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Using Code Review Repositories and Changelists to Train Large Language Models for 

Code Generation 

ABSTRACT 

While large language models (LLMs) can generate code, training of such models has not 

made use of data generated during the collaborative code review process that is a standard part of 

software development. This disclosure describes techniques that utilize historical code review 

data (including reviewer comments and corresponding code edits) available within organization 

internal code repositories to train LLMs to generate code. The historical code review data can be 

used for model tuning, to train an LLM via reinforcement learning from human feedback 

(RLHF), and/or via prompt engineering. The trained model can be utilized to generate code 

starting from code description provided using a prompt template. The prompt template can 

incorporate organization specific factors such as developer guidelines, developer or team style, 

etc. Code generated by the LLM can be iteratively refined via human review as well as from 

analytical tools that ensure style compliance, code coverage, test success rate, comment 

conventions, etc. 
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BACKGROUND 

Developers can leverage a large language model (LLM) to generate or modify code based 

on relevant input, such as a question, prompt, or description. Many software development tools 

and Integrated Development Environments (IDEs) include LLM-driven code generation features 

that are similar to text auto completion but for coding tasks. For instance, after a user enters 

some code, such tools can automatically generate small amounts of additional code or can 

suggest edits to the typed code. 

Since the training data for LLMs typically includes source code repositories, the quality 

of the generated code is often high enough to be comparable to production code. In many cases, 

the code generated using an LLM compiles successfully without any modifications. However, in 

several cases, especially ones that involve complexity and nuance, developers may need to 

modify the initial LLM-generated code by filling in and/or refining various details. Alternatively, 

or in addition, developers can engage in an interactive dialogue with the LLM to iteratively 

refine the initially provided or generated code based on feedback and replies within the dialogue. 

In most cases, the LLM has a reasonable amount of memory to refine the code via dialogue.  

Developers need several conversational turns and/or prompt refinement to solve what is 

referred to as the alignment problem. The alignment problem is for an LLM to choose a reply 

among many potential choices where the LLM needs help to determine the optimal way in which 

the choices are to be ranked for the task at hand. In many cases, a generic ranker cannot be 

trained on its own since making the optimal choice for most problems requires even humans 

(e.g., developers) to ask questions and receive feedback in conversation with other humans (e.g., 

code reviewers). 
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Reinforcement Learning from Human Feedback (RLHF) is a popular technique to refine 

a machine learning model for better handling the general case of selecting the best response from 

a set of model-generated potential responses. In essence, RLHF can serve as an answer ranker 

refined on human feedback. RLHF can involve human actors on both sides of the conversation, 

where one or more humans act as the user by simulating the questions and prompts input to the 

model. The same or different humans can act as the model by selecting the best reply from the 

set of choices the model generates. The questions and answers are both used to refine the ranking 

ability of the LLM and train it to select the best answers from a generated set. 

Apart from using RLHF to train LLMs to rank possible answer choices, LLMs can also 

be enhanced to be better at specific tasks, such as generating code. Such enhancements can be 

achieved in various ways, such as fine tuning the model by retraining a pretrained model by 

unfreezing the model weights and training for a further few iterations or epochs on data that is 

specific to the task. Alternatively, or in addition, the RLHF process described above can be 

similarly fine-tuned with question-answer pairs that match the task. Further, input prompts to an 

LLM can be fine-tuned via prompt engineering to create better task-specific prompts that lead to 

better answers being generated by the LLM. 

Currently, developer use of LLMs for generating code typically follows the normal 

coding process of starting with initial, developer-written code and then creating a corresponding 

description. Coding is a collaborative task that involves code reviews by other developers. 

Reviewers often suggest edits to code to achieve goals such as improved performance, bug fixes, 

enhanced code readability, etc. In many source code management platforms, reviewers can 

submit change requests with suggested code edits and corresponding descriptive notes that the 

original author of the code can access to converse with the reviewer, if needed, and to update the 
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original code as appropriate. The use of LLMs for coding purposes does not currently 

incorporate the collaborative code review process that is a standard part of the software 

development process. 

DESCRIPTION 

This disclosure describes techniques that enable the incorporation of collaborative code 

review practices (including historical code review data, changelists or patches, etc.) to train 

LLMs to generate code. Application of the techniques can enable LLMs to automatically 

generate code starting from a description in the style of a code review. The code generated 

initially in response to a prompt can be iteratively refined with dialogue that includes relevant 

additional mini prompts. The iterative review dialogue can in turn be employed to improve the 

future performance of the code generation model. 

The above capabilities can be realized by enhancing standard LLMs for the specific 

purposes of generating code from code review descriptions. The enhancements involve one or 

more of the following approaches: 

1. Model tuning based on historical code review data: By unfreezing their weights, 

existing LLMs can be trained for a few iterations on existing repositories code reviews 

and corresponding edits and developer conversations. The training and validation loss can 

be validated against a holdout set of data. On reasonably high-powered machines, such 

training can be done relatively quickly. 

2. Task-specific RLHF: The model can be trained by using the dialogue between the 

author of the original code and various code reviewers as task-specific question-answer 

pairs, with the code review descriptions serving as the question and the code review 

comments and/or the corresponding code edits (changelist) as the answer. The approach 
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can employ any suitable reinforcement learning technique, such as Q-Learning, Deep 

Reinforcement Learning (Deep Q-Learning), Value Iteration, or Proximal Policy 

Optimization (PPO). 

3. Prompt Engineering: A generic prompt (e.g., “Generate code for…”) can be used as the 

starting review template for each code generation task. A developer can modify the 

template prompt by filling in details specific to the task at hand to generate initial source 

code from an off-the-shelf LLM. The initial code is iteratively refined via code review 

comments that suggest changes. Initial comments can be from the developer commenting 

as a reviewer of code authored by the LLM. Subsequently, the developer can send the 

code for review by other human developers and/or automated code inspection and testing 

tools. A task-specific LLM tuned on historical code review data is employed to refine the 

code automatically in response to code reviews received from developers and/or 

automated tools. 

Fig. 1 shows an example operational implementation of the techniques described in this 

disclosure. A developer using an IDE (110) on a device (102) employs an LLM (106), which is 

tuned by training on existing source code reviews (108) to automatically generate code. In the 

example of Fig. 1, the developer’s goal is to obtain code to convert temperatures from the 

Fahrenheit to Celsius scale.  
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Fig. 1: Automatically generating and refining code from code review descriptions using 

LLMs 

The developer starts with a template prompt (112) within the LLM interface (104) and 

specifies the coding task by appropriately modifying the task-specific fields (114) within the 

template. In the example of Fig. 1, the developer completes the template prompt with task 

specific parameters to specify the prompt “Generate source code for converting Fahrenheit to 

Celsius that follows the style of [username] and conforms with my company’s coding 

7

Defensive Publications Series, Art. 6027 [2023]

https://www.tdcommons.org/dpubs_series/6027



guidelines.” The LLM-generated source code is displayed within the IDE and can be iteratively 

refined by subsequent human and/or automated code reviews and interaction with the LLM as 

described above. Automated code review can include the use of analytical tools to ensure style 

compliance, code coverage, test success rate, comment conventions, etc. The code review history 

can serve as data for further refinement of the model. 

During the initial prompt specification and iterative code refinement, fields within the 

prompt templates can be filled in automatically with relevant information as appropriate. 

Alternatively, or in addition, the human developer can edit the prompts as necessary. Code 

reviews from automated code inspection tools that result in corresponding LLM-generated code 

refinements can take place behind the scenes, with the conversation and edit history associated 

with these reviews hidden by default. However, developers may be provided options to view and 

edit such reviews and code edits on demand, e.g., if needed for debugging and refinement. At 

any point in the iterative code development process, the human developer seeking auto-generated 

code from the LLM can choose to make code refinements in addition to those generated 

automatically. Alternatively, the human developer can choose to stop seeking code via the LLM 

and continue editing the code manually. 

Tuning LLMs on the repositories of reviews of source code available within an 

organization can enable developers to employ LLMs to obtain automatically generated code that 

conforms more closely from the outset with organizational coding norms and practices (e.g., 

using the “guidelines” field in the template prompt of Fig. 1) as well as with individual 

developer/team styles (e.g., using the “developer” field in the template prompt of Fig. 1). Since 

the tuning based on code repositories of an organization adds to the existing training of the 
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model, the existing knowledge of codebases outside the organization encoded within the LLM is 

retained. 

The techniques described in this disclosure can be implemented to train any LLM and can 

utilize historical data within any source code and code review repository. The techniques can 

support any automated or manual code review tools and any IDE. LLMs trained using the 

described techniques can be implemented to operate within the code development platforms and 

processes of the organization. The LLM interface can be embedded within current tools and/or 

provided in any suitable form, such as standalone product or via an application programming 

interface (API). Implementation of the techniques can enhance the quality and speed of 

generating and reviewing code generated with the aid of LLMs, helping boost developer 

productivity and transform software development practices. 

CONCLUSION 

This disclosure describes techniques that utilize historical code review data (including 

reviewer comments and corresponding code edits) available within organization internal code 

repositories to train LLMs to generate code. The historical code review data can be used for 

model tuning, to train an LLM via reinforcement learning from human feedback (RLHF), and/or 

via prompt engineering. The trained model can be utilized to generate code starting from code 

description provided using a prompt template. The prompt template can incorporate organization 

specific factors such as developer guidelines, developer or team style, etc. Code generated by the 

LLM can be iteratively refined via human review as well as from analytical tools that ensure 

style compliance, code coverage, test success rate, comment conventions, etc. 
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