
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

July 2023

Application Testing Under Developer Specified Device Resource Application Testing Under Developer Specified Device Resource

Occupancy Occupancy

Tracy Wang

Wendy Dai

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Wang, Tracy and Dai, Wendy, "Application Testing Under Developer Specified Device Resource
Occupancy", Technical Disclosure Commons, (July 18, 2023)
https://www.tdcommons.org/dpubs_series/6065

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F6065&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/6065?utm_source=www.tdcommons.org%2Fdpubs_series%2F6065&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Application Testing Under Developer Specified Device Resource Occupancy

ABSTRACT

During normal usage, consumer devices may remain switched on without a shutdown and

restart for long durations of time. A lengthy period of time since the last restart can lead to high

usage of device resources such as CPU, memory, storage, etc. Program performance issues as

well as errors caused by these are hard to detect using clean functional test environments. This

disclosure describes techniques to emulate end-user scenarios as lengthy times since last restart

and high resource utilization by providing the developer with the ability to easily configure the

usage of the CPU, memory, and storage of a device-under-test (DUT) via a device resources

management tool. The device resources management tool is implemented such that it can invoke

low level operating system APIs to occupy a specified percentage of resources such as CPU,

memory, storage, etc. The extent to which each device resource is occupied can be set in an

independent or combined manner. The device resources management tool enables developers to

emulate various real world resource utilization scenarios and can help identify bugs that are

otherwise rare and/or difficult to reproduce.

KEYWORDS

● Device under test (DUT)

● Resource utilization

● Resource usage

● Resource occupancy

● Application testing

● Functional testing

● Device restart

2

Wang and Dai: Application Testing Under Developer Specified Device Resource Occ

Published by Technical Disclosure Commons, 2023

BACKGROUND

During normal usage, consumer devices such as smartphones, tablets, smart watches,

laptops, etc. may remain switched on without a shutdown and restart for long durations of time.

A lengthy period of time since the last restart can lead to high usage of device resources such as

CPU, memory, storage, etc. Program performance issues as well as errors may also be caused by

this. However, functional test environments in the factory or hardware/software development

laboratory are generally clean, e.g., devices under test (DUT) are flashed, factory-reset, or set up

from scratch. While clean device resets are intended to ensure isolated test environments, e.g., no

interference from previous test runs, bugs that surface at times of high resource usage and/or

upon substantial duration of time since last restart are difficult to detect.

Applications that can monitor and display the usage of device resources are available.

However, these apps do not occupy resources to simulate end-user scenarios for application

testing. Longevity testing can validate product stability and serviceability over long periods

under load and stress conditions that emulate real time traffic and applications. Bugs that arise

from lengthy times since restart or from high resource usage can be detected by longevity testing.

However, by definition, longevity tests take long hours to run and to learn the results. Longevity

tests are also expensive due to needing support of test infrastructure, monitoring effort, and

additional code to simulate data traffic.

DESCRIPTION

This disclosure describes techniques to emulate such end-user scenarios as lengthy times

since last restart and high resource usage by providing developers with the ability to easily

configure the usage of the CPU, memory, and storage of the device under test (DUT). A device

resources management tool, e.g., in the form of a lightweight archive file such as application

3

Defensive Publications Series, Art. 6065 [2023]

https://www.tdcommons.org/dpubs_series/6065

package file (a file that includes all the data an app needs, including code, assets, and resources)

invokes low level operating system application programming interfaces (APIs) to occupy a

specified percentage of CPU, memory, storage, etc. The extent to which each device resource is

occupied can be set independently and on a per-request basis. The device resources management

tool serves as a device resources management tool that can also reset CPU, memory, and storage

resources separately.

The device resources management tool runs on the device under test (DUT). It can use

standard programming libraries (supported by the device operating system) and can override

dynamic memory allocation during runtime. The device resources management tool can be

exposed to the user via a command line interface (CLI) that enables the developer to

communicate with the device. The device resources management tool can be invoked from the

command line interface for manual testing/checking. Alternatively, commands to the device

resources management tool can be incorporated into testing code for automated testing and

development. During execution, the device resources management tool can monitor resource

usage and maintain it at or above the threshold level specified by the developer.

Command Arguments Description Range for the argument

occupy()

cpu_tasks Number of running
tasks to occupy CPU

Integer between 0-100

memory_size Occupied memory in
percentage

Number between 0-100

storage_size Occupied storage size
in percentage

Number between 0-100

reset()
cpu, memory,
storage, all (default)

Reset one or more
resources

String enum

Fig. 1: Example commands to occupy device resources at specified levels and to reset

resource occupancy

4

Wang and Dai: Application Testing Under Developer Specified Device Resource Occ

Published by Technical Disclosure Commons, 2023

Fig. 1 illustrates examples of syntax for commands to occupy device resources at

specified levels and to reset resource occupancy. Under the specifications of Fig. 1, a command

such as occupy –cpu_tasks 6 –memory_size 90 results in the CPU being occupied by

six tasks and the memory being occupied to the extent of 90%. Similarly, a command such as

reset all results in the device resource occupancy to be reset.

Fig. 2: Output of the device resources management tool can be integrated with the device

notification stream

 As illustrated in Fig. 2, output of the device resources management tool can be integrated

with notifications (202) generated by the device operating system. After a user sets the usage

levels and the tool starts occupying resources accordingly, a notification (204) is popped up,

which the user can tap to check the occupancy of the CPU, memory, or storage. The notification

can be updated periodically.

5

Defensive Publications Series, Art. 6065 [2023]

https://www.tdcommons.org/dpubs_series/6065

 The described device resources management tool enables developers to specify

parameters of resource usage for a device, thereby enabling easy emulation of end-user device

scenarios (of high resource utilization). The device resources management tool can enable

developers to improve productivity and reduce turnaround time in many ways. It can assist in

defect detection during the early development stage. It can significantly shorten the time for

troubleshooting and reproducing a bug that can take weeks or months of real-world scenario to

be detected. The described techniques are scalable and applicable to a wide range of consumer

devices such as smartphones, smartwatches, tablets, cameras, etc. and for any operating system.

CONCLUSION

This disclosure describes techniques to emulate end-user scenarios as lengthy times since

last restart and high resource utilization by providing the developer with the ability to easily

configure the usage of the CPU, memory, and storage of a device-under-test (DUT) via a device

resources management tool. The device resources management tool is implemented such that it

can invoke low level operating system APIs to occupy a specified percentage of resources such

as CPU, memory, storage, etc. The extent to which each device resource is occupied can be set in

an independent or combined manner. The device resources management tool enables developers

to emulate various real world resource utilization scenarios and can help identify bugs that are

otherwise rare and/or difficult to reproduce.

6

Wang and Dai: Application Testing Under Developer Specified Device Resource Occ

Published by Technical Disclosure Commons, 2023

REFERENCES

[1] “Device Info: System Info & CPU - Apps on Google Play” available online at

https://play.google.com/store/apps/details?id=com.hardwarecheck.sensorcheck accessed June 26,

2023.

[2] “Castro Premium - system info - Apps on Google Play” available online at

https://play.google.com/store/apps/details?id=com.itemstudio.castro.pro&hl=en&gl=US

accessed June 26, 2023.

7

Defensive Publications Series, Art. 6065 [2023]

https://www.tdcommons.org/dpubs_series/6065

https://play.google.com/store/apps/details?id=com.hardwarecheck.sensorcheck
https://play.google.com/store/apps/details?id=com.hardwarecheck.sensorcheck
https://play.google.com/store/apps/details?id=com.itemstudio.castro.pro&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.itemstudio.castro.pro&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.itemstudio.castro.pro&hl=en&gl=US

	Application Testing Under Developer Specified Device Resource Occupancy
	Recommended Citation

	tmp.1689664218.pdf.SmoPl

