
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

August 2023

ASSESSING RISK INTRODUCED THROUGH A CODE CHANGE ASSESSING RISK INTRODUCED THROUGH A CODE CHANGE

Dhruv H Raithatha

Girish Sivasubramanian

John A Foley

Chandra Mohan Babu Nadiminti

Randy Birdsall

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
H Raithatha, Dhruv; Sivasubramanian, Girish; A Foley, John; Nadiminti, Chandra Mohan Babu; and Birdsall,
Randy, "ASSESSING RISK INTRODUCED THROUGH A CODE CHANGE", Technical Disclosure Commons,
(August 08, 2023)
https://www.tdcommons.org/dpubs_series/6126

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F6126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/6126?utm_source=www.tdcommons.org%2Fdpubs_series%2F6126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 6941

ASSESSING RISK INTRODUCED THROUGH A CODE CHANGE

AUTHORS:
Dhruv H Raithatha

Girish Sivasubramanian
John A Foley

Chandra Mohan Babu Nadiminti
Randy Birdsall

ABSTRACT

Techniques are presented herein that shift the risk assessment focus during a

software development process, away from the traditional end-of-process review (when a

new feature is delivered, or an application is deployed) to earlier in the process when

developers are actively at work. Such an approach allows a developer to assess the risk that

a candidate software change is about to introduce prior to the developer committing that

change, providing the developer with time (during the early portion of the process) to

revisit the software and eliminate the identified risk. Aspects of the presented techniques

leverage elements of a continuous integration (CI) and continuous deployment (CD)

facility, the results that are available from existing unit and end-to-end tests, and the

collection and analysis of OpenTelemetry (OTEL)-based metrics, events, logs, and traces

(MELT) data to deliver security insights.

DETAILED DESCRIPTION

Traditional security monitoring tools, in the form of software bill of material

(SBOM) analysis tools or data protection tools, typically encompass insights that are

gathered at the cusp of delivering a new feature or deploying an application. While such

an approach allows developers and security auditors to identify issues when they are critical,

at that late stage of the process the developers themselves are not immediately available as

they have typically moved on to other development activities.

Techniques are presented herein that address this situation by shifting a risk

assessment focus ‘all the way left,’ that is to earlier in the process when developers are

actively at work. Such an approach allows a developer to assess the risk that a candidate

software change is about to introduce prior to the developer committing that change,

2

H Raithatha et al.: ASSESSING RISK INTRODUCED THROUGH A CODE CHANGE

Published by Technical Disclosure Commons, 2023

 2 6941

providing the developer with time (during the early portion of the process) to revisit the

software and eliminate the identified risk.

The presented techniques leverage elements of the modern software development

and operations (DevOps)-powered environment, where applications and products are built

on the shoulders of comprehensive test coverage across all of the application's code. Such

code coverage (through unit tests and end-to-end tests) ensures that changes that are made

by a developer do not cause functional or performance regressions or any other operational

impacts. Currently, such end-to-end tests are used to obtain functional coverage over new

code, typically across every new commit that is submitted. The presented techniques

enhance the value that is derived from such coverage by collecting and deriving security

insights from published metrics, events, logs, and traces (MELT) data that may be available

from the various pieces of the end-to-end tests.

Aspects of the presented techniques support the collection of OpenTelemetry

(OTEL)-based data regarding the libraries that are used by an application, a base docker

image that is used by a service, third party application programming interfaces (APIs) that

are referenced by a service, application logs, container logs, and data flows between

services. The collected data may then be correlated with the latest available vulnerability

reports, sensitive data policies, information on potential misconfigurations, and reports on

vulnerable third-party APIs to establish a potential risk to a service or an application, both

without and then with a candidate change. Importantly, all of the above-described activities

may occur at a pre-commit stage, before a developer commits a candidate change.

The above-described correlation of data (including metrics, logs, traces, and spans

of a service consumed) in an OTEL format, when tied to the latest threat intelligence about

third-party and operating system (OS) vulnerabilities along with data sensitivity policies,

provides for a real-time indication of a risk that may be introduced by a candidate change,

thus allowing such a risk to be proactively mitigated.

As described above, the presented techniques support the collection of a range of

data (such as events, metrics, logs, etc.). Illustrative examples of several of those data types

are presented below.

3

Defensive Publications Series, Art. 6126 [2023]

https://www.tdcommons.org/dpubs_series/6126

 3 6941

Regarding events, by examining the packages that are being used, such data allows

for the identification of an existing or newly detected vulnerability that may be introduced

through a commit operation. An example of such data may comprise:

Resource attributes:

 -> container.id:

Str(5d15e91c2e65d775c56c197da98c6cdab9168a647242cbd1a62dfc7c91d61319)

 -> container.runtime: Str(containerd)

 -> host.name: Str(ip-10-0-0-160.us-west-2.compute.internal)

 -> container.short_id: Str(5d15e91c2e65)

 -> container.created_at: Int(1681345980000)

 -> container.name: Str(featureflagservice)

 -> k8s.pod.name: Str(demo-featureflagservice-7d7b87b59d-rgm75)

 -> k8s.namespace.name: Str(otel-demo)

 -> container.image.name: Str(ghcr.io/open-telemetry/demo:1.3.0-featureflagservice)

 -> container.memory_limit: Int(183500800)

 -> telemetry.sdk.name: Str(infra-agent)

ScopeEvents #0

ScopeEvents SchemaURL:

InstrumentationScope

Event #0

 packages:[github.com/EscherAuth/escher v0.0.0-20200415232717-f57476610940,

github.com/cloudevents/sdk-go/v2 v2.14.0, github.com/gammazero/workerpool v1.1.3, github.com/go-

playground/validator/v10 v10.14.1]

Attributes:

 -> event.name: libraries

 -> event.description: security

...

Regarding traces, such data can aid in detecting if a service is, as part of a candidate

change, about to become Internet-facing, communicate with any third-party APIs that are

potentially risky, or have new or existing access to a data store. An example of such data

may comprise:

4

H Raithatha et al.: ASSESSING RISK INTRODUCED THROUGH A CODE CHANGE

Published by Technical Disclosure Commons, 2023

 4 6941

Resource attributes:

 -> container.id:

Str(5d15e91c2e65d775c56c197da98c6cdab9168a647242cbd1a62dfc7c91d61319)

 -> container.runtime: Str(containerd)

 -> host.name: Str(ip-10-0-0-160.us-west-2.compute.internal)

 -> container.short_id: Str(5d15e91c2e65)

 -> container.created_at: Int(1681345980000)

 -> container.name: Str(featureflagservice)

 -> k8s.pod.name: Str(demo-featureflagservice-7d7b87b59d-rgm75)

 -> k8s.namespace.name: Str(otel-demo)

 -> container.image.name: Str(ghcr.io/open-telemetry/demo:1.3.0-featureflagservice)

 -> container.memory_limit: Int(183500800)

 -> telemetry.sdk.name: Str(infra-agent)

Span #0

 Trace ID : 7f891af08cc2702ce78ace295ed07c6b

 Parent ID : 9583938e1df414e8

 ID : e8124f459a5a5814

 Name : POST /getquote

 Kind : Serve

 Start time : 2023-04-18 02:02:47.724021454 +0000 UTC

 End time : 2023-04-18 02:02:47.724588282 +0000 UTC

 Status code : Unset

 Status message :

Attributes:

 -> code.function: Str(handle)

 -> code.namespace: Str(Slim\App)

 -> code.filepath: Str(/var/www/vendor/slim/slim/Slim/App.go)

 -> code.lineno: Int(213)

 -> http.url: Str(http://stock-service/getquote)

 -> http.method: Str(POST)

 -> http.request_content_length: Str(19)

 -> http.scheme: Str(http)

 -> http.status_code: Int(200)

 -> http.flavor: Str(1.1)

 -> http.response_content_length: Str()

Span #1

Trace ID : 7f891af08cc2702ce78ace295ed07c6b

5

Defensive Publications Series, Art. 6126 [2023]

https://www.tdcommons.org/dpubs_series/6126

 5 6941

Parent ID :

ID : ce1d326d1d8a112a

Name : HTTP POST

Kind : Client

Start time : 2023-04-18 02:02:43.783612188 +0000 UTC

End time : 2023-04-18 02:02:43.805723017 +0000 UTC

Status code : Unset

Status message :

Attributes:

-> http.method: Str(POST)

-> http.url: Str(http://yahoo-finance/api/cart)

-> http.status_code: Int(200)

Span #2

Trace ID : 2fad14a7ab95d7d560d93d7a6815c979

Parent ID :

ID : b47238e0a74a3c44

Name : DB GET

Kind : Client

Start time : 2023-04-18 02:02:43.805955509 +0000 UTC

End time : 2023-04-18 02:02:43.816366651 +0000 UTC

Status code : Unset

Status message :

Attributes:

-> http.method: Str(GET)

-> http.url: Str(postgresql://127.0.0.1:5432)

...

Regarding metrics, such data about a resource’s usage may be tied to the cost that

is associated with hosting a service. An example of such data may comprise:

Resource attributes:

 -> container.id:

Str(5d15e91c2e65d775c56c197da98c6cdab9168a647242cbd1a62dfc7c91d61319)

 -> container.runtime: Str(containerd)

 -> host.name: Str(ip-10-0-0-160.us-west-2.compute.internal)

 -> container.short_id: Str(5d15e91c2e65)

 -> container.created_at: Int(1681345980000)

6

H Raithatha et al.: ASSESSING RISK INTRODUCED THROUGH A CODE CHANGE

Published by Technical Disclosure Commons, 2023

 6 6941

 -> container.name: Str(featureflagservice)

 -> k8s.pod.name: Str(demo-featureflagservice-7d7b87b59d-rgm75)

 -> k8s.namespace.name: Str(otel-demo)

 -> container.image.name: Str(ghcr.io/open-telemetry/demo:1.3.0-featureflagservice)

 -> container.memory_limit: Int(183500800)

 -> telemetry.sdk.name: Str(infra-agent)

ScopeMetrics #0

ScopeMetrics SchemaURL:

InstrumentationScope

Metric #0

Descriptor:

 -> Name: container.memory.limit

 -> Description:

 -> Unit:

 -> DataType: Summary

SummaryDataPoints #0

StartTimestamp: 2023-04-18 02:03:01 +0000 UTC

Timestamp: 2023-04-18 02:03:20 +0000 UTC

Count: 1

Sum: 183500800.000000

QuantileValue #0: Quantile 0.000000, Value 183500800.000000

QuantileValue #1: Quantile 1.000000, Value 183500800.000000

...

Figure 1, below, presents elements of an exemplary process flow that is possible

according to the techniques presented herein and that is reflective of the above discussion.

7

Defensive Publications Series, Art. 6126 [2023]

https://www.tdcommons.org/dpubs_series/6126

 7 6941

LOAD
SIMULATOR

TEST
RESULTS

OTEL
INSTRUMENTED

SERVICES

DATABASE

API

CI/CD

OTEL COLLECTOR

EVENTS TRACES

METRICS LOGS

2. CI run starts testing
newly deployed
applications

3. Services start talking
to database

4. Services talk to other
non‐internal APIs

A. Services emit
OTEL data

5. Functional tests
pass(?)

6. Additional risk
threshold passed(?)

Detect Risk about to be introduced by a change
1. Detect any newly introduced publicly facing endpoints
2. Detect any newly added vulnerabilities through packets
3. Identify any new database connections
4. Discover any new APIs that the services now talk to and their reputation

B. Processing of
OTEL data from CI

run

Figure 1: Exemplary Process Flow

As shown in Figure 1, above, the presented techniques encompass, among other

things, a continuous integration (CI) and continuous deployment (CD) facility and an

OTEL Collector (supporting, as described previously, MELT data). Further, the figure

depicts various of the steps that the presented techniques may follow to achieve the above-

described functionality.

During a first step (1), a developer submits to a CI/CD facility a change to a code

branch on which they have been working. Under a second step (2), a load simulator within

the CI/CD facility begins a CI run to test the application within which the code branch

resides (since that application will, if the code change is accepted, be updated).

At a third step (3), services (that have been OTEL-instrumented) that are invoked

by the application begin communicating with a database and at a fourth step (4) begin

communicating with other non-internal (i.e., external) APIs. During those steps, the

different services may emit OTEL data (to the OTEL Collector) regarding metrics, events,

logs, and traces (i.e., MELT data).

During a fifth step (5), the load simulator issues an indication whether the instant

functional tests passed and generates a test results artifact.

8

H Raithatha et al.: ASSESSING RISK INTRODUCED THROUGH A CODE CHANGE

Published by Technical Disclosure Commons, 2023

 8 6941

Under a sixth step (6), the OTEL data from the CI run (as described above for the

third step) is processed and an indication is issued whether the additional risk threshold

assessment was passed. That assessment may encompass, among other things, a detection

of any newly introduced publicly facing endpoints, a detection of any newly added

vulnerabilities through packages, an identification of any new database connections, a

discovery of any new APIs that the services now communicate with and an assessment of

their reputation, etc. At the end of such a process the test results artifact may be updated.

In summary, techniques have been presented herein that shift the risk assessment

focus during a software development process, away from the traditional end-of-process

review (when a new feature is delivered, or an application is deployed) to earlier in the

process when developers are actively at work. Such an approach allows a developer to

assess the risk that a candidate software change is about to introduce prior to the developer

committing that change, providing the developer with time (during the early portion of the

process) to revisit the software and eliminate the identified risk. Aspects of the presented

techniques leverage elements of a CI and CD facility, the results that are available from

existing unit and end-to-end tests, and the collection and analysis of OTEL-based MELT

data to deliver security insights.

9

Defensive Publications Series, Art. 6126 [2023]

https://www.tdcommons.org/dpubs_series/6126

	ASSESSING RISK INTRODUCED THROUGH A CODE CHANGE
	Recommended Citation

	Microsoft Word - Publication Document for CIPOL CP1041766USDPUB1 (Draft V2) - to upload 4886-1349-2853 v.1.docx

