COVID-19

Association between physical activity and risk of COVID-19 infection or clinical outcomes of the patients with COVID-19: A systematic review and meta-analysis

FARZIN HALABCHI¹, BEHNAZ MAHDAVIANI², BEHNAZ TAZESH², SAKINEH SHAB-BIDAR³,

MARYAM SELK-GHAFFARI²

¹ Department of Sports and Exercise Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran; ² Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; ³ Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran

Keywords

Exercise • COVID-19 • SARS-CoV-2 • Systematic Review • Meta-analysis

Summary

Objective. The COVID-19 pandemic has caused serious consequences for global health and economy. The important question is whether the level of physical activity might influence the risk of COVID-19 incidence or clinical outcomes, including the severity or mortality of infected patients. The objective of this systematic review and meta-analysis is to evaluate the association between sufficient physical activity and incidence, hospitalization, severity, recovery, and mortality of COVID-19.

Methods. A systematic search of Web of Sciences, PubMed, and Scopus between December 2019 and November 2021 was conducted. Studies were screened based on the inclusion criteria, i.e. observational studies (case-control, prospective or retrospective longitudinal designs, and cross-sectional studies) which have determined the association of physical activity, exercise, sports participation, or sedentary behavior with COVID-19 incidence or outcomes, including mortality, severity, recovery and hospi-

Introduction

The pandemic of COVID-19 has challenged world health systems, economy, and social lifestyles. As a consequence of the frequent lockdowns, public avoidance of social activities and the closure of sports clubs and public venues, physical activity level appears to have declined among different populations [1]. This may lead to short and long-term public health consequences, and an increase in the burden of non-communicable diseases [2]. Participating in regular physical activity improves mental and physical health [3]. Improvement in immunity state in various conditions including cardiovascular disease, insulin resistance state. dementia, and cancer have been indicated in individuals participating in regular exercise [4]. Moderate-intensity physical activity reduces the incidence, prognosis, and severity of viral respiratory infections with several mechanisms affecting the immune system [4-7]. Natural killer (NK) Cells, salivary IgA concentrations, neutrophils, and stress hormones are increased and

talization in healthy population or population with any specific comorbidity.

Results. Based on eligibility criteria, 27 articles were finally included in the qualitative synthesis. The meta-analysis of five studies evaluating the association of physical activity and COVID-19 mortality showed a weighted OR of OR of 0.61 (CI 95%: 0.50-0.75) with heterogeneity ($I^2 = 45.8\%$, P < 0.001) and in seven studies regarding physical activity and COVID-19 hospitalization, weighted OR was 0.541 (CI 95%: 0.491-0.595) with heterogeneity ($I^2 = 81.7\%$, P < 0.001).

Conclusion. Participating in sufficient physical activity might decrease COVID-19 related COVID-19-related hospitalization and mortality. Developing programs to increase physical activity during the COVID-19 pandemic might be an appropriate health strategy.

Th1/Th2 cell responses are regulated via engaging in moderate-intensity physical activity [6].

COVID-19 clinical manifestations consist of a variable spectrum including asymptomatic, mild to moderate, and severe intensity. It is assumed that physical activity may boost immunity in COVID-19 patients and reduce severe outcomes [7]. On the one hand, the physical activity leve&l of the community has been reduced inevitably, due to the COVID-19 preventive protocols (including staying at home, social distancing programs, etc.). On the other hand, physical activity may potentially reduce the incidence of COVID-19 and improve the consequences in COVID-19 patients. A few studies assessing the effects of physical activity on COVID-19 severity, morbidity, mortality, and hospitalization have been conducted [7-9]. Currently, no systematic review has been accomplished in this domain. Indeed, by conducting this systematic review and meta-analysis, we aimed to demonstrate whether if engaging in physical activity is beneficial in COVID-19 control strategies and recommend the policymakers develop proper action plans regarding physical activity in

the community. [10]. The objective of this study was to perform a systematic review and meta-analysis evaluating the association between physical activity and the risk of COVID-19 infection or clinical outcomes of the patients with COVID-19.

Methods

Protocol

The current systematic review and meta-analysis were accomplished according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines [11]. The complete study protocol was registered on PROSPERO (protocol number: CRD42021291451).

SEARCH STRATEGY AND INFORMATION SOURCES

Electronic resources including Web of Sciences, PubMed, and Scopus between December 2019 and November 2021 were searched systematically. In the next stage, in the related studies, references were assessed. Search keywords were as follows: "physical activity" OR "exercise" OR "physical inactivity" OR "sedentary behavior" OR "lifestyle" OR "sports" in combination with "COVID-19" OR "SARS-CoV-2".

ELIGIBILITY CRITERIA AND STUDY SELECTION

Inclusion criteria were: 1) observational studies including case-control, prospective or retrospective longitudinal designs, and cross-sectional studies, 2) studies conducted in healthy population or population with any specific comorbidity, 3) COVID-19 patients were detected via diagnostic tests, hospital reports, or deterministic signs or symptoms, 4) studies have tested the association of physical activity, exercise, sports participation, or sedentary behavior with risk of incidence or COVID-19 outcomes, including mortality, severity, recovery, and hospitalization.

Studies qualified based on inclusion criteria were evaluated. Qualitative studies, reviews, commentaries, and editorials were excluded. The studies were not excluded based on the assessment method of physical activity level or diagnostic method of COVID-19 in patients. The screening and study selection process was conducted via wotwo independent reviewers (B.T. & M.S.) and any disagreement was discussed until a settlement was achieved. If no agreement was attained, a third reviewer (B.M.) arbitrated the process.

DATA EXTRACTION

Two independent reviewers (B.T. & M.S.), extracted data by applying a standardized data extraction form. Data extraction form consisted of study characteristics including the name of the first author, sample size, physical activity measure, and assessment tool, outcome definition and assessment method, study design, and reported association of physical activity, exercise, sports participation, or sedentary behavior with COVID-19 outcome. A third

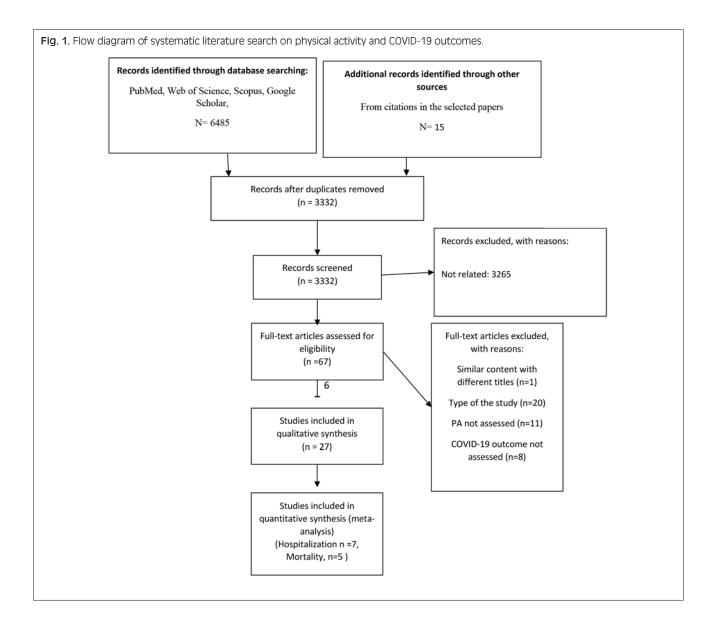
reviewer (B.M.) evaluated any disparities between results and disagreements were discussed between reviewers until achieving a final agreement.

QUALITY ASSESSMENTS OF STUDIES

Joanna Briggs Institute (JBI) critical appraisal checklist for cross-sectional, case series, and cohort studies were applied for the quality assessment of studies (Supplementary Table I) [12]. Two reviewers (B.T. & M.S.), applied JBI, and the results were assessed with a third reviewer (B.M). Any disagreement was discussed to achieve a settlement.

STATISTICAL ANALYSIS

Meta-analysis was conducted on studies based on inclusion and exclusion criteria and eligibility of homogenous assessment methods for physical activity and clinical outcomes. Association between physical activity and clinical outcomes including odds ratio, risk ratio, hazards ratio, incidence risk ratio, prevalence ratio, Beta, and correlation coefficient were recorded. Studies containing odds ratio, risk ratio, hazards ratio, incidence ratio, hazards ratio, incidence risk ratio, incidence risk ratio, and prevalence ratio were meta-analyzed, via STATA (version 13). A random-effect model was applied to evaluate associations between physical activity and clinical outcomes. Assessments of the studies' heterogeneity were via determining the Q-statistic and the I-squared index. A heterogeneity more than 75% was defined as high, and below 40% was insignificant.


Results

Results of a systematic search through Web of Sciences, PubMed, and Scopus databases for published studies consisted of 6485 studies. After duplicate removal, 3332 studies were evaluated in the primary screening process for subject relativity, and 67 studies were appropriate for complementary full-text assessment. After assessing the study according to eligibility criteria, 27 articles met the inclusion criteria. PRISMA flowchart is illustrated in Figure 1.

Study characteristics have been reviewed and presented in Table I. Among 27 studies included, patients with COVID-19 were assessed about engaging in physical activity, sports participation, and sedentary behavior.

PHYSICAL ACTIVITY AND COVID-19 INFECTION

Twelve studies have assessed the association between physical activity and COVID-19 infection. Gao et al. suggested that engaging in physical activity more than 5 times a week increased the risk of COVID-19 infection [19]. In studies by Huang et al. and Hamer et al., a sedentary lifestyle and physical inactivity have been proposed as risk factors for COVID-19 infection [20, 22]. Cho et al. indicated that increasing physical activity level per each standard deviation in MET-min/week might reduce the risk of COVID-19 infection [16]. Based on Lee et al. study engaging in sufficient physical activity (aerobic and strengthening exercises) reduces the probability

of infection compared to inactive individuals (2.6% vs 3.1%) [24]. Country-level physical activity reduced the risk of COVID-19 disease in a study by Cunningham et al. [17]. Rowlands et al. suggested that moderate to vigorous physical activity and total physical activity level have no correlations with COVID-19 infection [32]. In a study by Zhang et al. increased physical activity level (based on an acceleration vector scale) reduced the risk of COVID-19 overall infection and outpatients [36]. Bielik et al. did not demonstrate a decreased risk of COVID-19 incidence among cold-water swimmers (physically active individuals). However, an increased probability of asymptomatic COVID-19 and decreased probability of re-infection exceeding twice annually was demonstrated among swimmers [15]. Marcus et al. indicated a reduced risk of incidence of SARS-CoV-2 infection symptoms among individuals participating in the weekly exercise [27]. Also, Nguyen et al. proved that physical activity reduced COVID-19-like symptoms' likelihood [28].

PHYSICAL ACTIVITY AND RISK OF COVID-19 RELATED HOSPITALIZATION

Seven studies evaluated the association between physical activity and the risk of hospitalization in patients with COVID-19. An accelerometer was used as an objective physical activity assessment method in a study by Li et al. [25]. No correlation was detected between physical activity predicted genetically (each standard deviation increase) with hospitalization due to COVID-19 [25]. Subjective methods including the international physical activity questionnaire (IPAQ) short version [18, 23], Exercise Vital Sign (EVS) [7, 26], and membership in the sports medicine insurance system [8] were applied in the studies to assess physical activity. De Souza et al. showed a 37.6% reduction in the prevalence of COVID-19 related hospitalization in individuals engaging in sufficient physical activity [18]. In Latorre-Román et al. study, engaging in more than 150 minutes of moderate physical activity per week indicated a negative relation with hospitalization [23].

Results	Outcome	PA assessment tool	Exercise, physical activity, sedentary behavior, etc.	Participants	Study design (type/ registration time)	Study and country	
Among physically active individuals decreased mortality was detected (RR: 0.70, 95% Cl: 0.54- 0.89)	Mortality	Questionnaire (IPAQ short version)	Physical activity	468,569 participants (mean age: 56.5 ± 8.1)	Cohort study/ March to June 2020	Ahmadi et al. [13] (2021) United Kingdom	
Individuals engaging in regular physical activity have a 2.7-time faster recovery process compared to inactive individuals (p = 0.00)	Recovery time	12 multiple choice questionnaire using a self- rated scale	Fulfilling WHO physical activity recommendation (150 min/w)	215 (mean age: 36.3 ± 16.2 years) COVID-19 infected participants	Cross sectional	Boukelia & Alataibi [14] (2020) Kingdom of Saudi Arabia	
Among cold-water swimmers (physically active individuals) lower probability for COVID-19 incidence was not detected (RR:1.07, 95% CI: 0.71-1.62) but increased probability of asymptomatic COVID-19 (RR: 2.32, 95% CI: 0.83- 6.44; p < 0.05) was demonstrated	Infection incidence, re- infection, and less severe forms	Adapted version of Questionnaire (IPAQ short version)	ion of ionnaire Physical activity Short Physical activity		Bielik et al. [15] (2021) Slovak Republic		
Moderate to vigorous physical activity reduced morbidity (adjusted OR:0.90, 95% Cl, 0.86- 0.95) and mortality (adjusted OR, 0.47; 95% Cl, 0.26-0.87) in patients with COVID-19. Each standard deviation increase in physical activity (MET-min/ week) reduced risk of infection and mortality of COVID-19 by 4% and 35%, respectively	Morbidity and mortality	· (Moderate		6289 COVID-19 infected participants (mean age: 50.7 ± 14.3 years) & 125,772 Healthy individuals (mean age: 50.7 ± 14.3 y)	Retrospective observational study (Case- Control Study)/ January 1-July 16, 2020	Cho et al. [16] (2021) South Korea	
Negative associations between county-level physical activity and COVID-19 infection (r = -0.14) or mortality (r = -0.23) were detected	Mortality	Website databank via a questionnaire	Physical Activity	ysical Activity 3142 counties of USA Cross sectional/ USA 20-November 30, 2020		Cunningham [17] (2021) United States	
Engaging in regular physical activity (moderate physical activity for at least 150 minutes weekly or vigorous physical activity for at 75 minutes weekly reduces hospitalizations prevalence among COVID-19 patients (Adjusted PR: 0.65; P = 0.046)	Hospitalization	Online questionnaire (IPAQ short version)	Physical Activity	938 survivors and fully recovered patients infected with COVID-19	Cross sectional/ June-August, 2020 (IPAQ short version)]	de Souza et al. [18] (2021) Brazil	

Tab. I. Continues.

.....

		_	Exercise,		Study design		
Results	Outcome	PA assessment tool	physical activity, sedentary behavior, etc.	Participants	(type/ registration time)	Study and country	
Having physical activity exceeding 5 time a week increased risk of COVID-19 infection (adjusted OR: 2.05, 95% CI: 1.39-3.02)	COVID-19 diagnosis	Questionnaire	Physical activity (frequency per week in latest 2 months)	105 COVID-19 infected participants (Median age: 55.0 y, IQR: 45.5-66.5) and 210 healthy individuals (Median age: 54.0 y, IQR, 45.0-68.0)	Case-control study/ February 10-March 1, 2020	Gao et al. [19] (2020) Wuhan, China	
Regular sports participation significantly reduced severe outcomes (OR: 0.67, 95% CI: 0.46-0.99)	Hospitalization or death (severe outcome)	Membership in the Sports Medicine Insurance system of Tehran province	in the Sports Medicine Insurance system of Regular sports participation Negular sports participation Medicine Insurance System of		Cross sectional/ February 20-April 20, 2020	Halabchi et al. [8] (2020) Iran	
COVID-19 infection risk was augmented in physical inactivity (Adjusted RR: 1.32, 95% Cl: 1.10-1.58)	COVID- 19 diagnosis	Questionnaire (IPAQ short version	Physical inactivity	tivity 387,109 (mean age: 56.2 ± 8 y) Prospect including 760 cohort/Mi COVID-19 infected participants		Hamer et al. [20] (2020) UK	
Low physical activity increased COVID-19 mortality compared to high physical activity (OR:1.41, 95% CI: 1.09- 1.83)	Mortality	Questionnaire (IPAQ short version)	Physical activity	259 397 participants	Prospective cohort study/16 March 2020-27 February, 2021	Hamrouni et al. [21] (2021) UK	
Sedentary lifestyle increases likelihood of COVID-19 infection (OR: 36.05, 95% CI: 3.44- 377.44). Low physical activity increases duration of hospital stay(OR: 6.67, 95% CI: 1.61-27.61	Risk of infection/ Length of hospital stay	Questionnaire (IPAQ short version)	PAQ short based on MET. 203 COVID-19 Retrospective		Retrospective cohort	Huang et al. [22] (2020) China	
Engaging in moderate physical activity more than 150 minutes weekly reduces the risk of hospitalization (RR: 0.24, 95% CI: 0.05-1.04)	gaging in moderate /sical activity more n 150 minutes ekly reduces the risk nospitalization (RR:		Moderate physical activity	≤ 420 COVID-19 infected participants (Median age: 33 (20-54))	Cross-sectional	Latorre-Román et al. [23] (2021) Spain	
Engaging in sufficient physical activity (500- <1000 MET min/week) reduced probability of COVID-19 incidence (aRR: 0.78; 95% CI: 0.66- 0.92), probability of severe infection (aRR: 0.62; 95% CI 0.43-0.90) and mortality (aRR: 0.17; 95% CI: 0.07-0.98) compared to inactivity	Risk of infection, severity, and mortality	Interview based questionnaire	Physical activity	2295 infected participants	Cross-sectional/ January 1 2020-July 31 2020	Lee et al. [24] (2021) South Korea	

.....

Tab. I. Continues.

	1			1	1		
Results	Outcome	PA assessment tool	Exercise, physical activity, sedentary behavior, etc.	Participants	Study design (type/ registration time)	Study and country	
Lower risk of COVID-19 infection with severe respiratory manifestation was detected with each standard deviation increase in physical activity estimated genetically (OR: 0.19, 95% CI: 0.05-0.74). However, no correlation was demonstrated with hospitalization due to COVID-19	Severe respiratory COVID-19, COVID-19 hospitalization	Accelerometer- measured PA	Physical activity	Data from 2 genome-wide association studies (GWAS) including 9464 hospitalized patients with COVID-19 and 1,297,281 healthy controls	Cross-sectional (Mendelian randomization study)	Li et al. [25] (2021) UK	
Inactive individuals were more likely to be hospitalized due to COVID-19 (adjusted OR: 1.25, 95% Cl: 1.03-1.51)	Hospitalization	n Sign (EVS), (self- reported PA) reporting < 10 min of exercise/week age: 44.81 ± 5.7) 29, 2020		Lobelo et al. [26] (2021) United States			
Weekly exercise reduced risk of incidence of SARS-CoV-2 infection's symptoms (OR: 0.57, 95% CI: 0.47-0.70)	SARS-CoV-2 infection incidence	Mobile applicationPhysical activity14,335 participantsProspective cohort study/March 26- May 3, 2020		()()))			
Physical activity reduced COVID-19-like Symptoms' likelihood (OR: 0.69; p < 0.001)	COVID-19-like Symptoms	IIKe (IPAQ short Physical activity (mean age: study/14 Fe		Cross sectional study/14 February to 2 March 2020	Nguyen et al. [28] (2021) Vietnam		
Increased prevalence of inadequate physical activity augmented the probability of COVID-19 mortality [Beta (SE): 0.08 (0.0333), p = 0.01271	Mortality	WHO Global Health Observatory Repository	Insufficient physical activity (not meeting the WHO physical activity recommendations)	Publicly available core health data for 53 sub-Saharan African countries	Cross sectional	Okeahalam et al. [29] (2020) sub-Saharan Africa	
No associations between total physical activity and duration of hospital stay due to COVID-19 infection (β = 0.20, 95% CI: -0.48-0.87, p = 0.563), mortality (OR: 0.7, 95% CI: 0.4-1.3, p = 0.272), ICU admission (OR: 0.9, 95% CI: 0.7-1.2, p = 0.459), and need to mechanical ventilation (OR: 0.8, 95% CI: 0.5- 1.2, p = 0.214) were detected	Length of hospital stay, mortality, ICU admission, need to mechanical ventilation	Baecke Questionnaire of Habitual Physical Activity	Physical activity	209 hospitalized patients with severe COVID-19 (mean age: 54.9 ± 14.5 y)	Prospective cohort/June 2-October 7, 2020	Pinto et al. [30] (2020) Brazil	
Recreational physical activity has an inverse association with mortality rate per 100,000 individuals (r: -0.43, p = 0.02), disease lethality (r: -0.51, P = 0.01), and the accumulated deaths (r: -0.44, p = 0.03)	Accumulated deaths, disease lethality and mortality rate	Data through the Risk Factor Surveillance System for chronic non- communicable diseases (VIGITEL 2019)	Leisure time physical activity (LTPA)	26 Brazilian capitals and the Federal District	Cross-sectional/ January 22, 2021	Pitanga et al. [31] (2021) Brazil	

E128

Tab. I. Continues.

.....

Results	Outcome	PA assessment tool	Exercise, physical activity, sedentary behavior, etc.	Participants	Study design (type/ registration time)	Study and country	
No associations between moderate to high physical activity or total physical activity level with the COVID-19 infection or severe manifestation of COVID-19 were demonstrated. Increased waking time physical activity reduces the risk (OR, 0.75, 95% CI: 0.61-0.93)	SARS-CoV-2 positivity and COVID-19 severity.	Accelerometer data from Biobank	Physical activity	207 COVID-19 infected participants (including 124 patients with severe infection)	Cross-sectional/ March 16-July 19, 2020	Rowlands et al. [32] (2020) UK	
Sedentary lifestyle enhances the mortality due to COVID-19 infection. (Adjusted hazard ratio: 5.91, 95%CI: 1.80-19.41)	Mortality	ortality Rapid Assessment of Physical Activity Scale questionnaire Baseline physical activity level (BPAL) S20 patients hospitalized COVID-19 infected participants (mean age: 54.6, range: 42.9-64.6)		Salgado-Aranda et al. 33 (2021) Spain			
Inactive individuals with COVID-19 have higher risk of hospitalization (OR 2.26; 95% CI: 1.81, 2.83), ICU admission (OR = 1.73 ; 95% CI: 1.18, 2.55) and mortality (OR 2.49; 95% CI: 1.33, 4.67)	Hospitalization, ICU admission and mortality	ization, Exercise Vital Sign (EVS), (self- tratitiv, reported PA) Physical inactivity and the second study/Janua		Retrospective observational study/January 1-October 21, 2020	Sallis et al. [7] (2021) United States		
Moderate to vigorous physical activity reduces the COVID-19 severe manifestations (OR: 0.28, p = 0.05)	Severe COVID-19 disease	GPAQ	Physical activity	206 COVID-19 infected participants (mean age: 40.9 ± 11.6 y)	Cross-sectional/ March 20-April 24	Tavakol et al. [9] (2020) Iran	
COVID-19 mortality indicated positive correlations with insufficient physical activity (R^{2} :0.04, p = 0.007)	VID-19 mortality icated positive relations with ufficient physical ivity (R ^{2:} 0.04,		Insufficient physical activity	Data from 2015/2016 WHO handbooks	Cross sectional study/August 20, 2020	Wang et al. [34] (2021) 186 countries from Africa (55), Asia/Oceania (45), Europe (45), North/Central America (28), and South America (13)	
No associations between insufficient aerobic activity and hospitalization rate (Crude OR 1.06; Cl 95%: 0.48, 2.34)	etween insufficient probic activity and popitalization rate rude OR 1.06; Cl 95%:		Physical activity	93 hospitalized and 372 ambulatory COVID-19 military personnel (median age = 26)	Case-control study/between March 5, 2020, and March 10, 2021	Webber et al. [35] (2021) United States	
Increased physical activity level (based on accelerometer) reduces the risk of COVID-19 overall infection and outpatients [36]. However, no association have been demonstrated between physical activity (based on accelerometer) and inpatients or MVPA (based on touch screen questionnaire) and COVID-19 consequences	Overall COVID-19, inpatients and outpatients	Self-reported moderate-to- vigorous PA (MVPA) and acceleration vector magnitude PA (AMPA)	Physical activity	7187 inpatients and 2307 out patients (mean age: 68.8 ± 9.2 y)	Cross-sectional (Mendelian randomization study)/March 16- June 29,2020	Zhang et al. [36] (2020) UK	

Halabchi et al. proposed that hospitalization was 1.49 times less probable among athletes participating in regular sports [8]. Physical inactivity was proposed as a major risk factor for hospitalization due to COVID-19 in Sallis et al. and Lobelo et al. studies [7, 26]. Webber et al. did not show an association of between insufficient aerobic physical activity and COVID-19 hospitalization rate among military personnel [35].

Overall, most studies demonstrated the significant impact of physical activity in reducing hospitalization due to COVID-19. The results of a meta-analysis on seven studies evaluating the association of physical activity and COVID-19 hospitalization showed weighted OR= 0.541 (CI 95%: 0.49-0.6) with heterogeneity ($I^2 = 81.7\%$, P < 0.001) (Fig. 2).

Physical activity and COVID-19 related mortality

Eleven studies evaluated the association of physical activity with mortality in patients with COVID-19. Questionnaires [13, 16, 21, 24, 30, 33], exercise vital signs [7], website databank [17], Global Health Observatory Data Repository [29], and surveillance systems [31, 34] were applied to assess the physical activity status. Cho et al. proposed that the higher physical activity level was associated with lower mortality risk due to COVID-19 [16]. Physical inactivity and sedentary behaviour increased mortality risk in COVID-19 patients [7, 29, 33]. In Cunningham's study, country-level physical activity had a negative correlation with COVID-19 mortality [17] and in Pinto et al. study no associations were detected between workrelated physical activity, leisure-time physical activity, sport index, and total activity with mortality [30]. Leisuretime physical activity reduced COVID-19 mortality risk [31]. Ahmadi et al. and Lee et al. indicated decreased mortality among physically active individuals [13, 24]. Hamrouni et al. and Wang et al. demonstrated that low and insufficient physical activity increased COVID-19 mortality [21, 34]. Overall, most studies indicated that sufficient physical activity reduces COVID-19 mortality. The results of a meta-analysis on five studies assessing the association of physical activity and COVID-19 mortality showed a weighted OR of 0.61 (CI 95%: 0.50-0.75) with heterogeneity ($I^2 = 45.8\%$, P < 0.001) (Fig. 3).

PHYSICAL ACTIVITY AND COVID-19 RECOVERY, HOSPITAL STAY, AND SEVERITY

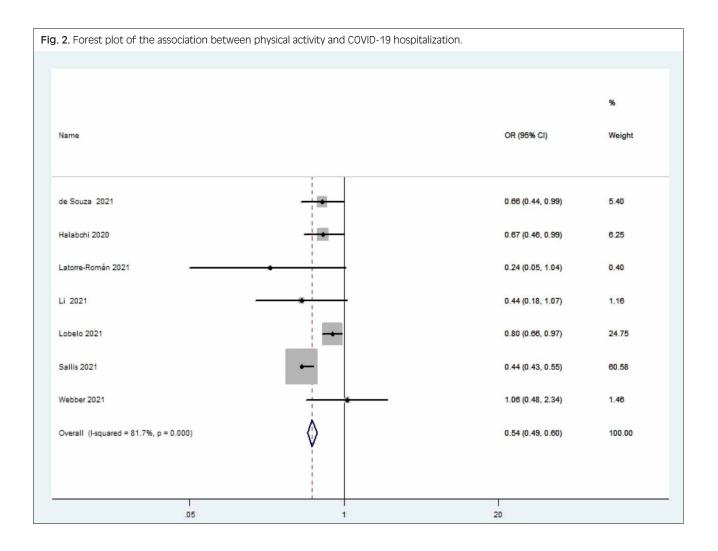
Seven studies evaluated the association of physical activity with COVID-19 recovery, hospital stay, and severity. Alataibi and Boukelia indicated that engaging in regular physical activity leads to 2.7 times faster recovery [14]. Huang et al. suggested that low physical activity increases the duration of hospital stay compared to high-intensity physical activity based on METs [22]. In another study by Pinto et al., no associations were detected between physical activity indexes with the duration of hospital stay, ICU admission, and the necessity of mechanical ventilation [30]. Li et al.

indicated that with each standard deviation increase in physical activity estimated genetically, a lower risk of severe respiratory manifestation in COVID-19 patients was detected [25]. Rowlands et al. proposed that no associations exist between total or moderate to high physical activity and COVID-19 infection with severe manifestation [32]. However, increased daytime physical activity reduced the risk [32]. Tavakol et al. suggested that moderate to vigorous physical activity decreases the probability of severe COVID-19 infection and similar findings was detected in Lee et al. study in individuals engaging in aerobics and strengthening exercises [9, 24].

.....

QUALITY ASSESSMENT

Results for the quality assessment of the studies applying Joanna Briggs Institute (JBI) critical appraisal checklist are illustrated in Supplementary Table II (The tools are illustrated in Supplementary Table I) [12].

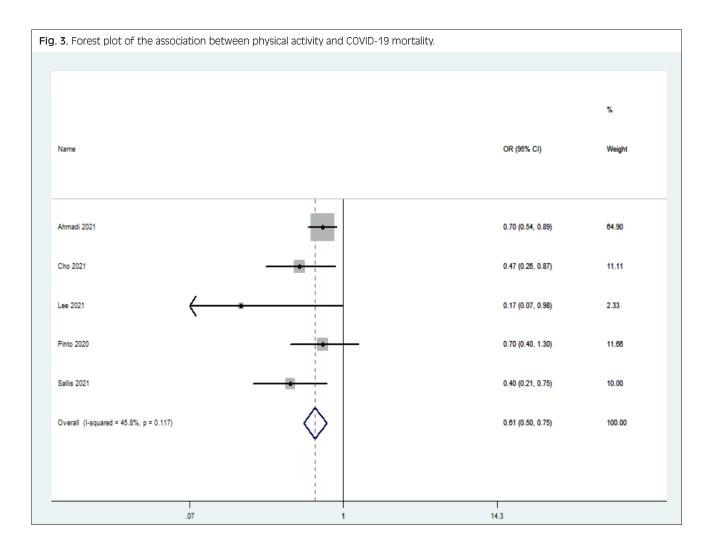

Results for quality assessment of the studies applying Joanna Briggs Institute (JBI) critical appraisal checklist for cross sectional studies in Q1 were no in Boukelia and Alataibi (2020), Cunningham (2021), Li et al. (2021), Okeahalam et al. (2020), Pitanga et al. (2021), and Wang et al. (2020) studies. The results of question 2 was no in Pitanga et al. (2021) and Latorre-Román et al. (2021) studies. The results of question 3 was no in Bielik et al. (2021), Latorre-Román et al. (2021), and Wang et al. (2020) studies and unclear in Okeahalam et al. (2020) and Pitanga et al. (2021) studies. The no answer for question 4 was in Okeahalam et al. (2020) and Pitanga et al. (2021) studies, for question 5 in Bielik et al. (2021) and for question 7 in Bielik et al. (2021), Boukelia and Alataibi (2020), Cunningham (2021), de Souza et al. (2021), Latorre-Román et al. (2021), and Sallis et al. (2021) studies. The answers to other questions were yes (Supplementary Table II).

In the cohort studied the negative answer in question 1 was in Hamer et al. (2020), and Lobelo et al. (2021) and Marcus et al. (2021) studies and in question 2 was in Pinto et al. (2020) and Lobelo et al. (2021) studies. Question 8 and 10 was unclear in all cohort studies. In case-control studies, results of question 8 was no in all studies and in question 9 unclear in all studies (Supplementary Table II).

Discussion

A high proportion of studies indicated that engaging in physical activity might reduce the risk of COVID-19 infection, hospitalization, and mortality due to COVID-19. The results of the meta-analysis regarding the association of physical activity and COVID-19 hospitalization and mortality showed statistically meaningful differences in favour of physically active patients.

In a systematic review by Song et al., the association between physical activity and influenza/pneumonia was evaluated [37]. The overall conclusion of the studies indicated that engaging in regular exercise might be a protective factor against influenza-related infection in


older populations [37]. Simultaneously, the benefits of engaging in Asian martial arts on the immunological state of the older individuals were suggested [37].

It has been proposed that engaging in regular exercise programs might be a protective factor against the risk of viral infection, duration, and clinical outcome of the viral diseases [38]. Higher level of habitual physical activity reduces the risk of community-acquired infectious disease by about 31% and reduces the risk of infectious disease mortality by about 37% [39].

Engaging in moderate- to vigorous-intensity exercise programs regularly improve the respiratory system's function and a 20-30 percent reduction in upper respiratory infections is detected [6]. In a study by Nienman et al., physical fitness level and number of aerobic exercise sessions during the week were inversely correlated to the duration and severity of upper respiratory tract infection [40]. Individuals exercising \geq 5 days/week indicated a 43% reduction in upper respiratory tract infection duration compared to sedentary individuals [40]. Individuals exercising ≥ 5 days/week indicated about a 43% reduction in duration of upper respiratory tract infection compared to sedentary individuals [40]. Physical fitness can also reduce COVID-19 related risk factors including hypertension, diabetes, cardiovascular diseases.[41].

Engaging in moderate intensity exercise regularly, balances immunity function in inflammatory related disease including type 2 diabetes, obesity, and cardiovascular diseases, and stabilizes hallmarks of immunosenescence [42]. Simultaneously, the positive effect of exercise on the function of different leukocyte subtypes and the arrangement of the T cell compartment havehas been shown leading to improved adaptive immunity [42]. Moderate intensity exercise shifts immunity responses towards a T-helper type 1 pattern and decreases the probability of infection [43]. In a study by Terra et al., 12 weeks of exercise in mice led to increased interferon-gamma (IFN- γ) and TNF- α levels and a reduction in IL-4 and IL-10 levels. Based on the results of the systematic review by Chastin et al., physical activity-increasing interventions increase CD4 cell counts and salivary immunoglobulin A concentration and reduce neutrophil counts [39].

Among individuals infected with COVID-19, the severe clinical presentation of the disease in some patients appears approximately 7 to 10 days after the onset. This delayed manifestation of COVID-19 is a consequence of the over-activity of the immune system "cytokine storm syndrome" aiming lungs [4]. The anti-inflammatory effect of exercise is a consequence of increased mediators including IL-1 receptor antagonist, IL-10, and IL-6 [44].

During exercise, skeletal muscles produce and release IL-6, which is one of the leading determinants of exercise's anti-inflammatory mechanism [45]. Another suggested anti-inflammatory effect of exercise is the reduction of Toll-like receptor 4 (TLR4) expression on the monocytes following aerobic training and resistance exercises specifically in individuals with diabetes and obesity [4]. One of the causes of COVID-19 related mortality

is coagulopathy. COVID-19 leads to a cascade of pro-inflammatory cytokines, which damages the hematological system. The cytokine storm leads to an increased risk of coagulation and endothelial dysfunction. This cascade results in the enhanced probability of thrombosis in veins and arteries. Physical inactivity is one of the leading risk factors of coagulopathy, which exacerbatesa leading risk factor of coagulopathy, exacerbating the COVID-19 patients' condition [46]. Considering the protective role of physical activity

against COVID-19, policymakers and governments should develop adapted action plans according to different countries' COVID-19 situation to increase physical activity during the COVID-19 pandemic [10]. Improved levels of physical activity could lead to lower COVID-19 hospitalization and the financial burden on the health system will be reduced.

LIMITATIONS

Studies evaluating the associations between physical activity and COVID-19 are limited and heterogeneous. Further high-quality studies in this domain is mandated to make more definite conclusions.

Conclusion

Engaging in regular physical activity may reduce the incidence of COVID-19 infection and severe outcomes including COVID-19 related hospitalization and death. Developing action plans to increase physical activity could be an appropriate preventive strategy.

Acknowledgments

We would like to thank the authors, whose studies helped us to conduct this systematic review and meta-analysis and also for their assistance to provide supplementary data if requested.

Informed consent statement

Not applicable

Conflict of interest statement

Authors state no conflict of interests.

Authors' contributions

FH: Conceptualization, methodology, investigation (quality assessment), revise the first draft, critical review of the final draft. BM: Design the study, investigation (data collection and extraction), critical review of the final draft. BT: Investigation (data collection and extraction), critical review of the final draft. MS: Writing original draft, Investigation (data collection and extraction), review & editing, critical review of the final draft. SSh: Formal analysis, critical review of the final draft.

References

- [1] Stockwell S, Trott M, Tully M, Shin J, Barnett Y, Butler L, Mc-Dermott D, Schuch F, Smith L. Changes in physical activity and sedentary behaviours from before to during the COVID-19 pandemic lockdown: a systematic review. BMJ Open Sport Exerc Med 2021;7:e000960. https://doi.org/10.1136/bmjsem-2020-000960
- [2] Mattioli AV, Ballerini Puviani M, Nasi M, Farinetti A. COV-ID-19 pandemic: the effects of quarantine on cardiovascular risk. Eur J Clin Nutr 2020;74:852-5. https://doi.org/10.1038/ s41430-020-0646-z.
- [3] Reiner M, Niermann C, Jekauc D, Woll A. Long-term health benefits of physical activity–a systematic review of longitudinal studies. BMC Public Health 2013;13:813. https://doi. org/10.1186/1471-2458-13-813
- [4] Zbinden-Foncea H, Francaux M, Deldicque L, Hawley JA. Does high cardiorespiratory fitness confer some protection against proinflammatory responses after infection by SARS-CoV-2? Obesity 2020;28:1378-81. https://doi.org/10.1002/oby.22849
- [5] da Silveira MP, da Silva Fagundes KK, Bizuti MR, Starck É, Rossi RC, de Resende E Silva DT. Physical exercise as a tool to help the immune system against COVID-19: an integrative review of the current literature. Clin Exp Med 2021;21:15-28. https://doi.org/10.1007/s10238-020-00650-3
- [6] Halabchi F, Ahmadinejad Z, Selk-Ghaffari M. COVID-19 epidemic: exercise or not to exercise; that is the question. Asian J Sports Med 2020;11:e102630.
- [7] Sallis R, Young DR, Tartof SY, Sallis JF, Sall J, Li Q, Smith GN, Cohen DA. Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: A study in 48 440 adult patients. Br J Sports Med 2021;55:1099-105. https://doi. org/10.1136/bjsports-2021-104080
- [8] Halabchi F, Mazaheri R, Sabeti K, Yunesian M, Alizadeh Z, Ahmadinejad Z, Aghili SM, Tavakol Z. Regular Sports Participation as a Potential Predictor of Better Clinical Outcome in Adult Patients With COVID-19: A Large Cross-Sectional Study. J Phys Act Health 2020;18:8-12. https://doi.org/10.1123/jpah.2020-0392
- [9] Tavakol Z, Ghannadi S, Tabesh MR, Halabchi F, Noormohammadpour P, Akbarpour S, Alizadeh Z, Nezhad MH, Reyhan SK. Relationship between physical activity, healthy lifestyle and COV-ID-19 disease severity; a cross-sectional study.Z Gesundh Wiss 2023;31:267-75. https://doi.org/10.1007/s10389-020-01468-9..
- [10] Memari A-H, Selk-Ghaffari M, Khosravi A, Kordi R. Action plan to increase physical activity during COVID-19 pandemic. Sultan Qaboos Univ Med J 2021;21:514-6. https://doi. org/10.18295/squmj.4.2021.053.
- [11] Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-anal-

yses: the PRISMA statement. PLoS Med 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

- [12] Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R, Currie M, Lisy K, Qureshi R, Mattis P, Mu P. Chapter 7: Systematic reviews of etiology and risk. In: Aromataris E, Munn Z, eds. JBI Manual for Evidence Synthesis. JBI 2020. Available from https://synthesismanual.jbi.global. https://doi. org/10.46658/JBIMES-20-08
- [13] Ahmadi MN, Huang BH, Inan-Eroglu E, Hamer M, Stamatakis E. Lifestyle risk factors and infectious disease mortality, including COVID-19, among middle aged and older adults: Evidence from a community-based cohort study in the United Kingdom. Brain Behav Immun 2021;96:18-27. https://doi.org/10.1016/j. bbi.2021.04.022
- [14] Boukelia B, Alataibi AS. The effect of BMI and physical activity levels on the duration of symptomatic days with COVID-19 infection. medRxiv 2020.08.21.20179499. https://doi.org/https://doi.org/10.1101/2020.08.21.20179499
- [15] Bielik V, Grendar M, Kolisek M. A Possible Preventive Role of Physically Active Lifestyle during the SARS-CoV-2 Pandemic; Might Regular Cold-Water Swimming and Exercise Reduce the Symptom Severity of COVID-19? Int J Environ Res Public Health 2021;18:7158. https://doi.org/10.3390/ijerph18137158
- [16] Cho D-H, Lee SJ, Jae SY, Kim WJ, Ha SJ, Gwon JG, Choi J, Kim DW, Kim JY. Physical Activity and the Risk of COVID-19 Infection and Mortality: A Nationwide Population-Based Case-Control Study. J Clin Med 2021;10:1539. https://doi. org/10.3390/jcm10071539
- [17] Cunningham GB. Physical activity and its relationship with COVID-19 cases and deaths: Analysis of US counties. J Sport Health Sci 2021;10:570-6. https://doi.org/10.1016/j. jshs.2021.03.008
- [18] de Souza FR, Motta-Santos D, dos Santos Soares D, de Lima JB, Cardozo GG, Guimarães LSP, Negrão CE, Dos Santos MR. Association of physical activity levels and the prevalence of COVID-19-associated hospitalization. J Sci Med Sport 2021;24:913-8. https://doi.org/10.1016/j.jsams.2021.05.011
- [19] Gao C, Zhao Z, Li F, Liu JL, Xu H, Zeng Y, Ling Y, Chen J, Lu X, Wang C, Guo Qet al. The impact of individual lifestyle and status on the acquisition of COVID-19: A case-Control study. PloS one 2020;15:e0241540. https://doi.org/10.1371/journal. pone.0241540
- [20] Hamer M, Kivimäki M, Gale CR, Batty GD. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain Behav Immun 2020;87:184-7. https://doi.org/10.1016/j. bbi.2020.05.059
- [21] Hamrouni M, Roberts MJ, Thackray A, Stensel DJ, Bishop N. Associations of obesity, physical activity level, inflammation and cardiometabolic health with COVID-19 mortality: a prospective analysis of the UK Biobank cohort. BMJ Open 2021;11:e055003. https://doi.org/10.1136/bmjopen-2021-055003
- [22] Huang B, Zhang S, Gong J, Niu Y, Zhang F, Jiang L, Wang M, Cui J, Li W, Jin C, Bao P. Impact of physical activity and lifestyle in pre-infection on the susceptibility and prognosis of infects with COVID-19. Research Square [Preprint] 23 Jul, 2020 [cited 2021 Dec 19]. https://doi.org/10.21203/rs.3.rs-46730/v1
- [23] Latorre-Román PÁ, Guzmán-Guzmán IP, Delgado-Floody P, Herrador Sanchez J, Aragón-Vela J, García Pinillos F, Párraga Montilla JA. Protective role of physical activity patterns prior to COVID-19 confinement with the severity/duration of respiratory pathologies consistent with COVID-19 symptoms in Spanish populations. Res Sports Med 2023;31:74-85. https://doi.org /10.1080/15438627.2021.1937166
- [24] Lee SW, Lee J, Moon SY, Jin HY, Yang JM, Ogino S, Song M, Hong SH, Abou Ghayda R, Kronbichler A, Koyanagi A. Physical activity and the risk of SARS-CoV-2 infection, severe COV-ID-19 illness and COVID-19 related mortality in South Korea:

a nationwide cohort study. Br J Sports Med 2022;56:901-12. https://doi.org/10.1136/bjsports-2021-104203

- [25] Li S, Hua X. Modifiable lifestyle factors and severe COVID-19 risk: a Mendelian randomisation study. BMC Med Genomics 2021;14:38. https://doi.org/10.1186/s12920-021-00887-1
- [26] Lobelo F, Bienvenida A, Leung S, Mbanya A, Leslie E, Koplan K, Shin SR. Clinical, behavioural and social factors associated with racial disparities in COVID-19 patients from an integrated healthcare system in Georgia: a retrospective cohort study. BMJ Open 2021;11:e044052. https://doi.org/10.1136/bmjopen-2020-044052
- [27] Marcus GM, Olgin JE, Peyser ND, Vittinghoff E, Yang V, Joyce S, Avram R, Tison GH, Wen D, Butcher X, Eitel H. Predictors of incident viral symptoms ascertained in the era of COVID-19. PloS One 2021;16:e0253120. https://doi.org/10.1371/journal. pone.0253120
- [28] Nguyen MH, Pham TTM, Vu DN, Do BN, Nguyen HC, Duong TH, Pham KM, Pham LV, Nguyen TT, Tran CQ, Nguyen QH. Single and Combinative Impacts of Healthy Eating Behavior and Physical Activity on COVID-19-like Symptoms among Outpatients: A Multi-Hospital and Health Center Survey. Nutrients 2021;13:3258. https://doi.org/10.3390/nu13093258
- [29] Okeahalam C, Williams V, Otwombe K. Factors associated with COVID-19 infections and mortality in Africa: a cross-sectional study using publicly available data. BMJ Open 2020;10:e042750. https://doi.org/10.1136/bmjopen-2020-042750
- [30] Pinto AJ, Goessler KF, Fernandes AL, Murai IH, Sales LP, Reis BZ, Santos MD, Roschel H, Pereira RM, Gualano B. No associations between physical activity and clinical outcomes among hospitalized patients with severe COVID-19. medRxiv [Preprint]. November 30, 2020. [cited 2021 Dec 19]. https://doi. org/10.1101/2020.11.25.20237925
- [31] Pitanga FJG, Beck CC, Pitanga CPS, Pinho CS, Cortez ACL, Guedes DP, Matsudo, V K R. Association between leisure time physical activity and mortality by C0VID-19 in the Brazilian capitals: an ecological analysis. SCIELO.1912 [Preprint].1 March, 2021 [cited 2021 Dec 19]. https://doi.org/10.1590/Sci-ELOPreprints.1912
- [32] Rowlands AV, Kloecker DE, Chudasama Y, Davies MJ, Dawkins NP, Edwardson CL, Gillies C, Khunti K, Razieh C, Islam N, Zaccardi F. Association of timing and balance of physical activity and rest/sleep with risk of COVID-19: a UK Biobank Study. Mayo Clin Proc 2021;26:156-64. https://doi.org/10.1016/j.mayocp.2020.10.032
- [33] Salgado-Aranda R, Pérez-Castellano N, Núñez-Gil I, Orozco AJ, Torres-Esquivel N, Flores-Soler J, Chamaisse-Akari A, McInerney A, Vergara-Uzcategui C, Wang L, González-Ferrer JJ, Filgueiras-Rama D, Cañadas-Godoy V, Macaya-Miguel C, Pérez-Villacastín J Salgado-Aranda R, Perez-Castellano N, Nunez-Gil I, Orozco AJ, Torres-Esquivel N, Flores-Soler J, et al. Influence of Baseline Physical Activity as a Modifying Factor on COVID-19 Mortality: A Single-Center, Retrospective Study. Infect Dis Ther 2021;10:801-14. https://doi.org/10.1007/s40121-021-00418-6

[34] Wang J, Sato T, Sakuraba A. Worldwide association of lifestylerelated factors and COVID-19 mortality. Ann Med 2021;53:1528-33. https://doi.org/10.1080/07853890.2021.1968029

- [35] Webber BJ, Lang MA, Stuever DM, Escobar JD, Bylsma VFH, Wolff GG. Health-Related Behaviors and Odds of COVID-19 Hospitalization in a Military Population. Prev Chronic Dis 2021;18:E96. https://doi.org/10.5888/pcd18.210222
- [36] Zhang XM, Li X, Sun ZW, He YZ, Xu W, Campbell H, Dunlop MG, Timofeeva M, Theodoratou E. Physical activity and COVID-19: an observational and Mendelian randomisation study. J Glob Health 2020;10:020514. https://doi.org/10.1016/j. dsx.2020.04.03810.7189/jogh.10.020514
- [37] Song Y, Ren F, Sun D, Wang M, Baker JS, István B, Gu Y. Benefits of exercise on influenza or pneumonia in older adults: a systematic review. Int J Environ Res Public Health 2020;17:2655. https://doi.org/10.3390/ijerph17082655
- [38] Laddu DR, Lavie CJ, Phillips SA, Arena R. Physical activity for immunity protection: Inoculating populations with healthy living medicine in preparation for the next pandemic. Prog Cardiovasc Dis 2021;64:102-4. https://doi.org/10.1016/j. pcad.2020.04.006.
- [39] Chastin SFM, Abaraogu U, Bourgois JG, et alDall PM, Darnborough J, Duncan E, Dumottier J, Pavón DJ, McParland J, Roberts NJ, Hamer M. Effects of regular physical activity on the immune system, vaccination and risk of community-acquired infectious disease in the general population: systematic review and meta-analysis. Sports Med 2021;51:1673-86. https://doi. org/10.1007/s40279-021-01466-1
- [40] Nieman DC, Henson DA, Austin MD, Sha Wet al. Upper respiratory tract infection is reduced in physically fit and active adults. Br J Sports Med 2011;45:987-92. https://doi.org/10.1136/ bjsm.2010.077875
- [41] Mohamed AA, Alawna M. Role of increasing the aerobic capacity on improving the function of immune and respiratory systems in patients with coronavirus (COVID-19): A review. Diabetes Metab Syndr 2020;14:489-96. https://doi.org/10.1016/j. dsx.2020.04.038
- [42] Alack K, Pilat C, Krüger K. Current knowledge and new challenges in exercise immunology. Dtsch Z Sportmed 2019;70:250-60.
- [43] Terra R, Alves P, da Silva SG, Salerno V, Dutra P. Exercise improves the Th1 response by modulating cytokine and NO production in BALB/c mice. Int J Sports Med 2013;34:661-6.
- [44] Lancaster GI, Febbraio MA. The immunomodulating role of exercise in metabolic disease. Trends Immunol 2014;35:262-9.
- [45] Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 2008;88:1379-406.
- [46] Zadow EK, Wundersitz DWT, Hughes DL, Adams MJ, Kingsley MIC, Blacklock HA, et alWu SSX, Benson AC, Dutheil F, Gordon BA. Coronavirus (COVID-19), Coagulation, and Exercise: Interactions That May Influence Health Outcomes. Semin Thromb Hemos 2020;46:807-14.

Received on June 8, 2022. Accepted on May 5, 2023.

Correspondence: Maryam Selk- Ghaffari, Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR Iran, No 7, Al-e Ahmad St., Tehran, Iran. Tel: +98(21) 88630227-8 - Fax: +98(21) 88003539 - E-mail address: selk1360@gmail. com

How to cite this article: Halabchi F, Mahdaviani B, Tazesh B, Shab-Bidar S, Selk-Ghaffari M. Association between physical activity and risk of COVID-19 infection or clinical outcomes of the patients with COVID-19: A systematic review and meta-analysis. J Prev Med Hyg 2023;64:E123-E136. https://doi.org/10.15167/2421-4248/jpmh2023.64.2.2625

© Copyright by Pacini Editore Srl, Pisa, Italy

This is an open access article distributed in accordance with the CC-BY-NC-ND (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International) license. The article can be used by giving appropriate credit and mentioning the license, but only for non-commercial purposes and only in the original version. For further information: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

E134

Supplementary Tables

.....

Supplementary Table I. Joanna Briggs Institute (JBI) critical appraisal checklist for cross sectional, cohort, and case control studies.

Joanna Briggs Institute (JBI) critical appraisal checklist for cross sectional studies	Yes	No	Unclear	Not applicable
1. Were the criteria for inclusion in the sample clearly defined?				
2. Were the study subjects and the setting described in detail?				
3. Was the exposure measured in a valid and reliable way?			0	
4. Were objective, standard criteria used for measurement of the condition?				
5. Were confounding factors identified?			0	
6. Were strategies to deal with confounding factors stated?				
7. Were the outcomes measured in a valid and reliable way?			0	
8. Was appropriate statistical analysis used?	0			
Joanna Briggs Institute (JBI) critical appraisal checklist for cohort studies	Yes	No	Unclear	Not applicable
1. Were the two groups similar and recruited from the same population?			0	
2. Were the exposures measured similarly to assign people to both exposed and unexposed groups?		o		
3. Was the exposure measured in a valid and reliable way?	0		0	
4. Were confounding factors identified?			0	
5. Were strategies to deal with confounding factors stated?				
6. Were the groups/participants free of the outcome at the start of the study (or at the moment of exposure)?	0	0		
7. Were the outcomes measured in a valid and reliable way?	0		0	0
8. Was the follow up time reported and sufficient to be long enough for outcomes to occur?			0	
9. Was follow up complete, and if not, were the reasons to loss to follow up described and explored?		0		0
10. Were strategies to address incomplete follow up utilized?				0
11. Was appropriate statistical analysis used?			0	0
Joanna Briggs Institute (JBI) critical appraisal checklist for case control studies	Yes	No	Unclear	Not applicable
1. Were the groups comparable other than the presence of disease in cases or the absence of disease in controls?		0		
2. Were cases and controls matched appropriately?		0		0
3. Were the same criteria used for identification of cases and controls?	0			
4. Was exposure measured in a standard, valid and reliable way?	0	0		0
5. Was exposure measured in the same way for cases and controls?	0	0		0
6. Were confounding factors identified?	0			
7. Were strategies to deal with confounding factors stated?		0		
8. Were outcomes assessed in a standard, valid and reliable way for cases and controls?	0	0		
9. Was the exposure period of interest long enough to be meaningful?	0			
10. Was appropriate statistical analysis used?		Ω	Ω	

Supplementary Table II. Results of quality assessment of the studies via Joanna Briggs Institute (JBI) critical appraisal checklist for cross sectional, cohort, case control, and case series studies.

.....

Cross sectional studies	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8			
Bielik et al. (2021)	Yes	Yes	No	Yes	No	Yes	No	Yes			
Boukelia & Alataibi (2020)	No	Yes	Yes	Yes	Yes	Yes	No	Yes			
Cunningham (2021)	No	Yes	Yes	Yes	Yes	Yes	No	Yes			
de Souza et al. (2021)	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes			
Halabchi et al. (2020)	Yes										
Latorre-Román et al. (2021)	Yes	No	No	Yes	Yes	Yes	No	Yes			
Lee et al.(2021)	Yes										
Li et al. (2021)	No	Yes									
Nguyen et al. (2021)	Yes										
Okeahalam et al. (2020)	No	Yes	U	No	Yes	Yes	Yes	Yes			
Pitanga et al. (2021)	No	No	U	No	Yes	Yes	Yes	Yes			
Rowlands et al. (2020)	Yes										
Sallis et al. (2021)	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes			
Tavakol et al. (2020)	Yes										
Wang et al. (2020)	No	Yes	No	Yes	Yes	Yes	Yes	yes			
Zhang et al. (2020)	Yes										
Cohort studies	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11
Ahmadi et al. (2021)	Yes	U*	Yes	U	Yes						
Hamer et al. (2020)	No	Yes	Yes	Yes	Yes	Yes	Yes	U	Yes	U	Yes
Hamrouni et al. (2021)	Yes	U	Yes	U	Yes						
Huang et al. (2020)	Yes	U	Yes	U	Yes						
Lobelo et al. (2021)	No	No	Yes	Yes	Yes	Yes	Yes	U	Yes	U	Yes
Marcus et al. (2021)	No	Yes	Yes	Yes	Yes	Yes	Yes	U	Yes	U	Yes
Pinto et al. (2020)	Yes	No	Yes	Yes	Yes	Yes	Yes	U	Yes	U	Yes
Salgado-Aranda et al. (2021)	Yes	U	Yes	U	Yes						
Case control studies	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	
Cho et al. (2021)	Yes	No	U	Yes							
Gao et al. (2020)	Yes	No	U	Yes							
Webber et al. (2021)	Yes	No	U	Yes							

* U: unclear.