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Abstract
The purpose of this paper is to study minimal mon-
ads associated to a rank two vector bundle  on 𝐏𝑛. In
particular, we study situations where  has 𝐻𝑖

∗() = 0

for 1 < 𝑖 < 𝑛 − 1, except for one pair of values (𝑘, 𝑛 −
𝑘). We show that on 𝐏8, if 𝐻3

∗() = 𝐻4
∗() = 0, then 

must be decomposable. More generally, we show that
for 𝑛 ⩾ 4𝑘, there is no indecomposable bundle  for
which all intermediate cohomology modules except for
𝐻1
∗,𝐻

𝑘
∗ ,𝐻

𝑛−𝑘
∗ ,𝐻𝑛−1

∗ are zero.

MSC 2020
14F06, 14J60 (primary)

1 INTRODUCTION

It has been difficult to disprove the existence of an indecomposable rank two bundle  on 𝐏𝑛 for
large 𝑛. Most known results have been obtained by imposing other conditions on  to show that
 cannot exist or must be split. For example, the so-called Babylonian condition which requires 
to be extendable to 𝐏𝑛+𝑚 for every𝑚 has been studied by a number of people including Barth and
van de Ven [2] and Coanda and Trautmann [3]. Numerical criteria that force splitting are found
again in Barth and van de Ven, where for a normalized rank two bundle with second Chern class
𝑎 and with splitting type 𝑙(−𝑏) ⊕ 𝑙(𝑏) on the general line 𝑙, a function 𝑓(𝑎, 𝑏) is found such
that if 𝑛 > 𝑓(𝑎, 𝑏), then a bundle on 𝐏𝑛 with these invariants must be split.
Cohomological criteria for forcing the splitting of  start with Horrocks [7]. If 𝑆 is the poly-

nomial ring corresponding to 𝐏𝑛, then 𝐻𝑖
∗() (defined as ⊕𝜈𝐻

𝑖(𝐏𝑛, (𝜈))) is an 𝑆-module. The
intermediate cohomology modules 𝐻𝑖

∗𝑠𝐸), 1 ⩽ 𝑖 ⩽ 𝑛 − 1 are all graded modules of finite length
and there is a strong relationship between  and its intermediate cohomologymodules. He shows
that if𝐻𝑖

∗() = 0 for all 𝑖 with 𝑖 ⩽ 𝑖 ⩽ 𝑛 − 1, then  is split. Moreover, Horrocks in [7] established
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2 MALASPINA and RAO

that a vector bundle on 𝐏𝑛 is determined up to isomorphism and up to a sum of line bundles (i.e.,
up to stable equivalence) by its collection of intermediate cohomology modules and also a certain
collection of extension classes involving these modules. This correspondence has been general-
ized to any Arithmetically Cohen-Macaulay (ACM) varieties in [12]. The Syzygy Theorem ([5, 6])
shows that for a rank two bundle  , it is enough to know that𝐻1

∗() = 0 to force splitting. In [14],
it is shown that for a indecomposable rank two bundle on 𝐏𝑛, in addition to 𝐻1

∗() and 𝐻
𝑛−1
∗ ()

being nonzero, some intermediate cohomology module 𝐻𝑘
∗() (1 < 𝑘 < 𝑛 − 1) (and hence also

𝐻𝑛−𝑘
∗ ()) must be nonzero. Various calculations in [13] and [14] show that there are limitations

on the module structure of𝐻1
∗() and𝐻

2
∗() for some values of 𝑛.

In this paper, we study situations where a rank two bundle  on 𝐏𝑛 has 𝐻𝑖
∗() = 0 for 1 <

𝑖 < 𝑛 − 1, except for one pair of values (𝑘, 𝑛 − 𝑘). We describe the minimal monads associated to
 . We show that on 𝐏8, if𝐻3

∗() = 𝐻4
∗() = 0, then  must be decomposable. More generally, we

show that for 𝑛 ⩾ 4𝑘, there is no indecomposable bundle  for which all intermediate cohomology
modules except for𝐻1

∗,𝐻
𝑘
∗ ,𝐻

𝑛−𝑘
∗ ,𝐻𝑛−1

∗ are zero. The proof utilizes the space between 𝑘 and 𝑛 − 𝑘

when 𝑛 ⩾ 4𝑘 for making cohomological computations.

2 MONADS FOR RANK TWO VECTOR BUNDLES ON 𝐏𝒏

Let  be an indecomposable rank two vector bundle on 𝐏𝑛 over an algebraically closed field of
characteristic different from two. If 𝑆 is the polynomial ring on 𝑛 + 1 variables, let 𝑁𝑖 = 𝐻𝑖

∗() =

⊕𝜈𝐻
𝑖((𝜈)) be the finite length graded 𝑆-module over 𝑆, for 1 ⩽ 𝑖 ⩽ 𝑛 − 1. By the Syzygy Theorem,

both𝑁1 and𝑁𝑛−1 are nonzeromodules.Horrocks ([8]) gives a brief description of the construction
of a minimal monad for a bundle  of any rank on 𝐏𝑛 by “killing both 𝐻1

∗ and 𝐻
𝑛−1
∗ .” Barth and

Hulek ([1]) use this idea to construct (with more detail) 𝑙-𝑚 minimal monads for a bundle  on
𝐏𝑛, where only𝐻1

⩾𝑙
() and𝐻𝑛−1

<−𝑚−𝑛() are killed. Horrocks’ construction, which we use below, is
obtained when both 𝑙 and𝑚 are very negative.
The monad is a complex

0 → 
𝛼
�→ 

𝛽
�→ → 0,

where  is a bundle with𝐻𝑖
∗() = 0 for 𝑖 = 1 and 𝑖 = 𝑛 − 1, and where, are free bundles. Let

 be kernel 𝛽. We have two sequences

0 → →  → → 0,

0 → → →  → 0,
(1)

fromwhich we see that𝐻𝑖
∗() = 𝐻𝑖

∗() for 1 ⩽ 𝑖 ⩽ 𝑛 − 2, while𝐻𝑛−1
∗ () = 0, and𝐻𝑖

∗() = 𝐻𝑖
∗()

for 2 ⩽ 𝑖 ⩽ 𝑛 − 2, while 𝐻1
∗() = 𝐻𝑛−1

∗ () = 0.
The minimality of the complex means that the rank of  equals the number of generators of

𝐻1
∗() = 𝑁1 and the rank of∨ equals the number of generators of𝐻1

∗(
∨). When the rank of the

bundle  equals 2, we find that and  have the same rank.
The two sequences give rise to

0 → ∧2→ ∧2 → ⊗  → 𝑆2→ 0,

0 → 𝑆2→ ⊗ → ∧2→ ∧2 → 0.
(2)
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RANK TWO BUNDLES ON 𝐏𝑁 WITH ISOLATED COHOMOLOGY 3

(Since the characteristic of the field is different from 2, we can assume that 𝑆2 commutes with
duals.)

Lemma 2.1. If 𝐻2
∗() = 0, then 𝐻1

∗(∧
2) and 𝐻𝑛−1

∗ (∧2) are nonzero. If 𝐻𝑙
∗() = 0 for some 𝑙,

with 2 ⩽ 𝑙 ⩽ 𝑛 − 2, then𝐻𝑙
∗(∧

2) = 0.

Proof. See [11, Theorem 2.2] for the first part. Next, suppose 𝐻𝑙
∗() = 0 for some 𝑙, with 2 ⩽ 𝑙 ⩽

𝑛 − 2. So, 𝑁𝑙 = 𝑁𝑛−𝑙 = 0 by Serre duality. In particular,  and  have 𝐻𝑙
∗ = 0 as well. It follows

from Equation (2), that𝐻𝑙
∗(∧

2) = 0 and hence𝐻𝑙
∗(∧

2) = 0. □

Lemma 2.2. Let 2 ⩽ 𝑡 ⩽ 𝑛 − 2. Let 𝐴 = 𝐻0
∗(), 𝐵 = 𝐻0

∗(). There is an exact sequence

𝐴⊗𝑁𝑡 → 𝐻𝑡
∗(∧

2) → 𝐵 ⊗𝑁𝑡,

which is injective on the left if 𝑡 ⩾ 3 and 𝑁𝑡−1 = 0, and is surjective on the right if 𝑡 ⩽ 𝑛 − 3 and
𝑁𝑡+1 = 0.

Proof. Break up the first sequence in 2 as 0 → ∧2→ ∧2 → → 0, 0 → → ⊗  → 𝑆2→

0. We get long exact sequences

𝐻𝑡−1
∗ () → 𝐻𝑡

∗(∧
2) → 𝐻𝑡

∗(∧
2) → 𝐻𝑡

∗() → 𝐻𝑡+1
∗ (∧2),

where 𝐻𝑡
∗() ≅ 𝐵 ⊗𝑁𝑡 (always) and 𝐻𝑡−1

∗ () ≅ 𝐵 ⊗𝑁𝑡−1 provided 𝑡 ⩾ 3. Likewise break up
the second sequence as 0 → 𝑆2→ ⊗ →  → 0, 0 →  → ∧2→ ∧2 → 0. We see that
𝐻𝑖
∗(∧

2) ≅ 𝐻𝑖
∗() for 𝑖 = 𝑡, 𝑡 + 1,𝐻𝑡

∗() ≅ 𝐴 ⊗𝑁𝑡 and when 𝑡 ⩽ 𝑛 − 3,𝐻𝑡+1
∗ () ≅ 𝐴 ⊗𝑁𝑡+1. □

Moreover, when𝐻𝑙
∗() = 0 for some 𝑙, with 2 ⩽ 𝑙 ⩽ 𝑛 − 3, fromEquation (2) since𝐻𝑙+1

∗ (𝑆2) =

𝐻𝑙+2
∗ (⊗ ) = 𝐻𝑙

∗(∧
2) = 𝐻𝑙+1

∗ (∧2) = 0, we get𝐻𝑙+1
∗ (∧2) ≅ 𝐻𝑙+1

∗ (⊗ ). Since𝐻𝑙−1
∗ (𝑆2) =

𝐻𝑙
∗(⊗ ) = 0𝐻𝑙+1

∗ (∧2) ↪ 𝐻𝑙+1
∗ (∧2). From

0 → → ⊗  → 𝑆2→ 0,

we obtain𝐻𝑙+1
∗ (⊗ ) ≅ 𝐻𝑙+1

∗ () giving an exact sequence

0 → 𝐴⊗𝑁𝑙+1 → 𝐻𝑙+1
∗ (∧2) → 𝐵 ⊗𝑁𝑙+1, (3)

where 𝐴 = 𝐻0
∗(), 𝐵 = 𝐻0

∗(). Notice that the sequence is exact on the right if 𝑁𝑙+2 = 0.
Likewise, if 𝐻𝑙

∗() = 0 for some 𝑙, with 3 ⩽ 𝑙 ⩽ 𝑛 − 2, we get the exact sequence

𝐴⊗𝑁𝑙−1 → 𝐻𝑙−1
∗ (∧2) → 𝐵 ⊗𝑁𝑙−1 → 0. (4)

Notice that the sequence is exact on the right if 𝑁𝑙−2 = 0.
The following proposition is a typical one that shows that a minimal monad for a rank two

bundle is built very minimally out of the cohomological data for  . Other examples of such a
result can be found in [15] and [13]. Decker ([4]) has conjectured such a minimality for rank two
bundles on 𝐏4.
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4 MALASPINA and RAO

Proposition 2.3. Suppose that  is a nonsplit rank two bundle on 𝐏𝑛 (𝑛 ⩾ 6), with 𝐻𝑙
∗() =

0 for some 𝑙 with 2 ⩽ 𝑙 ⩽ 𝑛 − 2. Then in the minimal monad for  , the bundle  has no line
bundle summands.

Proof. Note that the statement is vacuous for 𝑛 = 4, 5, since  will be split by [14]. So, assume that
𝑛 ⩾ 6 and that  satisfies 𝐻𝑙

∗() = 0 for some 2 ⩽ 𝑙 ⩽ 𝑛 − 2. By [14], there must also be a 𝑗 such
that𝐻𝑗

∗() ≠ 0 for some 2 ⩽ 𝑗 ⩽ 𝑛 − 2.
We may choose 𝑙 to be the lowest value with 𝐻𝑙

∗() = 0 and let us suppose that 𝑙 ⩾ 3. Then
𝐻𝑙−1
∗ () = 𝑁𝑙−1 ≠ 0. Consider the exact sequence using Lemma 2.2 (with 𝑡 = 𝑙 − 1)

𝐴⊗𝑁𝑙−1 → 𝐻𝑙−1
∗ (∧2) → 𝐵 ⊗𝑁𝑙−1 → 0.

Now if  ≅ ⊕ 𝐏(𝑎), then 𝐻𝑙−1
∗ (∧2) ≅ 𝐻𝑙−1

∗ (∧2) ⊕ [𝑆(𝑎) ⊗ 𝑁𝑙−1], where 𝑁𝑙−1 ≠ 0. The

map 𝑆(𝑎) ⊗ 𝑁𝑙−1 → 𝐵 ⊗𝑁𝑙−1 in the sequence is induced by the map 𝐏(𝑎) ⊗ 𝑘

𝛽2⊗𝐼
�����→ ⊗ 𝑘,

where 𝛽 = [𝛽1, 𝛽2] in the monad for  .
Themap𝐴⊗𝑁𝑙−1 → 𝑆(𝑎) ⊗ 𝑁𝑙−1 is induced by themap⊗ → ∧2↪ ∧2 ↠ 𝐏(𝑎) ⊗  ,

hence by⊗ 
𝛼2⊗𝐼
�����→ ⊗  if 𝛼 = [𝛼1, 𝛼2]

𝑇 in the monad.
The sequence above now reads

𝐴⊗𝑁𝑙−1

⎡⎢⎢⎣
∗

𝛼2 ⊗ 𝐼

⎤⎥⎥⎦
���������→ 𝐻𝑙−1

∗ (∧2) ⊕ [𝑆(𝑎) ⊗ 𝑁𝑙−1]

[
∗, 𝛽2 ⊗ 𝐼

]
������������→ 𝐵 ⊗𝑁𝑙−1 → 0.

If we tensor the sequence by the quotient 𝑘 = 𝑆∕(𝑋0, … , 𝑋𝑛+1), since the matrix 𝛽2 is a mini-
mal matrix, (𝛽2 ⊗ 𝐼) ⊗ 𝑘 = 0, hence [𝑆(𝑎) ⊗ 𝑁𝑙−1 ⊗ 𝑘] is inside the kernel of

[
∗, 𝛽2 ⊗ 𝐼

]
⊗ 𝑘. By

exactness, 𝑆(𝑎) ⊗ 𝑁𝑙−1 ⊗ 𝑘 is inside the image of (𝛼2 ⊗ 𝐼) ⊗ 𝑘, which is not possible since 𝛼2 is
also a minimal matrix.
It remains to study the case where 𝑙 = 2. There is a value 𝑙′ between 3 and 𝑛 − 3 for which

𝐻𝑙′

∗ () = 𝑁𝑙′ ≠ 0 and𝐻𝑙′+1
∗ () = 0. We now have an exact sequence of nonzero 𝑆-modules

𝐴⊗𝑁𝑙′ → 𝐻𝑙′

∗ (∧
2) → 𝐵 ⊗𝑁𝑙′ → 0,

and we repeat the earlier argument to get a contradiction. □

Definition 2.4. A rank two bundle  on 𝐏𝑛, 𝑛 ⩾ 6, will be said to have isolated cohomology of
type (𝑛, 𝑘) if there exists an integer 𝑘, 1 < 𝑘 ⩽

𝑛

2
, with𝐻𝑘

∗() and𝐻
𝑛−𝑘
∗ () nonzero modules, and

𝐻𝑖
∗() = 0 for 𝑖 ≠ 1, 𝑘, 𝑛 − 𝑘, 𝑛 − 1.

Remark 2.5. By Lemma 2.1, we get that if  has isolated cohomology of type (𝑛, 𝑘), then𝐻𝑖
∗(∧

2) =

0 for 𝑖 ≠ 1, 𝑘, 𝑛 − 𝑘, 𝑛 − 1.

A special case in the definition is when the middle cohomology is not zero, that is, of
type (𝑛, 𝑘), where 𝑛 is even, equal to 2𝑘, and the only nonzero cohomology modules are
𝐻1
∗(), 𝐻

𝑘
∗(), 𝐻

𝑛−1
∗ ().
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RANK TWO BUNDLES ON 𝐏𝑁 WITH ISOLATED COHOMOLOGY 5

Note that the conditions that𝐻1
∗(), 𝐻

𝑛−1
∗ () are both nonzero for an indecomposable rank two

bundle follow from the Syzygy Theorem. In [14], it is proved that for an indecomposable rank two
bundle on 𝐏𝑛, 𝑛 ⩾ 4, at least one cohomology module𝐻𝑙

∗()must be nonzero with 1 < 𝑙 < 𝑛 − 1.
The reason 𝑛 is chosen to be ⩾ 6 in the definition is that first, the definition is vacuous for 𝑛 = 2, 3

and second, for 𝑛 = 4, 5, 𝑘 must be 2, and the definition made is always satisfied by any possible
indecomposable rank two bundle on 𝐏4 or 𝐏5, and hence imposes no restrictions.
Let 𝑘(𝑁) be the 𝑘th syzygy bundle of the finite length module 𝑁. By this, we mean that in a

minimal free resolution for 𝑁 over the polynomial ring 𝑆:

0 → 𝐿𝑛+1
𝑓𝑛+1
����→ 𝐿𝑛 → ⋯→ 𝐿𝑘+1

𝑓𝑘+1
����→ 𝐿𝑘 → ⋯→ 𝐿1

𝑓1
��→ 𝐿0 → 𝑁 → 0.

𝑃𝑘(𝑁) will denote the image of 𝑓𝑘+1 and 𝑘(𝑁) will denote the sheafification of 𝑃𝑘(𝑁). Hence,
𝐻𝑘
∗(𝑘(𝑁)) = 𝑁, with𝐻𝑖

∗(𝑘(𝑁)) = 0 when 𝑖 ≠ 0, 𝑘, 𝑛. According to [7], if  is any bundle on 𝐏𝑛
with the property that 𝐻𝑘

∗() = 𝑁 and 𝐻𝑖
∗() = 0 when 𝑖 ≠ 0, 𝑘, 𝑛, then  ≅ 𝑘(𝑁) ⊕  where

 is a direct sum of line bundles.

Lemma 2.6. Let  be a vector bundle on 𝐏𝑛 with nonzero cohomology modules 𝐻𝑘
∗() = 𝑁,

𝐻𝑙
∗() = 𝑀 for 1 ⩽ 𝑘 < 𝑙 ⩽ 𝑛 − 1, and with 𝐻𝑖

∗() = 0 when 𝑖 ≠ 0, 𝑘, 𝑙, 𝑛. Then there is an exact
sequence

0 → 𝑘(𝑁) →  ⊕  → 𝑙(𝑀) → 0,

where  is some free bundle.

Proof. This too follows from [7]. Letting 𝑃 denote 𝐻0
∗(), form an exact sequence (by partially

resolving 𝑃∨)

0 → 𝑃 → 𝐿𝑘 → 𝐿𝑘−1 → …𝐿1 → 𝐴 → 𝑁 → 0,

where 𝐴 is not a free module. Compare this with a truncated minimal free resolution of 𝑁:

0 → 𝑃𝑘(𝑁) → 𝐿′
𝑘
→ 𝐿′

𝑘−1
→ …𝐿′1 → 𝐿′0 → 𝑁 → 0.

The induced map 𝑃𝑘(𝑁) → 𝑃 gives a map 𝑘(𝑁) →  that is an isomorphism at the cohomology
level𝐻𝑘

∗ . Minimally add a free module 𝐹 to 𝑃 to force a surjection 𝑃
∨ ⊕ 𝐹∨ → 𝑃𝑘(𝑁)

∨. This gives
an inclusion of bundles 𝑘(𝑁) →  ⊕  whose cokernel is 𝑙(𝑀) ⊕  ′ where  ′ is a free bundle
(since it has only 𝐻𝑙

∗ intermediate cohomology). We notice that both for 𝑘 = 1 and for 𝑘 > 1,
the map 𝐻1

∗(𝑘(𝑁)) → 𝐻1
∗( ⊕ ) is an isomorphism, so we get a surjection from 𝐻0

∗( ⊕ ) to
𝐻0
∗(𝑙(𝑀) ⊕  ′). By the minimality of 𝐹, we may conclude that  ′ = 0 □

Summarizing this below, we get the following.

Proposition 2.7. Let  be a rank two bundle on 𝐏𝑛, 𝑛 ⩾ 6 with isolated cohomology of type (𝑛, 𝑘)
with𝐻𝑘

∗() = 𝑁, for some 𝑘 strictly between 1 and 𝑛

2
. Then  has the monad

0 → 
𝛼
�→ 

𝛽
�→ → 0,
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6 MALASPINA and RAO

where

∙  satisfies an exact sequence 0 → 𝑘(𝑁) →  ⊕  → 𝑛−𝑘(𝑀) → 0, where is some free bundle,
𝑀 = 𝐻𝑛−𝑘

∗ () (which can be identified with𝑁∨ up to twist).
∙ 𝐻𝑖

∗(∧
2) = 0 for 𝑖 ≠ 1, 𝑘, 𝑛 − 𝑘, 𝑛 − 1.

∙ 𝐻1
∗(∧

2) and𝐻𝑛−1
∗ (∧2) are nonzero if 𝑘 ≠ 2.

In the case left out in the above proposition, where  has isolated middle cohomology with
𝑛 = 2𝑘 and with 𝐻𝑘

∗() = 𝑁 ≠ 0 equal to the only nonzero cohomology module in the range 1 <
𝑖 < 𝑛 − 1, the monad for  has the form

0 → → 𝑘(𝑁) → → 0.

Also, there is a short exact sequence

0 → 𝐴⊗𝑁 → 𝐻𝑘
∗(∧

2𝑘(𝑁)) → 𝐵 ⊗𝑁 → 0.

Thus,

Proposition 2.8. Let  be a rank two bundle on 𝐏𝑛, 𝑛 = 2𝑘, 𝑛 ⩾ 6, with 𝐻𝑘
∗() = 𝑁, 𝐻𝑖

∗() =

0, 𝑖 ≠ 1, 𝑘, 𝑛. Let 𝑘 be the 𝑘𝑡ℎ syzygy bundle of 𝑁 where 𝑘 is the sheafification of 𝑃𝑘 with 𝑃𝑘 =
Image of (𝑓𝑘+1 ∶ 𝐿𝑘+1 → 𝐿𝑘) in a minimal free resolution of𝑁. Then  has the monad

0 → 
𝛼
�→ 𝑘

𝛽
�→ → 0,

where , are sheafifications of free summands 𝐴, 𝐵 of 𝐿𝑘+1 and 𝐿𝑘 , respectively, and where 𝛼, 𝛽
are induced by 𝑓𝑘+1. Furthermore,

∙ 𝐻𝑖
∗(∧

2𝑘) = 0 for 𝑖 ≠ 1, 𝑘, 𝑛 − 1,
∙ the induced sequence 0 → 𝐴⊗𝑁 → 𝐻𝑘

∗(∧
2𝑘) → 𝐵 ⊗𝑁 → 0 is exact,

∙ 𝐻1
∗(∧

2𝑘) and𝐻𝑛−1
∗ (∧2𝑘) are nonzero.

Proof. The only item to verify is that, are sheafifications of free summands𝐴, 𝐵 of𝐿𝑘+1 and𝐿𝑘,
respectively, and that 𝛼, 𝛽 are induced by 𝑓𝑘+1. Since 𝐿𝑘+1 → 𝑃𝑘 is surjective, 𝛼 ∶ 𝐴 → 𝑃𝑘 factors
through �̃� ∶ 𝐴 → 𝐿𝑘+1. Likewise, since 𝐿∨𝑘 → 𝑃∨

𝑘
is surjective, 𝛽∨ ∶ 𝐵∨ → 𝑃∨

𝑘
factors through 𝛽∨ ∶

𝐵∨ → 𝐿∨
𝑘
. It remains to show that the matrices �̃�, 𝛽 have full rank when tensored by 𝑘.

The map 𝐻𝑘
∗(∧

2𝑘) → 𝐵 ⊗𝑁 → 0 in the short sequence above is obtained from ∧2𝑘 → ⊗

𝑘 where 𝑝 ∧ 𝑞 maps to 𝛽(𝑝) ⊗ 𝑞 − 𝛽(𝑞) ⊗ 𝑝. This factors through 𝑘 ⊗ 𝑘 via the lift 𝛽. In par-
ticular, themap 𝐿𝑘 ⊗ 𝑁 → 𝐵 ⊗𝑁, given by 𝛽 ⊗ 𝐼, is onto. Hence so is (𝛽 ⊗ 𝑘) ⊗ 𝐼, amap of vector
spaces. Hence, the matrix 𝛽 ⊗ 𝑘 has rank equal to the rank of 𝐵. So, 𝐵 is a direct summand of 𝐿𝑘.
The map 0 → 𝐴⊗𝑁 → 𝐻𝑘

∗(∧
2𝑘) is obtained from 𝐻𝑘

∗(⊗ ) ≅ 𝐻𝑘
∗(∧

2) ↪ 𝐻𝑘
∗(∧

2𝑘),
which, in turn, is obtained from ⊗ → ∧2↪ ∧2𝑘, where 𝑎 ⊗ g maps to 𝛼(𝑎) ∧ g in ∧2𝑘.
This map⊗ → ∧2𝑘 factors through 𝑘+1 ⊗ , vial the lift �̃�.
It follows that the injection 𝐴⊗𝑁 → 𝐻𝑘

∗(∧
2𝑘) factors through 𝐴⊗𝑁 → 𝐿𝑘+1 ⊗ 𝑁, by the

map �̃� ⊗ 𝐼. This must also be injective. Choose a socle element 𝑛 in 𝑁 (an element that is anni-
hilated by all linear forms in 𝑆). The submodule generated by 𝑛, ⟨𝑛⟩, is a one-dimensional vector
space and 𝐴⊗ ⟨𝑛⟩ is mapped injectively by �̃� ⊗ 𝐼 to 𝐿𝑘+1 ⊗ 𝑁. Since the image of �̃� ⊗ 𝐼 on
𝐴⊗ ⟨𝑛⟩ is the same as the image of (�̃� ⊗ 𝑘) ⊗ 𝐼 on (𝐴 ⊗ 𝑘) ⊗ ⟨𝑛⟩, it follows that the rank of
the matrix �̃� ⊗ 𝑘 has rank equal to the rank of 𝐴. Thus, 𝐴 is a direct summand of 𝐿𝑘+1. □
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RANK TWO BUNDLES ON 𝐏𝑁 WITH ISOLATED COHOMOLOGY 7

Wenow review a result of Jyotilingam [9] about cohomologymodules of tensor products, apply-
ing it to the special case of syzygy bundles for our purposes. In the theorem below, 𝑁 and𝑀 will
be graded finite length 𝑆-modules where 𝑆 = 𝑘[𝑋0, 𝑋1, … , 𝑋𝑛] corresponding to 𝐏𝑛. 𝑘(𝑁) and
𝑙(𝑀)will indicate syzygy bundles obtained fromminimal free resolutions of𝑁 and𝑀. Note that
in the minimal free resolution,

0 → 𝐿𝑛+1 → 𝐿𝑛 → ⋯→ 𝐿1 → 𝐿0 → 𝑁 → 0,

whenwe tensor by𝑀, themap𝐿𝑛+1 ⊗𝑀 → 𝐿𝑛 ⊗𝑀, cannot be injective since𝑀 has finite length,
hence Tor𝑆

𝑛+1
(𝑁,𝑀) ≠ 0, and by Lichtenbaum’s theorem [10] Tor𝑆

𝑖
(𝑁,𝑀) ≠ 0 for all 𝑖 ⩽ 𝑛 + 1.

Theorem 2.9. Let𝑁 be a finite 𝑆-module and let 𝑘 be its 𝑘𝑡ℎ syzygy bundle on 𝐏𝑛, with 𝑘 ⩾ 1. Let
 be a bundle on 𝐏𝑛 with𝐻𝑙

∗() = 𝑀 ≠ 0, with 𝑘 ⩽ 𝑙 ⩽ 𝑛 − 2, and with𝐻𝑖
∗() = 0 for 𝑖 = 𝑙 − 1, 𝑙 −

2, … , 𝑙 − 𝑘 + 2. Then𝐻𝑙+1
∗ (𝑘 ⊗) ≠ 0.

Proof. The cases 𝑘 = 1 and 𝑘 = 2 require no conditions on 𝐻𝑙−1
∗ (). When 𝑘 = 1, we get the

sequence𝐻𝑙
∗(1 ⊗) → 𝐻𝑙

∗(0 ⊗) → 𝐻𝑙+1
∗ (1 ⊗) → 0 and the map 𝐿1 ⊗𝑀 → 𝐿0 ⊗𝑀 can

never be surjective. When 𝑘 > 1, consider the diagram obtained from the sequences 0 → 𝑖 ⊗

→ 𝑖 ⊗→ 𝑖−1 ⊗→ 0, 𝑖 = 𝑘, 𝑘 − 1, 𝑘 − 2 (with 𝑗 = 0 if 𝑗 < 0 and 0 = 0):

The vanishing conditions on 𝐻𝑖
∗() show that 𝐻𝑙−1

∗ (𝑘−3 ⊗) = 𝐻𝑙−2
∗ (𝑘−4 ⊗) =

⋯ = 𝐻𝑙−𝑘+2
∗ (0 ⊗) = 0. So, ker 𝛿 = im 𝛼 and the diagram induces a surjection

im 𝜇 → Tor𝑘−1(𝑁,𝑀). By Lichtenbaum’s theorem,𝐻𝑙+1
∗ (𝑘 ⊗) ≠ 0. □

3 ISOLATED COHOMOLOGY OF TYPE (𝒏, 𝒌), WITH 𝒏 ⩾ 𝟒𝒌

In this section, we will prove that there are no indecomposable rank two bundles on 𝐏𝑛 with
isolated cohomology of type (𝑛, 𝑘), where 𝑛 ⩾ 4𝑘. We study the sequence 0 → 𝑘(𝑁) →  ⊕  →

𝑛−𝑘(𝑀) → 0 of Proposition 2.7. We will need to pay special attention to the case where 𝑁 is a
cyclic module. Hence the following lemma.

Lemma 3.1. Let𝑁 be a graded cyclic S-module. For the corresponding syzygy bundle 2(𝑁) on 𝐏𝑛,
𝐻3
∗(𝑆

22(𝑁)) = 0 and𝐻3
∗(∧

22(𝑁)) ≠ 0.

Proof. From the sequence 0 → 2 → 2 → 1 → 0 obtained from a minimal resolution of
𝑁, it suffices to show that the map 𝐻1

∗(2 ⊗ 1) → 𝐻1
∗(∧

21) is surjective to prove that
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8 MALASPINA and RAO

𝐻3
∗(𝑆

22(𝑁)) = 0. This map can be studied using the natural commuting diagram

It simplifies when 0 has rank one, where without loss of generality, we can take 0 to be𝐏𝑛 ,
yielding

Since 2 surjects onto the global sections of 1, it follows from the diagram of long exact
sequences of cohomology modules that𝐻1

∗(2 ⊗ 1) → 𝐻1
∗(∧

21) is onto.
For the second part, we will show that𝐻3

∗(2 ⊗ 2) ≠ 0. (This argument will be repeated later
in a slightly different setting.) With 𝐻3

∗(𝑆
22) = 0, since 𝐻3

∗(2 ⊗ 2) = 𝐻3
∗(𝑆

22) ⊕ 𝐻3
∗(∧

22),
the conclusion of the lemma follows.
Consider 0 → 2 ⊗ 2 → 2 ⊗ 2 → 1 ⊗ 2 → 0 ⊗ 2 → 0. From 0 → 1 ⊗ 2 → 1 ⊗

2 → 0 ⊗ 2 → 0, we get

𝐻2
∗(1 ⊗ 2) = ker(𝐿1 ⊗ 𝑁 → 𝐿0 ⊗ 𝑁) = 𝐿1 ⊗ 𝑁

since 𝑁 is cyclic. Hence, we get

𝐻3
∗(2 ⊗ 2) = coker (𝐿2 ⊗ 𝑁 → 𝐿1 ⊗ 𝑁),

which is clearly nonzero. □

Proposition 3.2. Suppose that  on 𝐏𝑛 is a rank two bundle of type (𝑛, 𝑘) with 𝑛 ⩾ 7, 𝑘 strictly less
than 𝑛

2
. Then the sequence 0 → 𝑘(𝑁) →  ⊕  → 𝑙(𝑀) → 0, in Proposition 2.7, is not-split.

Proof. Suppose  ⊕  = 𝑘(𝑁) ⊕ 𝑛−𝑘(𝑀). Neither 𝑘(𝑁) nor 𝑛−𝑘(𝑀) has any line bun-
dle summands, hence  = 𝑘(𝑁) ⊕ 𝑛−𝑘(𝑀). So, ∧2 has summands 𝑘(𝑁) ⊗ 𝑛−𝑘(𝑀) and
∧2𝑘(𝑁). If 𝑘 > 2, then using Proposition 2.9, 𝐻𝑛−𝑘+1

∗ (𝑘(𝑁) ⊗ 𝑛−𝑘(𝑀)) is nonzero which
contradicts the requirement in Proposition 2.7 that𝐻𝑛−𝑘+1

∗ (∧2) = 0.
If 𝑘 = 2, there are two cases: if 𝑁 is cyclic, then 𝐻3

∗(∧
22(𝑁)) ≠ 0 by Lemma 3.1, which

contradicts Proposition 2.7 since 𝑛 − 𝑘 > 3 when 𝑛 ⩾ 6.
If 𝑁 is noncyclic, then from the sequences 0 → 2(𝑁) → 2 → 1(𝑁) → 0 and 0 → 1 →

1 → 0 → 0, we get𝐻4
∗(∧

22(𝑁)) ≠ 0. This a contradiction to Proposition 2.7 when 𝑛 ⩾ 7. □

Remark 3.3. The case 𝑛 = 6, 𝑘 = 2 is not answered above. A weaker argument can be made here
that even though = 𝑘(𝑁) ⊕ 𝑛−𝑘(𝑀),𝑁 itself is neither cyclic nor a direct sum of submodules
𝑁1 ⊕𝑁2.
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RANK TWO BUNDLES ON 𝐏𝑁 WITH ISOLATED COHOMOLOGY 9

Theorem 3.4. Let  be a rank two vector bundle on 𝐏8 with𝐻3
∗() = 𝐻4

∗() = 0, then  splits.

Proof. Let𝑁 = 𝐻2
∗() and𝑀 = 𝐻6

∗(). Both are nonzero unless  splits. By Proposition 3.2 (with
𝑘 = 2), we know that the sequence below is nonsplit.

0 → 2(𝑁) →  ⊕  → 6(𝑀) → 0. (5)

The proof will analyze the consequences of the two sequences below obtained from sequence.

0 → 𝑆22(𝑁) → 2(𝑁) ⊗ [ ⊕ ] → ∧2 ⊕ [ ⊗ ] ⊕ ∧2 → ∧26(𝑀) → 0, (6)

0 → ∧22(𝑁) → ∧2 ⊕ [ ⊗ ] ⊕ ∧2 → 6(𝑀) ⊗ [ ⊕ ] → 𝑆26(𝑀) → 0. (7)

Case 1 If 𝑁 is cyclic, we look at the sequence (6).
It breaks into

0 → 𝑆22(𝑁) → 2(𝑁) ⊗ [ ⊕ ] → → 0,

0 → → ∧2 ⊕ [ ⊗ ] ⊕ ∧2 → ∧26(𝑀) → 0,
(8)

𝐻3
∗(2(𝑁) ⊗ [ ⊕ ]) ≠ 0 by the same argument in the second part of the proof of Lemma 3.1,

and by the same lemma,𝐻3
∗(𝑆

22(𝑁)) = 0. Hence,𝐻3
∗() ≠ 0 from the first sequence in (8).

In the second sequence in (8), 𝐻3
∗() = 0. Hence so is 𝐻3

∗(∧
2). Finally, 6(𝑀) fits into a

sequence with free bundles

0 → ′9 → ′8 → ′7 → 6 → 0.

This yields two exact sequences

0 → 𝑆27 → 𝑆2′7 → ′7 ⊗ 6 → ∧26 → 0,

0 → ∧2′9 → ∧2′8 → ′8 ⊗ 7 → 𝑆27 → 0.
(9)

From these, we can chase down 𝐻2
∗(∧

26) to be equal to zero since 𝐻2
∗(6) = 0,𝐻4

∗(7) =

0,𝐻6
∗(∧

2′
9
) = 0. Hence,𝐻3

∗() is both zero and nonzero, a contradiction.
Case 2 If 𝑁 is noncyclic, we look at the sequence (7)

0 → ∧22(𝑁) → ∧2 ⊕ [ ⊗ ] ⊕ ∧2 → 6(𝑀) ⊗ [ ⊕ ] → 𝑆26(𝑀) → 0.

It breaks into

0 → ∧22(𝑁) → ∧2 ⊕ [ ⊗ ] ⊕ ∧2 → → 0,

0 → → 6(𝑀) ⊗ [ ⊕ ] → 𝑆26(𝑀) → 0.
(10)

From

0 → 𝑆21(𝑁) → 𝑆21 → 1 ⊗ 0 → ∧20 → 0,

0 → ∧22(𝑁) → ∧22 → 2 ⊗ 1 → 𝑆21(𝑁) → 0,
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10 MALASPINA and RAO

we get 𝐻2
∗(𝑆

21(𝑁)) ≠ 0 and 𝐻4
∗(∧

22(𝑁)) ≠ 0. Since 𝐻4
∗() and 𝐻

4
∗(∧

2) are zero, we obtain
𝐻3
∗() ≠ 0.
Again, in the second sequence in (10),𝐻3

∗(6(𝑀) ⊗ ) = 0 and𝐻3
∗(6(𝑀) ⊗ ) can be studied

using a resolution for 6(𝑀) and tensoring with  .

0 → ′9 ⊗  → ′8 ⊗  → ′7 ⊗  → 6(𝑀) ⊗  → 0.

Then𝐻3
∗(6(𝑀) ⊗ ) = 0 since𝐻3

∗(), 𝐻
4
∗(), 𝐻

5
∗() are all zero.

We compute 𝐻2
∗(𝑆

26(𝑀)), breaking up the resolution of 6 (suppressing the letter 𝑀) into
short exact sequences:

0 → ∧27 → ∧2′7 → ′7 ⊗ 6 → 𝑆26 → 0,

0 → 𝑆2′9 → 𝑆2′8 → ′8 ⊗ 7 → ∧27 → 0.
(11)

𝐻2
∗(𝑆

26(𝑀)) will vanish since𝐻2
∗(6),𝐻

4
∗(7) and𝐻

6
∗(𝑆

2′
9
) are all zero. □

Corollary 3.5. Let 𝑛 ⩾ 8. Let  be a rank two vector bundle on𝐏𝑛 with𝐻𝑖
∗() = 0 for 𝑖 = 3, …𝑛 − 3.

Then  splits.

Proof. Use induction on 𝑛. The case 𝑛 = 8 is proved in the above theorem. Assume the result for
𝑛 − 1. Let  be a rank two vector bundle on 𝐏𝑛 with𝐻𝑖

∗() = 0 for 𝑖 = 3, …𝑛 − 3. For a hyperplane
𝐻, by the restriction sequence in cohomology,

𝐻𝑖
∗() → 𝐻𝑖

∗(𝐻) → 𝐻𝑖+1
∗ ((−1)),

we get that𝐻𝑖
∗(𝐻) = 0 for 𝑖 = 3, …𝑛 − 4 on 𝐏𝑛−1. So, 𝐻 splits and hence also  . □

The theorem above can be generalized to arbitrary 𝑘 using the similar calculations.

Theorem 3.6. Let 𝑛 ⩾ 4𝑘, with 𝑘 > 1. Then there cannot exist a rank two bundle  on 𝐏𝑛, for
which the only nonzero intermediate cohomology modules are 𝐻1

∗(), 𝐻
𝑘
∗() = 𝑁, 𝐻𝑛−𝑘

∗ () = 𝑀,
and𝐻𝑛−1

∗ ().

Proof. The case 𝑘 = 2 was done in the corollary above. So, we assume that 𝑘 > 2. The proof will
analyze the consequences of the sequence

0 → 𝑘(𝑁) →  ⊕  → 𝑛−𝑘(𝑀) → 0, (12)

which is nonsplit by Proposition 3.2. We get the collateral sequence:

0 → ∧2𝑘(𝑁) → ∧2 ⊕ [ ⊗ ] ⊕ ∧2 → 𝑛−𝑘(𝑀) ⊗ [ ⊕ ] → 𝑆2𝑛−𝑘(𝑀) → 0. (13)

We will prove it using several cases.
Case 1 The case where 𝑁 is cyclic, 𝑘 is even and > 2.
We look at the sequence (13) which breaks into

0 → ∧2𝑘(𝑁) → ∧2 ⊕ [ ⊗ ] ⊕ ∧2 → → 0,

0 → → 𝑛−𝑘(𝑀) ⊗ [ ⊕ ] → 𝑆2𝑛−𝑘(𝑀) → 0,
(14)
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RANK TWO BUNDLES ON 𝐏𝑁 WITH ISOLATED COHOMOLOGY 11

𝐻3
∗(∧

22(𝑁)) ≠ 0. This yields 𝐻2𝑘−1
∗ (∧2𝑘(𝑁)) ≠ 0, since 𝑛 > 2𝑘 − 1. On the other hand,

𝐻2𝑘−1
∗ () and𝐻2𝑘−1

∗ (∧2) are zero, since 𝑘 < 2𝑘 − 1 < 𝑛 − 𝑘 when 𝑛 ⩾ 4𝑘. Hence𝐻2𝑘−2
∗ () ≠ 0

using the first short exact sequence in (14).
In the second sequence in (14), 𝐻2𝑘−2

∗ (𝑛−𝑘(𝑀) ⊗ ) = 0 since 2𝑘 − 2 ≠ 𝑛 − 𝑘.
𝐻2𝑘−2
∗ (𝑛−𝑘(𝑀) ⊗ ) can be studied using a resolution for 𝑛−𝑘(𝑀) and tensoring with

 .

0 → ′𝑛+1 ⊗  → ′𝑛 ⊗  → …′
𝑛−𝑘+2

⊗  → ′
𝑛−𝑘+1

⊗  → 𝑛−𝑘(𝑀) ⊗  → 0.

Then𝐻2𝑘−2
∗ (𝑛−𝑘(𝑀) ⊗ ) = 0 provided𝐻2𝑘−2

∗ (), 𝐻2𝑘−1
∗ (), … ,𝐻3𝑘−2

∗ () are all zero. Since
𝑛 ⩾ 4𝑘, 𝑛 − 𝑘 > 3𝑘 − 2 and since 𝑘 > 2, 𝑘 < 2𝑘 − 2. Hence, these vanishings hold.
We compute𝐻2𝑘−3

∗ (𝑆2𝑛−𝑘(𝑀)), breaking up the resolution of 𝑛−𝑘 (suppressing the letter𝑀)
into short exact sequences:

0 → ∧2𝑛−𝑘+1 → ∧2′
𝑛−𝑘+1

→ ′
𝑛−𝑘+1

⊗ 𝑛−𝑘 → 𝑆2𝑛−𝑘

0 → 𝑆2𝑛−𝑘+2 → ∧2′
𝑛−𝑘+2

→ ′
𝑛−𝑘+2

⊗ 𝑛−𝑘+1 → ∧2𝑛−𝑘+1

0 → ∧2𝑛−𝑘+3 → ∧2′
𝑛−𝑘+3

→ ′
𝑛−𝑘+3

⊗ 𝑛−𝑘+2 → 𝑆2𝑛−𝑘+2

⋮ ⋮ ⋮

0 → 𝑆2′𝑛+1 → 𝑆2′𝑛 → ′𝑛 ⊗ 𝑛−1 → ∧2𝑛−1.

(15)

𝐻2𝑘−3
∗ (𝑆2𝑛−𝑘(𝑀)) will vanish provided 𝐻2𝑘−3

∗ (𝑛−𝑘), 𝐻2𝑘−1
∗ (𝑛−𝑘+1), … , 𝐻4𝑘−5

∗ (𝑛−1)

and 𝐻4𝑘−3
∗ (𝑆2′

𝑛+1
) are all zero. 𝐻4𝑘−3

∗ (𝑆2′
𝑛+1

) = 0 since 𝑛 > 4𝑘 − 3. For the others,
𝐻2𝑘−3+2𝑖
∗ (𝑛−𝑘+𝑖) = 0 since 𝑛 − 𝑘 + 𝑖 > 2𝑘 − 3 + 2𝑖 when 0 ⩽ 𝑖 ⩽ 𝑘 − 1. We have con-

cluded that 𝐻2𝑘−2
∗ () = 0 from the second sequence, contradicting the earlier result of

being nonzero.
Case 2 The case where 𝑁 is noncyclic, 𝑘 > 2 is even.
This is very similar to Case 1. We use the same sequence (13). Now 𝐻4

∗(∧
22(𝑁)) ≠ 0. Hence,

𝐻2𝑘
∗ (∧2𝑘(𝑁)) ≠ 0, since 𝑛 > 2𝑘. 𝐻2𝑘

∗ () and 𝐻2𝑘
∗ (∧2) are zero, since 𝑘 < 2𝑘 < 𝑛 − 𝑘, hence

𝐻2𝑘−1
∗ () ≠ 0.
Again,𝐻2𝑘−1

∗ (𝑛−𝑘(𝑀) ⊗ ) = 0 since 2𝑘 − 1 ≠ 𝑛 − 𝑘 and𝐻2𝑘−1
∗ (𝑛−𝑘(𝑀) ⊗ ) = 0 since𝑛 −

𝑘 > 3𝑘 − 1 and 𝑘 < 2𝑘 − 1. Lastly,𝐻2𝑘−2
∗ (𝑆2𝑛−𝑘(𝑀)) = 0 since 𝑛 > 4𝑘 − 2 and 𝑛 − 𝑘 + 𝑖 > 2𝑘 −

2 + 2𝑖 when 0 ⩽ 𝑖 ⩽ 𝑘 − 1. Hence,𝐻2𝑘−1
∗ () is also equal to 0.

Case 3 The case where 𝑘 is odd.
𝐻2𝑘
∗ (∧2𝑘(𝑁)) ≠ 0 as in Case 2. We use sequence (13) and copy the proof in Case 2. □
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