
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

July 2023

Using Code Review Repositories and Changelists to Train Large Using Code Review Repositories and Changelists to Train Large

Language Models for Code Generation Language Models for Code Generation

Joseph Johnson Jr

Shiblee Hasan

Emmanouil Koukoumidis

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Johnson Jr, Joseph; Hasan, Shiblee; and Koukoumidis, Emmanouil, "Using Code Review Repositories and
Changelists to Train Large Language Models for Code Generation", Technical Disclosure Commons, (July
03, 2023)
https://www.tdcommons.org/dpubs_series/6027

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F6027&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/6027?utm_source=www.tdcommons.org%2Fdpubs_series%2F6027&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Using Code Review Repositories and Changelists to Train Large Language Models for

Code Generation

ABSTRACT

While large language models (LLMs) can generate code, training of such models has not

made use of data generated during the collaborative code review process that is a standard part of

software development. This disclosure describes techniques that utilize historical code review

data (including reviewer comments and corresponding code edits) available within organization

internal code repositories to train LLMs to generate code. The historical code review data can be

used for model tuning, to train an LLM via reinforcement learning from human feedback

(RLHF), and/or via prompt engineering. The trained model can be utilized to generate code

starting from code description provided using a prompt template. The prompt template can

incorporate organization specific factors such as developer guidelines, developer or team style,

etc. Code generated by the LLM can be iteratively refined via human review as well as from

analytical tools that ensure style compliance, code coverage, test success rate, comment

conventions, etc.

KEYWORDS

● Large language model (LLM)

● Alignment problem

● Code generation

● Code refinement

● Code repository

● Code coverage

● Model tuning

● Changelist

● Prompt engineering

● Reinforcement learning

● Conversational dialogue

2

Johnson Jr et al.: Using Code Review Repositories and Changelists to Train Large Lan

Published by Technical Disclosure Commons, 2023

BACKGROUND

Developers can leverage a large language model (LLM) to generate or modify code based

on relevant input, such as a question, prompt, or description. Many software development tools

and Integrated Development Environments (IDEs) include LLM-driven code generation features

that are similar to text auto completion but for coding tasks. For instance, after a user enters

some code, such tools can automatically generate small amounts of additional code or can

suggest edits to the typed code.

Since the training data for LLMs typically includes source code repositories, the quality

of the generated code is often high enough to be comparable to production code. In many cases,

the code generated using an LLM compiles successfully without any modifications. However, in

several cases, especially ones that involve complexity and nuance, developers may need to

modify the initial LLM-generated code by filling in and/or refining various details. Alternatively,

or in addition, developers can engage in an interactive dialogue with the LLM to iteratively

refine the initially provided or generated code based on feedback and replies within the dialogue.

In most cases, the LLM has a reasonable amount of memory to refine the code via dialogue.

Developers need several conversational turns and/or prompt refinement to solve what is

referred to as the alignment problem. The alignment problem is for an LLM to choose a reply

among many potential choices where the LLM needs help to determine the optimal way in which

the choices are to be ranked for the task at hand. In many cases, a generic ranker cannot be

trained on its own since making the optimal choice for most problems requires even humans

(e.g., developers) to ask questions and receive feedback in conversation with other humans (e.g.,

code reviewers).

3

Defensive Publications Series, Art. 6027 [2023]

https://www.tdcommons.org/dpubs_series/6027

Reinforcement Learning from Human Feedback (RLHF) is a popular technique to refine

a machine learning model for better handling the general case of selecting the best response from

a set of model-generated potential responses. In essence, RLHF can serve as an answer ranker

refined on human feedback. RLHF can involve human actors on both sides of the conversation,

where one or more humans act as the user by simulating the questions and prompts input to the

model. The same or different humans can act as the model by selecting the best reply from the

set of choices the model generates. The questions and answers are both used to refine the ranking

ability of the LLM and train it to select the best answers from a generated set.

Apart from using RLHF to train LLMs to rank possible answer choices, LLMs can also

be enhanced to be better at specific tasks, such as generating code. Such enhancements can be

achieved in various ways, such as fine tuning the model by retraining a pretrained model by

unfreezing the model weights and training for a further few iterations or epochs on data that is

specific to the task. Alternatively, or in addition, the RLHF process described above can be

similarly fine-tuned with question-answer pairs that match the task. Further, input prompts to an

LLM can be fine-tuned via prompt engineering to create better task-specific prompts that lead to

better answers being generated by the LLM.

Currently, developer use of LLMs for generating code typically follows the normal

coding process of starting with initial, developer-written code and then creating a corresponding

description. Coding is a collaborative task that involves code reviews by other developers.

Reviewers often suggest edits to code to achieve goals such as improved performance, bug fixes,

enhanced code readability, etc. In many source code management platforms, reviewers can

submit change requests with suggested code edits and corresponding descriptive notes that the

original author of the code can access to converse with the reviewer, if needed, and to update the

4

Johnson Jr et al.: Using Code Review Repositories and Changelists to Train Large Lan

Published by Technical Disclosure Commons, 2023

original code as appropriate. The use of LLMs for coding purposes does not currently

incorporate the collaborative code review process that is a standard part of the software

development process.

DESCRIPTION

This disclosure describes techniques that enable the incorporation of collaborative code

review practices (including historical code review data, changelists or patches, etc.) to train

LLMs to generate code. Application of the techniques can enable LLMs to automatically

generate code starting from a description in the style of a code review. The code generated

initially in response to a prompt can be iteratively refined with dialogue that includes relevant

additional mini prompts. The iterative review dialogue can in turn be employed to improve the

future performance of the code generation model.

The above capabilities can be realized by enhancing standard LLMs for the specific

purposes of generating code from code review descriptions. The enhancements involve one or

more of the following approaches:

1. Model tuning based on historical code review data: By unfreezing their weights,

existing LLMs can be trained for a few iterations on existing repositories code reviews

and corresponding edits and developer conversations. The training and validation loss can

be validated against a holdout set of data. On reasonably high-powered machines, such

training can be done relatively quickly.

2. Task-specific RLHF: The model can be trained by using the dialogue between the

author of the original code and various code reviewers as task-specific question-answer

pairs, with the code review descriptions serving as the question and the code review

comments and/or the corresponding code edits (changelist) as the answer. The approach

5

Defensive Publications Series, Art. 6027 [2023]

https://www.tdcommons.org/dpubs_series/6027

can employ any suitable reinforcement learning technique, such as Q-Learning, Deep

Reinforcement Learning (Deep Q-Learning), Value Iteration, or Proximal Policy

Optimization (PPO).

3. Prompt Engineering: A generic prompt (e.g., “Generate code for…”) can be used as the

starting review template for each code generation task. A developer can modify the

template prompt by filling in details specific to the task at hand to generate initial source

code from an off-the-shelf LLM. The initial code is iteratively refined via code review

comments that suggest changes. Initial comments can be from the developer commenting

as a reviewer of code authored by the LLM. Subsequently, the developer can send the

code for review by other human developers and/or automated code inspection and testing

tools. A task-specific LLM tuned on historical code review data is employed to refine the

code automatically in response to code reviews received from developers and/or

automated tools.

Fig. 1 shows an example operational implementation of the techniques described in this

disclosure. A developer using an IDE (110) on a device (102) employs an LLM (106), which is

tuned by training on existing source code reviews (108) to automatically generate code. In the

example of Fig. 1, the developer’s goal is to obtain code to convert temperatures from the

Fahrenheit to Celsius scale.

6

Johnson Jr et al.: Using Code Review Repositories and Changelists to Train Large Lan

Published by Technical Disclosure Commons, 2023

Fig. 1: Automatically generating and refining code from code review descriptions using

LLMs

The developer starts with a template prompt (112) within the LLM interface (104) and

specifies the coding task by appropriately modifying the task-specific fields (114) within the

template. In the example of Fig. 1, the developer completes the template prompt with task

specific parameters to specify the prompt “Generate source code for converting Fahrenheit to

Celsius that follows the style of [username] and conforms with my company’s coding

7

Defensive Publications Series, Art. 6027 [2023]

https://www.tdcommons.org/dpubs_series/6027

guidelines.” The LLM-generated source code is displayed within the IDE and can be iteratively

refined by subsequent human and/or automated code reviews and interaction with the LLM as

described above. Automated code review can include the use of analytical tools to ensure style

compliance, code coverage, test success rate, comment conventions, etc. The code review history

can serve as data for further refinement of the model.

During the initial prompt specification and iterative code refinement, fields within the

prompt templates can be filled in automatically with relevant information as appropriate.

Alternatively, or in addition, the human developer can edit the prompts as necessary. Code

reviews from automated code inspection tools that result in corresponding LLM-generated code

refinements can take place behind the scenes, with the conversation and edit history associated

with these reviews hidden by default. However, developers may be provided options to view and

edit such reviews and code edits on demand, e.g., if needed for debugging and refinement. At

any point in the iterative code development process, the human developer seeking auto-generated

code from the LLM can choose to make code refinements in addition to those generated

automatically. Alternatively, the human developer can choose to stop seeking code via the LLM

and continue editing the code manually.

Tuning LLMs on the repositories of reviews of source code available within an

organization can enable developers to employ LLMs to obtain automatically generated code that

conforms more closely from the outset with organizational coding norms and practices (e.g.,

using the “guidelines” field in the template prompt of Fig. 1) as well as with individual

developer/team styles (e.g., using the “developer” field in the template prompt of Fig. 1). Since

the tuning based on code repositories of an organization adds to the existing training of the

8

Johnson Jr et al.: Using Code Review Repositories and Changelists to Train Large Lan

Published by Technical Disclosure Commons, 2023

model, the existing knowledge of codebases outside the organization encoded within the LLM is

retained.

The techniques described in this disclosure can be implemented to train any LLM and can

utilize historical data within any source code and code review repository. The techniques can

support any automated or manual code review tools and any IDE. LLMs trained using the

described techniques can be implemented to operate within the code development platforms and

processes of the organization. The LLM interface can be embedded within current tools and/or

provided in any suitable form, such as standalone product or via an application programming

interface (API). Implementation of the techniques can enhance the quality and speed of

generating and reviewing code generated with the aid of LLMs, helping boost developer

productivity and transform software development practices.

CONCLUSION

This disclosure describes techniques that utilize historical code review data (including

reviewer comments and corresponding code edits) available within organization internal code

repositories to train LLMs to generate code. The historical code review data can be used for

model tuning, to train an LLM via reinforcement learning from human feedback (RLHF), and/or

via prompt engineering. The trained model can be utilized to generate code starting from code

description provided using a prompt template. The prompt template can incorporate organization

specific factors such as developer guidelines, developer or team style, etc. Code generated by the

LLM can be iteratively refined via human review as well as from analytical tools that ensure

style compliance, code coverage, test success rate, comment conventions, etc.

9

Defensive Publications Series, Art. 6027 [2023]

https://www.tdcommons.org/dpubs_series/6027

	Using Code Review Repositories and Changelists to Train Large Language Models for Code Generation
	Recommended Citation

	tmp.1688385259.pdf.48dU2

