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Abstract

The electrophysiology of nodose ganglia neurons is of great interest in the anal-
ysis of cell membrane currents and action potential behavior. This behavior
was initially outlined in the Hodgkin-Huxley conductance model [1] using a
system of nonlinear di↵erential equations. Later, Schild et al. [2] developed an
extension of the Hodgkin-Huxley model to provide a more exhaustive descrip-
tion of ion channels involved in nodose neuronal action potential activity. We
consider a variety of methods to fit the parameters of both the Hodgkin-Huxley
and Schild et al. models to an empirical stimulus response dataset. Our meth-
ods were validated using synthetic datasets, as well as voltage-clamp data for
nodose neurons. The fitting procedure that we implemented demonstrates the
predictive e�cacy of the Schild et al. model as well as its ability to provide a
superior characterization of electrical signatures of nodose neurons.
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1 Introduction

The ability of excitable cells to generate stimulus responses constitutes a fundamental
mechanism of cellular communication in biological organisms. In the human body,
several types of cells may be broadly categorized as excitable cells, including neurons,
muscle cells, and endocrine cells. Neurons, in particular, transmit electrical and
chemical signals throughout the brain and the rest of the body and are responsible
for sensory perception, motor control, homeostasis, and adaptation, among other
functions. Figure (1a) displays a schematic of a neuron’s structure. A cell’s excitatory
response to a stimulus, such as synaptic activity or receptor activation, is known as
an action potential. This phenomenon is characterized by a rapid change in voltage
across the cell membrane, which in neurons occurs when they undergo a shift in
membrane potential due to the movement of ions through membrane channels. Figure
(1b) displays a schematic of the neuron’s semi-permeable membrane. The resting
membrane potential in neurons typically falls near -70 mV . It is dependent on the
types of open ion channels and the concentrations of di↵erent ions present in the
intracellular and extracellular fluids during the resting state [8].

1.1 The Action Potential

The stimulus which initiates an action potential in a neuron causes its membrane
potential to gradually become less negative. If the membrane potential reaches a
threshold value, typically around -55 mV , an action potential will be generated.
Once the threshold value is reached, the cell undergoes the depolarization phase of
the action potential, where voltage-gated sodium channels are opened, and Na+ ions
flow into the cell. This reverses the resting polarity of the cell, and the interior of the
cell now becomes more positive than the exterior of the cell. If the threshold value
is not reached, an action potential will not be generated. An inadequate current
injection will not result in a partial action potential, nor will an excessive current
injection result in a greater depolarization potential inside the cell. This is known as
the “all-or-nothing” characteristic of the action potential [9].

As the cell depolarizes, the voltage-gated sodium channels inactivate, and the
highly positive potential inside the cell causes the voltage-gated potassium channels
to open. Once the maximum potential is reached, voltage-gated potassium channels
are fully activated, allowing K+ ions to flow out of the cell en masse in a process
known as repolarization. In this phase of the action potential, the cell restores its
negative potential by releasing the positively charged potassium ions. Repolarization
typically undershoots the resting membrane potential, resulting in what is known as
the hyperpolarization phase, where the interior potential of the cell becomes more
negative than its resting potential. This is followed by a refractory period, during
which the cell restores its initial concentrations of Na+ and K+ ions inside and out-
side the cell and reestablishes the resting membrane potential [8]. The entire action
potential process, which occurs within the span of 1-5 milliseconds, causes an elec-
tric impulse to be carried down an axon of a neuron via the flow of ions in and out
of the cell. Upon reaching the axon terminal, an action potential signal typically
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(a) Schematic of a neuron’s
anatomical structure:

dendrites, axons, and the
synaptic gap [3].

(b) Schematic of the semi-permeable cellular
membrane of a neuron, through which the flow
of Na+ and K+ ions facilitates changes in the
potential di↵erence between the inside and

outside of the membrane. Image based on figure
from Ref. [3].

Figure 1: Action potentials, generated by the movement of Na+ and K+ ions through
the cellular membrane, propagate down axons until they reach a synaptic gap, where
they elicit the release of neurotransmitters or chemical messengers to communicate
with other cells [3].

causes the release of neurotransmitters at the synapse — the junction between two
neurons. Neurotransmitters are molecules that support a wide array of functions and
can activate or inhibit the action of neurons or other postsynaptic cells [10].

The action potential is understood to be the fundamental constituent of nervous
system activity, responsible for detecting external stimuli, integration of sensory in-
put, motor control, and cognition, among other functions. Action potential activity
is further known to facilitate synaptic plasticity, where the strength of a synapse
is modified in response to its own activity or through activity in another pathway.
The action potential, therefore, is an essential element in not only the mechanisms
by which an organism’s nervous system may process information and communicate
with other organ systems but also the mechanisms by which it may adapt and grow.
It is the process through which rapid communication occurs between neurons over
long distances and allows organisms to function as they do [11]. Given that action
potentials are responsible for so many crucial biological mechanisms, a thorough un-
derstanding of their behavior is necessary for understanding communication, sensory
processing, plasticity, and regulation within organisms.
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Figure 2: The action potential measured in millivolts inside the giant axon of the
long-finned squid by Hodgkin and Huxley [4].

2 Neurophysiological Modeling

Neurophysiological modeling aims to employ mathematical representations to char-
acterize the behavior of nerve cells. These models can provide numerical descriptions
of nerve cells and investigate the mechanisms of their stimulus responses observed
in experimental data. Superior modeling of the electrophysiology of neurons can be
used to better understand abnormal behavior of neurons, such as behavior under the
e↵ects of neurotoxins, in the presence of pharmaceuticals that target ion channels and
their mechanisms of action, or in the presence of neurological disorders like epilepsy
and Parkinson’s disease. It may also be used to better demonstrate the regulatory
roles neurons play in homeostatic mechanisms, such as the baroreceptor reflex [2].

2.1 The Hodgkin-Huxley Model

The Hodgkin-Huxley (HH) conductance model laid the groundwork for modern neu-
rophysiological modeling. Published in 1952 by Alan Hodgkin and Andrew Huxley,
this model was based on the giant axon of a long-finned squid (Loligo forbesii), which
was approximately 500 micrometers in diameter [1]. Figure (2) shows one of the ac-
tion potentials recorded by Hodgkin and Huxley from the squid’s axon [4]. The HH
model, based on replicating the activity displayed in such recordings, describes the
underlying mechanisms of experimentally observed ion dynamics and the generation
of voltage spikes in the squid’s axon. This model encapsulated these dynamics within
a system of nonlinear di↵erential equations. Di↵erential equations describe the re-
lationship between functions, in this case representing physical quantities, and their
rates of change. Solving the HH equations returns a simulation of the behavior of
neuron action potentials. These equations include parameters that may be adjusted
or fine-tuned to mimic di↵erent states of the neuron.

This model demonstrated that the action potential could be characterized in terms
of ionic currents, namely: the Na+, K+, and leak currents. Representing the axon

9



Figure 3: Electrical equivalent circuit for a short segment of squid giant axon. Here,
Cm is the membrane capacitance representing the lipid bilayer, RNa and RK are
resistors representing the voltage-gated ion channels, RL is the resistor representing
leak ion channels, ENa, EK , and EL are battery representations of the electrochemical
gradients driving voltage-gated ion flow and leak ion flow, respectively, and INa, IK ,
and IL represent ion pumps and exchangers as current sources [5].

as an equivalent parallel circuit, as shown in Fig. (3), the HH model allowed for the
generation of action potential signatures using capacitors, resistors, and batteries -
translating a biological system into an analogous physical system operating under the
laws of pre-existing electromagnetic theory.

The semi-permeable neuronal membrane is represented by a capacitor, Cm, as it
separates ionic charge on either side of the membrane. In addition to helping spe-
cific ions permeate through the membrane, the current flow charges the membrane
capacitance. As ions actively permeate through the membrane, the intracellular con-
centrations of those ions di↵er from their extracellular concentrations. This di↵erence
in ion concentration produces a potential di↵erence between the inside and outside of
the membrane, which further determines the tendency of ions to flow back and forth
through the membrane. The potential at which the direction of current flow reverses
is known as the Nernst reversal potential, represented as a battery for each ion [5].

As batteries, the three Nernst potentials, ENa, EK , and EL, drive ion flow within
the circuit. The voltage-gated sodium, voltage-gated potassium, and leak ion chan-
nels are represented by resistors, RNa, RK , and RL, respectively, as they control the
flow of ions between the inside and outside of the cell. Each channel’s resistor may be
described by its conductance, the reciprocal of its resistance. The sodium and potas-
sium channels are voltage-dependent; they open or close depending on the membrane
potential, and therefore, their conductances are functions of voltage and time. The
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leak ion channel, which accounts for other ions like chloride, is considered to remain
open throughout the entire duration of an action potential; thus, its conductance is
neither voltage- nor time-dependent. While the Na+ and K+ ion channels are respon-
sible for generating the action potential, the leak channels, which have relatively low
conductance, are responsible for maintaining the resting membrane potential [3, 5].

The foremost equation, which characterizes the behavior of the electrical equiva-
lent circuit shown in Fig. (3), is given by

Cm
dV

dt
+ Iion = Iext. (1)

Equation (1) expresses the relationship between the rate of change of the membrane
potential and the ions permeating through the cell membrane. The term Iion is itself
the sum of ionic currents, and each current has the form

Iion =
X

j

Ij =
X

j

gj(V � Ej), (2)

where gj is the conductance of the j-th current, V is the membrane potential, and
Ej is the Nernst potential for the j-th current. If the membrane potential is equal
to the Nernst potential for any of the ion channels, the di↵erence between the two
will equal zero, and no current of that ion will flow. Equation (2) may be expanded
to include the inward sodium current, INa, outward potassium current, IK, and leak
current, IL, so that it becomes

Iion = gNa(V � ENa) + gK(V � EK) + gL(V � EL). (3)

In this model, the sodium and potassium currents are taken to be voltage-dependent,
while the leak current is considered constant. The ion channels consist of gates that
must all be open at once in order for an ion to pass through; if all of the gates are
open, such a channel is said to be in a permissive state. If even one of the gates is
closed, an ion cannot flow through, and the channel is said to be in a non-permissive
state [5]. The state of a gate, either permissive or non-permissive, is a voltage-
dependent characteristic. Therefore, the probability of a gate being open, also known
as a gating variable, is a function of voltage and time. These gates are assumed to
operate independently of each other. Therefore, the total probability of a channel
being open is given simply by the product of the individual gate probabilities, pr.
The overall conductance of a channel is given by

gj = ḡj

Y

r

pr, (4)

where ḡj is the maximum conductance of the j-th current.
As per the form displayed in Eqn. (4), sodium and potassium conductances are

functions of their respective maximum conductances, ḡNa and ḡK , the conductance
value when the channel is in a permissive state, and the gating variables. There are
two types of gates considered in the ion channels: activation gates and inactivation
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gates. The probability of an activation gate being open increases as depolarization
progresses, whereas the probability of an inactivation gate being open decreases as
depolarization progresses. The voltage-gated sodium channel possesses three rapidly
acting activation gates, or m-gates, and a single slow-acting inactivation gate, or
h-gate. Therefore, overall conductance of sodium is given by

gNa = ḡNam
3
h. (5)

While the cell membrane is at resting potential, the sodium h-gate is open, and the
m-gates are closed. As depolarization occurs, the m-gates rapidly open, and the
entire channel is in a permissive state, allowing Na+ ions to flood into the cell. The
h-gates close shortly thereafter, inactivating the channel and preventing any more
influx of Na+ ions. In a typical action potential process, the cell membrane then
repolarizes, causing the m-gates to rapidly close as well. Even if the membrane were
to be depolarized from this state and the m-gates re-opened, the slow-acting h-gate
would remain closed, thereby keeping the entire channel in a non-permissive state.
If, however, the membrane were to be held in a repolarization phase after the initial
depolarization, the h-gates would eventually re-open, restoring the resting state of
the voltage-gated sodium channel: an open h-gate and closed m-gates [5].

A potassium channel possesses four activation gates, all of which must be open
for a potassium ion to pass through the gate. Therefore, the potassium conductance
is given by

gK = ḡKn
4
. (6)

During depolarization, the slow-acting n-gates open gradually, shifting the voltage-
gated potassium channel to a permissive state. This channel remains in a permissive
state for the entirety of the depolarization phase, but its n-gates begin to slowly
close during the repolarization phase, allowing a su�cient number of K+ ions to be
expelled from the cell [5]. As the leak channel is considered to be always open in this
model, its conductance, gL, is simply its maximum conductance, ḡL. This relation is
expressed by

gL = ḡL, (7)

where the leak channel is always operating at its maximum conductance. Given this
information, Eqn. (3) becomes

Iion = ḡNam
3
h(V � ENa) + ḡKn

4(V � EK) + ḡL(V � EL). (8)

Table 1 displays Hodgkin and Huxley’s empirically determined values of the param-
eters in this equation. Substituting Eqn. (8) into the equation describing the net
electrical circuit behavior, Eqn. (1), and isolating the time rate of change of mem-
brane potential, dV

dt , yields

dV

dt
=

1

Cm
[Iext � [ḡNam

3
h(V � ENa) + ḡKn

4(V � EK) + ḡL(V � EL)]]. (9)

The gating variables, m, h, and n, are themselves functions of both voltage and time,
and their time rates of change are defined in Eqns. (10)-(12). The ↵r and �r rate
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Constants Description

Cm = 1.0 µF
cm2 Membrane capacitance

ḡNa = 120 mS
cm2 Sodium maximum conductance

ḡK = 36 ms
cm2 Potassium maximum conductance

ḡL = 0.3 ms
cm2 Leak maximum conductance

ENa = 50.0mV Sodium reversal potential

EK = �77.0mV Potassium reversal potential

EL = �54.387mV Leak reversal potential

Table 1: Parameter values of the standard HH model, as determined experimentally
by Hodgkin and Huxley [5].

constants represent the rate at which closed channels open and the rate at which
open channels close, respectively, for the sodium activation, sodium inactivation, and
potassium activation channels.

The time rate of change of a gating variable is determined by the rate at which
these channels change from open to closed and from closed to open at any given
time [5] and is given by

dm

dt
= ↵m(V )(1�m)� �m(V )m, (10)

dh

dt
= ↵h(V )(1� h)� �h(V )h, (11)

dn

dt
= ↵n(V )(1� n)� �n(V )n. (12)

Taken together, Eqns. (9)-(12) constitute the governing equations of the HH model.
The initial conditions needed to solve these equations may be obtained from the rest
state values of the gating variables when V=0 mV . These values are given by

m0 =
↵m0

↵m0 + �m0

, (13)

h0 =
↵h0

↵h0 + �h0

, (14)

n0 =
↵n0

↵n0 + �n0

. (15)

Using the above conditions, m = m0, h = h0, and n = n0 when t = 0, we arrive at
the following solutions of Eqns. (10)-(12) defining the gating variables as

m = m1 � (m1 �m0) exp(�t/⌧m), (16)

h = h1 � (h1 � h0) exp(�t/⌧h), (17)

n = n1 � (n1 � n0) exp(�t/⌧n), (18)
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where m1, h1, and n1 are the steady-state values of the gating variables of sodium
activation, sodium inactivation, and potassium activation, respectively. The associ-
ated time constants for each gating variable are given by ⌧m, ⌧h, and ⌧n [5]. These
values are defined as

m1 = ↵m/(↵m + �m), (19)

⌧m = 1/(↵m + �m), (20)

h1 = ↵h/(↵h + �h), (21)

⌧h = 1/(↵h + �h), (22)

n1 = ↵n/(↵n + �n), (23)

⌧n = 1/(↵n + �n). (24)

Finally, the voltage-dependent rate parameters ↵r and �r of the ion channel gates
are considered [5]. The parameters for the m and h-gates of the sodium channel are
given by

↵m =
0.1(V + 25)

e
V +25
10 � 1

, (25)

�m = 4e
V
18 , (26)

↵h = 0.07e
V
20 , (27)

�h =
1

e
V +30
0.10 + 1

. (28)

The parameters of the n-gate are similarly given by

↵n = �0.01(V + 10)

e
V +10
10 � 1

, (29)

�n = 0.125e
V
80 . (30)

This groundbreaking work won its authors the Nobel Prize in Medicine and Phys-
iology in 1963. Although it took decades to computationally confirm the predictions
made by the model, it has served as a foundation for a vast number of contemporary
neuronal models. The HH model is widely considered to have marked the beginning
of the field of computational neuroscience. However, given the amount of specializa-
tion which cells undergo during an organism’s developmental stages, the HH model
alone could not have captured the behavior of the diverse range of neuron types that
have been identified in the decades since its creation. Instead, the HH model has
served as a template for modeling other types of neurons and expanding the number
of considered variables in order to account for more sophisticated cellular dynamics.
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2.2 The Nodose Neuron

One such specialized cell type is the vagal a↵erent neuron of the nodose ganglion.
These neurons are located in the nodose ganglion, also known as the inferior ganglion,
of the vagus nerve. This ganglion is part of the peripheral nervous system, which is
composed of nerves and ganglia outside the brain and spinal cord. Figure (4) shows an
anatomical schematic of the vagus nerve system where the nodose ganglion is located.
Baroreceptor sensory neurons are a sub-type of vagal a↵erent nodose neurons. The
excitations of baroreceptor neurons are produced by stretches in blood vessels due
to increases in blood pressure. These neurons respond to changes in blood pressure
by sending signals to the central nervous system, which then activates reflexes that
regulate blood pressure via the e↵erent system [12,13].

Figure 4: Schematic diagram of the anatomy of the a↵erent and e↵erent systems of
the vagus nerve [6].

For example, when blood pressure increases, baroreceptor neurons signal to the
brain to activate the parasympathetic nervous system, which slows down an organ-
ism’s heart rate in an e↵ort to lower blood pressure. Conversely, low blood pressure
results in a lack of activation of the baroreceptor neurons, which disinhibits the heart’s
pumping, allowing heart rate and blood pressure to increase until normal levels are
reached. This regulation system, which helps to cause an organism’s blood pressure
to generally exist within a narrow range, is known as the baroreceptor reflex. The
baroreceptor reflex is a crucial homeostatic mechanism that ensures adequate blood
flow to vital organs and tissues while maintaining safe levels of cardiac activity [12,13].

In a seminal work by Schild et al. [2] to characterize the mechanisms of the barore-
ceptor reflex, two populations of rat nodose sensory neurons, categorized as A-type
and C-type, were examined. A-type nodose neurons, which are less frequently ob-
served within an organism’s nervous system, possess myelinated axons. These axons
are sheathed in a mostly lipid membrane known as myelin, which increases the con-
duction velocity of the electrical signal transmitted along them [13]. C-type nodose

15



neurons are unmyelinated. The action potentials of A-type cells are of a shorter
duration than action potentials in C-type cells. Signal transmission occurs with a
much lower conduction velocity in C-type cells than in A-type cells. A-type action
potentials also lack a definite inflection during the repolarization phase and possess
a shorter duration after-hyperpolarization phase than C-type nodose neurons [2]. In
this work, we consider A-type rat nodose neurons.

2.3 The Schild et al. Extended Model

The study described in Sec. 2.2 resulted in the Schild et al. conductance (SC) model of
rat nodose neurons [2]. This model, which may be considered an extension of the HH
model, consists of 19 di↵erential equations formulated for all of the ionic membrane
currents considered for the nodose neuron. Just as in the HH model, an equivalent
parallel conductance model was constructed to analyze the cell’s electrophysiology in
terms of physical units - capacitors, resistors, and batteries. Compared to the HH
model, however, this model’s significantly more complex di↵erential equation system
yields more sophisticated modeling capabilities.

This model, represented in Fig. (5), consists of two main components: a mem-
brane model and a coupled fluid compartment model. The membrane model consid-
ers membrane potential, which measures the di↵erence in electric potential between
the interior and exterior of the cell. This component of the model describes the
changes in voltage across the neuronal membrane over time. The fluid compartment
model accounts for the dynamics of Ca2+ ions by considering three separate fluid
compartments: the intracellular medium V oli, the perineuronal medium V ols, and
the surrounding extracellular volume. The Ca2+ ion exchanges are considered lo-
cally between the intracellular and perineuronal compartments in the presence of a
calmodulin-type bu↵er, whereas ionic concentrations in the extracellular compart-
ment [Ca2+]o,[Na+]o, and [K+]o are considered constant [2].

Figure 5: Fluid compartment model consisting of 3 separate compartments with dif-
fering concentrations of Na+ K+, and Ca2+: intracellular space, perineuronal annular
space, and a large extracellular volume. Image based on figure from Ref. [2].
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Figure 6: Equivalent parallel conductance circuit of the rat nodose neuron involving
time and voltage-dependent Na+ K+, and Ca2+ channel-mediated currents; the circuit
corresponds to a 19-component system of di↵erential equations. Image based on figure
from Ref. [2].

The SC model is formulated starting with a generalized description of whole-cell
currents in the form of the HH equations, given by

Ij(t, V ) = ḡjm
x
j (t, V )hy

j (t, V )(V � Ej). (31)

Here, just as in the HH model, ḡj is the maximum conductance of an ion j, mj

represents the activation gating variable of j and is raised to an integer exponent, x,
which denotes the number of activation gates per channel. Similarly, h represents the
inactivation gating variable of ion j and is raised to an integer exponent, y, which
denotes the number of inactivation gates per channel. The term V is the membrane
potential, and Ej is the Nernst reversal potential for the relevant ion j. [2].

It is worth noting that while in the HH model, I was considered in µA/cm
2, the

SC model considers I in nA. This conversion is based on an assumption behind the
SC model, where the soma of a nodose neuron is considered as a sphere of radius 15
µm with a total membrane capacitance of approximately 40 pF . This corresponds
to a specific capacitance of 1.4 µF/cm

2, quite similar to the HH specific capacitance
of 1.0 µF/cm

2. For the A-type neuron, the membrane capacitance is specified to be
32.5 pF [2].

Gating variables, z, are defined implicitly via their time rates of change in di↵er-
ential equations of the form

ż =
(z1 � z)

⌧z
. (32)

Here z1 is the steady-state value of the gating variable, and ⌧z is the associated time
constant. z1 is described in a standard manner for all currents involved in the circuit
by

z1(V ) =
1.0

1.0 + exp
⇣

V1/2�V

S1/2

⌘ . (33)

The term V1/2 is defined as the half-activation potential, and S1/2 is a value related
to the reciprocal of the slope of the activation curve measured at V1/2 [2]. A single
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Gaussian form is used to define ⌧z for both activation and inactivation gates, given
by

⌧z = A exp (�B
2(V � Vpeak)

2) + C. (34)

Here A corresponds to the peak amplitude of the time constant function, B is a
width scaling factor, Vpeak is the membrane potential at which ⌧z equals A, and C is
a shifting parameter.

Equations can be further formulated for each ionic membrane current in the model,
which consists of lumped membrane capacitance, Cm, associated with various ion
channels and currents. To model the electrical properties of the neuron, the equivalent
membrane circuit in Fig. (6) is considered. It consists of the membrane capacitance,
Cm, shunted by time- and voltage-dependent sodium, calcium, and potassium currents
INaf , INas , ICat , ICan , and IK, respectively. Calcium-activated potassium current,
IK,Ca, transient outward current, IA, delay current, ID, and linear leakage current, IB,
are also involved. Finally transporter-mediated currents, the Na+�Ca2+ exchanger,
the Na+�K+ pump, and the Ca2+ pump, are considered. The equilibrium potentials
for the sodium, potassium, calcium, and background ionic channels are denoted by
ENa, EK, ECa, and EB, respectively [2]. The di↵erential equation expressing the time
rate of change of membrane potential, V , may be derived from the circuit in Fig. (6),
and is given by

V̇ = �⌃Iion � Iext

Cm
. (35)

Here Iion corresponds to individual currents shown in the circuit in Fig. (6), and Iext

corresponds to either the voltage-clamp evoked current or the current-clamp injected
current. Di↵erential equations for z = mf , hf , hs, dt, ft, dn, fn1, fn2, n, p, q, x, y,
and c can be formulated in the form of HH-type di↵erential equations using Eqns.
(31)-(34). Tables 15-18 of the Appendix describe the full set of equations and their
associated parameters. Table 17 of the Appendix provides the model equations for
the four outward potassium currents [2].

An HH-type model is not complete without a consideration of ion exchange mech-
anisms and ATP-dependent pumps, which maintain intracellular homeostasis. The
sodium-calcium exchanger INa,Ca, electrogenic calcium pump ICaP , and electrogenic
activated potassium pump IK,Ca are responsible for the active transport of Na+, Ca2+,
and K+ across the semi-permeable membrane [2]. These currents and their equations
are detailed in Table 18 of the Appendix.

The governing equations of the fluid compartment are given in Eqns. (36) - (38).
The derivation of these equations can be found in Ref. [2]. The rate of change with
respect to time of occupancy of a non-organelle-related intracellular bu↵er is given
by

Ȯc = kU [Ca
2+]i(1�Oc)� kROc. (36)

Here Oc is the bu↵er occupancy, kU is the kinetic rate constant for Ca2+ uptake, and
kR is kinetic rate constant for Ca2+ release [2]. The rate of change of intracellular
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Ca2+ ion concentration is described by

˙[Ca2+]i =
2INa,Ca � ICa,n � ICa,t � IB,Ca � ICaP

ZCaV oliF
� nb[B]iȮc. (37)

Here ZCa is the valence, F is Faraday’s constant, and V oli is the e↵ective cell volume
[2]. The Ca2+ balance within the external perineuronal space (V ols), is given by

˙[Ca2+]s =
[Ca2+]o � [Ca2+]s

⌧Ca
+

�2INa,Ca + ICa,n + ICa,t + IB,Ca + ICaP

ZCaV olsF
, (38)

where ⌧Ca is the time constant for the relatively slow Ca2+ di↵usion between the
perineuronal volume and the bathing medium, and V ols is the annular shell thickness
of the perineuronal space [2]. The parameter values needed for the full A-type model,
including the fluid compartment model, are displayed in Table 2.

3 Methods

In this project, we developed a methodology for evaluating the HH model and its
extension, the SC model, with respect to their ability to characterize experimentally
recorded stimulus response data from rat nodose neurons. This required constructing
a program to solve the HH and SC equations using numerical methods and then
optimizing the parameters of both models, shown in Tables 1 and 2, such that their
solutions would produce minimal error with respect to the data.

3.1 Data Collection and Analysis

In this study, action potential data collected from Sprague-Dawley rats was used to
investigate the properties of nodose ganglia cells. The rat neurons were cultured by
dissecting the nodose ganglia, preparing its slices with digestive enzymes, and bathing
them in biochemical suspensions. These cell specimens were divided into groups,
where some were used to produce voltage-clamp recordings and the rest for current-
clamp recordings. The process by which the neurons were isolated and cultured is
described in further depth in Ref. [14]. The voltage-clamp technique allows one to hold
the membrane potential constant at a predetermined value and measure the current
flow. The current-clamp technique similarly allows one to hold the transmembrane
current at a known value and measure the transmembrane voltage response [15].

We consider current-clamp recording data in this work. The current-clamp tech-
nique typically involves an intracellular microelectrode containing a conductive solu-
tion and an extracellular reference electrode to record the potential di↵erence across
the cell membrane. At the same time, a current is injected into the cell. This allows
for the measurement of transmembrane voltage in isolated tissue preparations such
as the nodose neuron preparation described above [14,15].

Figure (7) displays the current-clamp stimulus response and current injection time
series data that we consider in this work, recorded over 819.2 ms. The current injec-
tions made were 0 nA from approximately 0 to 100 ms, -0.1 nA from approximately
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Model Parameters Conductances for A-type neuron model

[Na+]i = 8.9mM ḡNaf = 2.0500µS

[Na+]o = 154.0nM ḡNas = 0.00001µS

[K+]i = 145.0mM ḡCat = 0.00035µS

[K+]o = 5.4mM ḡCan = 0.00100µS

[Ca2+]o = 2.0mM ḡK = 0.00550µS

⌧Ca = 4511.0ms ḡA = 0.03500µS

ENa = 72.7194mV ḡD = 0.0100µS

EK = �83.9282mV ḡK,Ca = 0.00650µS

[B]i = 0.001mM ḡB,Ca = 0.000085µS

R = 8.314Jmole
�1
K

�1
ḡB,Na = 0.000325µS

F = 96500Cmole
�1

ĪCaP = 0.0243nA

T = 296K ĪNaK = 0.275nA

KM,Na = 5.46mM Cm = 32.5pF

KNa,Ca = 0.000036nAmM
�4

KM,K = 0.621mM

kU = 100mM
�1
mS

�1

kR = 0.238ms
�1

ZCa = 2.0

� = 0.5

r = 3

nb = 4

V oli = 0.0127nl

V ols = 0.0146nl

Table 2: The model parameters and ion channel conductances for the A-type nodose
neuron, as determined experimentally by Schild et al. [2].

100 to 350 ms, 0 nA from approximately 350 to 550 ms, 0.1 nA from approximately
550 to 800 ms, and 0 nA from approximately 800 to 819.2 ms. As can be seen in Fig.
(7), the recorded measurements of both the injected current and stimulus response
are noisy.

3.2 Numerical Integration Methods

As mentioned earlier, di↵erential equations contain information about the relationship
between a function and its derivatives, which are themselves functions describing the
rates of change of the original function. These equations can serve as descriptions
of rapidly changing physical values, such as voltage, which may be too complex to
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Figure 7: (Top) Nodose neuron current-clamp stimulus response time series, where
membrane potential is measured in mV and time in ms. (Bottom) Associated current
injection time series, where current is measured in nA and time in ms.

describe directly. For example, both the HH and SC models contain di↵erential
equations involving the rate of change of voltage with respect to time rather than a
function of voltage defined in terms of time directly, as displayed in Eqns. (1) and
(35).

Some di↵erential equation systems may be analytically solvable and may yield
explicit solutions in the form of equations. However, di↵erential equation systems
describing real-world phenomena are often analytically intractable; therefore, com-
putational algorithms, such as Runge-Kutta methods or adaptive step-size methods,
must be implemented to approximate their solutions numerically. In general, these
methods compute solutions by discretizing the di↵erential functions and applying it-
erative techniques with either fixed or adaptive step-sizes over the interval of interest
to form a continuous approximation of the solution [16]. There exists a wide variety
of numerical methods which can be used to approximate the solution of di↵erential
equations. In this work, to solve the HH and SC systems, we employed the adaptive
step-size solver odeint, contained within the SciPy library of the Python program-
ming language. All of the computations were performed in Python 3.9, running on a
machine with an AMD Ryzen 9 5900X 12-core processor and an NVIDIA RTX 3080
graphics card.

3.3 Error Minimization Methods

Reliably solving the HH and SC equations was the first step in being able to fit
the solutions of the SC model to the experimental nodose neuron data. In the next
step, we used an error minimization routine to compute the di↵erence between the
time series solution provided by the numerical solver and the time series of the data
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itself and to iteratively reduce this di↵erence as much as possible by modifying the
parameters of the ordinary di↵erential equation (ODE) model. The error between
the numerical solution to the ODE system and empirical data can be represented by
a function known as the cost function. Successfully minimizing the cost function was
a crucial second step in establishing that the SC model su�ciently characterized the
underlying dynamics at work in the nodose neuron.

We could have attempted to optimize the cost function using any of the various
minimization techniques included in Python’s lmfit.minimize module. While both
local and global optimization techniques were available for use, global optimization
techniques are generally considered to be superior optimization methods as they seek
the combination of parameters that return the minimum error value in the entire
search domain. They do, however, tend to carry significantly more computational
overhead than local optimization techniques.

We first evaluated the global optimization techniques within the lmfit.minimize
module for their e�cacy in fitting the following seven parameters of the classic HH
model with respect to data generated with the SC model: Cm, ḡNa, ḡK, ḡL, ENa,
EK, and EL. After that, we applied the same fitting techniques to optimize the
following ten parameters of the SC model with respect to data generated with the
SC model: ḡNaf , ḡNas , ḡK, ḡB,Na, ḡA, ḡD, ḡK,Ca, ḡB,Ca, ḡCat , and ḡCan . The two global
optimization techniques we employed are known as Adaptive Memory Programming
for Global Optimization (AMPGO) and Di↵erential Evolution (DE). We targeted the
fitting code to be run on the NVIDIA graphics card using Python’s numba.jit module,
which significantly reduced computational times.

3.3.1 AMPGO

AMPGO is an algorithm that operates by using a tunneling method, known as the
tabu tunneling method (TTM), to avoid the values being optimized getting stuck in
the local minima of the cost function. This is an extension of the well-known pure
tunneling method, which alternates between minimization and tunneling phases until
a cuto↵ value is reached. Minimization applies a descent algorithm to find a local
minimum. Tunneling then seeks a point with an error less than or equal to that
local minimum. The pure tunneling method, however, may fail to find any point
which satisfies this criterion in a single iteration. The AMPGO algorithm is designed
to overcome this limitation via its TTM, where it implements a short-term memory
strategy to perform multiple iterations for a point with an error less than or equal to
a given local minimum [17].

3.3.2 DE

DE is a stochastic, population-based algorithm that considers populations of param-
eter vectors. Evolutionary algorithms like DE follow the general form of cycling
through the stages of initialization, mutation, recombination, and selection. Initial-
ization involves the random selection of parameter vectors. Mutation expands the
search space by randomly selecting three new vectors for each of the initial parameter
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vectors and calculates a single donor vector using all three of these vectors for each
initial vector. Recombination uses elements from the initial vector and donor vector
to develop a new vector, called a trial vector. Finally, the selection phase compares
the error associated with the trial vector to the error associated with the initial vector
and selects the one with the lower error to move on to the next generation. Muta-
tion, recombination, and selection are repeated until a threshold tolerance value, or
stopping criterion is reached. This method has been found to be more e�cient in cer-
tain applications than other global optimization techniques, like simulated annealing,
evolutionary programming, and genetic algorithms [18,19].

4 Results

4.1 Fitting the Models to Synthetic Data

The first fitting evaluation involved using synthetically generated data of a single
action potential from the HH model. Using the HH model, we produced a time
series of 5000 data points spanning 500 ms using the literature parameter values
shown in Table 1 and a current injection of Iext = 3.0µA/cm2 applied from 100 to 200
ms. We then treated this time series like empirical stimulus response current-clamp
data, where the parameters were unknown. Both the AMPGO and DE methods
were then applied in an attempt to recover the literature parameter values, which
were used to generate the time series, starting from the set of initial parameter value
guesses with search ranges shown in Table 3. AMPGO returned the set of parameter
values, rounded to three decimal places, displayed in Table 4, while DE returned the
set of parameter values, rounded to three decimal places, displayed in Table 5. Their
respective fitted solutions are shown in Figs. (8) and (9).

As evidenced by the values displayed in Tables 4 and 5, as well as the action
potential fits seen in Figs. (8) and (9), while both optimization methods were e↵ective
in fitting the parameters, DE was superior. AMPGO was able to e↵ectively recover
only one value, EK, while DE was able to e↵ectively recover six values, all except for
ḡNa. However, the DE approximation of ḡNa was still more accurate to the ground

Initial Guesses Search Ranges Description

Cm = 0.1 µF
cm2 0.1 µF

cm2 to 2.0 µF
cm2 Membrane capacitance

ḡNa = 111 mS
cm2 110 mS

cm2 to 150 mS
cm2 Sodium maximum conductance

ḡK = 30.1 ms
cm2 30 ms

cm2 to 40 ms
cm2 Potassium maximum conductance

ḡL = 0.1 ms
cm2 0.1 ms

cm2 to 0.5 ms
cm2 Leak maximum conductance

ENa = 41.0mV 40mV to 55mV Sodium reversal potential

EK = �89.0mV �90mV to �55mV Potassium reversal potential

EL = �79mV �80mV to �50mV Leak reversal potential

Table 3: Parameter value initializations and search ranges of the standard HH model.
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Parameters Description

Cm = 0.657 µF
cm2 Membrane capacitance

ḡNa = 136.889 mS
cm2 Sodium maximum conductance

ḡK = 38.744 ms
cm2 Potassium maximum conductance

ḡL = 0.417 ms
cm2 Leak maximum conductance

ENa = 40.952mV Sodium reversal potential

EK = �77.044mV Potassium reversal potential

EL = �60.865mV Leak reversal potential

Table 4: AMPGO’s fitted parameter values of the standard HH model to the syn-
thetically generated data.

Parameters Description

Cm = 1.011 µF
cm2 Membrane capacitance

ḡNa = 131.937 mS
cm2 Sodium maximum conductance

ḡK = 36.280 ms
cm2 Potassium maximum conductance

ḡL = 0.334 ms
cm2 Leak maximum conductance

ENa = 49.944mV Sodium reversal potential

EK = �76.907mV Potassium reversal potential

EL = �55.271mV Leak reversal potential

Table 5: DE’s fitted parameter values of the standard HH model to the synthetically
generated data.

truth value of 120 mS
cm2 than AMPGO’s approximation. Additionally, AMPGO needed

61,400 function evaluations and 634.33 seconds to optimize these parameters, while
DE only needed 16,001 function evaluations and 89.03 seconds to optimize the same
parameters more accurately. Based on these results, it is clear that DE was the
superior optimization method for the HH model.

We repeated this process for the SC model, and produced a time series of 120,000
data points spanning 3000 ms using the literature parameter values shown in Table
2 and a current injection of Iext = 0.03 nA applied from 1000 to 1600 ms. We then
treated this time series like empirical stimulus response current-clamp data, where the
parameters were unknown. We used both AMPGO and DE methods to recover ten
parameter values initialized at the values with the respective search ranges displayed
in Table 6.
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Figure 8: AMPGO was able to successfully approximate all seven parameter values
of the HH model in a general manner but could only e↵ectively recover a single
parameter from the synthetically generated HH dataset. It produced a very good
match of the model solution (magenta) from the synthetic dataset (cyan). The curves
appear purple when overlapping.

Figure 9: DE was able to successfully approximate all seven parameter values of
the HH model in a general manner, e↵ectively recovering six parameters from the
synthetically generated HH dataset. It produced a virtually indistinguishable match
of the model solution (magenta) from the synthetic dataset (cyan). The curves appear
purple when overlapping.

Initial Guesses Search Ranges Description

ḡNaf = 1.01µS 1.00µS to 5.00µS Fast Na+ conductance

ḡNas = 1E-4µS 1E-5µS to 1E-4µS Slow Na+ conductance

ḡK = 9.9E-3µS 1E-4µS to 9.9E-3µS Delayed rectifier K+ conductance

ḡB,Na = 1E-3µS 1E-5µS to 1E-3µS Background Na+ conductance

ḡA = 1E-2µS 1E-3µS to 5E-2µS Early transient K+ conductance

ḡD = 1.9E-2 µS 1E-3µS to 2E-2µS Inactivating delay K+ conductance

ḡK,Ca = 2E-3µS 1E-4µS to 9.9E-3µS Ca2+-activated K+ conductance

ḡB,Ca = 1E-5µS 1E-5µS to 1E-4µS Background Ca2+ conductance

ḡCat = 1E-4µS 1E-4µS to 1E-3µS Transient Ca2+ conductance

ḡCan = 1E-3µS 1E-3µS to 1E-2µS Long-lasting Ca2+ conductance

Table 6: Initializations and search ranges of the conductances for the SC model [2].
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Parameters Description

ḡNaf = 1.390µS Fast Na+ conductance

ḡNas = 1.584E-5µS Slow Na+ conductance

ḡK = 9.878E-3µS Delayed rectifier K+ conductance

ḡB,Na = 5.583E-4µS Background Na+ conductance

ḡA = 4.298E-2µS Early transient K+ conductance

ḡD = 1.389E-2 µS Inactivating delay K+ conductance

ḡK,Ca = 1.006E-4µS Ca2+-activated K+ conductance

ḡB,Ca = 3.224E-5µS Background Ca2+ conductance

ḡCat = 1.115E-4µS Transient Ca2+ conductance

ḡCan = 2.751E-3µS Long-lasting Ca2+ conductance

Table 7: AMPGO’s fitted parameter values of the SC model to synthetically generated
data.

Parameters Description

ḡNaf = 2.112µS Fast Na+ conductance

ḡNas = 7.566E-5µS Slow Na+ conductance

ḡK = 5.795E-3µS Delayed rectifier K+ conductance

ḡB,Na = 4.248E-4µS Background Na+ conductance

ḡA = 4.504E-2µS Early transient K+ conductance

ḡD = 8.348E-3 µS Inactivating delay K+ conductance

ḡK,Ca = 8.971E-3µS Ca2+-activated K+ conductance

ḡB,Ca = 1.524E-5µS Background Ca2+ conductance

ḡCat = 6.082E-4µS Transient Ca2+ conductance

ḡCan = 1.063E-3µS Long-lasting Ca2+ conductance

Table 8: DE’s fitted parameter values of the SC model to synthetically generated
data.

The results of these fittings are shown in Tables 7 and 8, which display the fitted
parameters using AMPGO and DE, respectively. Figures (10) and (11) display the
fitted solutions of AMPGO and DE, respectively. As can be seen in Fig. (10),
AMPGO was unable to produce a good match for the spike portion of the action
potential. However, the DE method was able to produce a visually indistinguishable
action potential solution with its optimized parameters, as seen in Fig. (11). While
in neither case were any parameters recovered nearly identically to their original
values, the DE fitting produced parameter values with su�ciently small errors for
our purposes, given the visual match. The AMPGO fit took 5,143.99 seconds and

26



Figure 10: The AMPGO fitting technique was unable to recover the parameter values
of the SC model from the synthetically generated SC dataset and failed to reproduce
the action potential spike in its model solution (magenta) as seen in the synthetic
dataset (cyan). The curves appear purple when overlapping.

Figure 11: The DE fitting technique was able to successfully approximate all 10
parameter values of the SC model from the synthetically generated SC dataset, pro-
ducing a visually indistinguishable match of the model solution (magenta) from the
synthetic dataset (cyan). The curves appear purple when overlapping.

28,050 function evaluations to complete, while the DE fit took 4,188.97 seconds and
22,001 function evaluations to complete. DE was again able to produce a superior fit
for this action potential data in a shorter amount of time and required fewer function
evaluations.

Finally, we repeated this process once more for the SC model, this time considering
a train of action potentials and extending the fitting process to consider thirteen
parameters to provide additional flexibility in the SC model solution. The thirteen
parameters considered were the same ten conductances from the SC synthetically
generated single-spike data test listed in Table 6 along with ĪNaK, ĪCaP , andKNa,Ca [2].
We again generated a time series of 120,000 data points spanning 3000 ms using the
literature parameter values shown in Table 2 and a current injection of Iext = 0.04
nA applied from 1000 to 1600 ms in order to produce the train of action potentials.
We again treated this time series like empirical stimulus response current-clamp data,
where the parameters were unknown. We used both AMPGO and DE methods to
recover these thirteen parameter values initialized at the values with the respective
search ranges displayed in Table 9.

The results of these fittings are shown in Tables 10 and 11, which display the
fitted parameters using AMPGO and DE, respectively. Figures (12) and (13) display
the fitted solutions of AMPGO and DE, respectively. As can be seen in Fig. (12),
AMPGO was unable to produce a good match for the spike portion of the action
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Initial Guesses Search Ranges Description

ḡNaf = 2.00µS 2.00µS to 3.00µS Fast Na+ conductance

ḡNas = 1E-5µS 1E-5µS to 2E-5µS Slow Na+ conductance

ḡK = 1E-3µS 1E-3µS to 1E-2µS Delayed rectifier K+ conductance

ḡB,Na = 1E-3µS 2E-5µS to 3.5E-4µS Background Na+ conductance

ḡA = 1E-2µS 1E-2µS to 5E-2µS Early transient K+ conductance

ḡD = 1.9E-2 µS 1E-3µS to 2E-2µS Inactivating delay K+ conductance

ḡK,Ca = 5E-3µS 1E-3µS to 9.9E-3µS Ca2+-activated K+ conductance

ḡB,Ca = 1E-4µS 5E-5µS to 1E-4µS Background Ca2+ conductance

ḡCat = 1E-4µS 1E-4µS to 3E-4µS Transient Ca2+ conductance

ḡCan = 1E-3µS 1E-3µS to 5E-3µS Long-lasting Ca2+ conductance

ĪNaK = 0.21 nA 0.20µS to 0.40µS Na+-K+ pump conductance

ĪCaP = 0.02 nA 0.02µS to 0.04µS Ca2+ pump conductance

KNa,Ca = 2E-5 nA
mM4 2E-5µS to 4E-5µS Na+-Ca2+ exchanger conductance

Table 9: Initializations and search ranges of the conductances for the SC model [2].

potential. However, the DE method was able to produce a visually indistinguishable
action potential solution with its optimized parameters, as seen in Fig. (13). While in
neither case were any parameters recovered nearly identically to their original values,
the DE fitting again produced parameter values with su�ciently small errors for our
purposes, given the visual match. The AMPGO fit took 12,569.93 seconds and 51,016
function evaluations to complete, while the DE fit took 6,659.41 seconds and 28,001
function evaluations to complete. DE was again able to produce a superior fit for
this action potential data in a shorter amount of time and required fewer function
evaluations.

4.2 Fitting the Models to Experimental Nodose Neuron Data

Given the above results and the highly accurate fits from the DE fitting method, we
consider our fitting procedure to be robust and validated for optimizing the param-
eters of the SC model with respect to data. The next step involved replacing the
synthetically generated datasets with our experimental rat nodose neuron time series
data, shown in Fig. (7). To motivate the relevance of the SC model and its more
sophisticated consideration of ion channels and a fluid compartment model, we first
attempted to fit our dataset using the HH model. We note that because of the unit
di↵erence in current injections described in Sec. 2.3, the current injections from our
current-clamp stimulus response dataset needed to be converted to work with the HH
model code. The current injection values employed were 0 µA/cm

2 from approxi-
mately 0 to 100 ms, -3.537 µA/cm

2 from approximately 100 to 350 ms, 0 µA/cm
2

from approximately 350 to 550 ms, 3.537 µA/cm
2 from approximately 550 to 800
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Parameters Description

ḡNaf = 2.177µS Fast Na+ conductance

ḡNas =1.993E-5µS Slow Na+ conductance

ḡK = 1.141E-3µS Delayed rectifier K+ conductance

ḡB,Na = 1.055E-4µS Background Na+ conductance

ḡA = 2.803E-2µS Early transient K+ conductance

ḡD = 6.002E-3 µS Inactivating delay K+ conductance

ḡK,Ca = 7.769E-3µS Ca2+-activated K+ conductance

ḡB,Ca = 8.5596E-5µS Background Ca2+ conductance

ḡCat = 1.042E-4µS Transient Ca2+ conductance

ḡCan = 3.838E-3µS Long-lasting Ca2+ conductance

ĪNaK = 0.2007 nA Na+-K+ pump conductance

ĪCaP = 2.804E-2 nA Ca2+ pump conductance

KNa,Ca = 2.209E-5 nA
mM4 Na+-Ca2+ exchanger conductance

Table 10: AMPGO’s fitted parameter values of the SC model to synthetically gener-
ated action potential train data.

Parameters Description

ḡNaf = 2.004µS Fast Na+ conductance

ḡNas = 1.1717E-5µS Slow Na+ conductance

ḡK = 2.548E-3µS Delayed rectifier K+ conductance

ḡB,Na = 2.901E-4µS Background Na+ conductance

ḡA = 2.854E-2µS Early transient K+ conductance

ḡD = 1.585E-2 µS Inactivating delay K+ conductance

ḡK,Ca = 6.752E-3µS Ca2+-activated K+ conductance

ḡB,Ca = 5.812E-5µS Background Ca2+ conductance

ḡCat = 2.601E-4µS Transient Ca2+ conductance

ḡCan = 1.542E-3µS Long-lasting Ca2+ conductance

ĪNaK = 0.3115 nA Na+-K+ pump conductance

ĪCaP = 3.325E-2 nA Ca2+ pump conductance

KNa,Ca = 2.043E-5 nA
mM4 Na+-Ca2+ exchanger conductance

Table 11: DE’s fitted parameter values of the SC model to synthetically generated
action potential train data.

ms, and 0 µA/cm
2 from approximately 800 to 819.2 ms. These values correspond to

the current injections expressed in the dataset, described in Sec. 3.1.
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Figure 12: The AMPGO fitting technique was unable to recover the parameter values
of the SC model from the synthetically generated SC dataset and failed to produce
action potential spikes in its model solution (magenta) that aligned with the spikes
observed in the synthetic dataset (cyan). The curves appear purple when overlapping.

Figure 13: The DE fitting technique was able to successfully approximate all thirteen
parameter values of the SC model from the synthetically generated SC dataset, pro-
ducing a visually indistinguishable match of the model solution (magenta) from the
synthetic dataset (cyan). The curves appear purple when overlapping.

Neither AMPGO nor DE were able to reproduce the correct shapes of the action
potential data with the HH model, but DE resulted in a slightly superior fit. Table
12 shows the best result of DE fitting with wide parameter search ranges. Figure (14)
displays the fitted solution overlaid on the experimental data. This fitting resulted in
an unrealistic estimated value of the membrane potential, Cm, of 4.699

µF
cm2 , rounded

to three decimal places. Based on the work done by Schild et al., the membrane
capacitance of a nodose neuron should be approximately 1.4 µF/cm

2 [2].
Figure (15) shows the result of DE fitting with a more realistic parameter search

range for Cm. This resulted in a value of the membrane potential, Cm, of approx-
imately 1.488, rounded to three decimal places. With this value, however, the HH
model entirely removed the spikes at the end, resulting in an even poorer fit.

Having demonstrated that the HH model was insu�cient for characterizing our
dataset, we sought to use the SC model to attempt to replicate the time series from our
dataset. Figure (16) shows the solution to the SC model with our experimental current
injections using the default literature values of all thirteen parameters of interest, as
displayed in Table 2. These unfit parameters resulted in a poor reproduction of the
stimulus response seen in the dataset.

Our next step, therefore, was to apply the fitting techniques of AMPGO and
DE to determine an optimal set of parameter values. Table 13 displays AMPGO’s
fitted parameter values, and Fig. (17) displays AMPGO’s fitted solution using an
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Parameters Description

Cm = 4.699 µF
cm2 Membrane capacitance

ḡNa = 17.235 mS
cm2 Sodium maximum conductance

ḡK = 1.061 ms
cm2 Potassium maximum conductance

ḡL = 0.165 ms
cm2 Leak maximum conductance

ENa = 78.779mV Sodium reversal potential

EK = �117.195mV Potassium reversal potential

EL = �50.803mV Leak reversal potential

Table 12: DE’s fitted parameter values of the standard HH model to the empirical
rat nodose neuron current-clamp data.

error tolerance of 1E-15 overlaid on the dataset. While AMPGO’s fit was able to
produce three action potential spikes in the fourth current injection time interval of
the stimulus response, these spikes were not aligned with the spikes observed in the
dataset. The AMPGO fitted parameters also cause a larger drop in voltage during the
second current injection interval than was observed in the dataset. Lower tolerance
requirements did not yield any improvement in the fits. Table 14 displays DE’s
fitted parameter values, and Figure (18) displays DE’s fitted solution overlaid on the
dataset. DE was able to produce a tighter fit for the first three current injection
intervals but was only able to generate a single spike in the fourth current injection
interval.

Figure 14: The HH model was not able to reproduce the train of spikes at the end
of the stimulus response dataset. This was the best fit done using DE. It yielded an
unrealistic value of approximately Cm = 4.699 µF

cm2 , rounded to three decimal places.
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Figure 15: The HH model was not able to reproduce the train of spikes in the fourth
current injection interval of the stimulus response dataset when Cm was limited to a
realistic search range.

Figure 16: The unfitted default literature values of 13 of the SC model parameters
from Table 2 produce a solution (magenta) that does not match the stimulus response
data (cyan).

4.2.1 Current Injection Study

As a final analysis on reproducing the stimulus response observed in the dataset,
given that DE has thus far provided overall superior parameter fits for our tests, we
performed a current injection study with the parameters yielded from the DE fit in
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Parameters Description

ḡNaf = 2.651 µS Fast Na+ conductance

ḡNas = 1.804E-5µS Slow Na+ conductance

ḡK = 3.309E-2µS Delayed rectifier K+ conductance

ḡB,Na = 7.912E-4µS Background Na+ conductance

ḡA = 4.581E-3µS Early transient K+ conductance

ḡD = 1.341E-3 µS Inactivating delay K+ conductance

ḡK,Ca = 5.053E-3µS Ca2+-activated K+ conductance

ḡB,Ca = 5.848E-5µS Background Ca2+ conductance

ḡCat = 4.481E-4µS Transient Ca2+ conductance

ḡCan = 1.390E-3µS Long-lasting Ca2+ conductance

ĪNaK = 0.3866 nA Na+-K+ pump conductance

ĪCaP = 3.522E-2 nA Ca2+ pump conductance

KNa,Ca = 4.877E-5 nA
mM4 Na+-Ca2+ exchanger conductance

Table 13: AMPGO’s fitted parameter values of the SC model to empirical rat nodose
neuron current-clamp data.

Parameters Description

ḡNaf = 2.000 µS Fast Na+ conductance

ḡNas = 1.562E-5µS Slow Na+ conductance

ḡK = 3.587E-2µS Delayed rectifier K+ conductance

ḡB,Na = 9.978E-4µS Background Na+ conductance

ḡA = 4.923E-3µS Early transient K+ conductance

ḡD = 1.933E-3 µS Inactivating delay K+ conductance

ḡK,Ca = 8.6851E-3µS Ca2+-activated K+ conductance

ḡB,Ca = 9.979E-5µS Background Ca2+ conductance

ḡCat = 4.891E-4µS Transient Ca2+ conductance

ḡCan = 1.871E-3µS Long-lasting Ca2+ conductance

ĪNaK = 0.4431 nA Na+-K+ pump conductance

ĪCaP = 2.294E-2 nA Ca2+ pump conductance

KNa,Ca = 4.179E-5 nA
mM4 Na+-Ca2+ exchanger conductance

Table 14: DE’s fitted parameter values of the SC model to empirical rat nodose
neuron current-clamp data.

Fig. (18), found in Table 14. This study involved modifying the current injections
within the experimentally recorded noise range, operating under the assumption that
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Figure 17: The result (magenta) of a 13-parameter search using AMPGO initialized
at the default parameter values from Table 2 with an error tolerance of 1E-15. The
parameter optimization method provided a significantly improved solution over the
solution using default parameter values in Fig. (16).

Figure 18: The result (magenta) of a 13-parameter search using DE initialized at the
default parameter values from Table 2. The parameter optimization method provided
a significantly improved solution over the solution using default parameter values in
Fig. (16).

the nodose neuron could have been responding to any current value within that range.
We tested several combinations of viable current injections. This was done to see if
slightly di↵erent current injection values, rather than further altered parameter values,
could provide a superior fit from the SC model to the observed stimulus response.
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Figure 19: The result of applying a set of modified current injections to the parameters
from Fig. (18). This method provided our single best match for the dataset. However,
it was still unable to replicate the smaller amplitudes and slightly increasing pattern
of the experimental stimulus response spikes.

Using a combination of the minimum current value on the first injection interval,
the average current value on the second injection interval, a manually determined
current value of -0.11 nA, which was slightly above the minimum value for the third
injection interval, the maximum current value on the fourth injection interval, and
the minimum current value on the final injection interval, we were able to obtain our
best looking fit for the observed dataset, shown in Fig. (19). This demonstrates that
the SC model has, in theory, the capacity to yield a solution of a similar form as our
experimentally recorded stimulus response values but may require slightly di↵erent
current injection values.

5 Summary and Remarks

In this work, we developed a methodology for fitting the parameters of excitable
cell models to real-world data. This methodology enables us to evaluate a model’s
capacity to characterize data, as well as gain an understanding of its strengths and
weaknesses. Such a tool is useful in testing assumptions that were made within a
model and what might be improved for future model improvement.

We used this methodology to evaluate the HH and SC models of neuronal dy-
namics with respect to rat A-type nodose neuron current-clamp data. First, we
established that the parameter optimization techniques we employed here were valid
by using these techniques to recover the parameters of the HH model from a syn-
thetic dataset generated by the HH model and to recover the parameters of the SC
model from a synthetic dataset generated by the SC model. Then we applied these
techniques to optimize the parameters of the HH and SC models with respect to our
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nodose neuron dataset. As a result, we were able to show through the AMPGO and
DE fitting methods that the SC model could provide a better characterization of the
stimulus response behavior observed in a real-world dataset than the HH model. This
demonstrated that the SC model serves as a valid extension of the HH model and
improves upon the Nobel Prize-winning work’s ability to replicate neuronal electrical
signatures.

We also showed that despite its superior ability to replicate the behavior of our
stimulus response dataset, the SC model with fitted parameters alone could not com-
pletely characterize the current-clamp dataset. Using modified current injections that
deviated from the intended injection values but were within the range of noise ob-
served in the data, we obtained a superior fit overall. The DE error minimization
method worked very well, especially with respect to synthetic data that the model
had the capacity to replicate perfectly. Even with the DE method, however, we were
unable to obtain a perfect fit with respect to the data. This result may demonstrate
a limitation of the SC model in being able to replicate certain neuronal signatures.

Future work in evaluating the SC model may expand into using datasets collected
of A-type and C-type rat vagal a↵erent neurons under di↵erent current injection con-
ditions, allowing us an opportunity to establish parameters across multiple datasets.
Additional stimulus response datasets may also be collected from rats with varying
blood pressure conditions. As the baroreceptor neurons are involved in regulating an
organism’s blood pressure, their activity may di↵er in organisms with hypertension,
for example. This di↵erence in activity may be encapsulated by significant di↵er-
ences in parameter values of the SC model between a control group of rats without
hypertension, like the ones used in this study, and a test group of hypertensive rats.

Future work may also involve improvements to the SC model itself, perhaps con-
sidering time- or current-varying parameters rather than constant parameters as we
used. This may be able to incorporate more of the underlying cellular dynamics,
which were not able to be characterized in this work, and would additionally remove
the restriction on the fitting method of having to identify a single combination of
parameters that work well for the entire time series or across di↵erent current val-
ues. These directions may be able to further extend the predictive range of the HH
and SC models to more specialized neuron types and continue to help us model and
understand neuronal dynamics.

Hodgkin and Huxley produced foundational work in neurophysiology with the
invention of their model. The Schild et al. extension of the system builds upon
that work by allowing for an advanced study of neuronal dynamics. A methodology
for evaluating these models o↵ers us an opportunity to take a step closer to further
characterizing the behavior of neurons using parameter optimization techniques. Us-
ing the methodology detailed in this project, the parameter estimations of neuronal
models may be improved, or their limitations further analyzed in pursuit of the de-
velopment of higher e�cacy models. With these models, we may continue to better
understand neuronal dynamics and support the application of this information to
medical and scientific innovations.
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6 Appendix

ICa,t: Low Threshold, Transient Calcium Current

ICa,t = ḡCa,tdtft(V � ECa)

ḋt =
dt1�dt

⌧dt
ḟt =

ft1�ft
⌧ft

ECa =
RT
ZCa

ln [Ca2+]s
[Ca2+]i

� 78.7

⌧dt = 22.0 exp(�(0.052)2(V + 68.0)2) + 2.5

⌧ft = 103.0 exp(�(0.050)2(V + 58.0)2) + 12.5

dt1 = 1.0
1.0+exp (V +54.0

�5.75 )
ft1 = 1.0

1.0+exp (V +68.0
6.0 )

ICa,n: High Threshold, Long-Lasting Calcium Current

ICa,n = ḡCa,ndn(0.55fn1 + fn2(V � ECa)

ḋn = dn1�dn
⌧dn

ḟn1 =
fn11�fn1

⌧fn1
ḟn2 =

fn21�fn2

⌧fn2

⌧dn = 3.21 exp(�(0.042)2(V + 31.0)2) + 0.395

⌧fn1 = 33.5 exp(�(0.0395)2(V + 30.0)2) + 5.0

⌧fn2 = 225.0 exp(�(0.0275)2(V + 40.0)2) + 75.0

dn1 = 1.0
1.0+exp (V +20.0

�4.5 )
rn = 0.2

1.0+exp (V +5.0
�10 )

fn11 = 1.0
1.0+exp (V +20.0

25.0 )
fn21 = rn +

1.0
1.0+exp (V +5.0

�10.0 )

Table 15: Inward Calcium Currents. Two calcium ion currents have been identified
in rat nodose sensory neurons: one exhibiting transient dynamics ICa,t; and one ex-
hibiting long-lasting dynamics ICa,n [2, 7].
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INaf : Fast, TTX Sensitive Sodium Current

INaf = ḡNafm
3
fhf (V � ENa)

ṁf = mf1�mf

⌧mf
ḣf = hf1�hf

⌧hf

⌧mf
= 1.15 exp(�(0.06)2(V + 40.0)2) + 0.21

⌧hf
= 18.0 exp((0.043)2(V + 62.5)2) + 1.35

mf1 = 1.0
1.0+exp (V +31.6

�6.98 )
hf1 = 1.0

1.0+exp (V +66.0
�5.97 )

INas : Slower, TTX Insensitive Sodium Current

INas = ḡNasm
3
shs(V � ENa)

ṁs =
ms1�ms

⌧ms
ḣs =

hs1�hs
⌧hs

⌧ms = 1.45 exp(�(0.058)2(V + 14.5)2) + 0.26

⌧hs = 10.75 exp((0.067)2(V + 13.5)2) + 3.15

ms1 = 1.0
1.0+exp (V +11.3

�5.45 )
hs1 = 1.0

1.0+exp (V +31.0
5.2 )

Table 16: Inward Sodium Currents. Two sodium ion currents have been identified
in rat nodose neurons: one large TTX-sensitive current exhibiting fast kinetics INaf ;
and one smaller TTX-insensitive current with slower kinetics INas [2, 7].
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IK: Delayed Rectifier

IK = ḡKn(V � EK) ṅ = n1�n
⌧n

⌧n = 1.0
(↵n+�n)

n1 = 1.0
1.0+exp (V +14.62

�18.38 )

↵n = 0.001265(V+14.273)

1.0�exp (V +14.273
�10.0 )

�n = 0.125 exp
�
V+55.0
�2.5

�

IA: Early Transient Outward Current

IA = ḡAp
3
q(V � EK)

ṗ = p1�p
⌧p

q̇ = q1�1
⌧q

⌧p = 5.0 exp (�(0.22)2(V + 65.0)2) + 2.5

⌧q = 100.0 exp (�(0.035)2(V + 30.0)2) + 10.5

p1 = 1.0
1.0+exp (V +28.0

�28 )
q1 = 1.0

1.0+exp (V +58.0
7.0 )

ID: Slowly Inactivating Delay Current

ID = ḡDx
3
y(V � EK)

ẋ = x1�x
⌧x

ẏ = y1�y
⌧y

⌧x = 5.0 exp (�(0.022)2(V + 65.0)2) + 2.5 ⌧y = 7500.0

x1 = 1.0
1.0+exp (V +39.59

�14.68 )
y1 = 1.0

1.0+exp (V +48.0
7.0 )

IK,Ca: Calcium-Activated Potassium Current

IK,Ca = ḡK,Cac(V � EK) ċ = c1�c
⌧c

↵c = 750.0[Ca2+]i exp
�
V�10.0
12.0

�
�c = 0.05 exp

�
V�10.0
�60.0

�

⌧c =
4.5

↵c+�c
c1 = ↵c

↵c+�c

Table 17: Outward Potassium Currents. Four potassium ion currents have been
identified in rat nodose neurons: a delayed rectifier current IK; two independent
potassium ion currents, one exhibiting rapid kinetics IA, and another which rapidly
activates, but inactivates with slow voltage-independent time constant ID; and one
calcium activated potassium current IK,Ca [2, 7].
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IB: Background Current

IB = IB,Na + IB,Ca = ḡB,Na(V � ENa) + ḡB,Ca(V � ECa)

INa,Ca: Sodium-Calcium Exchanger Current

INaCa = INaCa
DFin�DFout

S

S = 1.0 +DNaCa([Ca
2+]i[Na

+]ro + [Ca2+]s[Na
+]ri )

DFin = [Na+]ri [Ca
2+]s exp

⇣
(r�2)�V F

RT

⌘

DFout = [Na+]ro[Ca
2+]i exp

⇣
(r�2)(��1)V F

RT

⌘

ICaP : Calcium Pump Current

ICaP = ĪCaP

⇣
[Ca2+]i

[Ca2+]i+KM,CaP

⌘

INaK: Sodium-Potassium Pump Current

INaK = ĪNaK

⇣
[Na+]i

[Na+]i+KM,Na

⌘3 ⇣
[K+]o

[K+]o+KM,K

⌘2 �
V+150
V+200

�

Table 18: Background, voltage, and concentration-dependent currents. Most ex-
citable cells employ ion exchange mechanisms and ATP dependent pumps to maintain
intracellular homeostasis. Active transport of sodium, potassium, and calcium ions
is credited to the three mechanisms shown in this table: sodium-calcium exchanger
current INaCa; calcium pump current ICaP ; and sodium-potassium pump current INaK.
The model also includes a background current IB [2, 7].
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