Q
U

BO
 v

ar
ia

bl
es

VNFs per chain

1
2
3
4

Fig. 6.3 QUBO variables obtained depending on the number of SFCs and VNFs per chain. Number of
nodes is fixed at 20.

Figure 6.3 depicts the results of this calculation for a topology of 20 nodes (other parame-
ters vary in two dimensions). Observing the already large number of variables (2831) required
to represent 4 SFCs with 6 VNFs per chain allows assessing how fast the number of binary

6.4 Results and Discussion 95

variables grows. This result already makes mapping the problem to the QPU challenging
since the maximum number of qubits for the current D-Wave architecture is 5000 and the
minor embedding process usually requires far more qubits than the initial QUBO variables.

Figure 6.4 illustrates the time required to generate the QUBO problem depending on
the number of QUBO variables and compares this data with the time needed by the solvers
to find an optimal solution. As expected, QUBO problem time grows with the number of
variables. From a different perspective, it is significant to observe how the latter time is
similar to SA and Tabu times. Although several factors might influence this comparison,
such as differences in how optimised their implementation is, this nonetheless indicates how
crucial it is to account not only for the solver time but also for the computational cost required
to generate the QUBO problem itself. This mirrors similar findings in [102].

Proceeding with other results, Figure 6.5 and Figure 6.6 measure the energy of the solution
(also addressed as the quality of the solution) and the time needed by the solver to find that
solution. In this case, those tests were conducted by using a 20-node topology and increasingly
adding VNFs and SFCs. As the QUBO problem grows, the two metrics (energy and time)
increase. The interesting result is that both solvers show similar results. Figure 6.6 also
confirms the impact of the QUBO time on the total time required for solving the QUBO
problem for different solvers.

0

2

4

6

8

10

12

14

19 121 306 568 966 1550 2496

Ti
m

e
(s

)

QUBO variables

Tabu time SA time QUBO time

Fig. 6.4 Tabu Search and SA total time depending on the number of QUBO variables. This test does
not apply costs to the objective function but only to the constraints.

96 Quantum Annealing to optimise Software-Defined Infrastructures
9

,0
8

1
4

,3
2

2
1

,3
2

2
4

,0
8

3
1

9
,0

8

1
4

,3
2

1
9

,3
2

2
4

,0
8

3
3

1
8

,1
6

2
8

,6
4

7
9

,3
2 1
0

4
,0

8 1
3

5

1
8

,1
6 5

4
,3

2 7
9

,3
2 1
0

4
,0

8

1
2

9

2
7

,2
4

9
4

,3
2

1
3

9
,3

2 1
8

4
,0

8

2
3

5

2
7

,2
4

9
4

,3
2

1
3

9
,3

2 1
8

4
,0

8

2
3

5

3
6

,3
2

1
3

4
,3

2

1
9

9
,3

2

3
2

0

4
0

0

3
6

,3
2

1
3

4
,3

2

1
9

9
,3

2

2
9

6
,0

4

4
0

0

2 3 4 5 6

EN
ER

G
Y

VNFS (#)

1 SFC - Average SA energy

1 SFC - Average Tabu energy

2 SFCs - Average SA energy

2 SFCs - Average Tabu energy

3 SFCs - Average SA energy

3 SFCs - Average Tabu energy

4 SFCs - Average SA energy

4 SFCs - Average Tabu energy

Fig. 6.5 Tabu Search and SA lowest energy values depending on the number of SFCs and VNFs per
chain with a topology of 20 nodes.

0
,2

4
6

9

0
,3

1
8

2

0
,4

2
0

8

0
,5

5
9

7

0
,6

7
9

6

0
,1

0
0

5

0
,2

2
0

1

0
,3

8
5

4

0
,6

6
6

2

0
,6

9
3

4

0
,2

4
8

0
,3

1
7

8

0
,4

1
5

0
,5

6
4

2

0
,6

7
6

3

0
,2

8
5

6

0
,4

6
0

2

0
,6

9
3

7

1
,0

8
7

8

1
,5

2
7

3

0
,1

8
4

5

0
,5

0
5

3

0
,9

1
9

1 1
,6

6
4

4

2
,1

3
4

0
,2

8
8

5

0
,4

5
6

3

0
,6

9
1

7

1
,1

0
2

8

1
,5

1
1

0
,3

5
6

4

0
,6

4
7

4 1
,1

2
9

9 1
,8

5
2

2
,6

5
4

4

0
,2

6
7

6 0
,8

6
0

5

1
,8

5
9

2

2
,6

7
9

7

3
,9

8
0

7

0
,3

6
0

1

0
,6

4
0

2 1
,1

2
6

5 1
,8

0
8

9

2
,6

7
4

8

0
,4

2
28 0

,9
0

6
5 1

,6
1

2
8

2
,6

6
0

6

4
,0

9
8

8
5

0
,3

2
6

5

1
,1

3
1

3

2
,3

2
9

0
5

4
,1

3
3

3
5

6
,3

3
1

2
5

0
,4

2
1

5 0
,9

2
6

1 1
,6

2
1

0
5

2
,6

3
5

5

4
,0

1
9

3
5

2 3 4 5 6

TI
M

E
(S

)

VNFS (#)

1 SFC - Average SA time

1 SFC - Average QUBO time

1 SFC - Average Tabu time

2 SFCs - Average SA time

2 SFCs - Average QUBO time

2 SFCs - Average Tabu time

3 SFCs - Average SA time

3 SFCs - Average QUBO time

3 SFCs - Average Tabu time

4 SFCs - Average SA time

4 SFCs - Average QUBO time

4 SFCs - Average Tabu time

Fig. 6.6 Tabu Search and SA total time depending on the number of SFCs and VNFs per chain with a
topology of 20 nodes.

6.4.2 Quantum Annealing Effectiveness

section 6.3 explains the nature of this other class of tests. The question one wants to address is
whether the QA can efficiently solve VNFEPs problems and, in this case, what the advantage
is over classical solvers. As a remark for the reader, the source code for replicating the
tests, the possible settings, and further data are available online at the repository specified in
section 6.3.

Among all the available online results, this section focuses on the net3 topology, which
contains as demand the allocation of two SFCs, basic_secaas and medium_secaas men-
tioned in Table 6.1.

6.4 Results and Discussion 97

Table 6.4 QPU vs classical solvers using net3 with simple and medium secaas.

Problem Solver QUBO
variables Qubits Solver

time (s)
QUBO
time (s)

Chain
Strength

Lowest
Energy

QA
time (s) Reads

Allocation and Continuity
Constraints Only

SA 48 - 0,1261 0,0036 - 0 - 102
Tabu 48 - 2,1120 0,0036 - 0 - 102
QA 48 138 0,2033 0,0036 150 0 20 103

Allocation and Continuity
Constraints with Costs

SA 48 - 0,1187 0,0036 - 33 - 102
Tabu 48 - 2,1093 0,0036 - 33 - 102
QA 48 138 0,0223 0,0036 150 33 20 102

Full VNFEP Formulation
SA 163 - 0,4716 0,0437 - 69 - 102
Tabu 163 - 2,1797 0,0437 - 69 - 102
QA 163 2194 0,0366 0,0437 150 204 40 102
QA 163 2194 2,8495 0,0437 150 153 50 104

Fig. 6.7 Visualisation as a graph of the QUBO problem of Table 6.4. Binary variables are nodes; an
edge exists between them if they appear in a quadratic term. On the left, the experiment only includes
allocation and continuity constraints; on the right, the experiment with the complete VNFEP QUBO
formulation.

98 Quantum Annealing to optimise Software-Defined Infrastructures

For the first test, costs of the objective function were not applied. In addition, the
considered QUBO formulation only contained allocation and continuity constraints (these
constraints do not require slack variables). After the minor embedding, the QUBO problem
counted 48 binary variables and 138 target qubits. This result is expected and mentioned
in section 6.3, since the minor embedding allocates multiple qubits in a single chain which
corresponds to a single QUBO variable. This process substantially increases the number of
target variables (qubits).

Regarding the parameter setting of the QA, the chain strength is an essential factor. A high
chain strength value may outweigh the other energy components and provide less optimal
solutions. A value too small may cause the QA to produce inconsistent solutions where
qubits connected to the same QUBO variable have different values. In practice, there is
no ideal value for the chain strength; this value is usually tuned by performing different
trials. The guideline followed is to determine this value as the largest absolute value in the
problem’s QUBO and then fine-tune it manually (from D-Wave whitepapers5). The selection
of the lagrangian multipliers necessary to reflect as penalties the constraints demanded by the
VNFEP formulation raises a similar problem; see section 6.2.

Table 6.4 summarises the meaningful findings. All quantum and classical solvers can
find energy-zero solutions in the first instance of the test, only considering allocation and
continuity constraints and excluding objective function costs. This demonstrates that all these
constraints are met. When comparing solver times, SA is the quickest, while the traditional
Tabu is the slowest. However, it should be emphasised that the QPU may examine ten times
as many options as the SA while only taking two times as long.

The second experiment maintains the same constraints and adds the costs of the objective
functions. The lowest energy in this situation will, by definition, be greater than zero. Once
again, we can observe in Table 6.4 that all solvers find the same solution with an energy value
of 33. QA is substantially quicker in this scenario than in the prior one, outperforming all
traditional solutions. This is because QA could identify the optimal solution with fewer reads
than in the prior instance. Figure 6.8 provides a visual representation of the solution, with
colours denoting the allocation of the two SFCs among three physical nodes.

An observation for the reader is that the resultant QUBO problem is formed of a group of
more minor independent problems, one for each SFC, when only allocation and continuity
constraints are allowed. The simple_secaas and medium_secaas are visible on the left
side of Figure 6.7 with the simple_secaas needing the fewest variables. When all costs
and limitations are taken into account by the QUBO formulation, the same VNFEP is shown

5https://www.dwavesys.com/media/vsufwv1d/14-1041a-a_setting_the_chain_strength.pdf

6.4 Results and Discussion 99

Fig. 6.8 Example of a solution from the experiment in Table 6.4. The VNFs of SFCs S0 and S1 are
allocated on the red nodes inside the adopted network topology. The string at the bottom left describes
the results of the embedding process and its energy. The two VNFs of S0 are allocated to nodes 6
and 7, and the three VNFs of S1 are to nodes 5, 6, and again 5. The two virtual links of S1 are both
embedded in the same physical link (5-6).

on the right side of the same figure. The results show a densely linked network in which the
various SFCs cannot be distinguished.

The main factor for the growing connectivity is the introduction of constraints on the
node and links resources in the QUBO problem. This finding is crucial because it shows how
such constraints significantly affect the number of links between QUBO variables, which
raises the difficulty of embedding it on the QPU and the needed amount of qubits.

Table 6.4 also evaluates the whole QUBO formulation. The first clear result is the
increased number of QUBO variables required to represent the problem and, consequently,
the number of target variables (qubits). The necessity for slack variables to define inequality
constraints on the resources has increased the number of QUBO variables. The required
number of qubits for each QUBO variable jumps from 2.87 in the prior experiment to 13.46,
which is a significant increase. This is most likely caused by the QUBO problem’s extremely
high connectivity (see Figure 6.7), which makes it much more challenging to ensure that all
necessary physical connections are created on the QPU, resulting in the need for numerous
additional qubit chains to represent every QUBO variable. QA is less effective than traditional
solvers in terms of solution quality. The slight improvement that results from increasing the

100 Quantum Annealing to optimise Software-Defined Infrastructures

Table 6.5 QPU vs classical solvers using net5 and three simple secaas services.

Problem Solver QUBO
variables Qubits Solver

time (s)
QUBO
time (s)

Chain
Strength

Lowest
Energy

QA
time (s) Reads

Allocation and Continuity
Constraints Only

SA 72 - 0,1821 0,0021 - 0 - 102
Tabu 72 - 2,1947 0,0021 - 0 - 102
QA 72 250 0,0333 0,0021 50 0 50 102

Allocation and Continuity
Constraints with Costs

SA 72 - 0,1862 0.0047 - 27 - 102
Tabu 72 - 2,1319 0.0047 - 27 - 102
QA 72 252 0,0299 0.0047 50 27 50 102

Full VNFEP Formulation
SA 128 - 0,3918 0.0355 - 27 - 102
Tabu 128 - 2,1600 0.0355 - 27 - 102
QA 128 1335 2,7550 0.0355 50 75 50 104

number of readings from 102 to 104 comes at the cost of a much longer QPU solver time. It
can be observed that the QPU solution breaks the allocation constraints with 102 reads and
204 as the energy value.

The substantially greater connectivity of the QUBO problem, the longer qubit chains, and
the need for several slack variables to describe the inequality restrictions are all potential
causes of the QA’s different effectiveness in this test. Long qubit chains have a detrimental
effect on heavily linked problems, a well-known complication.

On the one hand, chains make the QA process more rigid since it is energetically more
straightforward to change the state of a single qubit than a dozen linked ones at once. Fur-
thermore, a solution is probably suboptimal or violates constraints if a chain breaks and the
qubits have different values. Because of this, refining the suggested VNFEP formulation to
reduce connection and hence increase effectiveness may be a future research work.

The analysis’s findings hold for the other networks. The results of the same trials using
the net5 topology and allocating three simple_secaas services are shown in the Table 6.5.
All solutions also satisfy the allocations and continuity restrictions in this example. When the
cost is considered, all solutions provide the same lowest energy solution. QA is the quickest
solver in this situation and can locate the best answer with 102 readings. The number of
QUBO variables and the average number of qubits needed for each QUBO variable rises
when the whole VNFEP formulation is again considered (from 3.47 to 10.42). Again, this
causes QA to be less successful even with a large number of readings, 104.

Chapter 7

Quantum Offensive Security: the impact
of Shor’s Algorithm

As described in chapter 2, quantum computing poses a danger to current PKC schemes due to
the quantum speedup that particular algorithms experience as a result of this new computing
paradigm while solving mathematical problems such as prime factoring, DLP, and ECDLP.

This chapter tries to provide an in-depth analysis of Shor’s algorithm, from which the
quantum threat originates, and its function in prime factorisation. In addition, we explore var-
ied efforts towards optimising the available quantum circuits to execute it, provide alternative
implementations based on the Qiskit toolkit, and estimate the required resources to run it on
practical hardware devices.

7.0.1 Methodology

This section briefly summarises the methodology used for the work on Shor’s Algorithm.
This work can be divided into two parts: Shor’s algorithm applied to prime factoring (RSA)
and applied to ECDLP (ECC).
The first part described in this chapter (chapter 7) involved:

1. analysis of the basic Shor’s algorithm proposal.
2. Study of available practical implementations on state-of-the-art toolkits, executed on

both simulators and real hardware.
3. Definition of the metrics to evaluate the analysed quantum algorithms and implementa-

tions (e.g., depth of the quantum circuit).

102 Quantum Offensive Security: the impact of Shor’s Algorithm

4. Resource estimation of the above implementations.
5. Analysis of the proposed enhancements to the basic implementations of Shor’s algo-

rithm available in the literature.
6. Implementation of both classical and literature-based enhancements using Qiskit toolkit

and IBM Q simulator.
7. Porting of the implementations above from Qiskit to the Rigetti framework.
8. Testing and comparison of the standard and enhanced versions of Shor’s algorithm

using both Qiskit and Rigetti frameworks.

The second part is described in chapter 8 involved:

1. study of the application of Shor’s algorithm to DLP and ECDLP.
2. Analysis of the proposed implementations in the literature.
3. Development in Qiskit of the basic quantum circuits and components to implement the

proposed quantum algorithms.
4. Resource estimation for the proposed quantum algorithms and comparison with the

results in chapter 7.
5. Testing of the implemented quantum circuits.

7.1 Shor’s algorithm overview

Shor’s algorithm, proposed by Peter Shor in 1994, allows for solving prime factoring in poly-
nomial time. As an example, using Schoenhage-Strassen’s algorithm for fast multiplication
[103], we need a number of quantum gates of the order (𝑛2𝑙𝑜𝑔(𝑛)𝑙𝑜𝑔𝑙𝑜𝑔(𝑛)), where 𝑛 is the
number of bits of the key. The most efficient classical method, called General Number Field
Sieve (GNFS) [104], works sub-exponentially in the order of (𝑒1.9(𝑙𝑜𝑔(𝑛))1∕3(𝑙𝑜𝑔𝑙𝑜𝑔(𝑛))2∕3).

The idea behind solving integer factorisation using Shor’s algorithm is divided into two
parts: one classical, i.e., can run on a classical computer in polynomial time, and another
quantum, i.e. it needs a quantum machine to be run in polynomial time. The first part derives
from a more general classical algorithm to find the factors 𝑝 and 𝑞 of a biprime number
𝑁 . Moreover, as a first step, this algorithm picks a random integer 𝑥 < 𝑁 and computes
𝐺 = 𝑔𝑐𝑑(𝑥,𝑁), the greatest common divisor of x and N. If 𝐺 ≠ 1, then we have found a
nontrivial divisor of N, and we do not need to continue with the procedure. If not, we can

7.1 Shor’s algorithm overview 103

Fig. 7.1 Plot of the function 𝑓 (𝑥) = 3𝑥 (mod 35). The period 𝑟 is highlighted. Source: [2].

proceed by finding the period, or order, 𝑟 of the function 𝑥𝑟 (mod 𝑁). In this case, if the
period is even, we are able to compute the factors 𝑝 and 𝑞 with the Extended Euclidean
Algorithm:

𝑝 = gcd(𝑥𝑟∕2−1,𝑁) 1 = gcd(𝑥𝑟∕2+1,𝑁) (7.1)
We can easily observe that 𝑝 is a non-trivial factor of 𝑁 :

(𝑥𝑟∕2−1)(𝑥𝑟∕2+1) = 𝑥𝑟−1 ≡ 0 (mod 𝑁) (7.2)

If we either got an odd value of 𝑟 or 𝑥𝑟∕2 ≡ −1 (mod 𝑁), then the algorithm fails, and we
need to start again with the first step.

Given a random number 𝑥, the aforementioned classical algorithm allows us to find a
factor of𝑁 with probability 1−21−𝑘, where 𝑘 represents the number of distinct prime factors
of 𝑁 . For a biprime 𝑁 - as in the RSA algorithm case - the probability is equal to 1∕2. The
step of the previous algorithm related to the period-finding problem is known to belong to
the NP class. Because of this, Shor’s algorithm comes into play allowing us to solve it in
polynomial time. This corresponds to the quantum and central part of the algorithm.

Once described the general framework in which Shor’s algorithm operates, subsections
7.1.1 and 7.1.2 give quantum computing preliminaries to appropriately describe the core of
the algorithm in subsection 7.1.3.

104 Quantum Offensive Security: the impact of Shor’s Algorithm

7.1.1 Quantum Fourier Transform

The Quantum Fourier Transform (QFT) is the quantum implementation of the classical
discrete Fourier transform over the amplitudes of the wavefunction and represents one of
the building blocks of quantum algorithms such as Quantum Phase Estimation (QPE). The
primary purpose of the QFT is to transform multi-qubit states between computational (|0⟩ , |1⟩)
and Hadamard (|+⟩ , |−⟩) bases [2]:

𝑄𝐹𝑇 |𝑥⟩ = |𝑥⟩

Differently from what happens with computational basis, where numbers are stored in
binary, in the Fourier or Hadamard basis, we follow the Equation 7.3. This means that as a
number increases, we have different rotations on the X-axis on the various qubits adopted for
the representation. As an example, if we assume 4 qubits, an increment of 1 will lead to a
rotation of 𝜋∕8 for qubit 0, 𝜋∕4 for qubit 1, 𝜋∕2 for qubit 1, and 𝜋 for qubit 0.

|𝑥̃⟩ = 1
√

𝑁

𝑛
⨂

𝑘=1
(|0⟩+ 𝑒

2𝜋𝑖
2𝑘
𝑥
|1⟩) (7.3)

As depicted in Figure 7.2, the quantum circuit to implement QFT involves two types of
gates: Hadamard and 𝐶𝑅𝑂𝑇𝑘. The latter can be defined as expressed in Equation 7.4.

𝐶𝑅𝑂𝑇𝑘 =

[

𝐼 0
0 𝑈𝑅𝑂𝑇𝑘

]

, 𝑈𝑅𝑂𝑇𝑘 =
[

1 0

0 𝑒
2𝜋𝑖
2𝑘

]

⇒ 𝐶𝑅𝑂𝑇𝑘 |1𝑥𝑗⟩ = 𝑒
2𝜋𝑖
2𝑘
𝑥𝑗
|1𝑥𝑗⟩ (7.4)

⋯

⋯ ⋯

…

⋯ ⋯

⋯ ⋯

|𝑥1⟩ 𝐻 𝑈𝑅𝑂𝑇2 𝑈𝑅𝑂𝑇𝑛−1 𝑈𝑅𝑂𝑇𝑛

|𝑥2⟩ 𝐻 𝑈𝑅𝑂𝑇𝑛−2 𝑈𝑅𝑂𝑇𝑛−1

⋮

|𝑥𝑛−1⟩ 𝐻 𝑈𝑅𝑂𝑇2

|𝑥𝑛⟩ 𝐻

|𝜓1⟩ |𝜓2⟩ |𝜓3⟩ |𝜓4⟩

Fig. 7.2 QFT circuit (source: [2]).

In Equation 7.5, the development of the quantum state throughout various stages of the
circuit is shown. This might be important for comprehending how quantum gates operate on
the initial qubit register from the start to the final quantum state obtained.

7.1 Shor’s algorithm overview 105

|𝜓1⟩ =
1
√

2
[|0⟩+ 𝑒

2𝜋𝑖
2 𝑥1

|1⟩]⊗ |𝑥2...𝑥𝑛⟩

|𝜓2⟩ =
1
√

2
[|0⟩+ 𝑒

2𝜋𝑖
22
𝑥2+

2𝜋𝑖
2 𝑥1

|1⟩]⊗ |𝑥2...𝑥𝑛⟩

|𝜓3⟩ =
1
√

2
[|0⟩+ 𝑒

2𝜋𝑖
2𝑛 𝑥𝑛+

2𝜋𝑖
2𝑛−1

𝑥𝑛−1+...+
2𝜋𝑖
22
𝑥2+

2𝜋𝑖
2 𝑥1

|1⟩]⊗ |𝑥2...𝑥𝑛⟩ (7.5)

⟹ |𝜓3⟩ =
1
√

2
[|0⟩+ 𝑒

2𝜋𝑖
2𝑛 𝑥

|1⟩]⊗ |𝑥2...𝑥𝑛⟩

|𝜓4⟩ =
1
√

2
[|0⟩+ 𝑒

2𝜋𝑖
2𝑛 𝑥

|1⟩]⊗ 1
√

2
[|0⟩+ 𝑒

2𝜋𝑖
2𝑛−1

𝑥
|1⟩]⊗...⊗ 1

√

2
[|0⟩+ 𝑒

2𝜋𝑖
22
𝑥
|1⟩]

⊗ 1
√

2
[|0⟩+ 𝑒

2𝜋𝑖
2 𝑥

|1⟩]

As final result, we observe the state |𝜓4⟩, and to this state, we apply other swap gates
in order to reverse the order of the factors (see the comparison with the state |𝜓1⟩). The
relevance of QFT and its inverse QFT† - in particular for algorithms such as Shor - lies in its
capability of decoding information encoded in the phase of a quantum state and not directly
available measuring the same state in the computational basis [3].

7.1.2 Quantum Phase Estimation

QPE is a crucial building block for several quantum algorithms; one of them is Shor. The
purpose of QPE is to estimate the phase 𝜃 in the equation 𝑈 |𝜓⟩ = 𝑒2𝜋𝑖𝜃 |𝜓⟩, where we
have the eigenvector |𝜓⟩ and its eigenvalue 𝑒2𝜋𝑖𝜃. In Figure 7.3, we provide the high-level
quantum circuit to implement QPE. From that figure, we observe that the phase of the U
gates is encoded in the Hadamard basis of the 𝑡 control qubits, a technique known as phase
kickback [2]. Then, using QFT†, we are able to restore that information and measure 𝜃 in the
computational basis.

106 Quantum Offensive Security: the impact of Shor’s Algorithm

⋯

⋯

⋮

⋯

⋯

⋯

|0⟩⊗𝑡 𝐻⊗𝑡 𝑄𝐹𝑇 † 2𝑡𝜃

|𝜓⟩ 𝑈2𝑡−1 𝑈2𝑡−2 𝑈21 𝑈20

Fig. 7.3 QPE circuit (source: [2]).

The Equation 7.6 shows the results of the state related to the top register after the appli-
cation of first the train of Hadamard gates - for obtaining the superposition of all possible
states - and then the 2𝑡𝑈 gates. At this point, we get an equation of the same form as the one
of the QFT, and one can effortlessly realise that applying QFT† it is possible to retrieve 2𝑡𝜃
by simply measuring in the computational basis.

|𝜓⟩ = 1
√

2𝑡
(|0⟩+ 𝑒2𝜋𝑖𝜃2

𝑡−1
|1⟩)⊗ (|0⟩+ 𝑒2𝜋𝑖𝜃2

𝑡−2
|1⟩)⊗⋯⊗ (|0⟩+ 𝑒2𝜋𝑖𝜃2

1
|1⟩) (7.6)

⊗ (|0⟩+ 𝑒2𝜋𝑖𝜃2
0
|1⟩)

7.1.3 Shor’s overall quantum circuit

In section 7.1, we discuss the classical algorithm for prime factoring and the need for a
quantum algorithm to solve the period-finding problem. Here we combine the building
blocks of Shor’s algorithm and give the first implementation without focusing on specific
optimisation.

The reader shall remember that the algorithm’s starting point is the function 𝑥𝑟 (mod 𝑁)
and the operation of finding its period 𝑟. To this end, Peter Shor proposed to apply the QPE
to the unitary operator 𝑈 defined in Equation 7.7.

𝑈 |𝑥⟩ = |𝑎𝑥 (mod 𝑁)⟩ (7.7)

7.1 Shor’s algorithm overview 107

If one starts from state |1⟩, 𝑘 successive applications of the same operator lead to the
state |𝑎𝑘 (mod 𝑁)⟩. Referring to Figure 7.1, with 𝑘 = 𝑟 steps, where 𝑟 is the period of the
function, the state return to |1⟩. If we consider a superposition of all the eigenstates in this
period, we obtain an eigenstate for the operator 𝑈 :

|𝑢0⟩ =
1
√

𝑟

𝑟−1
∑

𝑘=0
|𝑎𝑘 (mod 𝑁)⟩

This eigenstate has a limited interest since its eigenvalue is 1. Adding a different phase
proportional to 𝑘 for each basis state, we obtain the eigenstate:

|𝑢1⟩ =
1
√

𝑟

𝑟−1
∑

𝑘=0
𝑒−

2𝜋𝑖𝑘
𝑟
|𝑎𝑘 (mod 𝑁)⟩

The eigenvalue of the latter eigenstate is 𝑒−(2𝜋𝑖𝑘∕𝑟). A further generalisation can be
|𝑢𝑠⟩ =

1
√

𝑟

∑𝑟−1
𝑘=0 𝑒

−(2𝜋𝑖𝑠𝑘∕𝑟)
|𝑎𝑘 (mod 𝑁)⟩, where 𝑠 is an integer such that 0 ≤ 𝑠 ≤ 𝑟−1. For

this final eigenstate, f we sum up all the basis states, due to interference, all different phases
cancel out leaving the state |1⟩ alone:

1
√

𝑟

𝑟−1
∑

𝑘=0
|𝑢𝑠⟩ = |1⟩

When the QPE is applied to 𝑈 using the state |1⟩, the result is the phase 𝜙 = 𝑠∕𝑟. Using
the continuous fraction expansion, it is feasible to get 𝑟 beginning with 𝜙. Beyond the general
idea behind Shor’s algorithm for factoring, in Figure 7.4, the reader can look at its possible
implementation as a high-level quantum circuit.

2𝑛

𝑛

|0⟩⊗2𝑛 𝐻⊗2𝑛

𝑈𝑓𝑎,𝑁

𝑄𝐹𝑇 †

|1⟩

Fig. 7.4 High-level representation of the circuit for the Shor’s algorithm. Source: [105]

The circuit starts with two quantum registers, one of length 2𝑛 and with the initial value
set to |0⟩ and the other of length 𝑛 initialised to |1⟩. The choice of the length of these registers
depends, for the first, on an approximation to be able to retrieve the value of the period in the

108 Quantum Offensive Security: the impact of Shor’s Algorithm

final part of the algorithm after the estimation; the second register instead must contain the
number 𝑁 . The first operation - on the first register - is applying a train of Hadamard gates
to obtain a superposition of all possible inputs. These correspond to all possible values of the
period 𝑟 and lead to the overall state:

|𝜓⟩ = 1
2𝑛

22𝑛−1
∑

𝑥=0
|𝑥⟩ |1⟩

When we apply the oracle, i.e., the function that implements the modular exponentiation,
we obtain the following state, where “q” is the power of 2 s.t. 𝑛2 ≤ 𝑞 ≤ 2𝑛2:

|𝜓⟩ = 1
√

𝑞

𝑞−1
∑

𝑥=0
|𝑥⟩ |𝑎𝑥 (mod 𝑁)⟩

𝑈𝑓𝑎,𝑁 =

…
…

⋮

…

…𝑛

𝑥0
𝑥1

𝑥2𝑛−1

𝑈20 (mod 𝑁) 𝑈21 (mod 𝑁) 𝑈22𝑛−1 (mod 𝑁)

Fig. 7.5 Implementation of the oracle for the period finding function. Source: [105]

In Figure 7.5, there is a high-level design of the oracle 𝑈𝑓𝑎,𝑁 whose implementation is
treated in detail in section 7.2. As a reminder, this is a function 𝑎𝑥 (mod 𝑁) that can also
be expressed as binary expansion. The next step involves applying the 𝑄𝐹𝑇 † to the first
quantum register. This leads to the state:

|𝜓⟩ = 1
𝑞

𝑞−1
∑

𝑥=0

𝑞−1
∑

𝑐=0
𝑒
2𝜋𝑖𝑥𝑐
𝑞

|𝑐⟩ |𝑎𝑥 (mod 𝑁)⟩

where |𝑐⟩ is the output of the first register. The last step of the quantum part is the final
measurement and for this measurmement we can also compute the probability 𝑃 of having a
particular state |𝑐⟩ |𝑎𝑘 (mod 𝑁)⟩, where 0 ≤ 𝑘 ≤ 𝑟:

7.2 Shor’s algorithm in-depth analysis 109

𝑃 (|𝑐⟩ |𝑎𝑘 (mod 𝑁)⟩) =
|

|

|

|

1
𝑞

∑

𝑥∶𝑎𝑥≡𝑎𝑘
𝑒
2𝜋𝑖𝑥𝑐
𝑞
|

|

|

|

2 ∗
=
|

|

|

|

1
𝑞

⌊

(𝑞−𝑘−1)
𝑟 ⌋

∑

𝑏
𝑒
2𝜋𝑖(𝑏𝑟+𝑘)𝑐

𝑞
|

|

|

|

2
(7.8)

=
|

|

|

|

1
𝑞

⌊

(𝑞−𝑘−1)
𝑟 ⌋

∑

𝑏
𝑒
2𝜋𝑖𝑏𝑟𝑐
𝑞

|

|

|

|

2

The sum of the above equation spans over all 𝑥 < 𝑞 s.t. 𝑎𝑥 = 𝑎𝑘 (mod 𝑁). Taking into
account that 𝑟 is the order of 𝑎, this sum can consider all x s.t. 𝑥 = 𝑘 (mod 𝑁). The final
result is reported in Equation 7.8, where 𝑥 (after ∗

=) is written as 𝑏𝑟+𝑘 (𝑏 ∈ ℕ). We can
ignore the term 𝑒(2𝜋𝑖𝑘𝑐∕𝑞), since it can be excluded from the sum and it becomes 1. Peter Shor
[106] proves that if 𝑟𝑐 is close to a multiple of 𝑞, then we get a large probability of measuring
the corresponding states. Moreover, for a large 𝑛 the probability is at least 1∕3𝑟2 if:

|

|

|

|

𝑐
𝑞
− 𝑑
𝑟
|

|

|

|

≤ 1
2𝑞

Assuming that we measured the first register, we know the value of 𝑐∕𝑞. Considering that
𝑞 > 𝑛2 and 𝑟 < 𝑛, there is at most one fraction 𝑑∕𝑟 that satisfies the inequality Equation 7.9.
We can obtain 𝑑∕𝑟 by rounding the fraction 𝑐∕𝑞 to the closest fraction with a denominator
smaller than 𝑛. We can then classically found the value of this fraction in polynomial time
using continuous fraction expansion [106] over 𝑐∕𝑞.

Shor also remarks that we have 𝜙(𝑟) ⋅ 𝑟 diverse states that allow to obtain a particular
r. 𝜙(𝑟) is the Euler’s totient function and the probability of obtaining a consistent value as
output of the quantum circuit is 𝜙(𝑟)∕3𝑟.

7.2 Shor’s algorithm in-depth analysis

Relevant to the practical implementation of Shor’s algorithm, there is the designing of the
oracle, i.e. the core function of the algorithm, which is the most challenging part among all
requirements. In this section, we discuss an in-depth view of the required elementary gates
provided by [105]. In turn, we must define the elementary adder gate, the modular adder gate,
and the controlled modular multiplier gate to build the controlled 𝑈𝑎 gate, which is frequently
used in the various steps of the quantum circuit.

110 Quantum Offensive Security: the impact of Shor’s Algorithm

…
|Φ(𝑏)⟩

𝐴0

|Φ(𝑏+𝑎)⟩

𝐴1

𝐴𝑛−2

𝐴𝑛−1

=
|Φ(𝑏)⟩ ΦADD(𝑎) |Φ(𝑏+𝑎)⟩

Fig. 7.6 Addition of a classical value 𝑎 to a quantum register encoding 𝑏 in the Fourier space. The 𝐴𝑖
values are computed classically. Source: [105]

In Figure 7.6 we start by defining the adder gate which is in charge of adding 𝑎 a classical
random number smaller than 𝑁 to a quantum register. This will be useful in the coming
implementation of the aggregated gates. Two important remarks: the addition operation
happens in the Hadamard basis so we need to be careful on adjusting the phase for each qubit
(see Equation 7.9); in order to prevent overflow we apply the operation to an 𝑛+1 register.

𝐴𝑖 = 𝜋
𝑖

∑

𝑗=0
𝑎𝑗2−(𝑗−𝑖) (7.9)

It is interesting to notice that applying the reverse of the Φ𝐴𝐷𝐷(𝑎) we obtain either
|𝑏−𝑎⟩ for 𝑏 ≥ 𝑎 or |2𝑛+1−(𝑎−𝑏)⟩ for 𝑏 < 𝑎. Clearly since we are in the Fourier basis, we
need to apply a 𝑄𝐹𝑇 before and a 𝑄𝐹𝑇 † after. The depth of the gate is 1. In the case of its
controlled or double controlled version the depth becomes 𝑛 ⋅𝑇 , where 𝑇 is the depth of a
Toffoli gate for a given architecture.

|𝑐1⟩ |𝑐1⟩
|𝑐2⟩ |𝑐2⟩

|Φ(𝑏)⟩0...𝑛−1
ΦADD(𝑎) ΦADD(𝑁)† QFT† QFT ΦADD(𝑁) ΦADD(𝑎)† QFT† QFT ΦADD(𝑎)

|Φ(𝑏)⟩𝑛

|0⟩ |0⟩

=
|Φ(𝑏)⟩ ΦADD(𝑎) (mod 𝑁) |Φ(𝑏+𝑎)⟩

Fig. 7.7 Doubly controlled modular addition of a classical value 𝑎 to a quantum register encoding 𝑏
in the Fourier space modulo 𝑁 . The result is |Φ(𝑎+𝑏) (mod 𝑁)⟩ if 𝑐1 = 𝑐2 = |1⟩, |Φ(𝑏)⟩ otherwise.
Source: [105]

7.2 Shor’s algorithm in-depth analysis 111

In Figure 7.7 we have the modular adder gate which is in charge of performing the modular
addition of a classical number 𝑎 to a quantum register. In the previous gate we have that the
register after the application of the QFT has its most significant bit (MSB) always to zero. In
this circuit we can leverage this aspect since we know that the value of the MSB is |1⟩ onfly
if 𝑎+𝑏 < 𝑁 , in fact, in this case we need to add N another time. It is easily understandable
from Figure 7.7 that we can achieve this result by controlling the second Φ𝐴𝐷𝐷(𝑁) with
the MSB of the previous sequence of operations. The number of qubits needed is 𝑛+4 while
the depth (𝐷) is:

D = 4+4 ⋅ (2𝑛+1)+1+3 ⋅ (𝑛 ⋅𝑇) = 3𝑛 ⋅𝑇 +8𝑛+9

…
…
…

…
…

…

|𝑐⟩ |𝑐⟩

|𝑥⟩ |𝑥⟩

|𝑏⟩ QFT ΦADD(20𝑎)𝑚𝑜𝑑𝑁 ΦADD(21𝑎)𝑚𝑜𝑑𝑁 ΦADD(2𝑛−1𝑎)𝑚𝑜𝑑𝑁 QFT†

=

|𝑐⟩ |𝑐⟩

|𝑥⟩
CMULT(𝑎)𝑚𝑜𝑑𝑁

|𝑥⟩

|𝑏⟩

Fig. 7.8 Controlled modular multiplication of a classical value 𝑎 times a quantum register encoding 𝑥
modulo𝑁 , summing the result to a third register encoding the value 𝑏. The result is |𝑏+𝑎 ⋅𝑥 (mod 𝑁)⟩
if 𝑐 = |1⟩, |𝑏⟩ otherwise. Source: [105]

The final step before assembling the final gate is to build the controlled modular multiplier
gate in Figure 7.8. The idea is to obtain (𝑎𝑥) (mod 𝑁) by leveraging the identity:

(𝑎𝑥) (mod 𝑁) = (...((20𝑎𝑥0) (mod 𝑁)+21𝑎𝑥1) (mod 𝑁)+ ...+2𝑛−1𝑎𝑥𝑛−1) (mod 𝑁)

The number of qubits are 2𝑛+3 and the depth of such a gate is:

D = 2 ⋅2𝑛+𝑛 ⋅ (3𝑛 ⋅𝑇 +8𝑛+9) = 3𝑛2 ⋅𝑇 +8𝑛2+13𝑛

112 Quantum Offensive Security: the impact of Shor’s Algorithm

The final unitary gate needed for the oracle in Figure 7.5 is depicted in Figure 7.9 and the
number of qubits in this case are 2𝑛+3 and the depth:

D = 2 ⋅ (3𝑛2 ⋅𝑇 +8𝑛2+13𝑛)+ (𝑛 ⋅𝑇 +2) = 6𝑛2 ⋅𝑇 +16𝑛2+26𝑛+𝑛 ⋅𝑇 +2

Considering the importance of the 𝑈𝑎 gate, one can summarise the final action of this gate as
|𝑐⟩ |𝑥⟩→ |𝑐⟩ |𝑎 ⋅𝑥 (mod 𝑁)⟩ if |𝑐⟩ = |1⟩.

|𝑐⟩ |𝑐⟩

|𝑥⟩
CMULT(𝑎)𝑚𝑜𝑑𝑁 SWAP CMULT(𝑎−1)𝑚𝑜𝑑𝑁

|0⟩ |0⟩

=

|𝑐⟩ |𝑐⟩

|𝑥⟩ 𝑈𝑎

Fig. 7.9 Controlled 𝑈𝑎 gate. The result is |𝑎 ⋅𝑥 (mod 𝑁)⟩ if 𝑐 = |1⟩, |𝑥⟩ otherwise. Source: [105]

Looking at the Equation 7.10, the reader can easily observe that in order to vary the constant
𝑎2𝑖 , it is not necessary to apply 𝑈𝑎 multiple times but just apply the 𝑈𝑎2𝑖 calculating 𝑎2𝑖
classically.

𝑎𝑖𝑥 (mod 𝑁) = (((𝑎 ⋅𝑥 (mod 𝑁)) ⋅𝑥 (mod 𝑁))...) ⋅𝑥 (mod 𝑁) (7.10)

According to this, the oracle requires 2𝑛 sequentially controlled 𝑈𝑎2𝑖 gates, each controlled
by a different qubit. The total width of the circuit, in this case, is 4𝑛+2, and the total depth
will be the sum of the oracle, the Hadamard gate, and the QFT† applied to 2𝑛 qubits:

D = 2𝑛 ⋅ (6𝑛2 ⋅𝑇 +16𝑛2+26𝑛+𝑛 ⋅𝑇 +2)+1+2(2𝑛) ≃ 12𝑛3 ⋅𝑇 +32𝑛3

To summarise and make a helpful example, one can state that factorising a 2048-bit integer, i.e.
in the RSA-2048 case, requires 8194 logical qubits. Additional but necessary consideration is
that one, in order to have consistent logical qubits, needs to adopt QEC techniques with a code
distance that allows managing the depth of the circuit with an acceptable error probability. This
may result in a large number of physical qubits needed, as presented in the following sections.
Last but not least, the topology of the quantum processor shall exhibit high connectivity to
reduce the error rate of quantum gates, and the decoherence time of the qubits must be large
enough to consider the depth of the circuit and the time needed to apply the quantum gates.

7.3 Shor’s algorithm optimisation 113

7.3 Shor’s algorithm optimisation

In this section, we provide many optimisation techniques from the scientific literature. We
developed a version of the first two, but the third is an essential case study due to the availability
of a fairly current estimate of the resources required to factor RSA 2048.

7.3.1 Sequential QFT

Using the sequential version of the inverse QFT [107], we may minimise the number of qubits
in our estimate, allowing us to utilise only one qubit for the register that will be measured: this
lowers the width of the circuit from 4𝑛+2 to 2𝑛+3 without increasing its depth. However, a
classically-controlled quantum gate is required, which IBM hardware lacks at present.

𝑚0 𝑚1
…

𝑚2𝑛−1

…

|0⟩ 𝐻 𝐻 X𝑚0 𝐻 R0 X𝑚1 R2𝑛−1

|1⟩ 𝑈𝑎20 𝑈𝑎21 𝑈𝑎22𝑛−1

Fig. 7.10 Circuit for the Shor’s algorithm with the sequential QFT. Source: [105]

This work provides a version of the circuit based on the aforementioned technique, despite
the fact that we can only run it on a simulator. This version allows us to test the implementation
by factoring larger numbers than the standard one considering that the number of required
qubits restricts our tests’ size. This technique is further discussed in [105]. In Figure 7.10,
the reader can find a high-level design of the circuit. Additional remarks are that X𝑚0 are
classically controlled CNOT gates, and when the value of 𝑚𝑖 is one, the corresponding X𝑚𝑖 is
applied.

7.3.2 In-place addition

Another possible optimisation [108] permits to save one qubit using a dirty ancilla qubit
instead of a clear one in the modular addition. Several dirty qubits are available when one
performs the modular addition, such as the |𝑥⟩ register in Figure 7.8. Because of this, it is
possible to run the circuit using just 2𝑛+2 qubits.

A modular addition (Figure 7.11) between a quantum register |𝑏⟩ and a classical value 𝑎
compares |𝑏⟩ to 𝑁 −𝑎. When 𝑏 >𝑁 −𝑎, one removes 𝑁 −𝑎, otherwise adds 𝑎. The result is
then compared to 𝑎 in order to clear the ancillary qubit.

114 Quantum Offensive Security: the impact of Shor’s Algorithm

𝑛

1

𝑛−1

|𝑏⟩

CMP(𝑁 −𝑎)

ADD𝑎 ADD†
𝑁−𝑎

CMP(𝑎)

|𝑏+𝑎 mod𝑁⟩

|0⟩ |0⟩

|𝑔⟩ |𝑔⟩

Fig. 7.11 Modular adder using 𝑛−1 dirty ancillae of register |𝑔⟩ and 1 clear qubit. Source: [109]

The comparator [109] requires a gate that computes the carry of the sum between a number
encoded in a quantum register and a classical constant. This can be accomplished using 𝑛−1
dirty ancillae qubits, which are available at each iteration of the controlled modular adder in
the 𝑥 register represented in Figure 7.8.

To compute the final carry (Figure 7.12) of the addition between the number encoded in
a register |𝑏⟩ and the classical value 𝑎, we must propagate the carry from each qubit to the
last one. It is possible to toggle the qubit 𝑔𝑖 of the auxiliary register when a carry from bit
𝑖 to bit 𝑖+1 is required. If 𝑏𝑖 = 𝑎𝑖 = 1, 𝑔𝑖 must toggle either 𝑔𝑖−1 = 𝑏𝑖 = 1 or 𝑔𝑖−1 = 𝑎𝑖 = 1.
One can further preserve 𝑔0, considering that it relies only on the condition 𝑏0 = 𝑎0 = 1, so
𝑎0 can be replaced with 𝑔0 when establishing the conditions for 𝑔1.

|𝑏0⟩ |𝑏0⟩

|𝑏1⟩ |𝑏1⟩

|𝑔1⟩ |𝑔1⟩

|𝑏2⟩ |𝑏2⟩

|𝑔2⟩ |𝑔2⟩

|0⟩ |(𝑥+𝑎)3⟩

Fig. 7.12 Carry gate for 𝑛 = 3. The blue gates are present if 𝑎𝑖 = 1. In order to build the circuit for 𝑛
qubits, we must copy the same three gates of the 𝑔1𝑎2𝑔2 triple. Source: [109]

Another potential optimisation is based on not performing the addition in the Fourier
space, such that we do not need all the QFTs of the modular addition circuit, although it does
rely on Toffoli gates. In order to derive the constant adder, we need a gate that calculates the
carry of the sum of a number stored in a quantum register and a classical constant utilising
𝑛−1 dirty ancillae qubits and a controlled incrementer. An incrementer may be generated for
the controlled incrementer gate from a gate that performs the addition between two numbers

7.3 Shor’s algorithm optimisation 115

stored in two quantum registers of 𝑛 qubits, one of which is composed of dirty auxiliary
qubits:

|𝑥⟩ |𝑔⟩→ |𝑥−𝑔⟩ |𝑔⟩→ |𝑥−𝑔⟩ |𝑔′−1⟩→ |𝑥−𝑔−𝑔′−1⟩ |𝑔′−1⟩→ |𝑥+1⟩ |𝑔⟩

The element 𝑔′−1 is the bit-wise complement of 𝑔 and can be implemented by using 𝑛 X
gates. A controlled version of this gate may instead be implemented by controlling each gate
and incrementing the register’s least significant qubit using the controller. The authors of
[110] propose a circuit to conduct the addition between two quantum registers by using no
ancilla qubits and storing the carry of the operation (Figure 7.13).

|𝑏0⟩ |𝑠0⟩

|𝑎0⟩ |𝑎0⟩

|𝑏1⟩ |𝑠1⟩

|𝑎1⟩ |𝑎1⟩

|𝑏2⟩ |𝑠2⟩

|𝑎2⟩ |𝑎2⟩

|𝑏3⟩ |𝑠3⟩

|𝑎3⟩ |𝑎3⟩

|𝑧⟩ |𝑧⊕𝑠4⟩

Fig. 7.13 Quantum circuit for the addition of two 4-bit registers. Source: [110].

A quantum circuit to perform the addition of a constant is depicted in Figure 7.14. The
whole process begins by dividing the quantum register into two halves, the lower one, 𝑥𝐿 and
𝑎𝐿, and the higher one, 𝑥𝐻 and 𝑎𝐻). Afterwards, one can calculate the carry bit of 𝑥𝐿+𝑎𝐿
leveraging the |𝑥𝐻⟩ register as ancillas. The final result controls the choice of whether
incrementing |𝑥𝐻⟩. As a reminder, when the ancilla is set to |1⟩, one needs to use one of
them by adding another incrementer and inverting |𝑥𝐻⟩. Finally, the whole quantum circuit
is recursively repeated for both halves.

116 Quantum Offensive Security: the impact of Shor’s Algorithm

⌈

𝑛
2⌉

⌊

𝑛
2⌋

|𝑥𝐿⟩

CARRY CARRY

+𝑐𝐿 |𝑟𝐿⟩

|𝑥𝐻⟩ +1 +1 +𝑐𝐻 |𝑟𝐻⟩

|𝑔⟩ |𝑔⟩

Fig. 7.14 Quantum circuit for adding a constant (𝑎) to a quantum register. Source: [109]

The resulting gate is an essential building block for a modular adder with a Toffoli count
of 8𝑛 log2 𝑛+𝑂(𝑛) and considering the procedure presented in section 7.2, the total number
of Toffoli in Shor’s circuit is equal to 64𝑛3 log2 𝑛+𝑂(𝑛3).

7.3.3 Ekerå and Håstad’s Algorithm

The authors of [111] proposed an interesting resource estimation work regarding Shor’s
algorithm for breaking RSA-2048. As a synthesis, the whole process would take 8 hours,
utilising 20 million physical qubits and specific optimisation techniques. In this approach,
variations of Shor’s algorithm are utilised to minimise the number of multiplications, and
windowed arithmetic is used to combine multiple of them. Specifically, the utilised circuit
performs the DLP of the value 𝑦 in the equation 7.11, where 𝑔 ∈ 1, ...,𝑁 −1 is a random
integer.

𝑦 = 𝑔𝑁+1 (7.11)
Applying this method, the discrete logarithm 𝑑 = log𝑔 𝑦 would be equal to 𝑝+ 𝑞 (mod 𝑟), as
reported in Equation 7.12. As a note for the reader, 𝑟 divides 𝜙(𝑁) = (𝑝−1)(𝑞−1), which is
the order of ℤ∗

𝑁 for Euler’s totient theorem, and 𝑝𝑞+1 = 𝑝+ 𝑞 (mod 𝜙(𝑁)).

𝑑 =𝑁 +1 = 𝑝𝑞+1 = 𝑝+ 𝑞 (mod 𝑟) (7.12)

Afterwards, the value 𝑑 can be the starting point to determine, leveraging standard classical
procedure, the roots of the equation:

𝑝2−𝑑𝑝+𝑁 = 0 (7.13)

The period of the function 𝑓 (𝑒1, 𝑒2) = 𝑔𝑒1𝑦−𝑒2 , where 𝑒1 has a bit length of 𝑛+𝑂(1) and 𝑒2
has a bit length of 𝑛∕2+𝑂(1) is then provided by the quantum circuit. Finally, the entire

7.4 Summary on resource estimation 117

exponent exhibits an asymptotic length of 1.5 ⋅𝑛, which is better than the 2𝑛 of the standard
circuit.

An essential final remark is that the estimation of this study does not rely on the heavy
hexagon code from IBM, which would require, with a code distance 𝑑 = 27, a number of
qubits around 25.5 million. They adopted instead a custom QEC technique which lowered
that number to 20 million.

7.4 Summary on resource estimation

The reader may appreciate a summary and comparison of the different optimisation anal-
ysed for Shor’s algorithm in this brief section. These considerations might also clarify the
advantages, peculiarities, and constraints of the underlying approaches.

Looking back at section 7.2, we estimated for the classical quantum circuit a number of
qubits required of 4𝑛+2 and a depth of 12𝑛3 ⋅𝑇 +32𝑛3, where 𝑇 represents the depth of a
Toffoli gate if this is not present as a native gate.

Version Logical qubits Depth # of Toffoli gates
Sequential QFT [105] 2𝑛+3 144𝑛3 lg(𝑛)+𝑂(𝑛2 lg(𝑛)) 576𝑛3 lg2(𝑛)+𝑂(𝑛3 lg(𝑛))
In-place addition [109] 2𝑛+2 52𝑛3+𝑂(𝑛2) 64𝑛3 lg(𝑛)+𝑂(𝑛3)
Ekerå and Håstad [111] 3𝑛+0.002𝑛 lg(𝑛) 500𝑛2+𝑛2 lg(𝑛) 0.3𝑛3+0.0005𝑛3 lg(𝑛)

Table 7.1 Comparison among the different optimisation techinque presented.

Table 7.1 shows a summary of the same metrics for all the quantum circuits designed
in the various studies that are reported in this work. As a remark, all the metrics have been
calculated on the specific architecture and with the specific QEC techniques adopted in those
studies. In section 7.5, the reader can find a link to the implementation of a Qiskit version of
a subset of them as well as practical tests on the depth of the resulting quantum circuits.

Coming back to Table 7.1, one may observe that applying the sequential QFT allows
reducing significantly the number of qubits required, while the in-place addition bears a
small advantage of saving a single qubit and the third study needs even more qubit than the
sequential QFT. The real differences here come when one adopts a specific QEC technique,
as already mentioned for Ekerå.

118 Quantum Offensive Security: the impact of Shor’s Algorithm

Concerning the depth of the circuit, one can notice that the in-place addition brings some
advantages over the sequential QFT; nevertheless, the Ekerå’s set of optimisations leads to a
better result.

7.5 Implementation and experimental results

As for the implementations carried out during this work, one can find them at the linked
GitHub repository1. In particular, the reader can access a library for Shor’s algorithm based on
the Qiskit toolkit containing both the basic Aqua version and a set of functions that implement
the various enhanced version presented in section 7.3.

In the following part of this section, one can also find the results of several tests conducted
on these available variants to assess and better understand their peculiar characteristics.
The metrics adopted for testing and validation are execution time, depth, and quality of the
solution.

Since we selected the IBM Q 32-qubit simulator, the reader might presume that all tests
were conducted using this simulator unless otherwise specified. Clearly, this affects all
metrics, but particularly the first two: the execution time is dependent on the specific tools
used to transpile the circuit, the available native gates, and the maximum decomposition of
the circuit that is achievable on the hardware.

As a remark on why we chose to employ the simulator rather than quantum hardware
primarily, one can easily comprehend that existing processors (e.g., 65-qubit Hummingbird,
127-qubit Eagle) require QEC approaches to provide consistent results. Because of this,
the available logical qubits after applying a suitable distance coding were insufficient for
executing Shor. The reader may independently examine the effects of noise in an experiment
using the simulator described in subsection 7.5.2.

For the sake of clarity, in the following sections, we provide, in turn: a comparison
between the standard version of Shor’s algorithm and its enhanced versions, results regarding
the impact of noise in quantum circuit execution for a specific architecture, and a comparison
of the same quantum circuit executed on different simulators.

1https://github.com/ignaziopedone/shor-analysis

7.5 Implementation and experimental results 119

7.5.1 Validation of the Qiskit-based Shor’s improvements

This section illustrates the comparison between the different Shor’s algorithm implementations
presented in this work and summarised in Table 7.2.

Description of the implementation # of required qubits
Qiskit Aqua base version 4𝑛+2
Toffoli-based 4𝑛+1
Qiskit Aqua base version + sequential QFT 2𝑛+3
Toffoli-based + sequential QFT 2𝑛+2
Table 7.2 Summary of the available Shor’s algorithm implementations.

As a reminder for the reader, one has a probability of at least 𝜙(𝑟)∕3𝑟 to obtain a good
value from the execution of an instance of Shor’s algorithm. In this work, we define this
probability as the quality of a specific solution. For some of the experiments, in fact, we
compared the lower bound above with the probability of success measured in our experiments.

As already mentioned, our experiments have been conducted using the 32-bit IBM Q
simulator, so the reader can expect certain constraints in terms of the size of the problem that
we are able to solve. In this specific case, we run experiments using different semiprimes (𝑁
values) from 15 to 143, depending on the limits of the specific variant. A critical remark here
is that we were not able to hit the theoretical limit of the maximum size of 𝑁 for the 32-bit
processor since other factors needed to be considered: the growing depth of the circuit and
the time needed to execute the simulation classically which is also related to the number of
shots or iteration of the algorithm. For instance, in these experiments, we were able to solve
the standard QFT up to 6-bit moduli in a reasonable time and the sequential QFT up to 8-bit
moduli. These numbers are clearly lower than the theoretical maximum, i.e. 2𝑛+2 for the
sequential QFT.

The first experiment, depicted in Figure 7.15, shows how the growth in terms of the
number of bits of the modulus influences the execution time. These results confirm the
better performance of the sequential QFT against the classical one. In addition, one can
also observe that the Toffoli-based version of the circuit generally provides an advantage
that is more significant for the variant without the sequential QFT. The reader may also
notice some differences in the trend of the various implementations with respect to the data
presented in the Table 7.1. To further clarify this aspect, the depth of a Toffoli gate for a

120 Quantum Offensive Security: the impact of Shor’s Algorithm

specific architecture should be considered in the equation - when this is not native - and
further optimisation for the specific architecture in the transpiring process.

Fig. 7.15 Execution time for each variant using the 32-qubit IBM Q simulator and 100 shots.

Figure 7.16 shows another interesting metric during the very same experiment, the depth
of the maximally decomposed circuit. This value corresponds to the depth of the quantum
circuit calculated by decomposing it in native gates and taking into account all possible
parallelisation. This calculus may be directly obtained by using the Qiskit decompose
function.

According to the theoretical analysis, the depth of the sequential QFT grows faster than
the one with the classical QFT due to possible parallelisations of quantum gates in this second
case. The reader may also notice that the depth of the Toffoli-based versions is larger than
the standard implementation. This once again depends on the Toffoli decomposition on the
IBM architecture. Finally, one can observe that this gap from the Toffoli decomposition
becomes narrower between the two sequential QFT variants: this happens because the

7.5 Implementation and experimental results 121

primary influence on the general depth depends on the lack of parallelisation rather than the
decomposition of the Toffoli gates.

Fig. 7.16 Depth of the quantum circuits for each variant depending on the number of bits of the
modulus and choosing 𝑎 = 2.

In Figure 7.17, we can observe a neat peculiarity of the Toffoli-based versions. In
particular, depending on the choice of 𝑎, the depth of the circuit may oscillate, a behaviour
not arising in the standard version and caused by the carry gate.

Changing metric to the quality of the solution, one can observe in Figure 7.18 and
Figure 7.19 the probability of success of a quantum circuit depending on the chosen value of
a for all the analysed variants and 𝑁 = 15,21,33.

For 𝑁 = 15 and 𝑁 = 21, the reader can observe that the two essential factors are the
choice of 𝑎 and the method adopted; in fact, these factors are the main reason for the variation
of the success probability. Nevertheless, one can notice that all those values are greater than
the expected value; thus, the experiment results are consistent for each case, and there are

122 Quantum Offensive Security: the impact of Shor’s Algorithm

Fig. 7.17 Depth of the doubly controlled modular multiplication circuit with 𝑁 = 33 and for different
value of 𝑎.

no significant differences. As a remark for the reader, all values are subject to oscillations
according to the number of shots set during the experiment: there is an explicit trade-off
between precision and execution time.

As the modulus grows (e.g., N=33), the differences between the various methods arise.
In particular, the sequential QFT version seems to be more stable than the classical one. In
Figure 7.20, the reader can also notice that varying the modulus Toffoli-based method appears
to react better to higher value with respect to the standard version.

7.5.2 Noise models

This section started with an important observation about the current limits in using real
hardware to run Shor’s algorithm for a sufficiently large modulus. Because of this, we
adopted the IBM Q simulator. Nevertheless, understanding and evaluating the effect of noise

7.5 Implementation and experimental results 123

on the quantum circuit is essential to both support our choice and clarify some ideas to the
reader.

The Qiskit toolkit allows applying different noise models to the quantum circuit executed
through their simulator. We selected the Montreal noise model, related to the same processor,
which offers 27 qubits and a QV of 128, and adopted it in two cases: a two-cyclic binary
halving circuit (Figure 7.21) and the Toffoli-based version of Shor’s algorithm implemented
with the sequential QFT (Figure 7.22).

These tests show how the noise affects the final solution, even in a simple case like the
one of the binary halving. In the specific case of Shor’s algorithm, noise makes reading the
results impractical and emphasises the need for QEC techniques supported by architecture
with a more significant number of physical qubits.

7.5.3 Rigetti simulator

As a final test, the reader might be interested in whether these implementations are portable
and the differences in the solution’s quality. Because of this, we ported the code of the various
Shor’s algorithm implementations from Qiskit to pyquil in order to be executed on the Rigetti
simulator 2. A helpful tool to perform this porting is the QPS online converter3. An important
remark is that the Rigetti simulator that we used is a local machine simulator (pure state
QVM); thus, we had constraints in terms of execution time and performance with respect to
the one from IBM.

The tests performed and depicted in Figure 7.23 involve the prime factoring of 𝑁 = 15
using 𝑎 = 2 with all the available implementation variants and 𝑁 = 21 also using 𝑎 = 2 but
only with the sequential QFT implementation.

These results, rather than aiming at giving a solid comparison between the two archi-
tectures, want to demonstrate that it is indeed possible to migrate a large quantum circuit
implementation relatively easily between two architectures preserving the consistent quality
of the solutions. This sounds even more compelling, considering the great effort profused by
different vendors in proposing new architectures with more qubits, larger values of QV, and
more sophisticated QEC techniques.

2https://pyquil-docs.rigetti.com/en/v2.0.0/wavefunction_simulator.html
3https://quantum-circuit.com/qconvert

124 Quantum Offensive Security: the impact of Shor’s Algorithm

Fig. 7.18 Probability of success for the different variants against the minimum expected value varying
the value of 𝑎. For the figure at the top N=15, while for the on at the bottom N=21.

7.5 Implementation and experimental results 125

Fig. 7.19 Probability of success for the different variants against the minimum expected value varying
the value of 𝑎 and with N=33.

126 Quantum Offensive Security: the impact of Shor’s Algorithm

Fig. 7.20 Quality of the solution comparison between the standard and the Toffoli-based variants for
different values of 𝑁 .

Fig. 7.21 probability of obtaining a certain value as the output of two binary halving gates with and
without applying a montreal noise model.

7.5 Implementation and experimental results 127

Fig. 7.22 probability of obtaining a certain value as the output of a whole Shor’s algorithm quantum
circuit with sequential QFT and the Toffoli-based method with and without applying a Montreal noise
model.

128 Quantum Offensive Security: the impact of Shor’s Algorithm

Fig. 7.23 Success probability comparison between the 32-qubit IBM Q simulator and the Rigetti
QVM. At the top 𝑁 = 15, while at the bottom 𝑁 = 20.

Chapter 8

Shor’s algorithm and Elliptic Curve
Discrete Logarithm Problem

As for the prime factoring problem, the DLP is a building block of current public key
algorithms and protocols such as Diffie-Hellman (DH) for key exchange. Shor’s algorithm is
able to break also the DLP. Even if current security protocols (e.g., TLS 1.3) are progressively
abandoning DH in favour of Elliptic Curve Diffie-Hellman (ECDH), the latter can be broken
in polynomial time by adapting Shor’s algorithm for the DLP to the case of ECC.

In this chapter, an approach for designing a quantum algorithm to break ECC is presented
as well as the description of all the steps needed from solving the DLP for multiplicative
groups - as in the case of DH - to adapting it for the specific case of Elliptic curves.

An interesting outcome of this analysis is that in the case of ECC, we need fewer qubits
and gates than in the prime factoring case to solve the underlying problem.

8.1 Quantum algorithm overview

The authors of [8] provided a remarkable overview of the generalisation of Shor’s algorithms
- both for factoring and DLP - and we adopted it for presenting the required circuit that must
be adapted in the case of Elliptic Curves.

The final goal is to find the value 𝑑 of 𝑥 ≡ 𝑔𝑑 (mod 𝑝). While in the factoring algorithm,
we work with subgroups of ℤ (group of integers), for the DLP we are interested in subgroups
of ℤ2 that can be expressed as a linear combination of two vectors in ℤ2. This consideration
leads the authors to view the DLP algorithm as a two-dimensional version of the factoring

130 Shor’s algorithm and Elliptic Curve Discrete Logarithm Problem

algorithm. Considering the function:

𝑓 (𝑎,𝑏) = 𝑔𝑎𝑥𝑏 (mod 𝑝)

one can observe that it has two distinct periods in ℤ2, which are:

𝑓 (𝑎+ 𝑞,𝑏) = 𝑓 (𝑎,𝑏) and 𝑓 (𝑎+𝑑,𝑏−1) = 𝑓 (𝑎,𝑏)

where 𝑞 is the order of 𝑔. This reflection allows extending Shor’s algorithm - described in
section 7.1 - to the DLP case by adding a third register, applying Hadamard to the first two,
and reformulating the oracle as follows:

1
𝑞

𝑞−1
∑

𝑎=0

𝑞−1
∑

𝑏=0
|𝑎,𝑏,1⟩⇒ 1

𝑞

𝑞−1
∑

𝑎=0

𝑞−1
∑

𝑏=0
|𝑎,𝑏,𝑔𝑎𝑥𝑏⟩

Assuming that 𝑥 ≡ 𝑔𝑑 (mod 𝑝), one can leave the third register in the state |𝑔𝑎+𝑑𝑏⟩ = |𝑔𝑎0⟩;
thus, each 𝑏 has only one solution and the two top registers transform as the following:

1
√

𝑞

𝑞−1
∑

𝑏=0
|𝑎0−𝑑𝑏,𝑏⟩ (8.1)

Afterwards, the QFT applies to these two registers, leading state:

1
𝑞
√

𝑞

𝑞−1
∑

𝑎′,𝑏′=0

𝑞−1
∑

𝑏=0
𝑒
2𝜋𝑖
𝑞 (𝑎0−𝑑𝑏)𝑎′𝑒

2𝜋𝑖
𝑞 𝑏𝑏

′
|𝑎′, 𝑏′⟩

Considering that we look at conditions where 𝑏′ ≡ 𝑑𝑎′ (mod 𝑞) and:
𝑞−1
∑

𝑏=0
𝑒
2𝜋𝑖
𝑞 (𝑎0−𝑑𝑏)𝑎′𝑒

2𝜋𝑖
𝑞 𝑏𝑑𝑎

′
=
𝑞−1
∑

𝑏=0
𝑒
2𝜋𝑖
𝑞 𝑎0𝑎

′
= 𝑞𝑒

2𝜋𝑖
𝑞 𝑎0𝑎

′

the resulting state becomes:
1
√

𝑞

𝑞−1
∑

𝑎′=0
𝑒
2𝜋𝑖
𝑞 𝑎0𝑎

′
|𝑎′, 𝑏′⟩ (8.2)

where 𝑏′ = 𝑑𝑎′ (mod 𝑞). Now, if we measure the two top registers, we can retrieve 𝑑 by
performing the following:

𝑑 = 𝑏′(𝑎′)−1 (mod 𝑞) (8.3)

8.1 Quantum algorithm overview 131

According to [106], this circuit may extract an appropriate pair (𝑎′, 𝑏′) with a probability
𝑝∕(240 ⋅ 𝑞′), where 𝑞′ denotes the power of 2 such that 𝑝 < 𝑞′ < 2𝑝. By evaluating this
probability, we may determine that fewer circuit shots can be necessary if the modulus of the
algorithm is near to 𝑞′, the next power of 2. Nevertheless, since 𝑝 < 2𝑞′, we may lower-bound
this probability, getting a minimal fixed probability of 1∕480.

In the instance of Elliptic Curves, modifying the oracle’s technique enables this high-level
circuit to solve the ECDLP. Notably, many elliptic curves now employed in cryptographic
applications have moduli that are close to the next power of two: for example, Curve25519 is
defined over a prime field with modulus 2255−19, therefore the chance of a quantum circuit
producing a valid output is close to 1∕240.

Given that the literature about ECC is complete and extensive we assume that the reader
is familiar with the concepts of elliptic curves over finite fields, generator, and operations
over the curves, e.g., addition between two points. The authors of [8, 112] provide primers
on ECC, useful to deeply understand the following concepts. Nevertheless, the reader can
find all the mathematical elements in this chapter to understand the core of the work which
lies within the analysis and the enhancement of the quantum algorithm. Suppose one has an
elliptic curve following the equation:

𝑦2 = 𝑥3+𝑎𝑥+𝑏 (8.4)

where 𝑎 and 𝑏 are constants such that 4𝑎3+27𝑏2 ≠ 0 and the addition operation between two
points on the curve (𝑝1 = (𝑥1,𝑦2), 𝑝2 = (𝑥2,𝑦2)) is defined as:

(𝑥1,𝑦1)+ (𝑥2,𝑦2) = (𝑥3,𝑦3) = 𝑝3 (8.5)

where 𝑥3 = 𝜆2−(𝑥1+𝑥2),𝑦3 = 𝜆(𝑥1−𝑥3)−𝑦1, and:

𝜆 =

⎧

⎪

⎨

⎪

⎩

(𝑦2−𝑦1)∕(𝑥2−𝑥1) 𝑖𝑓 𝑝1 ≠ 𝑝2
(3𝑥12+𝑎)∕(2𝑦1) 𝑖𝑓 𝑝1 = 𝑝2

(8.6)

To crack ECC (e.g., ECDH, ECDSA), determining the secret key 𝑑 by knowing the
curve parameters, generator 𝐺, and point 𝐵 = 𝑑 ⋅𝐺, we must perform the following oracle
transformation:

1
2𝑛

2𝑛−1
∑

𝑎=0

2𝑛−1
∑

𝑏=0
|𝑎,𝑏,1⟩⇒ 1

2𝑛

2𝑛−1
∑

𝑎=0

2𝑛−1
∑

𝑏=0
|𝑎,𝑏,𝑎𝐺+𝑏𝐵⟩

132 Shor’s algorithm and Elliptic Curve Discrete Logarithm Problem

Given that the required operation is a multiplication, we may use the same double-and-add
approach as for the factoring circuit. However, because the addition is based on elliptic curve
arithmetic, we must discover a reversible way to do it. We may apply the technique provided
in [113] and reported in Algorithm 1 to calculate the new coordinates (𝑥3,𝑦3) of Equation 8.7.
Our main objective is to implement all the constituent gates and circuits so that one day the
whole quantum circuit representing the algorithm can be tested on real hardware. Considering
all the limitations regarding the current simulators and quantum hardware, we analysed and
tested the building components. available in section 8.2.
Algorithm 1 reversible point addition procedure between a point stored in two quantum
registers and a point considered to be a precomputed classical constant. The result of 𝑝1+𝑝2is put in the register containing 𝑝1 when 𝑐𝑡𝑟𝑙 = 1. All operations are conducted using
modular arithmetic.
𝑥1 ← 𝑥1−𝑥2
if 𝑐𝑡𝑟𝑙 = 1 then

𝑦1 ← 𝑦1−𝑦2
end if
𝑡0 ← 𝑥−11
𝜆← 𝑦1 ⋅ 𝑡0
𝑦1 ← 𝑦1⊕𝜆 ⋅𝑥1 (= 0)
𝑡0 ← 𝑡0⊕𝑥−11 (= 0)
𝑡0 ← 𝜆2

if 𝑐𝑡𝑟𝑙 = 1 then
𝑥1 ← 𝑥1− 𝑡0
𝑥1 ← 𝑥1+3𝑥2 (= 𝑥2−𝑥3)

end if
𝑡0 ← 𝑡0⊕𝜆2 (= 0)
𝑦1 ← 𝜆 ⋅𝑥1
𝑡0 ← 𝑥−11
𝜆← 𝜆⊕𝑡0 ⋅𝑦1 (= 0)
𝑡0 ← 𝑡0⊕𝑥−11 (= 0)
if 𝑐𝑡𝑟𝑙 = 1 then

𝑥1 ← modular negation of 𝑥1
𝑦1 ← 𝑦1−𝑦2 (= 𝑦3)

end if
𝑥1 ← 𝑥1+𝑥2 (= 𝑥3)

8.2 Underlying building blocks

Given our primary objective of implementing the whole quantum circuit to compute the DLP
in the subgroup of an Elliptic Curve, we started from the work proposed by the authors of
[113]. The latter works introduced the design of the circuit and its subcomponents. In this
section, the reader can find an analysis of each one of the building blocks for that circuit to
better understand the practical implementation referenced in subsection 8.4.1 and several
improvements suggested in section 8.4.

8.2 Underlying building blocks 133

8.2.1 Modular addition and doubling

Figure 8.1 shows the circuit to compute the addition modulo 𝑝. This circuit can be derived
from the one described in subsection 7.3.2 by adding a gate for the comparison between
quantum registers and using only one clear ancilla qubit and a dirty one. The comparison of
the register |𝑥⟩ and |𝑦⟩ is straightforward since it is only made of subtraction and addition
without the carry. For the first subtraction, the qubit that stores the result is toggled if 𝑦 < 𝑥,
then the addition without the carry restores the value |𝑦⟩ in the second register.

𝑛

𝑛

|𝑥⟩

+ >

|𝑥⟩

|𝑦⟩

−𝑝

+𝑝
|𝑦⟩

|0⟩ |0⟩

|𝑔⟩ +𝑝
|𝑔⟩

Fig. 8.1 Circuit for the modular addition between two numbers encoded in quantum registers. Source:
[113]

An important feature of this circuit regards its controlled version, which is used in
Algorithm 1: as done for previous circuits, we do not need to control every gate, but just the
first (the adder) and the comparator. The circuit for the modular doubling, which is helpful
for modular multiplication, follows the same principles but requires one less register and a
simple gate that performs the bit shift of a quantum register, built using only qubit swaps.

𝑛
|𝑥⟩

⋅2
−𝑝

+𝑝
|2𝑥 (mod 𝑝)⟩

|0⟩ |0⟩

|𝑔⟩ +𝑝
|𝑔⟩

Fig. 8.2 Circuit for the modular doubling of a number encoded in a quantum register. Source: [113].

One can make the same assumption of the addition for the doubling in the case of the
controlled version. Moreover, the latter can be obtained by managing the control of the only
binary shift and the last CNOT. In addition, a CNOT gate must be added to restore the clear
ancilla.

134 Shor’s algorithm and Elliptic Curve Discrete Logarithm Problem

8.2.2 Modular multiplication

The modular multiplication circuit required for point addition stores the outcome of the
operation of two integers encoded in two quantum registers in a third quantum register,
necessitating at least 3𝑛 qubits to operate and allowing for two implementation options. The
first follows the equation Figure 7.2, while the second uses Montgomery arithmetic [114]
since numbers in Montgomery representation will also be employed in the modular inversion
to produce the most efficient approach.

…

⋮

…
…

…

…

…

𝑛

𝑛

2

|𝑥0⟩ |𝑥0⟩

|𝑥𝑛−2⟩ |𝑥𝑛−2⟩
|𝑥𝑛−1⟩ |𝑥𝑛−1⟩

|𝑦⟩

+ + +

|𝑦⟩

|0⟩
𝑑𝑏𝑙 𝑑𝑏𝑙 𝑑𝑏𝑙

|𝑥 ⋅𝑦 (mod 𝑝)⟩

|0𝑔⟩ |0𝑔⟩

Fig. 8.3 Circuit for the modular multiplication between two numbers encoded in quantum registers.
Source: [113]

Figure 8.3 shows the implementation of the first option. Moreover, it repeats the two
gates seen in subsection 8.2.1. Figure 8.4 depicts the circuit for modular squaring of a number
encoded in a quantum register derived from the previous one by controlling the additions and
adding a clear ancilla.

As for the resource estimation, the first circuit requires 3𝑛+2 qubits and the Toffoli gate
count is 32𝑛2 log2(𝑛)−59.4𝑛2; the second circuit 2𝑛+3 qubits and the same amount of Toffoli
gates.

The second option, namely the Montgomery multiplication strategy, allows instead ob-
taining a depth-width trade-off. As a reminder for the reader, a number in Montgomery form
is expressed as 𝑎𝑅 (mod 𝑝) with 𝑅 coprime and greater to 𝑝. Moreover, the Montgomery
reduction algorithm computes 𝑐𝑅−1 (mod 𝑝) for an integer 𝑐 given as input. Performing
the multiplication of two integers in Montgomery form 𝑎𝑅 (mod 𝑝) and 𝑏𝑅 (mod 𝑝) and
applying the reduction algorithm, one obtains 𝑎𝑏𝑅 (mod 𝑝), namely the Montgomery form of
the product between 𝑎 and 𝑏. One can further simplify it by selecting 𝑅 = 2𝑛 and obtaining
the reduction with a series of binary shifts.

8.2 Underlying building blocks 135

…

…

…

⋮

…

…

…

𝑛

2

|0⟩ |0⟩

|𝑥0⟩

+ + +

|𝑥0⟩

|𝑥1⟩ |𝑥1⟩

|𝑥𝑛−1⟩ |𝑥𝑛−1⟩

|0⟩
𝑑𝑏𝑙 𝑑𝑏𝑙 𝑑𝑏𝑙

|𝑥2 (mod 𝑝)⟩
|0𝑔⟩ |0𝑔⟩

Fig. 8.4 Circuit for the modular squaring of a number encoded in quantum register. Source: [113]

Comparing these two approaches, the Mongomery strategy requires only one modular
operation per round, while the other method two. This achievement is possible due to the
absence of the modular doubling gate at the cost of a more significant number of required
qubits to store intermediate results.

…
…

⋮

…

…

…

…

…

…

…

…

⋮

…

𝑛

𝑛−1

|𝑥0⟩ |𝑥0⟩
|𝑥1⟩ |𝑥1⟩

|𝑥𝑛−1⟩ |𝑥𝑛−1⟩

|𝑦⟩

+ + +

|𝑦⟩

|0⟩

+𝑝
∕2

+𝑝
∕2

+𝑝
∕2

−𝑝

|𝑐⟩

|0⟩

+𝑝

|𝑧0⟩

|0⟩ |𝑧1, ...,𝑧𝑛−1⟩

|𝑔⟩ |𝑔⟩

|0⟩ |𝑚0⟩

|0⟩ |𝑚1⟩

|0⟩ |𝑚𝑛−1⟩

Fig. 8.5 Circuit for the Montgomery modular multiplication between two numbers in Montgomery
representation encoded in quantum registers. Source: [113]

To better clarify the following depth analysis, the reader must know that once applied the
circuit in Figure 8.5, the result is copied to another register allowing the calculation of its
inverse and the reset operation of the ancilla. These operations can be executed in parallel.

136 Shor’s algorithm and Elliptic Curve Discrete Logarithm Problem

Finally, Montgomery modular multiplication requires 5𝑛+4 qubits and its Toffoli count is
16𝑛2 log2(𝑛)−26.3𝑛2. Giving the same consideration to the first approach, it requires 4𝑛+5
qubits.

8.2.3 Modular inversion

Assuming that modular inversion is the most resource-consuming operation, the choice of an
optimised algorithm is essential. We adopted Kaliski’s algorithm [115], which provides a
procedure to invert a number in Montgomery representation with 𝑅 = 2𝑛. As an example
for the reader, the input 𝑥2𝑛 (mod 𝑝) produces 𝑥−12𝑛 (mod 𝑝) as output. As the first data for
resource estimation, this algorithm requires five input registers to calculate the GCD of two
numbers (𝑥,𝑝). Four registers are required to store intermediate results, while the last one is
used as a counter.

Algorithm 2 shows how Kaliski’s procedure is divided into two phases. During the first
phase, one gets the value 𝑥−12𝑘 and needs to save the value of 𝑘 for the second phase. Phase
1 has a while loop whose block is the quantum circuit represented in Figure 8.6. The whole
high-level operations of Phase 1 for Kaliski’s algorithm is instead depicted in Figure 8.7.
Algorithm 2 Kaliski’s algorithm to calculate the pseudo inverse of 𝑥 modulo 𝑝.

Phase 1
𝑢← 𝑝, 𝑣← 𝑥, 𝑟← 0, 𝑠← 1, 𝑘← 0
while 𝑣 > 0 do

if 𝑢 is even then
𝑢← 𝑢

2 , 𝑠← 2𝑠
else if 𝑣 is even then

𝑣← 𝑣
2 , 𝑟← 2𝑟

else if 𝑢 > 𝑣 then
𝑢← 𝑢−𝑣

2 , 𝑟← 𝑟+ 𝑠, 𝑠 = 2𝑠
else

𝑣← 𝑣−𝑢
2 , 𝑠← 𝑟+ 𝑠, 𝑟 = 2𝑟

end if
𝑘 = 𝑘+1

end while

if 𝑟 ≥ 𝑝 then
𝑟← 𝑟−𝑝

end if
return 𝑟← 𝑝− 𝑟, 𝑘
Phase 2
for i=1 to k-n do

if 𝑟 is even then
𝑟← 𝑟

2
else

𝑟← 𝑟+𝑝
2

end if
end for
return 𝑥← 𝑟

8.2 Underlying building blocks 137

𝑛

𝑛

𝑛+1

𝑛+1

|𝑢𝑖−1⟩

− +

∕2
−∗

∕2
−

|𝑢𝑖⟩

|𝑣𝑖−1⟩ ∕2 ∕2 |𝑣𝑖⟩

|0⟩ |0⟩

|𝑠𝑖−1⟩ ⋅2
+

⋅2
+∗

|𝑠𝑖⟩

|𝑟𝑖−1⟩ ⋅2 ⋅2 |𝑟𝑖⟩

|0⟩ |0⟩

|0⟩ |0⟩

|0⟩ |𝑚𝑖⟩

Fig. 8.6 Block for the implementation of the modular inverse circuit. The multi-wire gates store the
output the register at the bottom, except for the cases with “*”. Source: [113]

After 2𝑛 rounds, 𝑟 stores the result and one can copy it to another register executing the
inverse of the circuit and restoring the original values of the registers. A critical remark is
that one needs to store also the value of |𝑘⟩ because its value is crucial to understand how
many times to double the result. The total number of qubits needed for phase 1 becomes
7𝑛+2𝑙+7, while the number of Toffoli gates is 32𝑛2 log2 𝑛.

𝑛

𝑛

2𝑛+6

𝑙

|𝑢𝑖−1⟩

block
|𝑢𝑖⟩

|𝑣𝑖−1⟩ |𝑣𝑖⟩

|0𝑠𝑖−1𝑟𝑖−1000⟩ |0𝑠𝑖𝑟𝑖00𝑚𝑖⟩

|𝑓 ⟩ |0⟩

|𝑘⟩ +1 |𝑚𝑖⟩

Fig. 8.7 Round of the modular inversion circuit implementing Kaliski’s algorithm. In each of the 2𝑛
rounds, a different 𝑚𝑖 qubit is used. The block gate is executed until 𝑣 reaches 0, then 𝑘 starts to be
incremented. Source: [113]

138 Shor’s algorithm and Elliptic Curve Discrete Logarithm Problem

ECDLP for curves modulo 𝑝 RSA with modulus 𝑁
⌈log2 𝑝⌉ #qubits #Toffoli gates ⌈log2𝑁⌉ #qubits #Toffoli gates

110 1014 9,44 ⋅109 512 1026 6,41 ⋅1010
160 1466 2,97 ⋅1010 1024 2050 5,81 ⋅1011
224 2042 8,43 ⋅1010 2048 4098 5,20 ⋅1012
256 2330 1,26 ⋅1011 3072 6146 1,86 ⋅1013
384 3484 4,52 ⋅1011 7680 15362 3,30 ⋅1014

Table 8.1 Comparison between qubits needed to break ECDLP and RSA at similar security levels.
The values for the RSA columns are derived by the version using the in-place adder. Source: [113]

8.3 Analysis of the required resources

An estimation of the number of qubits required by the Algorithm 1 needs to consider modular
inversion, additional qubits for sequential QFT, and the register for storing the intermediate re-
sults. As for the depth, [113] provides an estimation of the Toffoli count for each point addition
(224𝑛2 log2 𝑛+2045𝑛2) and for the whole circuit ((448log2 𝑛+4090)𝑛3). The Mongomery
variant can be adopted due to the available auxiliary qubits for modular multiplications.

An essential remark for the reader is that the presented gates work for all point additions
except for adding a point to itself, to its negative, and to the point at infinity. The authors
of [8] estimate that this occurs 4𝑛∕𝑝 times; therefore, this fidelity loss must be added to the
probability of finding a suitable pair, which becomes 1∕480. Finally, the oracle’s inputs need
to be adapted in the presence of an indefinite point, a problem which is trivial since we may
start anywhere on the curve without affecting the end phase.

A really neat summary about a final resource estimation is the one presented in Table 8.1,
where the resources required to compute the ECDLP problem are compared with the ones
to solve the factoring problem, i.e., the RSA case. This remarkable analysis shows how
counterintuitively, breaking ECC is even easier than cracking RSA for a similar level of
security.

8.4 Quantum algorithm improvements

In the literature, some studies allow computing ECDLP even using fewer resources than the
ones presented in the previous section. The authors of [116] propose enhancements using
pebbling, windowed arithmetic, and other peculiar optimisations. In addition, they provide

8.4 Quantum algorithm improvements 139

Q#-based implementations as utilities. The final estimation for ECDLP on a 256-bit curve -
after the optimisations - reports a decrease in the number of qubits from 2338 to 2124; the
Toffoli count decreases by a factor of 119; the depth by a factor of 54. Further optimisations
are presented in the same study to lower depth at the cost of increasing the number of qubits,
but they are out of the scope of this study.

Pebbling techniques reduce depth by feeding auxiliary qubits of one operation as input
for the next. Our implementation referenced in the coming section uses it for the sixth step
of Algorithm 1. In particular, the modular square of 𝜆 is stored in 𝑡0, then used to compute
𝑥1− 𝑡0 and restored to |0⟩.

𝑛

𝑛

𝑛

𝑛+5

𝑛

|𝑐𝑡𝑟𝑙⟩ |𝑐𝑡𝑟𝑙⟩

|𝑥1⟩
−∗

|𝑥1−𝜆2⟩

|0⟩ |0⟩

|𝜆⟩

𝑠𝑞𝑢 𝑠𝑞𝑢† 𝑠𝑞𝑢 𝑠𝑞𝑢†

|𝜆⟩

|0⟩ |0⟩

|0⟩ |0⟩

⇒

𝑛

𝑛

𝑛+5

𝑛

|𝑐𝑡𝑟𝑙⟩ |𝑐𝑡𝑟𝑙⟩

|𝑥1⟩ −∗
|𝑥1−𝜆2⟩

|𝜆⟩

𝑠𝑞𝑢 𝑠𝑞𝑢†

|𝜆⟩

|0⟩ |0⟩

|0⟩ −∗
|0⟩

Fig. 8.8 Changes to the circuit for squaring-then-add using pebbling. The multi-wire gates store the
output the register at the bottom, except for the cases with “*”. The register with 𝑛+5 qubits collects
all the other needed ancillae used. Source: [116]

The reader may notice that using Montgomery squaring as a black box, the quantum circuit
in section 8.2 adds a non-required modular squaring, which may be excluded to proceed
towards the more efficient version presented in Figure 8.8. Steps 5, 6, and 8 of Algorithm 2
Algorithm 3 Changes provided in [116] to the operations inside the while loop of Kaliski’s
algorithm 2.

𝑏𝑠𝑤𝑎𝑝 ← false
if 𝑢 is even and 𝑣 odd, or 𝑢 and 𝑣 odd and
𝑢 > 𝑣 then

swap 𝑢 and 𝑣
swap 𝑟 and 𝑠
𝑏𝑠𝑤𝑎𝑝 ←true

end if
if 𝑢 and 𝑣 odd then

𝑣← 𝑣−𝑢

𝑠← 𝑟+ 𝑠
end if
𝑣← 𝑣

2
𝑟← 2𝑟
if 𝑏𝑠𝑤𝑎𝑝 is true then

swap 𝑢 and 𝑣
swap 𝑟 and 𝑠

end if

140 Shor’s algorithm and Elliptic Curve Discrete Logarithm Problem

may benefit from the same reasoning: pebbling allows avoiding the execution of a complete
inversion circuit. Another improvement for the implementation in Figure 8.6 is provided
in Algorithm 3. The latter uses swaps instead of doublings and halvings; since their cost is
similar to the one of a binary shift, one fewer modular addition is required without adding
any qubits.

The final estimation predicts an asymptotic number of 8𝑛+ 10.2⌊log2 𝑛⌋− 1 logical
qubits for the low-width variant and a depth of 506𝑛3−1.84 ⋅ 227 using all the discussed
enhancements.

8.4.1 Qiskit circuit implementation and contributions

The idea behind this work - as discussed at the beginning of the chapter - was to provide
an in-depth analysis of the state of the art regarding the application of Shor to break ECC
algorithms. This was relevant to perform an estimation on the required resources and a
comparison with the effort required to break RSA and the factoring problem. Beyond the
mere analysis, we also provided an implementation in Qiskit of all the elementary gates
and circuits necessary to implement the whole Quantum Algorithm to break ECDLP up
to Kaliski’s algorithm. Unfortunately, we were not able to test the entire algorithm due to
constraints in terms of resources (e.g., the number of qubits required).

Because of this, we implemented and tested the various components aggregating them in a
library to be used and enhanced so that once a powerful enough simulator or quantum hardware
is available, one can try the overall solution. In the meanwhile, the various components can
be both improved and tested. The entire library source code is available on GitHub1.

8.5 Tests on ECDLP quantum circuits

In this section, the reader can find the results of the tests performed on the Qiskit imple-
mentation of the ECDLP variant of Shor’s algorithm. As mentioned, these tests have been
performed on quantum subcircuits since executing them for the whole circuit is unfeasible,
neither using simulation platforms nor available quantum hardware without efficient QEC
techniques.

The first kind of tests conducted were functional tests, in which we validated the accuracy
of our implementation by evaluating all the implemented circuits. Notably, a clever technique

1https://github.com/ignaziopedone/shor-analysis

8.5 Tests on ECDLP quantum circuits 141

Fig. 8.9 Depth of the normal multiplication and of the Montgomery multiplication circuits (without
the copy of the result and the decomputation of the qubits) for input registers with a qubit-size from 4
to 13.

to confirm the quality of the most delicate circuit, the modular inversion, was to perform the
same experiment as in [113] (Fig. 8) and verify that the results for the identical inputs and
conditions were the same using our improved version.

The second class of tests analyzed the depth of specific components, such as the quan-
tum circuit for multiplication and the quantum circuit as a whole. Specifically, Figure 8.9
demonstrates how the Montgomery multiplication block is superior to the ordinary one.
Instead, Figure 8.10 illustrates the benefit of employing the optimized version of the Ua gate
as opposed to the standard version. Finally, in Figure 8.11, we examine the total benefit in
terms of the depth of the whole circuit, and the depth gain is substantial.

For thoroughness, we must disclose that these tests were conducted using a heuristic
estimate by summing the depth of the various circuit components. Clearly, on actual hardware,
numerous other factors must be considered: the maximum potential circuit decomposition,
the native quantum gates accessible, and further optimization.

142 Shor’s algorithm and Elliptic Curve Discrete Logarithm Problem

Fig. 8.10 Estimation of the depth for the single 𝑈𝑎 gate using the basic and the optimized circuits for
moduli that have bit-length from 4 to 13.

8.5 Tests on ECDLP quantum circuits 143

Fig. 8.11 Estimation of the depth for the whole circuit using the basic and the optimized circuits for
moduli that have bit-length from 4 to 13.

Chapter 9

Conclusion

The objective of this thesis work was to present three main activities carried out during my
PhD. As a summary for the reader, these activities are:

• design and implementation of the QKD integration in SDI. In particular, the presentation
of the QSS and the QKD simulator with the respective improvements.

• Proposing a generic QUBO formulation for VNFEPs, which is particularly interesting
for both SDI and cybersecurity. Tests have also been conducted using different solvers:
D-Wave quantum annealer, Tabu Search, and Simulated Annealing.

• Analysing Shor’s algorithm, its impact on classical cryptography, and possible optimi-
sations. In addition, providing various implementations based on Qiskit, considering
noise for some tests and different architectures such as the one from Rigetti. The analysis
and the implementations have been conducted for both classic DLP and ECDLP.

A core result of this thesis is undoubtedly the development of the QSS and QKD simulators.
These tools have been conceived as flexible software components that can be easily extended
and adapted to any modern infrastructure. Scalability is a crucial point. All the presented
software can easily scale horizontally on SDI to manage more extensive networks and strict
requirements. The simulation part can be extended. For instance, new backends can be
adopted as a toolkit, and even the logic behind the simulation can be changed, preserving the
same infrastructural model. Future steps can involve looking beyond QKD and considering
the simulation of generic Quantum Networks leveraging the same platform.

For the activity related to Quantum Annealing, the results achieved are quite interesting.
They show how it is feasible using Quantum Annealing to solve VNFEPs, the advantage in

145

certain conditions over classical solvers, and the potential speed-up that they can have over
large networks. Clearly, the immaturity of the current QPUs also poses limitations. Indeed,
there is a limit to the current size of the networks that can be managed and the fragility of the
current physical qubit implementations. Future work may study more extensive networks and
how to optimise the formulation to fit the available QPUs. In particular, defining constraints
for a QUBO formulation is a delicate task.

The last activity regarding Shor’s algorithm is still a work in progress, with no publication
submitted by the author. It is interesting, though, because it tries to capture a fundamental
question: how far are we from the Q-Day? This is clearly from a high-level point of view
and without considering all the possible alternatives in terms of hardware. Nevertheless,
understanding the complexity of the task may help classical security experts to roughly
estimate its advent. Future work may focus more on QEC in terms of more recent approaches
and architectures based on other qubit technologies.

Finally, this work does not claim to be an exhaustive dissertation on all possible connec-
tions between QTs and cybersecurity, but it explores three aspects that are currently relevant
and on top of which one can build several more studies and practical applications. As a final,
personal comment for the reader, I must renew my profound belief that in the years to come
QTs beyond QKD will become more and more central in cybersecurity.

References

[1] J. D. Whitfield, J. Yan, W. Wang, J. T. Heath, and B. Harrison. Quantum Computing
2022. arXiv preprint arXiv:2201.09877, 2022.

[2] A. Abbas et al. Learn Quantum Computation Using Qiskit, 2020. Available online:
https://qiskit.org/textbook/.

[3] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, USA, 10th edition, 2011.
ISBN 1107002176.

[4] K. Azuma, S. E. Economou, D. Elkouss, P. Hilaire, L. Jiang, H. Lo, and I. Tzitrin.
Quantum repeaters: From quantum networks to the quantum internet. arXiv preprint
arXiv:2212.10820, 2022.

[5] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring.
In Proceedings 35th annual symposium on foundations of computer science, pages
124–134. IEEE, 1994. doi: 10.1109/SFCS.1994.365700.

[6] The IBM Quantum project. Available online: https://quantum-computing.ibm.com/.
[7] V. Mavroeidis, K. Vishi, M. D. Zych, and A. Jøsang. The impact of quantum computing

on present cryptography. arXiv preprint arXiv:1804.00200, 2018.
[8] J. Proos and C. Zalka. Shor’s discrete logarithm quantum algorithm for elliptic curves.

arXiv preprint quant-ph/0301141, 2003.
[9] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck,

D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari,
M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden. Advances in
Quantum Cryptography. Advances in Optics and Photonics, 12(4):1012–1236, 2020.
doi: 10.1364/AOP.361502.

[10] W. Castryck and T. Decru. An efficient key recovery attack on SIDH (preliminary
version). Cryptology ePrint Archive, 2022.

[11] M. Mina and E. Simion. Information security in the quantum era. threats to modern
cryptography: Grover’s algorithm. Cryptology ePrint Archive, Paper 2021/1662, 2021.
URL https://eprint.iacr.org/2021/1662. https://eprint.iacr.org/2021/1662.

https://qiskit.org/textbook/
https://quantum-computing.ibm.com/
https://eprint.iacr.org/2021/1662
https://eprint.iacr.org/2021/1662

References 147

[12] D. J. Bernstein. Grover vs. mceliece. In Post-Quantum Cryptography: Third In-
ternational Workshop, PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010.
Proceedings 3, pages 73–80. Springer, 2010. doi: 10.1007/978-3-642-12929-2_6.

[13] M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt. Applying Grover’s
algorithm to AES: quantum resource estimates. In Post-Quantum Cryptography: 7th
International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016,
Proceedings 7, pages 29–43. Springer, 2016. doi: 10.1007/978-3-319-29360-8_3.

[14] S. Jaques, M. Naehrig, M. Roetteler, and F. Virdia. Implementing Grover oracles for
quantum key search on AES and LowMC. In Advances in Cryptology–EUROCRYPT
2020: 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part II
30, pages 280–310. Springer, 2020. doi: 10.1007/978-3-030-45724-2_10.

[15] M. Amy, O. Di Matteo, V. Gheorghiu, M. Mosca, A. Parent, and J. Schanck. Estimating
the cost of generic quantum pre-image attacks on SHA-2 and SHA-3. In Selected
Areas in Cryptography–SAC 2016: 23rd International Conference, St. John’s, NL,
Canada, August 10-12, 2016, Revised Selected Papers, pages 317–337. Springer, 2017.
doi: 10.1007/978-3-319-69453-5_18.

[16] G. Brassard, P. Høyer, and A. Tapp. Quantum cryptanalysis of hash and claw-free
functions. In LATIN’98: Theoretical Informatics: Third Latin American Symposium
Campinas, Brazil, April 20–24, 1998 Proceedings 3, pages 163–169. Springer, 1998.
doi: 10.1145/261342.261346.

[17] M. Mosca, J. M. V. Basso, and S. R. Verschoor. On speeding up factoring with quantum
SAT solvers. Scientific Reports, 10(1):1–8, 2020. doi: 10.1038/s41598-020-71654-y.

[18] S. Geravand and M. Ahmadi. Bloom filter applications in network security: A state-
of-the-art survey. Computer Networks, 57(18):4047–4064, 2013. ISSN 1389-1286.
doi: 10.1016/j.comnet.2013.09.003.

[19] R. Shi. Quantum Bloom Filter and Its Applications. IEEE Transactions on Quantum
Engineering, 2:1–11, 2021. doi: 10.1109/TQE.2021.3054623.

[20] R. Quintero, D. Bernal, T. Terlaky, and L. F. Zuluaga. Characterization of QUBO
reformulations for the maximum k-colorable subgraph problem. Quantum Information
Processing, 21(3):89, 2022. doi: 10.1007/s11128-022-03421-z.

[21] P. Berman and A. Pelc. Distributed probabilistic fault diagnosis for multiprocessor
systems. In [1990] Digest of Papers. Fault-Tolerant Computing: 20th International
Symposium, pages 340–346, 1990. doi: 10.1109/FTCS.1990.89383.

[22] E. D. Payares and J. C. Martinez-Santos. Quantum machine learning for intrusion
detection of distributed denial of service attacks: a comparative overview. In Quan-
tum Computing, Communication, and Simulation, volume 11699, page 116990B.
International Society for Optics and Photonics, SPIE, 2021. doi: 10.1117/12.2593297.

[23] D. Said. Quantum Computing and Machine Learning for Cybersecurity: Distributed
Denial of Service (DDoS) Attack Detection on Smart Micro-Grid. Energies, 16(8):
3572, 2023. doi: 10.3390/en16083572.

148 References

[24] T. A. Brun. Quantum Error Correction. arXiv preprint arXiv:1910.03672, 2019.
[25] C. Chamberland, G. Zhu, T. J. Yoder, J. B. Hertzberg, and A. W. Cross. Topological

and subsystem codes on low-degree graphs with flag qubits. Physical Review X, 10(1):
011022, 2020. doi: 10.1103/PhysRevX.10.011022.

[26] D. Bacon and A. Casaccino. Quantum error correcting subsystem codes from two
classical linear codes. arXiv preprint quant-ph/0610088, 2006.

[27] S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gambetta. Procedure for systematically
tuning up cross-talk in the cross-resonance gate. Physical Review A, 93(6):060302,
2016. doi: 10.1103/PhysRevA.93.060302.

[28] S. Zhang, Y. Chang, L. Yan, Z. Sheng, F. Yang, G. Han, Y. Huang, and J. Xia. Quantum
communication networks and trust management: a survey. Comput. Mater. Continua,
61(3):1145–1174, 2019.

[29] S. Wehner, D. Elkouss, and R. Hanson. Quantum internet: a vision for the road ahead.
Science, 362:1–9, October 2018. doi: 10.1126/science.aam9288.

[30] A. Dahlberg and S. Wehner. SimulaQron - A simulator for developing Quantum
Internet software. Quantum Science and Technology, 4:1–15, September 2018. doi:
10.1088/2058-9565/aad56e.

[31] T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten, J. de Oliveira Filho,
M. Papendrecht, J. Rabbie, F. Rozpędek, M. Skrzypczyk, L. Wubben, W. de Jong,
D. Podareanu, A. Torres-Knoop, D. Elkouss, and S. Wehner. Netsquid, a network
simulator for quantum information using discrete events. Communications Physics, 4
(1):164, 2021. doi: 10.1038/s42005-021-00647-8.

[32] R. Satoh, M. Hajdušek, N. Benchasattabuse, S. Nagayama, K. Teramoto, T. Matsuo,
S. A. Metwalli, T. Satoh, S. Suzuki, and R. Van Meter. Quisp: a Quantum Internet
simulation package. In 2022 IEEE International Conference on Quantum Computing
and Engineering (QCE), pages 353–364. IEEE, 2022. doi: 10.1109/QCE53715.2022.
00056.

[33] S. Diadamo, J. Nötzel, B. Zanger, and M. M. Bese. Qunetsim: A software framework
for quantum networks. IEEE Transactions on Quantum Engineering, 2:1–12, 2021.
doi: 10.1109/TQE.2021.3092395.

[34] X. Wu, A. Kolar, J. Chung, D. Jin, T. Zhong, R. Kettimuthu, and M. Suchara. Se-
QUeNCe: a customizable discrete-event simulator of quantum networks. Quantum
Science and Technology, 6(4):045027, 2021. doi: 10.1088/2058-9565/ac22f6.

[35] F. Xu, X. Ma, Q. Zhang, H. Lo, and J. Pan. Secure quantum key distribution with
realistic devices. Reviews of Modern Physics, 92:025002–1–025002–60, May 2020.
doi: 10.1103/RevModPhys.92.025002.

[36] C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro,
and S. Lloyd. Gaussian quantum information. Reviews of Modern Physics, 84(2):621,
2012. doi: 10.1103/RevModPhys.84.621.

References 149

[37] M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L.
Yuan, R. V. Penty, and A. J. Shields. Efficient decoy-state quantum key distribution
with quantified security. Optics express, 21(21):24550–24565, 2013. doi: 10.1364/
OE.21.024550.

[38] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf amd M. Dusek, N. Lutkenhaus, and
M. Peev. The security of practical Quantum Key Distribution. Reviews of modern
physics, 81(3):1301, 2009. doi: 10.1103/RevModPhys.81.1301.

[39] R. Renner and R. König. Universally composable privacy amplification against quan-
tum adversaries. In Theory of Cryptography Conference, pages 407–425. Springer,
2005. doi: 10.1007/978-3-540-30576-7_22.

[40] R. Renner. Security of Quantum Key Distribution. PhD thesis, Swiss Federal Inst.
Technol. Zürich, 2005.

[41] C. Lupo, C. Ottaviani, P. Papanastasiou, and S. Pirandola. Continuous-variable
measurement-device-independent quantum key distribution: Composable security
against coherent attacks. Physical Review A, 97(5):052327, 2018. doi: 10.1103/
PhysRevA.97.052327.

[42] V. Scarani and R. Renner. Quantum cryptography with finite resources: Unconditional
security bound for discrete-variable protocols with one-way postprocessing. Physical
review letters, 100(20):200501, 2008. doi: 10.1103/PhysRevLett.100.200501.

[43] Quantum Key Distribution (QKD); Security Proofs. Technical report, European
Telecommunications Standards Institute (ETSI), December 2010.

[44] B. Liu, B. Zhao, C. Wu, W. Yu, and I. You. Efficient Almost Strongly Universal
Hash Function for Quantum Key Distribution. In Information and Communication
Technology-EurAsia Conference, pages 282–285. Springer, 2015. doi: 10.1007/
978-3-319-24315-3_29.

[45] P. Kampanakis, P. Panburana, E. Daw, and D. Van Geest. The Viability of Post-
Quantum X. 509 Certificates. IACR Cryptol. ePrint Arch., 2018:63, 2018.

[46] M. Mehic, M. Niemiec, S. Rass, J. Ma, M. Peev, A. Aguado, V. Martin, S. Schauer,
A. Poppe, C. Pacher, and M. Voznak. Quantum key distribution: a networking per-
spective. ACM Computing Surveys, 53:1–41, September 2020. doi: 10.1145/3402192.

[47] M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields. Overcoming the rate-
distance limit of quantum key distribution without quantum repeaters. Nature, 557
(7705):400–403, 2018. doi: 10.1038/s41586-018-0066-6.

[48] Y. Liu, T. Chen, L. Wang, H. Liang, G. Shentu, J. Wang, K. Cui, H. Yin, N. Liu, L. Li,
X. Ma, J. S. Pelc, M. M. Fejer, Q. Zhang, and J. Pan. Experimental measurement-
device-independent quantum key distribution. Physical review letters, 111(13):130502,
2013. doi: 10.1103/PhysRevLett.111.130502.

[49] C. H. Bennett and G. Brassard. Quantum cryptography: public key distribution
and coin tossing. Theoretical Computer Science, 560:7–11, December 2014. doi:
10.1016/j.tcs.2014.05.025.

150 References

[50] A. K. Ekert. Quantum cryptography based on Bell’s theorem. Physical Review Letters,
67:661–663, August 1991. doi: 10.1103/PhysRevLett.67.661.

[51] M. Loeffler, C. Goroncy, T. Länger, A. Poppe, A. Neumann, M. Legré, I. Khan,
C. Chunnilall, D. López, M. Lucamarini, A. Shields, E. Spigone, M. Ward, and
V. Martin. Current Standardisation Landscape and existing Gaps in the Area of
Quantum Key Distribution. OPENQKD report, 2021.

[52] Quantum Key Distribution (QKD); Application Interface. Technical report, European
Telecommunications Standards Institute (ETSI), August 2020.

[53] Quantum Key Distribution (QKD); Protocol and data format of REST-based key
delivery API. Technical report, European Telecommunications Standards Institute
(ETSI), February 2019.

[54] Quantum Key Distribution (QKD); Control Interface for Software Defined Networks.
Technical report, European Telecommunications Standards Institute (ETSI), March
2021.

[55] ETSI GS NFV specifications. Available online: https://www.etsi.org/committee/nfv.
[56] S. Yarkoni, E. Raponi, T. Bäck, and S. Schmitt. Quantum annealing for industry

applications: Introduction and review. Reports on Progress in Physics, 85(10):104001,
2022. doi: 10.1088/1361-6633/ac8c54.

[57] I. Pedone, A. Atzeni, D. Canavese, and A. Lioy. Toward a Complete Software Stack
to Integrate Quantum Key Distribution in a Cloud Environment. IEEE Access, 9:
115270–115291, 2021.

[58] Quantum Key Distribution (QKD); Use Cases. Technical report, European Telecom-
munications Standards Institute (ETSI), June 2010.

[59] P. W. Shor and J. Preskill. Simple proof of security of the BB84 quantum key
distribution protocol. Physical Review Letters, 85:441–444, July 2000. doi:
10.1103/PhysRevLett.85.441.

[60] G. Murta, F. Rozpędek, J. Ribeiro, D. Elkouss, and S. Wehner. Key rates for quantum
key distribution protocols with asymmetric noise. Physical Review Letters, 101:
062321–1–062321–10, June 2020. doi: 10.1103/PhysRevA.101.062321.

[61] M. Toyran, M. Toyran, and S. Öztürk. Optimized cascade protocol for efficient
information reconciliation in Quantum Key Distribution systems. Quantum Information
& Computation, 18(7-8):553–578, 2018.

[62] B. Tang, B. Liu, Y. Zhai, C. Wu, and W. Yu. High-speed and large-scale privacy
amplification scheme for quantum key distribution. Scientific reports, 9(1):1–8, 2019.
doi: 10.1038/s41598-019-50290-1.

[63] V. Lopez, A. Pastor, D. Lopez, A. Aguado, and V. Martin. Applying QKD to improve
next-generation network infrastructures. In European Conference on Networks and
Communications, pages 283–288, Valencia (Spain), June 18-21 2019. doi: 10.1109/
EuCNC.2019.8802060.

https://www.etsi.org/committee/nfv

References 151

[64] A. Aguado, E. Hugues-Salas, P. A. Haigh, J. Marhuenda, A. B. Price, P. Sibson,
J. Kennard, C. Erven, J. G. Rarity, M. G. Thompson, A. Lord, R. Nejabati, and
D. Simeonidou. First Experimental Demonstration of Secure NFV Orchestration over
an SDN-Controlled Optical Network with Time-Shared Quantum Key Distribution
Resources. In 42nd European Conference on Optical Communication, pages 1–3,
Dusseldorf (Germany), September 18-22 2016. doi: 10.1109/JLT.2016.2646921.

[65] D. R. Lopez, V. Martin, V. Lopez, F. de la Iglesia, A. Pastor, H. Brunner, A. Aguado,
S. Bettelli, F. Fung, D. Hillerkuss, L. Comandar, D. Wang, A. Poppe, J. P. Brito, P. J.
Salas, and M. Peev. Demonstration of Software Defined Network Services Utiliz-
ing Quantum Key Distribution Fully Integrated with Standard Telecommunication
Network. Quantum Reports, 2(3):453–458, 2020. doi: 10.3390/quantum2030032.

[66] Y. Cao, Y. Zhao, J. Wang, X. Yu, Z. Ma, and J. Zhang. SDQaaS: software defined
networking for quantum key distribution as a service. Optics express, 27(5):6892–6909,
2019. doi: 10.1364/OE.27.006892.

[67] R. Chatterjee, K. Joarder, S. Chatterjee, B. C. Sanders, and U. Sinha. qkdSim, a Simu-
lation Toolkit for Quantum Key Distribution Including Imperfections: Performance
Analysis and Demonstration of the B92 Protocol Using Heralded Photons. Physical
Review Applied, 14:024036, August 2020. doi: 10.1103/physrevapplied.14.024036.

[68] L. O. Mailloux, J. D. Morris, M. R. Grimaila, D. D. Hodson, D. R. Jacques, J. M.
Colombi, C. V. Mclaughlin, and Jennifer A. Holes. A Modeling Framework for
Studying Quantum Key Distribution System Implementation Nonidealities. IEEE
Access, 3:110–130, February 2015. doi: 10.1109/access.2015.2399101.

[69] R. Van Meter. Quantum networking. 2014. ISBN 978-1848215375.
[70] I. Pedone and A. Lioy. Quantum Key Distribution in Kubernetes Clusters. Future

Internet, 14(6):160, 2022. doi: 10.3390/fi14060160.
[71] Global Interpreter Lock. Available online: https://wiki.python.org/moin/

GlobalInterpreterLock.
[72] Quart project. Available online: http://pgjones.gitlab.io/quart.
[73] Hypercorn project. Available online: https://pgjones.gitlab.io/hypercorn, .
[74] M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert,

E. Diamanti, M. Dianati, J. F. Dynes, S. Fase, S. Fossier, M. Fürst, J-D Gautier, O. Gay,
N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer,
T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold,
T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J-B Page, A. Poppe, E. Querasser,
G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stuck, M. Suda,
C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri,
F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden,
and A. Zeilinger. The SECOQC quantum key distribution network in Vienna. New
Journal of Physics, 11(7):075001, 2009. doi: 10.1088/1367-2630/11/7/075001.

https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
http://pgjones.gitlab.io/quart
https://pgjones.gitlab.io/hypercorn

152 References

[75] C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh. Current status of
the DARPA quantum network. In Quantum Information and computation III, volume
5815, pages 138–149. International Society for Optics and Photonics, 2005.

[76] O. Maurhart. QKD networks based on Q3P. In Applied Quantum Cryptography, pages
151–171. Springer, 2010.

[77] J. Moy. OSPF Version 2. RFC 2328, April 1998. Available online: http://www.
rfc-editor.org/rfc/rfc2328.txt.

[78] M. Sasaki. Quantum Key Distribution and Its Applications. IEEE Security & Privacy,
16(5):42–48, 2018. doi: 10.1109/MSP.2018.3761713.

[79] A. Conrad, S. Isaac, R. Cochran, D. Sanchez-Rosales, B. Wilens, A. Gutha, T. Rezaei,
D. J. Gauthier, and P. Kwiat. Drone-based quantum key distribution: QKD. In Free-
Space Laser Communications XXXIII, volume 11678, page 116780X. International
Society for Optics and Photonics, 2021. doi: 10.1117/12.2582376.

[80] Istio project. Available online: https://istio.io.
[81] P. Zhang, L. Wang, W. Wang, K. Fu, and J. Wang. A blockchain system based on

quantum-resistant digital signature. Security and Communication Networks, 2021,
2021. doi: 10.1155/2021/6671648.

[82] K. Ikeda. qBitcoin: a peer-to-peer quantum cash system. In Science and Information
Conference, pages 763–771. Springer, 2018. doi: 10.1007/978-3-030-01174-1_58.

[83] M. Allende, D. López León, S. Cerón, A. Pareja, E. Pacheco, A. Leal, M. Da Silva,
A. Pardo, D. Jones, D. J. Worrall, B. Merriman, J. Gilmore, N. Kitchener, and
S. E. Venegas-Andraca. Quantum-resistance in blockchain networks. arXiv preprint
arXiv:2106.06640, 2021.

[84] Hyperledger project. Available online: https://www.hyperledger.org, .
[85] P. Chiavassa, A. Marchesin, I. Pedone, M. Ferrari Dacrema, and P. Cremonesi. Virtual

Network Function Embedding with Quantum Annealing. In 2022 IEEE International
Conference on Quantum Computing and Engineering (QCE), pages 282–291. IEEE,
2022. doi: 10.1109/QCE53715.2022.00048.

[86] M. A. Abdelaal, G. A. Ebrahim., and W. A. Anis. Efficient Placement of Service
Function Chains in Cloud Computing Environments. Electronics, 10(3):323, January
2021. doi: 10.3390/electronics10030323. Number: 3 Publisher: Multidisciplinary
Digital Publishing Institute.

[87] W. Xuan, Z. Zhao, L. Fan, and Z. Han. Minimizing Delay in Network Function Visual-
ization with Quantum Computing. arXiv:2106.10707, June 2021. arXiv: 2106.10707.

[88] B. Yi, X. Wang, and M. Huang. Optimised approach for VNF embedding in
NFV. IET Communications, 12(20):2630–2638, 2018. ISSN 1751-8636. doi: 10.
1049/iet-com.2018.5509. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-
com.2018.5509.

http://www.rfc-editor.org/rfc/rfc2328.txt
http://www.rfc-editor.org/rfc/rfc2328.txt
https://istio.io
https://www.hyperledger.org

References 153

[89] M. Asgarian, G. Mirjalily, and Z. Luo. Embedding Multicast Service Function Chains
in NFV-Enabled Networks. IEEE Communications Letters, 25(4):1264–1268, April
2021. ISSN 1558-2558. doi: 10.1109/LCOMM.2020.3044894. Conference Name:
IEEE Communications Letters.

[90] H. Ushijima-Mwesigwa, C. F. A. Negre, and S. M. Mniszewski. Graph Partitioning
using Quantum Annealing on the D-Wave System. In Proceedings of the Second Inter-
national Workshop on Post Moores Era Supercomputing (PMES ’17), abs/1705.03082,
2017.

[91] C. Bauckhage, N. Piatkowski, R. Sifa, D. Hecker, and S. Wrobel. A QUBO Formulation
of the k-Medoids Problem. In Proceedings of "Lernen, Wissen, Daten, Analysen",
volume 2454 of CEUR Workshop Proceedings, pages 54–63, 2019.

[92] D. Willsch, M. Willsch, H. De Raedt, and K. Michielsen. Support vector machines
on the D-Wave quantum annealer. Comput. Phys. Commun., 248:107006, 2020. doi:
10.1016/j.cpc.2019.107006.

[93] S. H. Adachi and M. P. Henderson. Application of Quantum Annealing to Training of
Deep Neural Networks. CoRR, abs/1510.06356, 2015.

[94] M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, and Roger Melko. Quantum
boltzmann machine. Physical Review X, 8(2):021050, 2018. doi: 10.1103/PhysRevX.
8.021050.

[95] M. Ferrari Dacrema, F. Moroni, R. Nembrini, N. Ferro, G. Faggioli, and P. Cremonesi.
Towards Feature Selection for Ranking and Classification Exploiting Quantum An-
nealers. In SIGIR ’22: The 45th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Madrid, Spain, July 11 - 15, 2022, pages
2814–2824. ACM, 2022. doi: 10.1145/3477495.3531755.

[96] R. Nembrini, M. Ferrari Dacrema, and P. Cremonesi. Feature Selection for Rec-
ommender Systems with Quantum Computing. Entropy, 23(8):970, 2021. doi:
10.3390/e23080970.

[97] J. G. Herrera and J. F. Botero. Resource allocation in NFV: A comprehensive survey.
IEEE Transactions on Network and Service Management, 13(3):518–532, 2016. doi:
10.1109/TNSM.2016.2598420.

[98] F. Glover, G. Kochenberger, and Y. Du. Quantum Bridge Analytics I: a tutorial on
formulating and using QUBO models. 4OR, 17, December 2019. doi: 10.1007/
s10288-019-00424-y.

[99] G. Palubeckis. Multistart Tabu Search Strategies for the Unconstrained Binary
Quadratic Optimization Problem. Ann. Oper. Res., 131(1-4):259–282, 2004. doi:
10.1023/B:ANOR.0000039522.58036.68.

[100] S. Kirkpatrick, D. Gelatt, and M. P. Vecchi. Optimization by Simmulated Annealing.
Sci., 220(4598):671–680, 1983. doi: 10.1126/science.220.4598.671.

154 References

[101] V. Choi. Minor-embedding in adiabatic quantum computation: I. The parame-
ter setting problem. Quantum Inf. Process., 7(5):193–209, 2008. doi: 10.1007/
s11128-008-0082-9.

[102] C. Carugno, M. Ferrari Dacrema, and P. Cremonesi. Evaluating the job shop scheduling
problem on a D-wave quantum annealer. Nature Scientific Reports, 12(1):6539, Apr
2022. ISSN 2045-2322. doi: 10.1038/s41598-022-10169-0.

[103] A. Schönhageand and V. Strassen. Schnelle multiplikation grosser zahlen. Computing,
7(3):281–292, 1971.

[104] M. E. Briggs. An introduction to the general number field sieve. PhD thesis, Virginia
Tech, 1998.

[105] S. Beauregard. Circuit for Shor’s algorithm using 2n+ 3 qubits. Quantum Information
& Computation, 3(2):175–185, 2003.

[106] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Review, 41(2):303–332, 1999. doi:
10.1137/S0036144598347011.

[107] R. Griffiths B and C. Niu. Semiclassical Fourier transform for quantum computation.
Physical Review Letters, 76(17):3228–3231, 1996.

[108] Y. Takahashi and N. Kunihiro. A quantum circuit for Shor’s factoring algorithm using
2n+ 2 qubits. Quantum Information & Computation, 6(2):184–192, 2006.

[109] T. Häner, M. Roetteler, and K. M. Svore. Factoring using 2n+2 qubits with Toffoli
based modular multiplication. arXiv preprint arXiv:1611.07995, 2016.

[110] Y. Takahashi, S. Tani, and N. Kunihiro. Quantum addition circuits and unbounded
fan-out. arXiv preprint arXiv:0910.2530, 2009.

[111] C. Gidney and M. Ekerå. How to factor 2048 bit RSA integers in 8 hours using 20
million noisy qubits. Quantum, 5:433, 2021.

[112] J. H. Silverman. The arithmetic of elliptic curves, volume 106. Springer, 2009.
[113] M. Roetteler, M. Naehrig, K. M. Svore, and K. Lauter. Quantum resource estimates

for computing elliptic curve discrete logarithms. In 23rd International Conference on
the Theory and Applications of Cryptology and Information Security, pages 241–270,
Hong Kong (China), December 3-7 2017. doi: 10.1007/978-3-319-70697-9_9.

[114] P. L. Montgomery. Modular multiplication without trial division. Mathematics of
computation, 44(170):519–521, 1985.

[115] B. S. Kaliski. The Montgomery inverse and its applications. IEEE transactions on
computers, 44(8):1064–1065, 1995.

[116] T. Häner, S. Jaques, M. Naehrig, M. Roetteler, and M. Soeken. Improved quantum
circuits for elliptic curve discrete logarithms. In International Conference on Post-
Quantum Cryptography, pages 425–444. Springer, 2020.

	Contents
	1 Introduction
	2 Background
	2.1 Quantum Computing
	2.1.1 Qiskit toolkit

	2.2 Quantum Computing vs Cybersecurity
	2.2.1 The Quantum Computing threat
	2.2.2 Quantum Computing positive impact on cybersecurity

	2.3 Quantum Error Correction
	2.3.1 Heavy Hexagon Code

	2.4 Quantum communication and networks
	2.5 Quantum Key Distribution
	2.5.1 BB84 protocol
	2.5.2 E91 protocol
	2.5.3 ETSI QKD GS
	2.5.4 Standardisation efforts beyond ETSI

	2.6 Software-Defined Infrastructures
	2.6.1 Network Function Virtualisation

	2.7 Quantum Annealing

	3 Quantum Key Distribution in Software-Defined Infrastructures
	3.0.1 Methodology
	3.0.2 General SDI quantum threat model

	3.1 Quantum Software Stack architecture
	3.1.1 Use case scenarios

	3.2 QKD Module
	3.2.1 Architecture

	3.3 Quantum Key Server
	3.3.1 Architecture

	3.4 QKD simulator
	3.4.1 BB84 implementation
	3.4.2 E91 implementation

	3.5 REST APIs and general workflow
	3.5.1 QKDM interfaces
	3.5.2 QKS interfaces
	3.5.3 General workflow

	3.6 QKD simulator Testing
	3.7 Related work comparison

	4 Quantum Software Stack improvements
	4.1 Kubernetes operators
	4.2 Quantum Software Stack 1.0
	4.3 Quantum Software Stack 2.0
	4.3.1 Asynchronous Approach
	4.3.2 Trusted Repeaters
	4.3.3 Routing

	4.4 QSS in a Kubernetes Cluster
	4.4.1 Quantum Software Stack Operator
	4.4.2 Resource Creation and Key Exchange
	4.4.3 Applications to Suitable Use Cases

	4.5 Testing
	4.5.1 Exchange time and key rate
	4.5.2 Routing

	5 QKD simulation over distributed infrastructures: QuaSi
	5.1 Simulation process design and objectives
	5.2 High-level Architecture
	5.3 Data model and workflow
	5.4 Test and Validation
	5.5 Applications, extensions, and future work

	6 Quantum Annealing to optimise Software-Defined Infrastructures
	6.1 Quantum Annealing-based SDI optimisation
	6.1.1 VNF Embedding Problem

	6.2 Problem Formulation
	6.2.1 Substrate Network
	6.2.2 Service Function Chains
	6.2.3 Problem Variables
	6.2.4 Cost Function
	6.2.5 Constraints
	6.2.6 Full VNFEP QUBO Formulation
	6.2.7 Discretization and Slack Variables

	6.3 Methodology
	6.3.1 QUBO formulation validation through classical solvers
	6.3.2 Quantum Annealing Effectiveness

	6.4 Results and Discussion
	6.4.1 QUBO formulation validation through classical solvers
	6.4.2 Quantum Annealing Effectiveness

	7 Quantum Offensive Security: the impact of Shor's Algorithm
	7.0.1 Methodology
	7.1 Shor's algorithm overview
	7.1.1 Quantum Fourier Transform
	7.1.2 Quantum Phase Estimation
	7.1.3 Shor's overall quantum circuit

	7.2 Shor's algorithm in-depth analysis
	7.3 Shor's algorithm optimisation
	7.3.1 Sequential QFT
	7.3.2 In-place addition
	7.3.3 Ekerå and Håstad's Algorithm

	7.4 Summary on resource estimation
	7.5 Implementation and experimental results
	7.5.1 Validation of the Qiskit-based Shor's improvements
	7.5.2 Noise models
	7.5.3 Rigetti simulator

	8 Shor's algorithm and Elliptic Curve Discrete Logarithm Problem
	8.1 Quantum algorithm overview
	8.2 Underlying building blocks
	8.2.1 Modular addition and doubling
	8.2.2 Modular multiplication
	8.2.3 Modular inversion

	8.3 Analysis of the required resources
	8.4 Quantum algorithm improvements
	8.4.1 Qiskit circuit implementation and contributions

	8.5 Tests on ECDLP quantum circuits

	9 Conclusion
	References

