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Abstract

The validity of causal inference always rests on untestable assumptions. It is valuable to quantify
the extent to which violations of different causal assumptions will alter the conclusions of a study.
This is the motivation behind sensitivity analyses. The aim of this thesis is to develop sensitivity
analyses for a variety of biases, including selection bias, coarsening bias in instrumental variable
designs and familial and ancestral biases in genetic association studies.

The first chapter develops an approach to statistical inference in stochastic optimization
problems when both the function to minimized, and the set over which it is minimized, must
be estimated empirically. I apply this inference procedure to the problem of selection bias in
large population cohorts such as UK Biobank. I propose a sensitivity analysis which is able
to flexibly incorporate a wide variety of population-level information, while providing valid
statistical inference.

The second chapter addresses the problem of coarsening bias in Mendelian randomization
(MR) studies. In such studies, the exposure is often a coarsened approximation to some latent
continuous trait. Genetically driven variation in the outcome can exist within categories of the
exposure, violating the exclusion restriction. I derive a closed-form expression for the resulting
bias and propose a simple correction that can be used with summary-level data to provide MR
estimates with interpretable effect sizes.

The final chapter utilizes the increasing prevalence of within-family data to provide an
“almost exact” approach to MR. I provide a formal justification for the validity of the MR
design by building a causal model which includes features such as assortative mating, linkage
disequilibrium, population stratification and transmission ratio distortion. I then propose an
“almost exact” randomization test for MR based on explicitly modelling the distribution of
crossovers. I apply this test to the Avon Longitudinal Study of Parents and Children (ALSPAC).
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Chapter 1

Introduction

1.1 Foreword

Causal inference inevitably rests on untestable assumptions. A causal effect is characterized

by a contrast of two or more possible interventions, only one of which can actually occur in a

given individual at a given point in time (Holland, 1986). This fundamental problem means

that a causal effect must typically be inferred by comparing sufficiently similar individuals who

are differentiated by the intervention they experience. In practice, individuals often self-select

or drop out of studies (Lu et al., 2022), measurements can be misreported or missing (Smeden,

Lash, and Groenwold, 2020), and systematically different individuals may be more inclined to

one intervention versus another (Hernán and Robins, 2020, p.25–37). These phenomena are

ubiquitous in scientific research and can violate the assumptions on which causal inference

relies, leading to bias.

It is crucial that scientific results are robust to these violations. The best way to mitigate

bias is to prevent it at the outset. This can include ensuring comprehensive data collection,

validating measurements and experimentally randomizing the receipt of interventions. This is

not always possible, for logistical or financial reasons. The second best way to mitigate bias is

to quantify the extent to which a study’s conclusions would change if certain assumptions were

violated. This is the principle behind sensitivity analysis.

Rosenbaum (2017, p.171) characterizes a sensitivity analysis as asking: “How would the

results of a calculation, or the conclusion, change if the assumptions were changed by a limited

amount? Would the conclusion barely change? If so, the conclusion is insensitive to a violation

of the assumptions of that limited magnitude”. In essence, a sensitivity analysis evaluates the

stability of a study’s conclusions to limited violations of the assumptions on which it is based.

The first example of a sensitivity analysis in an observational study is typically attributed to

Cornfield et al. (1959). At the time of publication, there was an ongoing debate about the role

of smoking in lung cancer incidence. The prominent statistician and geneticist Ronald A Fisher

had argued against the evidence for a causal effect, instead suggesting that the association
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CHAPTER 1. INTRODUCTION

could be driven by reverse causation, whereby the discomfort caused by a nascent tumour

would cause sufferers to self-medicate via smoking (Stolley, 1991). Another explanation he put

forward is the existence of a common genetic factor causing both smoking and lung cancer

through independent pathways.

Fisher’s alternative explanations are, if not plausible, difficult to refute. At the time, the

relative risk of smoking versus non-smoking on lung cancer was estimated to be around 9.

Cornfield et al. (1959)’s insight is that an implication of Fisher’s hypothesis – that a common

genetic factor could explain this association – is that the relative prevalence of this common

factor must be at least 9 times greater among smokers than non-smokers. A relative prevalence

of that magnitude for a genetic factor is highly implausible.

This influential argument helped to dismantle opposition to the hypothesized carcinogenicity

of cigarettes. It is worth noting that this sensitivity analysis was augmented by a compelling

body of evidence from other sources, including animal studies, ecological data, and studies of

pathogenesis (Cornfield et al., 1959). This triangulation of evidence (Lawlor, Tilling, and Smith,

2016) is a pillar of robust scientific inquiry.

Sensitivity analyses have become more sophisticated and diverse in the decades since, but

interrogating assumptions in a limited and quantifiable way remains an important scientific

undertaking. In this thesis, I develop sensitivity analyses for three distinct biases: selection bias,

coarsening bias in instrumental variable designs, and ancestral and familial biases in genetic

association studies.

1.2 Thesis outline

In Chapter 3, I propose and validate an approach to statistical inference in a class of stochastic

optimization problems characterized by the optimal value of a function over a set where both

the function and set need to be estimated by empirical data. Despite some progress for convex

problems, statistical inference in this general setting remains to be developed. To address

this, I derive an asymptotically valid confidence interval for the optimal value through an

appropriate relaxation of the estimated set. I then apply this general result to the problem

of selection bias in population-based cohort studies. I show that existing sensitivity analyses,

which are often conservative and difficult to implement, can be formulated in my framework

and made significantly more informative via auxiliary information on the population. I conduct

a simulation study to evaluate the finite sample performance of my inference procedure and

conclude with two substantive motivating examples: the causal effect of education on income

and the evaluation of risk factors for COVID-19, both in the highly-selected UK Biobank cohort.

I demonstrate that my method can produce informative bounds using plausible population-level

auxiliary constraints. I implement this method in the R package selectioninterval.

Chapter 4 is concerned with the assumption in Mendelian randomization studies that the
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relationship between the genetic instruments and the outcome is fully mediated by the exposure,

known as the exclusion restriction assumption. In epidemiological studies, the exposure is often

a coarsened approximation to some latent continuous trait. For example, latent liability to

schizophrenia can be thought of as underlying the binary diagnosis measure. Genetically-driven

variation in the outcome can exist within categories of the exposure measurement, thus violating

this assumption. I propose a framework to clarify this violation, deriving a simple expression

for the resulting bias and showing that it may inflate or deflate effect estimates but will not

reverse their sign. I then characterize a set of assumptions and a straightforward method for

estimating the effect of standard deviation increases in the latent exposure. My method relies on

a sensitivity parameter which can be interpreted as the genetic variance of the latent exposure.

I show that this method can be applied in both the one-sample and two-sample settings. I

conclude by demonstrating my method in an applied example and re-analyzing two papers

which are likely to suffer from this type of bias, allowing meaningful interpretation of their

effect sizes.

Chapter 5 is motivated by the incongruence between how Mendelian randomization (MR)

is typically justified – as an observational design based on the random transmission of genes

from parents to offspring – and how it is typically performed. In practice, this inferential

basis is typically only implicit or used as an informal justification. As parent-offspring data

becomes more widely available, I advocate a different approach to MR that is exactly based

on this randomization, making explicit the common analogy between MR and a randomized

controlled trial. I begin by developing a causal graphical framework for MR which formalizes

several biological processes and phenomena, including population structure, gamete formation,

fertilization, genetic linkage, and pleiotropy. This causal graph is then used to detect biases

in the MR design and identify sufficient confounder adjustment sets to correct them. I then

propose a randomization test for causal hypotheses in the MR design by using precisely the

exogenous randomness in meiosis and fertilization. I term this “almost exact MR”, because

exactness of the inference depends on precisely knowing the distribution of offspring haplotypes

resulting from meioses in one or both parents, which is widely studied in genetics. I demonstrate

via simulation that propensity scores obtained from the underlying meiosis model can form

powerful test statistics. Besides transparency and conceptual appeals, my approach also offers

some practical advantages, including lack of commitment to a particular phenotype model,

robustness to weak instruments, and eliminating bias that may arise from population structure,

assortative mating, dynastic effects and ‘pleiotropy by linkage’ that is more prevalent in admixed

samples. I conclude with a negative and positive control analysis in the Avon Longitudinal

Study of Parents and Children using my R package almostexactmr.
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Chapter 2

Background

2.1 Causal inference

2.1.1 Overview

Causal inference is an expansive field housing a number of intellectual traditions and languages,

often developed independent of one another and serving different purposes. The two most

influential languages are potential outcomes and causal graphical models. Throughout this

thesis, I utilize both languages to communicate my findings and unify them when they express

complementary ideas. This section provides an overview of potential outcomes and causal

graphical models, focusing on aspects relevant to this thesis, then brings them together via

the recently-developed single world intervention graphs. It concludes with a more detailed

exposition of randomization inference, inverse probability weighting and instrumental variables,

which are necessary for several of the later chapters.

2.1.2 Potential outcomes

The potential outcomes framework views causal inference fundamentally as a contrast of

hypothetical outcomes under distinct interventions. It originated with the work of Neyman

in the 1920s in the context of agricultural experiments (reprinted in Neyman (1990)), later

popularized by Rubin (1974) and subsequent work. It is now a bedrock of causal reasoning in

the social sciences (Imbens and Rubin, 2015) and expanding into more disparate fields such as

epidemiology and population genetics (Hernán and Robins, 2020; Bates, Sesia, Sabatti, and

Candes, 2020). This section draws heavily upon the reference texts Imbens and Rubin (2015)

and Hernán and Robins (2020).

We start with a set of N individuals indexed by i = 1, . . . , N . Each individual experiences

a binary exposure Di ∈ {0, 1}, where the exposure could be an experimental intervention or

naturally-occurring phenomenon. I adhere to the common convention that Di = 1 indicates an
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experimental or active exposure and Di = 0 indicates a placebo or control exposure. We are

interested in the effect of this exposure on an outcome Yi.

Potential outcomes are characterized by the realizations of Yi under different exposures.

Each individual has a set of potential outcomes {Yi(d) : d = 0, 1} that would occur if their

exposure level was exogenously set to Di = d. Individual i experiences a causal effect of their

exposure on their outcome if Yi(1) ̸= Yi(0). This causal effect can be summarized by the scalar

βi = Yi(1) − Yi(0), or some other contrast, such as Yi(1)/Yi(0). Crucially, in the potential

outcomes framework, a causal effect is a function of two or more potential outcomes.

My notation so far is not assumption-free. I have made an implicit no interference assumption

which posits that the potential outcomes of each individual are unaffected by the exposures of

other individuals (Rubin, 1980; Imbens and Rubin, 2015).

Assumption 2.1. (No interference) Yi(d) ⊥⊥ Dj for all i ̸= j and d ∈ {0, 1}.

I have also assumed no hidden versions of the same treatment. The exposure Di = 1 could

correspond to treatment with an experimental drug but, within that exposure category, different

individuals could receive different doses. If the outcome Yi is survival, it is possible that an

individual would survive (Yi = 1) if administered a high dose but die (Yi = 0) if administered a

low dose. The potential outcome Yi(1) is not well-defined since it could take two distinct values

depending on the hidden sub-exposure. The previous two assumptions are sometimes jointly

referred to as the stable unit treatment value assumption (Rubin, 1980).

The “fundamental problem of causal inference” (Holland, 1986) is that we cannot observe

both potential outcomes of the same individual simultaneously, such that βi cannot be identified

from the observed data. We may only observe the potential outcome corresponding to the

realized exposure. This assumed relationship between the observed data and potential data is

called the consistency assumption (Hernán and Robins, 2020).

Assumption 2.2. (Consistency) Yi = Yi(Di) = DiYi(1) + (1−Di)Yi(0).

Table 2.1: Example data for the effect of aspirin (Di) on self-reported headache severity (Yi).

i Di Yi Yi(1) Yi(0) Ci

1 1 5 5 ? 8
2 1 7 7 ? 7
3 1 3 ? 3 5
4 0 5 5 ? 6
5 0 9 ? 9 9
6 0 7 ? 7 7

From the perspective of Holland (1986), causal inference can be regarded as a missing data

problem. Consider the simple hypothetical study in Table 2.1 consisting of N = 6 individuals
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with headaches, 3 of whom take aspirin and 3 of whom do not. The outcome variable is self-

reported headache severity on a 10-point scale (1 is low, 10 is high) an hour after ingestion. The

potential outcome under the counterfactual exposure is unobserved for each individual. I also

assume that there is a confounder Ci representing baseline headache severity. This confounder

influences each individual’s decision to take aspirin and also influences their headache severity

an hour later.

There are several approaches for drawing causal inferences despite this fundamental missing

data problem. One approach is to test hypotheses about the non-existence of individual-level

causal effects, that is, Yi(1) = Yi(0) for all i = 1, . . . , N . I return to this approach in Section 2.1.5.

The more common approach is to make inferences about average causal effects. An average

causal effect is said to exist if E{Yi(1)} ≠ E{Yi(0)}, where E(·) is typically defined over a

hypothetical infinite super-population from which each individual i is randomly sampled. For

a discussion on relaxing the need for this super-population assumption, see Ding, Li, and

Miratrix (2017). The effect measure can be viewed as an average over the individual-level effects

β = E(βi).

Identifying β from the observed data {(Di, Yi, Ci) : i = 1, . . . , N} requires an assumption

on the distribution of the potential outcomes. If we assume that the confounder Ci is the only

common cause of the exposure and outcome, then individuals who took aspirin and individuals

who did not take aspirin are exchangeable with respect to the potential outcomes conditional

on Ci.

Assumption 2.3. (Exchangeability) Di ⊥⊥ Yi(d) | Ci for all d ∈ {0, 1}.

Colloquially, exchangeability posits that there are no systematic differences between in-

dividuals who took and did not take aspirin once we account for their baseline headache

severity.

If Ci was observed, we could identify the expected potential outcome E{Yi(d)} by standard-

izing over Ci (Hernán and Robins, 2020), such that

E{E(Yi | Di = d,Ci)}

= E[E{Yi(d) | Di = d,Ci}] (Assumption 2.2)

= E[E{Yi(d) | Ci}] (Assumption 2.3)

= E{Yi(d)}

where the last equality follows by the law of iterated expectations. This derivation relies on

an implicit assumption that the expected value E(Yi | Di = d,Ci) is always well-defined. It is

straightforward to show that this is satisfied when the probability of taking (or not taking)

aspirin is bounded away from zero and one within each strata of self-reported headache severity,

known as positivity (Hernán and Robins, 2020, p. 24).

Assumption 2.4. (Positivity) 0 < pr(Di = d | Ci) < 1 for all d ∈ {0, 1}.
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(a) Directed acyclic graph
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(b) Single world intervention graph

Figure 2.1: Causal diagram of the example in Section 2.1.2

Putting everything together, the average causal effect can be obtained from the observed

data via β = E{E(Yi | Di = 1, Ci)} − E{E(Yi | Di = 0, Ci)}. Realistically, we observe a

finite sample of individuals rather than a population distribution. I sidestep the discussion of

estimation and statistical inference for now, but return to it in Section 2.1.5.

2.1.3 Causal graphical models

The causal inference problem in Section 2.1.2 can be recast using a causal graphical model. A

graphical model summarizes the conditional independence relationships among a set of random

variables. A causal graphical model introduces direction to the relationships, allowing us to

view the directed edges as causal pathways among variables. This section draws heavily on

Pearl (2000) and Pearl (2009). I begin by providing some general terminology for graphs.

Definition 2.1. A directed graph G = (V,E) is characterized by a set of vertices or nodes V

and edges E. The set of edges is defined by E ⊆ {(i, j) | (i, j) ∈ V 2, v ̸= v′}, where (i, j) is an

ordered pair.

Definition 2.2. There is a directed path between vertices i and j if there exists a sequence of

vertices k0 = i, k1, k2, . . . , km = j such that (kl−1, kl) ∈ E for all l = 1, 2, . . . ,m.

Definition 2.3. If (i, j) ∈ E then we say that i is a parent of j and j is a child of i. The set

of parents of a vertex i is denoted paG(i). Moreover, a vertex i is an ancestor of j and j is a

descendant of i if there exists a directed path from i to j. The set of descendants of a vertex i

is denoted anG(i).

So far, the graph I have characterized is a deterministic set of vertices with edges connecting

them. We say that the joint distribution of a set of random variables X = (X1, X2, . . . , Xp)

factorizes with respect to a graph G with V = (1, 2, . . . , p) if each vertex is mapped to a random

variable i→ Xi and

Xi ⊥⊥ Xj | XpaG(i)
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kl−1 kl kl+1

kl′

Figure 2.2: Conditioning on the descendant of a collider (Definition 2.4[4])

for all i ∈ V and j ∈ anG(i) \ paG(i). This is sometimes called the local Markov property. For

ease of notation, I will often omit the mapping i→ Xi and simply work with the induced graph

G = (V,E) where V = (X1, X2, . . . , Xp) and E ⊆ {(Xi, Xj) : (Xi, Xj) ∈ V 2, i ̸= j}.
Figure 2.1a depicts the example in the previous section as a directed graph, such that

V = {D,Y,C} and E = {(D,Y ), (C,D), (C, Y )}. A key feature of a causal graphical model

is the absence of cycles among the vertices, which is to ensure temporal consistency, that is,

recognizing that the future cannot cause the past. This type of graph is called a directed acyclic

graph (DAG).

With the structure of the DAG established, we can now reason about implied conditional

independencies. I use the following four rules to determine whether a path is blocked, implying

independence, or not (Pearl, 1988).

Definition 2.4. A path k0 = i, k1, . . . , km = j is either d-separated (blocked) or d-connected

(unblocked) according to the following criteria.

[1] A path is d-separated if it contains a collider kl−1 → kl ← kl+1 for some l = 1, . . . ,m.

For example, D → Y ← C.

[2] A path is d-separated if it contains a non-collider that has been conditioned on, denoted

by kl−1 ← kl → kl+1 for some l = 1, . . . ,m. For example, D ← C → Y .

[3] A path is d-connected if it contains a collider that has been conditioned on, kl−1 →
kl ← kl+1 for some l = 1, . . . ,m, and criteria [1] and [2] are not satisfied. For example,

D → Y ← C.

[4] A path is d-connected if it contains a descendant of a collider that has been conditioned

on (see Figure 2.2) and criteria [1] and [2] are not satisfied.

We can now characterize causal effects in terms of counterfactuals on the DAG. A coun-

terfactual of a random variable is induced by intervening on one or more of its ancestors.

Counterfactuals can be formalized if we view the random variables as functions of their ances-

tors and an arbitrary disturbance term.
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Definition 2.5. Given a DAG G, the random variables X = (X1, X2, . . . , Xp) satisfy a non-

parametric structural equation model (NPSEM) if, for all i = 1, . . . , p,

Xi = fi(XpaG(i), ϵi)

for some function fi(·) and random variable ϵi.

Example 2.1. A common example of the function fi(·) in Definition 2.5 is the linear structural

equation model. This model posits that, for all i = 1, . . . , p,

Xi =
∑

j∈paG(i)
βjXj + ϵi.

In a linear structural equation model, causal effects are characterized by the parameter βj .

From the perspective of Definition 2.5, an intervention setting XpaG(i) = xpaG(i) would give

rise to the counterfactual

Xi(XpaG(i) = xpaG(i)) = fi(xpaG(i), ϵi).

This has obvious parallels with the potential outcomes of the previous section. For example,

returning to Figure 2.1a, the counterfactual of Y following an intervention setting D = 1 would

be Y (D = 1) = fY (1, ϵY ), where fY (·) and ϵY are respectively the counterfactual function and

disturbance term.

The effect of interventions on more distant ancestors can be defined recursively. Suppose

J ⊆ anG(i) \ paG(i) indexes a set of interventions on ancestors of i, then the counterfactual can

be defined as

Xi(xJ) = fi{XpaG(i)(xJ), ϵi}.

2.1.4 Single world intervention graphs

The potential outcome and causal graph paradigms were developed independent of one another.

While potential outcomes trace their origins to Neyman’s agricultural experiments (Neyman,

1990), causal graphs emerged around the same time with Wright’s path diagrams (Wright,

1920), later formalized by Pearl (1988). Despite their disparate origins, there have been recent

attempts to unify the two frameworks and combine their unique strengths (Richardson and

Robins, 2013a). While potential outcomes provide a clear definition of causation, graphs provide

a coherent way of reasoning about networks of causal relationships.

This unifying framework is called single world intervention graphs (SWIGs). The SWIG

representation of the motivating example in Section 2.1.2 is given in Figure 2.1b. Compared to

Figure 2.1a, the SWIG splits the exposure node into two halves: D, representing the stochastic

naturally-occurring exposure, and d, representing a fixed intervention value. The random half

D inherits all incoming arrows in the original DAG and the fixed half d inherits all outgoing
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arrows. Descendants of the intervention node (in this case Y ) are replaced with the potential

outcomes Y (d) under the intervention value d. SWIGs are referred to as “single world” because

they represent the causal graph under a particular realization of the exposure.

It has been shown that SWIGs define a graphical model for the potential outcomes (Richard-

son and Robins, 2013b), so we can apply d-separation to reason about conditional independence

among counterfactuals. For example, Figure 2.1b implies that D and Y (d) are d-separated

conditional on C, which is equivalent to our definition of exchangeability in Assumption 2.3.

2.1.5 Randomization inference

The previous three sections have focused on defining causal quantities and outlining the

conditions under which they can be obtained from observed data, commonly referred to as

identification (Lewbel, 2019). This section is concerned with inference, which is the process

of quantifying uncertainty in our causal statements. In particular, I focus on an approach

to inference called randomization inference (Rosenbaum, 2002a; Zhang and Zhao, 2022).

Randomization inference is applicable to problems where the exposure is randomized via

a mechanism that is known to the analyst. In Chapter 5, I describe how this can be applied to

the randomization that occurs during genetic inheritance.

Returning to the aspirin example from Section 2.1.2, suppose this data emerges from a

randomized experiment where each individual i is assigned to take aspirin (Di = 1) or a placebo

(Di = 0). The resulting vector of exposures is summarized by D = (D1, D2, . . . , DN )T . I will

assume that the experiment is completely randomized, such that a fixed number of individuals

Nt are assigned to take aspirin and Nc = N −Nt are assigned to take a placebo. In the aspirin

example, Nt = Nc = 3. Let Ω = {(d1, . . . , dN ) ∈ {0, 1}N :
∑N

i=1 di = Nt} denote the set of

feasible assignment vectors. By assumption, all assignment vectors in Ω are realized with equal

probability. Stated formally, the randomization distribution can be written as

(2.1) pr(D = d | F) =


(
N

Nt

)−1

, for all d ∈ Ω,

0, otherwise.

where F = {(Yi(1), Yi(0)) : i = 1, . . . .N} denotes the collection of potential outcomes for all

individuals in the sample, which we hold fixed.

Randomization inference is concerned with exact hypotheses of the form

H0 : Yi(d) = Yi(0) + β0, for all d ∈ {0, 1} and i = 1, . . . , N,

where β0 = 0 corresponds to the sharp null hypothesis of no effect for any individual in the

sample (Imbens and Rubin, 2015). This implies a constant additive treatment effect β0 across

individuals. Under this hypothesis and Assumption 2.2 (consistency), the baseline potential
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outcome can be written in terms of the observable data {(Di, Yi) : i = 1, . . . , N} as

Yi(0) = Yi − β0Di =

Yi, if Di = 0,

Yi − β0, if Di = 1,

A key characteristic of exact hypotheses is that the potential outcomes are imputable under

alternate treatment assignments. For example, individual 1 in Table 2.1 was randomized to

take aspirin (D1 = 1) and reported a headache severity of Y1 = Y1(1) = 6. If β0 = 0 were

true, then individual 1’s headache severity would be identical regardless of their treatment

assignment, implying that Y1(0) = 6 as well. Table 2.2 extends this argument to all individuals

in the sample.

Table 2.2: Imputed data for the effect of aspirin (Di) on self-reported headache severity (Yi)
under the sharp null hypothesis.

i Di Yi Yi(1) Yi(0)

1 1 5 5 5
2 1 7 7 7
3 1 3 3 3
4 0 5 5 5
5 0 9 9 9
6 0 7 7 7

When the null hypothesis is true, the complete randomization of Di via Equation (2.1)

implies unconditional exchangeability

Di ⊥⊥ Yi(0)
H0= Yi − β0Di.

Consequently, testing the null hypothesis H0 that the causal effect is a constant β0 is equivalent

to testing the independence of Di and Yi − β0Di. To this end, a simple test statistic is the

difference in outcomes between the two groups,

T (D | F) =
N∑
i=1

Di(Yi − β0Di)−
N∑
i=1

(1−Di)(Yi − β0Di)
H0=

∑
i:Di=1

Yi(0)−
∑

i:Di=0

Yi(0).

The test statistic for Table 2.2 is T (D | F) = (6 + 7 + 3)/3− (5 + 9 + 7)/3 = −2. This tells
us that individuals who were assigned to take aspirin reported a headache severity 2 points

lower, on average, than individuals who were assigned to take placebo. However, even if aspirin

had no effect whatsoever on headache severity (β0 = 0), it is possible that individuals with

less severe headaches happened to be randomized to take aspirin. This uncertainty can be

quantified via the p-value

(2.2) P (D | F) = p̃r{T (D̃ | F) ≤ T (D | F)}.
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Here D̃ is an independent copy of D and p̃r means that the probability is taken over D̃

according to the randomization distribution (2.1). Table 2.3 gives an example of D̃. Since the

potential outcomes are imputable under H0, we know that T (D̃ | F) = 2 in this instance. In

plain terms, we are asking: if we re-ran the experiment many times under the null hypothesis

(i.e., Di and Yi − β0Di are independent), how often would we observe a test statistic more

extreme than our observed test statistic? If this probability is lower than some level α, then we

have little confidence in the null hypothesis.

Table 2.3: Imputed data for the effect of aspirin (Di) on self-reported headache severity (Yi)
under the sharp null hypothesis.

i D̃i Yi Yi(1) Yi(0)

1 0 5 5 5
2 1 7 7 7
3 0 3 3 3
4 1 5 5 5
5 1 9 9 9
6 0 7 7 7

We can characterize the size of this p-value in the following proposition.

Proposition 2.1. The p-value (2.2) has size α in the sense that

pr{P (D | F) ≤ α | H0} ≤ α.

for any significance level 0 ≤ α ≤ 1 and test statistic T (· | F) such that T (Z̃ | F) d
= T (Z | F)

under H0.

A sketch of the proof is as follows. Since T (Z̃ | F) d
= T (Z | F) under H0 and P (D | F) =

p̃r{T (D̃ | F) ≤ T (D | F)}, we can view P (D | F) as the distribution function of T (Z | F).
Since distribution functions stochastically dominate the uniform distribution, the result follows.

See Zhang and Zhao (2022) for further discussion.

2.1.6 Inverse probability weighting

Inverse probability weighting (IPW) is used when sub-groups of a sample are over- or under-

represented relative to some desired target population (Hernán and Robins, 2020, p.20–24). IPW

is a primary focus of Chapter 3 and also makes a brief appearance in Chapter 5 in the context

of propensity score weighting. Suppose Si ∈ {0, 1} is a random variable denoting whether an

individual is included in a sample (S = 1) or not (S = 0). The probability of selection is

governed by a collection of random variables X = (X1, . . . , Xk) such that pr(S = 1 | X) = e(X)

for some function e(·). One of the simplest statistics for which inverse probability weighting is
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applicable is the population mean µ = E(Y ) of a random variable Y . Horvitz and Thompson

(1952) proposed one of the earliest IPW estimators for the population mean, given by

µ̂ =
1

N

N∑
i=1

Si Yi e(Xi)
−1.

for an iid sample i = 1, . . . , N .

Under the assumption that Y ⊥⊥ S | X and 0 < e(X) ≤ 1 with probability one (Stuart

et al., 2011), we can show that µ̂ is unbiased for µ by

E(µ̂) = E

{
1

N

N∑
i=1

Si Yi e(Xi)
−1

}

=
1

N

N∑
i=1

E[E{Si Yi e(Xi)
−1 | Xi}] (law of iterated expectations)

=
1

N

N∑
i=1

E[e(Xi)
−1E{Si Yi | Xi}]

=
1

N

N∑
i=1

E[e(Xi)
−1E{Si | Xi}E{Yi | Xi}] (by assumption)

=
1

N

N∑
i=1

E{E(Yi | Xi)}

= E(Yi) = µ.

2.1.7 Propensity score weighting

In this section, I introduce a quantity called the propensity score. If X is a set of observed

baseline variables, including all observed confounders, and D ∈ {0, 1} is a binary exposure,

then the propensity score can be written as

(2.3) e(X) = pr(D = 1 | X),

that is, the probability of being exposed given a vector X. This bears obvious similarities with

the probability of selection in Section 2.1.6, except that the selection indicator S is replaced by

the exposure indicator D. Inverse probability weighting is also a valid approach for recovering

expected potential outcomes and thereby average causal effects. An estimator for the average

causal effect can be written as

β̂ =
1

N

N∑
i=1

Di Yi e(Xi)
−1 − 1

N

N∑
i=1

(1−Di)Yi {1− e(Xi)}−1.
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Under positivity (0 < e(X) < 1 with probability one) and exchangeability, the expected value

of the first term in this estimator is

E

[
1

N

N∑
i=1

Di Yi e(Xi)
−1]

]
=

1

N1

N∑
i=1

E{Di Yi e(Xi)
−1}

=
1

N

N∑
i=1

E[E{Di Yi e(Xi)
−1} | Xi]

=
1

N

N∑
i=1

E{e(Xi)
−1E(DiYi | Xi)}

=
1

N

N∑
i=1

E{E(Yi | Di = 1, Xi)}

=
1

N

N∑
i=1

E{E(Yi(1) | Xi)}

= E{Yi(1)}.

Similarly, the second term is equal to E{Yi(0)} in expectation. This means that E(β̂) =

E{Yi(1)− Yi(0)}, the average causal effect.

Propensity score weighting has a connection to sensitivity analyses through the work of

Rosenbaum and colleagues (Rosenbaum, 1987; Gastwirth, Krieger, and Rosenbaum, 1998;

Rosenbaum, 2002b). The influential sensitivity analysis of Cornfield et al. (1959) introduced

in Section 1.1 relies on a binary outcome, a single binary confounder and no adjustment for

observed covariates. By placing restrictions on the maximal deviation between an estimated

propensity score and the true propensity score containing unobserved confounders, Rosenbaum-

type sensitivity analyses provide a flexible and interpretable way of assessing sensitivity to

unobserved confounding.

2.1.8 Instrumental variables

It often occurs that some or all of the confounders C are unobserved, so that conditional

exchangeability (see Assumption 2.3) is not satisfied. In this section, I describe an approach

that can recover causal effects even in the presence of unobserved confounding.

The principles behind instrumental variable analysis emerged independently in several

fields. In economics, an appendix of Wright (1928) derives instrumental variable estimators for

simultaneously-determined supply and demand curves. Philip Wright’s eldest son, Sewall, is

suspected to have contributed to this appendix (Stock and Trebbi, 2003). Sewall is relevant to

my thesis due to his method of path coefficients, a precursor to causal graphical models. In

medicine, Zelen (1977) proposes a design for clinical trials, called an encouragement design,

which randomize encouragement to a treatment rather than the treatment itself. As we will

see, this has direct parallels with instrumental variable designs more generally. See Stock and
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Trebbi (2003), Imbens (2014) and Imbens and Rubin (2015) for a more detailed survey of the

history and development of instrumental variable analysis.

Instrumental variable analysis is characterized by the existence of an instrument or instru-

mental variable Z. An instrumental variable induces unconfounded variation in the exposure

without otherwise affecting the outcome. We can then make inferences about the effect of the

exposure through the variation induced by the instrument. Suppose the potential outcomes are

given by Y (z, d) and D(z) for z, d ∈ {0, 1}. Paraphrasing Condition 1 of Imbens and Angrist

(1994), an instrument Z is valid for the causal effect of D on Y if the following three assumptions

hold (omitting possible conditioning on observed confounders).

Assumption 2.5. (Random assignment) Z ⊥⊥ {D(z), Y (z, d)} for all z, d ∈ {0, 1}.

Assumption 2.6. (Exclusion restriction) Y (z, d) = Y (z′, d) = Y (d) for all d, z, z′ ∈ {0, 1}.

Assumption 2.7. (Relevance) E(D | Z = z) is a non-trivial function of z.

Suppose for the moment that the outcome is binary Y ∈ {0, 1}. Under Assumptions 2.5–2.7,

Balke and Pearl (1997) derive sharp bounds for the average causal effect β = pr{Y (1) =

1} − pr{Y (0) = 1}. Consistent with their notation, let pyd,z = pr(Y = y,D = d | Z = z), then

max



p00,0 + p11,1 − 1

p00,1 + p11,1 − 1

p11,0 + p00,1 − 1

p00,0 + p11,0 − 1

2p00,0 + p11,0 + p10,0 + p11,1 − 2

p00,0 + 2p11,0 + p00,1 + p01,1 − 2

p10,0 + p11,0 + 2p00,1 + p11,1 − 2

p00,0 + p01,0 + p00,1 + 2p11,1 − 2



≤ β

and

min



1− p10,0 − p01,1

1− p01,0 − p10,1

1− p01,0 − p10,0

1− p01,1 − p10,1

2− 2p01,1 − p10,0 − p10,1 − p11,1

2− p10,0 − 2p10,0 − p00,1 − p01,1

2− p10,0 − p11,0 − 2p01,1 − p10,1

2− p00,0 − p01,0 − p01,1 − 2p10,1



≥ β

The authors use the do-calculus notation (Pearl, 1995; Pearl, 2000), which I substitute for

potential outcomes. As noted in Imbens (2020), for simple problems such as this, the distinction

between do-calculus and potential outcomes is merely notational. There is another literature,
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not explored in this thesis, on using related inequalities to test for instrument validity (Kitagawa,

2015; Mourifié and Wan, 2017).

The bounds on the average causal effect are often conservative in practice, limiting the

utility of the inference (Swanson et al., 2015). If we are willing to place additional assumptions

on the tuple {Z,D(0), D(1), Y (0), Y (1)}, it is possible to obtain more informative inference,

although not necessarily for the average causal effect. Condition 2 of Imbens and Angrist (1994),

which I rewrite below, is an additional assumption that allows point identification of the average

causal effect within a subset of individuals.

Assumption 2.8. (Monotonicity) D(1) ≥ D(0) with probability one.

E(Y | Z = 1)− E(Y | Z = 0)

=E[D(1)Y (1) + {1−D(1)}Y (0) | Z = 1]− E[D(0)Y (1) + {1−D(0)}Y (0) | Z = 0]

=E[D(1)Y (1) + {1−D(1)}Y (0)]− E[D(0)Y (1) + {1−D(0)}Y (0)]

=E[{D(1)−D(0)}{Y (1)− Y (0)}]

= pr{D(1)−D(0) = 1}E{Y (1)− Y (0) | D(1)−D(0) = 1}.

The first line follows from consistency (Assumption 2.2), the second line follows from random

assignment (Assumption 2.5) and the fourth line follows from monotonicity (Assumption 2.8).

Since E(D | Z = 1)−E(D | Z = 0) = pr{D(1)−D(0) = 1} by the same assumptions, it follows

that
E(Y | Z = 1)− E(Y | Z = 0)

E(D | Z = 1)− E(D | Z = 0)
= E{Y (1)− Y (0) | D(1)−D(0) = 1}.

The right-hand expression is called the complier average causal effect (CACE) or local average

treatment effect. The subset of the population whose exposure level is shifted by the instrument

(D(1)−D(0) = 1) is called the complier group. This is in contrast to always-takers (D(1) =

D(0) = 1), never-takers (D(1) = D(0) = 0), and defiers (D(1)−D(0) = −1).
The CACE is not always of interest, for example, when compliers are an idiosyncratic subset

of the population. Alongisde bounding approaches like Balke and Pearl (1997), it is possible to

impose additional assumptions that allow the CACE to be interpreted as an average causal

effect. Hernán and Robins (2006) describe so-called homogeneity assumptions which restrict the

variability of individual-level effects. The most common homogeneity assumption is linearity,

such that

Y (D) = βD + Y (0) = βD + ϵ,

where ϵ = Y (0) is the error term. Under this model, Y (1)− Y (0) = β for all individuals, so the

CACE equals the average causal effect. Subsequently, weaker assumptions have been proposed

which assume no additive interactions between confounders and either the instrument or the

exposure (Wang and Tchetgen Tchetgen, 2018; Hartwig, Wang, et al., 2022).
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Up until now, I have been working with a binary exposure, however, exposures are often

multi-valued or continuous. This can introduce additional challenges, since the exclusion

restriction can be violated if the exposure measure is coarser than the exposure itself. This is

the motivation behind Chapter 4. This problem was first introduced in Section 3.1 of Angrist

and Imbens (1995) in the context of incorrectly coded binary exposures (the paper refers

to exposures as treatments, which is the convention in economics, but I retain the language

I have been using). The authors consider a setting with a multi-valued exposure given by

S ∈ {0, 1, . . . , J} and a binary instrument Z ∈ {0, 1}. The potential outcomes are given by

Y (j) for all j = 1, . . . , J and S(z) for all z = 0, 1. In their Theorem 1, the authors show that,

under monotonicity (S(1)− S(0) ≥ 0 with probability one), the Wald estimator takes the form

β ≡ E(Y | Z = 1)− E(Y | Z = 0)

E(S | Z = 1)− E(S | Z = 0)
=

J∑
j=1

ωj βj ,

where

ωj =
pr{S(1) ≥ j > S(0)}∑J
i=1 pr(S(1) ≥ i > S(0)

and βj = E{Y (j)− Y (j − 1) | S(1) ≥ j > S(0)},

so that β can be viewed as a weighted per-unit treatment effect. The weights can be viewed

as the proportion of compliers within each level of the exposure, that is, the proportion of

individuals whose exposure level is shifted from j− 1 or less to j or more due to the instrument.

Suppose S is miscoded as D = I(S ≥ l) for some 1 ≤ l ≤ J . In their corollary of Theorem

1, Angrist and Imbens (1995) show that the Wald estimator takes the form

(2.4)
E(Y | Z = 1)− E(Y | Z = 0)

E(D | Z = 1)− E(D | Z = 0)
= ϕβ,

where

ϕ =

∑J
j=1 pr{S(1) ≥ j > S(0)}
pr{S(1) ≥ l > S(0)}

.

The insight from this expression is that ϕ = 1 only when the instrument has no effect on the

exposure except through switching individuals from S = l − 1 to S = l. Otherwise, ϕ > 1 and

the estimand is systematically larger than β.

Marshall (2016) is the first to refer to the phenomena where ϕ > 1 as coarsening bias, which

I use throughout Chapter 4. The author notes that (2.4) can equivalently be written as

βl +

∑
j ̸=l pr{S(1) ≥ j > S(0)}βj
pr{S(1) ≥ l > S(0)}

.

The author then provides some additional assumptions under which βl is identified, namely,

1. pr{S(1) ≥ j > S(0)} = 0 for all j ̸= l (this is equivalent to Angrist and Imbens (1995)’s

identification condition).
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2. βj = 0 for all j ̸= l.

3. pr{S(1) ≥ j > S(0)}βj = 0 for all j ̸= l.

4.
∑

j ̸=l pr{S(1) ≥ j > S(0)}βj = 0.

2.2 Genetics

This section introduces some definitions and concepts in genetics. My thesis does not require

a comprehensive understanding of genetics, but a basic foundation is needed. This section

amalgamates and condenses Davey Smith and Ebrahim, 2003, p.3–6 and Section 1.1 of Thompson

(2000).

DNA is a molecule found in the nuclei of human cells that encodes instructions for develop-

ment, function and reproduction. DNA consists of strands of base pairs, different combinations

of which encode different instructions. The four distinct base pairs are abbreviated by A, C, G

and T. In the nucleus, DNA is tightly wrapped into chromosomes, which are doubled strands of

helical DNA. The number of base pairs across all chromosomes in the human genome is roughly

3× 109.

A base pair which exhibits population-level variation in its nucleotides is called a single

nucleotide polymorphism (SNP). DNA sequences are typically characterized by the detectable

variant forms induced by different combinations of SNPs. These variant forms are called alleles.

In this thesis, unless otherwise stated, I only consider variants with two alleles. The classification

of alleles at a particular locus can be varied. The allele with the higher prevalence in a given

population is typically called the major allele, in contrast to the minor allele. Alternatively,

alleles can be classified according to a particular reference genome, where one will be called the

reference allele and the other the alternate allele. I use both terms where appropriate.

Human cells can be broadly categorized into two types: germ cells and somatic cells. Germ

cells, such as eggs and sperm, are involved in sexual reproduction. Somatic cells include all

other cells in the body, except for undifferentiated stem cells. The two cell types are typically

distinguished by the number of chromosomes they contain. Human somatic cells consist of 23

pairs of chromosomes, with one in each pair inherited from the mother and the other from the

father. Germ cells consist of only one set of chromosomes.

Meiosis is a type of cell division that results in germ cells containing one copy of each

chromosome. During this process, homologous chromosomes line up and exchange segments

of DNA between themselves in a biochemical process called crossing over. The recombined

chromosomes are then further divided and separated into germ cells. Since crossovers are

infrequent (roughly one to four per chromosome in most eukaryotes) SNPs located nearby

on the same parental chromosome are more likely to be transmitted together, which can

result in linkage disequilibrium, which is defined as population-level correlation between SNPs.
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Fertilization is the process by which germ cells in the father and mother join together to form

a zygote (fertilized egg cell), which will normally develop into an embryo.

The following glossary summarizes some of the terminology described in this section, and

other terminology that will arise in the thesis.

Table 2.4: Glossary of genetic terms

Name Definition

Allele Detectable variant forms of a DNA sequence.
Gene A DNA sequence which codes for a particular

biological function.
Genotype An allele (or group of alleles) inherited at a

specific site. If the alleles are the same, the
genotype is homozygous. If the alleles are dif-
ferent, it is heterozygous.

Haplotype A group of alleles on the same chromosome
inherited together from the same parent. The
corresponding genotype is the maternally-
inherited and paternally-inherited haplotypes.

Linkage disequilibrium Non-zero correlation between two SNPs at
distinct sites.

Locus A position in a DNA sequence. It can refer to
a SNP or longer regions within the sequence.

Marker A segment of DNA with an identifiable physi-
cal location on a chromosome which can be
measured using a genetic sequencing assay.
Markers are useful in genetic studies when
they are correlated with unobserved, but func-
tionally relevant, SNPs or DNA sequences.

Phenotype An observable, measurable trait in an individ-
ual (e.g., height, eye colour).

Pleiotropy A phenomenon where SNPs induce variation
in more than one phenotype.

Single nucleotide polymorphism (SNP) A position on a chromosome where base pairs
differ among individuals in a population.

2.3 Mendelian randomization

2.3.1 A brief history of Mendelian randomization

Mendelian randomization (MR) is a causal inference approach that uses the random allocation

of genes from parents to offspring as a foundation for causal inference (Sanderson et al., 2022).

The ideas behind MR can be traced back to the intertwined beginning of modern statistics

and genetics about a century ago. In one of the earliest examples, Wright (1920) used selective
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2.3. MENDELIAN RANDOMIZATION

inbreeding of guinea pigs to investigate the causes of colour variation and, in particular, the

relative contribution of heredity and environment. In a later defence of this work, Wright (1923,

p. 251) argued that his analysis of path coefficients, a precursor to modern causal graphical

models, “rests on the validity of the premises, i.e.,, on the evidence for Mendelian heredity”, and

the “universality” of Mendelian laws justifies ascribing a causal interpretation to his findings.

At around the same time, Fisher (1926) started to contemplate the randomization principle

in experimental design and used it to justify his analysis of variance (ANOVA) procedure,

which was motivated by genetic problems. In fact, the term “variance” first appeared in Fisher’s

groundbreaking paper that bridged Darwin’s theory of evolution and Mendel’s theory of genetic

inheritance (Fisher, 1918). Fisher (1935) described randomization as the “reasoned basis” (p.

12) for inference and “the physical basis of the validity of the test” (p. 17). Later, it was

revealed that his factorial method of experimentation derives “its structure and its name from

the simultaneous inheritance of Mendelian factors” (Fisher, 1951, p. 330). Indeed, Fisher viewed

randomness in meiosis as uniquely shielding geneticists from the difficulties of establishing

reliably controlled comparisons, remarking that “the different genotypes possible from the same

mating have been beautifully randomized by the meiotic process” (Fisher, 1951, p. 332).

While this source of randomization was originally used for eliciting genetic causes of

phenotypic variation, it was later identified as a possible avenue for understanding causation

among modifiable phenotypes themselves (Davey Smith, 2006). Lower et al. (1979) used N-

acetylation, a phenotype of known genetic regulation and a component of detoxification pathways

for arylamine, to strengthen the inference that arylamine exposure causes bladder cancer. Katan

(1986) proposed to address reverse causation in the hypothesized effect of low serum cholesterol

on cancer risk via polymorphisms in the apolipoprotein E (APOE ) gene. He argued that, if low

cholesterol was indeed a risk factor for cancer, we would expect to see higher rates of cancer

in individuals with the low cholesterol allele. Another pioneering application of this reasoning

can be found in a proposed study of the effectiveness of bone marrow transplantation relative

to chemotherapy (Gray and Wheatley, 1991), for example, in the treatment of acute myeloid

leukaemia (Wheatley and Gray, 2004). Patients with a compatible donor sibling were more

likely to receive transplantation than patients without. Since compatibility is a consequence

of random genetic assortment, comparing survival outcomes between the two groups can be

viewed as akin to an intention-to-treat analysis in a randomized controlled trial. This paper

appears to be the first to use the term “Mendelian randomization”.

It would be a dozen more years before an argument for the broader applicability of MR was

put forward by Davey Smith and Ebrahim (2003). At the time, a number of criticisms had been

levelled against the state of observational epidemiology and its methods of inquiry (Feinstein,

1988; Taubes, 1995; Davey Smith, 2001). Several high profile results failed to be corroborated

by subsequent randomized controlled trials, such as the role of beta-carotene consumption in

lowering risk of cardiovascular disease, with unobserved confounding identified as the likely
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culprit (Davey Smith, 2001, p. 329-330). This string of failures motivated the development of a

more rigorous observational design with an explicit source of unconfounded randomization in

the exposures of interest (Davey Smith, Michael, et al., 2020).

Originally, Davey Smith and Ebrahim (2003) recognized that MR is best justified in a within-

family design with parent-offspring trios. MR is commonly described as being analogous to a

randomized controlled trial with non-compliance. This analogy is based on exact randomization

in the transmission of alleles from parents to offspring which can be viewed as a form of

treatment assignment. From its inception, it was recognized that data limitations would largely

restrict MR to be performed in samples of unrelated individuals, which Davey Smith and

Ebrahim (2003) termed “approximate MR”. Such approximate MR has been the norm, seen

in the majority of applied and methodological studies to date. However, MR in unrelated

individuals lacks the explicit source of randomization offered by the within-family design,

thereby suffering potential biases from dynastic effects, population structure and assortative

mating (Davies, Howe, et al., 2019; Brumpton et al., 2020; Howe, Nivard, et al., 2022).

In addition to random assignment of exposure-modifying genetic variants, we must also

assume that the effects of these genetic variants on the outcome are fully mediated by the

exposure, known as the exclusion restriction. When this assumption holds, MR can be framed as

a special case of instrumental variable analysis (Thomas and Conti, 2004; Didelez and Sheehan,

2007).

It is common practice in MR studies to select instruments based on the results of genome-

wide association studies. These studies test the marginal association between each genetic

variant and the exposure, with genetic variants satisfying some p-value threshold then selected

as instruments. See Swerdlow et al. (2016) for a more detailed description of instrument selection

in MR studies. Since instruments are typically selected due to their statistical association with

the exposure, there is often minimal biological evidence that they satisfy instrument validity.

Of particular concern is violations of the exclusion restriction. There is growing recognition

that gene regulatory networks are sufficiently interconnected that almost all genetic variants

will exhibit some influence on a given trait (Boyle, Li, and Pritchard, 2017). This has led to

considerable recent methodological work to replace the exclusion restriction with more plausible

assumptions, typically by placing structure on the sparsity (Kang, Zhang, et al., 2016a) or

distribution of pleiotropic effects across individual genetic variants (Bowden, Davey Smith, and

Burgess, 2015; Zhao, Wang, et al., 2020; Kolesár et al., 2015).

2.3.2 Summary data MR

An additional limitation of MR is the unavailability of individual-level genetic data. Typically,

genetic data is released by large consortia in the form of summary statistics, which include

the coefficients and standard errors from regressions of some trait on each variant. This has

led to a sizeable literature on bespoke methods for summary data MR. In this section, I will
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Figure 2.3: Graphical representation of the canonical MR model

briefly review the statistical foundation of summary data MR and some of the most prominent

methods, signposting further reading where appropriate.

Summary data MR is typically motivated by linear structural equation models (Section 2.1.3)

(Burgess, Butterworth, and Thompson, 2013; Bowden, Davey Smith, and Burgess, 2015; Zhao,

Wang, et al., 2020). Suppose we have an outcome Y , exposure X and genetic instruments

Gj ∈ {0, 1, 2}, j = 1, . . . , p. Gj = 2 indicates that an individual has two minor or alternate

alleles for SNP j, while Gj = 0 indicates they have two major or reference alleles. Each Gj

regulates (or is a marker for a variant that regulates) the exposure X. The gene-exposure and

exposure-outcome relationships are given by

X =

p∑
j=1

γjGj + εX ,

Y = βX + εY ,

where εX ̸⊥⊥ εY and Gj ⊥⊥ (εX , εY ), j = 1, . . . , p. Furthermore, it is commonly assumed

that Gj ⊥⊥ Gj′ for any j ̸= j′. This can be justified when instruments are located on different

chromosomes or sufficiently far apart on the same chromosome. In MR, instruments are typically

markers for their surrounding genomic regions. These markers are selected by a process called

linkage disequilibrium (LD) clumping (Hemani, Zheng, et al., 2018). The model proposed in

this paragraph can be summarized by Figure 2.3, where C is some unobserved confounder.

From the observed data tuple (G1, . . . , Gp, X, Y ) it is possible to identify the parameters γj

and Γj = βγj . From there, the Wald estimator is simply the ratio of the latter over the former

β = Γj/γj . This simple observation is the basis of summary data MR. Genome wide association

studies will typically release summary estimates γ̂j and Γ̂j and their standard errors σγj and

σΓj , in lieu of individual level data.

Burgess, Butterworth, and Thompson (2013) first propose an approach for summary data

MR under the model

Γ̂j ∼ N (Γj , σ
2
Γj
)
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Figure 2.4: Graphical representation of the MR model with pleiotropy

which can be justified via the central limit theorem. The authors assume that γ̂j is measured

without error, so that it may be viewed as a fixed parameter (Bowden, Del Greco M, et al.,

2016; Bowden, Del Greco M, et al., 2017).

Assumption 2.9. (No Measurement Error, NOME) γ̂j = γj with probability one.

They then solve the log-likelihood

ℓ(β) = −1

2

p∑
j=1

(Γ̂j − βγj)
2

σ2
Γj

, β̂ =

∑p
j=1 Γ̂jγjσ

−2
Γj∑p

j=1 γ
2
j σ

−2
Γj

This gives rise to the so-called inverse variance weighted (IVW) estimator for β. The standard

error is simply given by

σβ =

 p∑
j=1

γ̂2j σ
−2
Γj

−1/2

As discussed in Section 2.3.1, MR studies often utilize many potentially invalid instruments.

This is represented with the following model (Bowden, Davey Smith, and Burgess, 2015):

X =

p∑
j=1

γjGj + εX

Y = βX +

p∑
j=1

αjGj + εY

In this model, each genetic variant Gj can exert a direct pleiotropic effect αj on Y not

mediated through X. This violates the exclusion restriction. Figure 2.4 summarizes this more

general model.

To regain identification, Bowden, Davey Smith, and Burgess (2015) propose an assumption

which ensures that each variant’s effect on the exposure γj is independent of its direct effect on

the outcome αj . This assumption views the parameters αj and γj as random effects.
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Assumption 2.10. (Instrument Strength Independent of Direct Effect, InSIDE) cov(γj , αj) =

0.

The motivation for this assumption is that

(2.5)
cov(γj ,Γj)

var(γj)
= β +

cov(γj , αj)

var(γj)

InSIDE
= β.

Therefore, a weighted linear regression of Γ̂j on γ̂j with weights σ−2
γj leads to a consistent

estimator for β under InSIDE. Bowden, Davey Smith, and Burgess (2015) refer to this as the

MR Egger estimator, in reference to the author of a similar approach for addressing small study

bias in meta-analysis (Egger, Davey Smith, and Minder, 1997).

Alongside MR Egger, there is an expansive methodological literature in MR concerned with

relaxing the exclusion restriction with different assumptions, typically related to the sparsity

or distribution of pleiotropic effects (Bowden, Davey Smith, et al., 2016; Kang, Zhang, et al.,

2016b; Hartwig, Davey Smith, and Bowden, 2017; Guo et al., 2018; Tchetgen, Sun, and Walter,

2021; Liu et al., 2022).

The NOME assumption that γ̂j = γj will lead to erroneous standard errors, particularly

in the presence of weak instruments, which are only marginally associated with the exposure

(Stock and Trebbi, 2003). Zhao, Wang, et al. (2020) propose a robust profile likelihood estimator

which considers sampling variation in both γ̂j and Γ̂j . This estimator is based on the model(
γ̂j

Γ̂j

)
∼ N2

{(
γj

Γj

)
,

(
σ2
γj ρσγjσΓj

ρσγjσΓj σΓj

)}
,

where N2 denotes the bivariate normal distribution. When the gene-exposure parameter γ̂j and

gene-outcome parameter Γ̂j are estimated in non-overlapping samples, ρ = 0. This is common

in genetic association studies, where different traits are often measured in different samples.

The case where ρ ̸= 0 is discussed in Wang, Zhao, et al. (2021).

The log-likelihood takes the form

ℓ(β, γ1, . . . , γp) = −
1

2

 p∑
j=1

(γ̂j − γj)
2

σ2
γj

+

p∑
j=1

(Γ̂j − βγj)
2

σ2
Γj

 .

Zhao, Wang, et al. (2020) view the parameters γ1, . . . , γp as nuisance parameters. These

parameters can be profiled out of the log-likelihood, such that

ℓ(β) = max
γ1,...,γp

ℓ(β, γ1, . . . , γp) = −
1

2

p∑
j=1

(Γ̂j − βγj)
2

σ2
γjβ

2 + σ2
Γj

.

This estimator has good efficiency and consistency properties. Within this framework, Zhao,

Wang, et al. (2020) consider a random effects model for pleiotropy where αj ∼ N (0, τ20 ) and τ20
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is not too large. This leads to the profile log-likelihood

ℓ(β, τ2) = −1

2

p∑
j=1

(Γ̂j − βγj)
2

σ2
γjβ

2 + σ2
Γj

+ τ2
+ log(σ2

Γj
+ τ2).

The authors generalize this to a contaminated normal distribution, where some small number

of |αj | can be large.
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Chapter 3

Sample-constrained partial

identification

Publications arising from this chapter

This chapter has been published in the journal Biometrika under the title “Sample-constrained

partial identification with application to selection bias” (Tudball, Hughes, et al., 2022). My

contribution was: conceptualization; stating and proving theorems, lemmas and propositions;

coding and validating the accompanying R package; designing and analyzing the simulation

study and applied example; writing the manuscript and revising in response to co-author and

reviewer comments. Co-authors’ contribution was: assistance with proving the main theorem;

suggestions for the design, analysis and interpretation of the applied example; providing feedback

on the manuscript and reviewer response.

SIGNED: Matthew Tudball (First Author) DATE: 24 July, 2022

SIGNED: Qingyuan Zhao (Senior Author) DATE: 24 July, 2022

Section 3.7 is an extension of the online appendix of an article published in Nature Commu-

nications titled “Collider bias undermines our understanding of COVID-19 disease risk and
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Software

I prepared an open source R package to accompany this publication. It implements the sensitivity

analysis for selection bias described in Section 3.3. See https://github.com/matt-tudball/

selectioninterval for installation instructions.

3.1 Introduction

3.1.1 General problem

Partial identification problems arise when the observable data are only sufficient to identify a

set or interval in which a parameter of interest is contained. A classical example from Manski

(2003) is the missing data problem, where Y is a discrete random variable and S is a binary

random variable indicating whether Y is observed (S = 1) or not (S = 0). The distribution of

Y can be decomposed into

(3.1) pr(Y = y) = pr(Y = y | S = 1) pr(S = 1) + pr(Y = y | S = 0) pr(S = 0)

for any y in the support of Y . Given that pr(Y = y | S = 0) is unobserved, the smallest

value that pr(Y = y) could take is pr(Y = y | S = 1) pr(S = 1) and the largest value is

pr(Y = y | S = 1) pr(S = 1) + pr(S = 0). Therefore, although pr(Y = y) itself cannot be point

identified, it can be partially identified via the interval corresponding to the smallest and largest

possible values.

Many partial identification problems can be formulated as the optimal value of a population

objective function, which we write as

(3.2) ν = inf{Q(θ) : θ ∈ Θ},

where Q : Rp → R and Θ ⊆ Rp. In the missing data example, Q(θ) = pr(Y = y | S = 1) pr(S =

1) + θ pr(S = 0) and Θ = [0, 1].

The field of stochastic optimization also considers problems of the form in (3.2) and has

built a large literature on estimation of, and inference for, ν when a sample analogue Qn is

observed instead of Q (where n denotes the sample size). We demonstrate that framing the

partial identification problem as a stochastic optimization problem will allow us to draw upon

these existing results.

Specifically, in this article we are concerned with the difficult setting where Θ must also be

estimated empirically. We consider a setting where Θ is characterized by inequality constraints

of the form Θ = {θ : hj(θ) ≤ 0, j = 1, . . . , J}, where we may only observe corresponding

estimators hnj(θ). Within this setting, our goal is to find a lower confidence bound Cn for any

0 < α < 1 such that

(3.3) lim
n→∞

pr(Cn ≤ ν) ≥ 1− α,

which will suffice to provide useful statistical inference in a wide set of applications.
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3.1.2 Motivating application

Our investigation is motivated by an applied question: how will selection bias affect the

conclusions of population-based cohort studies? Many statistical analyses begin by selecting

a study sample from some population of interest. When the sample is drawn non-randomly,

then valid inference for the population is no longer guaranteed; see Heckman (1979) and

Bareinboim, Tian, and Pearl (2014) for references. Inverse probability weighting could be used

to correct for this selection bias (Horvitz and Thompson, 1952; Stuart et al., 2011), but data on

non-selected observations may be limited or unavailable altogether, such that the weights cannot

be estimated. In such settings, there exist approaches to assess the sensitivity of estimates to a

range of plausible inverse probability weights (Aronow and Lee, 2013; Thompson and Arah,

2014). However, these approaches could be made more informative via a principled procedure

for conducting statistical inference and the inclusion of relevant auxiliary information about the

population. We demonstrate that such improvements can be made by casting these sensitivity

analyses within the general framework described in Section 3.1.1.

We are specifically motivated by studies conducted in UK Biobank, which is a large

population-based cohort study widely analyzed by health researchers. Studies of this cohort

are potentially biased since recruited participants are known to differ systematically from the

rest of the UK population on measures such as education, health status, age and geographical

location (Fry et al., 2017; Hughes et al., 2019).

Another application for which our statistical framework could be applied is partial identifi-

cation of causal effects with discrete instrumental variables. The partial identification results in

Richardson, Evans, and Robins (2011) can be formulated as an optimization problem subject

to constraints, which is amenable to our framework.

3.1.3 Existing literature

Statistical inference procedures have been developed for some special cases of our general problem

in eq. (3.3). An area of particular focus is the so-called “sample average approximation” (Shapiro,

Dentcheva, and Ruszczyński, 2009). In this case, Q is the expected value Q(θ) = E{f(θ,X)}
of some function f and Qn is a sample average Qn(θ) = n−1

∑n
i=1 f(θ,Xi), where X is some

random variable and X1, . . . , Xn are independent draws of X.

Statistical inference in the presence of Θn has been developed for convex sample average

approximations, such that f is convex in θ and Θ = {θ : hj(θ) ≤ 0, j = 1, . . . , J} where

hj(θ) = E{gj(θ,X)} and gj(θ,X) is convex in θ for all j. Shapiro (1991) shows that the plug-in

estimator

(3.4) νpn = inf{Qn(θ) : θ ∈ Θn}.

satisfies a central limit theorem under these convexity assumptions (and some additional

regularity conditions), where Θn = {θ :
∑n

i=1 gj(θ,Xi) ≤ 0, j = 1, . . . , J}.
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Moving away from convex problems, Wang and Ahmed (2008) consider the special case of min-

imizing a known function Q subject to a single expected value constraint Θ = {θ : E{g(θ,X)} ≤
0}. They propose an approach for calculating a sample size n so that Θn is feasible to some

small relaxation of the true problem with high probability.

Our work also overlaps with the partial identification literature in econometrics, much

of which considers inference for identified sets characterized by conditional or unconditional

moment inequalities, commonly interpreted as the set of minimizers of some criterion function

(Chernozhukov, Hong, and Tamer, 2007; Andrews and Soares, 2010; Andrews and Shi, 2013).

A related literature provides inference for parameters lying within partially identified sets, as

opposed to inference for the set itself (Imbens and Manski, 2004; Stoye, 2009). For a more

comprehensive review of the partial identification literature, see Molinari (2020).

A partially identified set can often be formulated as a region over which a likelihood is

maximized, with point identification achieved when this region is a singleton (Giacomini and

Kitagawa, 2021). Our framework is consistent with this interpretation, where Θ can be viewed

as a region corresponding to a flat likelihood and Q(θ) can be viewed as some function defined

over this region. In the missing data problem in Section 3.1, the likelihood is flat with respect to

pr(Y = y | S = 0) but we want to minimize another function, pr(Y = y), over this flat region.

3.2 Confidence intervals for sample-constrained partial

identification

3.2.1 Confidence intervals under known constraints

In this section, we briefly summarize existing results on statistical inference for stochastic

optimization when the set Θ is observed, which forms the basis of our generalization to situations

where an estimate Θn of Θ is observed instead. Suppose the parameter space is defined by a set

of inequality constraints

(3.5) Θ =
{
θ : hj(θ) ≤ 0, j = 1, . . . , J

}
where an equality constraint for some hj(θ) can be introduced by taking the inequality constraints

of both hj(θ) and −hj(θ). Recall that our goal is to provide inference about the infimum

ν = inf{Q(θ) : θ ∈ Θ}.
Much of the literature in stochastic optimization is centered on the statistical properties of

the estimator

(3.6) νn = inf{Qn(θ) : θ ∈ Θ}.

Consistency of optimal values and optimal solutions to such stochastic optimization problems

is typically achieved by imposing uniform convergence of Qn(θ) to Q(θ). First order asymptotic
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properties are obtained via the functional delta method. The key conditions are that the

infimum, viewed as a function of Q, satisfies some notion of differentiability at Q and that

n−1/2(Q−Qn) converges to a Gaussian process. See Shapiro (1991) for further details.

To make the previous discussion more concrete, consider the following four assumptions

commonly placed on the stochastic optimization problem described above.

Assumption 3.1. The set of solutions to (3.2) is a singleton {θ ∈ Θ: Q(θ) = ν} = {ϑ}.

Assumption 3.2. Let B ⊆ Rp denote a compact set and C(B) denote the space of continuous

functions on domain B. Then Θ ⊆ B, Q ∈ C(B) and Qn ∈ C(B) with probability one.

Assumption 3.3. Qn(θ) converges to Q(θ) with probability one as n→∞ uniformly on B.

Assumption 3.4. As n → ∞, the sequence Vn(θ) = n1/2{Q(θ) − Qn(θ)} converges in

distribution to a random element V (θ) ∈ C(B), where V (θ) is Gaussian process with mean 0

and variance σ2(θ) ∈ C(B).

These assumptions are jointly sufficient to achieve consistency and asymptotic normality of

νn, which we state formally in the following two propositions.

Proposition 3.1. Let ϑn ∈ argmin{Qn(θ) : θ ∈ Θ} be a sample solution and νn be defined as

in eq. (3.6). Under Assumptions 3.1, 3.2 and 3.3, νn → ν and ϑn → ϑ with probability one.

Proposition 3.1 is identical to Theorem 5.3 in Shapiro, Dentcheva, and Ruszczyński (2009)

under the condition that ϑ is unique.

Proposition 3.2. Under Assumptions 3.1, 3.2 and 3.4,

(3.7) n1/2(νn − ν)→ N
{
0, σ2(ϑ)

}
in distribution, where σ2(ϑ) is the asymptotic variance of νn defined in Assumption 3.4.

Proposition 3.2 is an immediate consequence of Theorem 3.2 in Shapiro (1991). Although

we do not restate the proof here, the intuition is that Assumptions 3.1 and 3.2 allow a notion of

differentiability of the infimum and Assumption 3.4 provides weak convergence of n1/2(Q−Qn)

to a Gaussian process, thus providing the conditions needed for an application of the delta

method.

To use Proposition 3.2 to construct a valid confidence interval, we must take into considera-

tion that both σ2 and ϑ are unknown. To this end, we state an additional assumption followed

by a proposition.

Assumption 3.5. There exists a uniformly strongly consistent estimator σ2
n(θ) ∈ C(B) for

σ2(θ) such that supθ∈Θ |σ2
n(θ)− σ2(θ)| → 0 with probability one.
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Proposition 3.3. Under Assumptions 3.1, 3.2, 3.3 and 3.5, σ2
n(ϑn) → σ2(ϑ) with probability

one.

Assumption 3.5 applies uniform convergence to an estimator for the asymptotic variance of

Qn(θ). This strong notion of convergence for σ2
n(ϑn) allows us to construct a confidence bound

of the form

(3.8) Cn = νn − Zα σn(ϑn)n
−1/2

where Zα is the upper α-quantile of the standard normal distribution. This choice of Cn has

asymptotically exact nominal coverage 1− α by Proposition 3.2, Proposition 3.3 and Slutsky’s

theorem.

3.2.2 Confidence intervals under sample constraints

We now consider the more difficult setting where the constraint functions hj(θ) need to be

estimated as well. We instead observe an estimator Θn = {θ : hnj(θ) ≤ 0, j = 1, . . . , J}
comprised of estimators of the constraint functions hnj(θ). We will discuss what properties Θn

must have to allow valid statistical inference for ν.

It is tempting to follow the approach of the previous section and construct a plug-in

estimator for ν by simply replacing Q with Qn and Θ with Θn and finding the corresponding

infimum. This is the approach taken in Shapiro, Dentcheva, and Ruszczyński (2009), given

by νpn in eq. (3.4). A problem with this approach is that it is possible that Θ ∩Θn = 0 with

probability one even as n becomes large. This means that the true solution ϑ will almost never

lie inside Θn, prohibiting the construction of a valid confidence interval for ν as illustrated by

the contrived example below.

Example 3.1. Consider a problem of the form Q(θ) = θ2 + E(X) and Θ =
{
θ : θ = E(X)

}
where X ∼ N (1, 1) is a normally-distributed random variable. The plug-in estimators are

Qn(θ) = θ2 + X̄n and Θn = {θ : θ = X̄n}, where X̄n is the mean of n independent and

identically distributed draws of X. It follows that ν = 2 and νpn = X̄2
n + X̄n, where νpn is the

plug-in estimator in eq. (3.4). The asymptotic variance of Qn(θ) is σ
2(θ) = 1, which we assume

is known. The confidence bound in eq. (3.3) is Cn = X̄2
n+ X̄n−Zαn

−1/2. A simple Monte Carlo

simulation demonstrates that the corresponding 95% confidence interval for n = 100 exhibits

sub-nominal coverage of around 70%.

Existing approaches in stochastic optimization address the problem in Example 3.1 by

restricting to sample average approximations and imposing convexity of both Q and h. To allow

inference for a broader class of problems, we propose an intuitive but conservative approach

which replaces Θn with an appropriate relaxation. In particular, we propose to use the relaxed

set

(3.9) Θr
n =

{
θ : hnj(θ) ≤ ϵnj(θ), j = 1, . . . , J

}
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where ϵn(θ) = (ϵn1(θ), . . . , ϵnJ(θ))
T is some J-dimensional sequence such that ϵnj(θ) ≥ 0 for all

θ ∈ B, chosen so that

(3.10) lim
n→∞

pr(Θ ⊆ Θr
n) ≥ 1− α1

for some 0 < α1 < 1. The exact forms of Θr
n and ϵn(θ) are not crucial for our main results,

provided (3.10) holds, which we discuss in more detail toward the end of this section.

Our proposed confidence bound is of the form Cn(θ) = Qn(θ) − Zα2σn(θ)n
−1/2 for some

0 < α2 < 1, where Zα2 is the upper α2-quantile of the standard normal distribution. We need

to select a θ so that eq. (3.3) is satisfied. This is accomplished by finding the optimal value and

solution over the relaxed constraint set,

(3.11) νrn = inf{Qn(θ) : θ ∈ Θr
n} and ϑr

n ∈ argmin{Qn(θ) : θ ∈ Θr
n},

and constructing a confidence bound of the form

(3.12) Cn = Cn(ϑ
r
n) = νrn − Zα2 σn(ϑ

r
n)n

−1/2.

We now need to demonstrate that Cn covers ν with known probability in the limit. To this

end, we need an additional technical assumption to hold.

Assumption 3.6. Let ζrn ∈ argmin{Cn(θ) : θ ∈ Θr
n} be the optimal solution of Cn(θ) over Θ

r
n,

then |ζrn − ϑr
n| converges to 0 in probability.

Assumption 3.6 is imposed so that two important quantities become asymptotically close.

The first quantity is Cn(ζ
r
n), which is the infimum over all confidence bounds in Θr

n. This

confidence bound is important because it provides a lower bound for other quantities with

known coverage probabilities, which is a fact we utilize in our main result in Theorem 3.1. The

second quantity is Cn(ϑ
r
n), which is our main confidence bound proposed in (3.12).

We argue that Assumption 3.6 is reasonable in the sense that ζrn and ϑr
n are solutions over

two objective functions which converge uniformly to the same limit. To make this intuition

more concrete, we provide some sufficient conditions for Assumption 3.6 in the Supplementary

Material. Essentially, if Assumption 3.3 is satisfied and hnj(θ) and ϵnj(θ) converge to hj(θ) and

0 for all j = 1, . . . , J uniformly on B with probability one, then we can show that both ϑr
n and

ζrn converge to ϑ with probability one.

We claim that Cn provides an asymptotically valid lower confidence bound.

Theorem 3.1. Suppose we select a relaxed constraint set Θr
n as in eq. (3.9) and significance

level 0 < α1 < 1 such that limn→∞ pr(Θ ⊆ Θr
n) ≥ 1− α1. Suppose we also select a significance

level 0 < α2 < 1. Then, under Assumptions 3.1 - 3.6,

lim
n→∞

pr(Cn ≤ ν) ≥ 1 − α1 − α2.

33



CHAPTER 3. SAMPLE-CONSTRAINED PARTIAL IDENTIFICATION

Here we outline the key steps in the proof. We begin by defining a deterministic sequence

δn = Zα2ϵn
−1/2 where ϵ > 0 is some small constant. We then show that pr(Cn ≤ ν) is bounded

from below by the sum of two quantities: pr{Cn(ζ
r
n) ≤ ν−δn} and pr{|σn(ζrn)− σn(ϑ

r
n)| ≤ ϵ}−1.

The second quantity converges to 0 under Assumption 3.6. The remainder of the proof follows

a similar argument to the main lemma of Berger and Boos (1994). Whenever Θ ⊆ Θr
n, we

know that Cn(ζ
r
n), which is the infimum over all confidence bounds in Θr

n, will cover ν at

least as often as Cn(ϑn), which is the confidence bound (3.8). Therefore, pr{Cn(ζ
r
n) ≤ ν,Θ ⊆

Θr
n} ≥ pr{Cn(ϑn) ≤ ν,Θ ⊆ Θr

n}. We also know that pr{Cn(ϑn) ≤ ν,Θ ⊆ Θr
n} = pr{Cn(ϑn) ≤

ν} − pr{Cn(ϑn) ≤ ν,Θ ̸⊆ Θr
n} by the law of total probability. In the limit, the first probability

on the right-hand side is equal to 1− α2 by Proposition 3.2 and the second probability is at

most α1 by assumption. This allows us to arrive at our main result.

The proof sketch also provides some insight into why the naive plug-in estimator νpn defined

in eq. (3.4) may fail to yield a valid confidence interval. A crucial quantity is pr(Θ ⊆ Θr
n), which

is known under an appropriate choice of ϵn(θ). The corresponding quantity for the plug-in

estimator is pr(Θ ⊆ Θn), which could be arbitrarily small. In Example 3.1, this probability is

zero.

It remains to discuss how to construct a relaxed set Θr
n. Whenever Θ can be characterized

by a set of moment inequalities, such that hj(θ) = E{mj(θ)}, the moment inequalities literature

summarized in Section 3.1.3 could be used to construct Θr
n. A more conservative relaxed

set could be constructed via an application of the intersection bound. Suppose the following

assumption holds on the constraint functions:

Assumption 3.7. For all θ ∈ Θ and j = 1, . . . , J , n1/2
{
hnj(θ) − hj(θ)

}
→ N

{
0, σ2

j (θ)
}
in

distribution and σ2
nj(θ) is a consistent estimator for σ2

j (θ).

This fairly weak assumption means that hnj(θ) is pointwise asymptotically normally dis-

tributed and that there is a consistent estimator for the variance. This assumption allows us to

select

ϵn(θ) = Zα1j σnj(θ)n
−1/2

where α1 = α11+α12+ . . .+α1J . It is straightforward to show that this choice of ϵn(θ) satisfies

(3.10). We could shrink the size of Θr
n by assuming that hn(θ) = {h1,n(θ), . . . , hnj(θ)}T converges

pointwise to a multivariate Gaussian with covariance matrix Σ and consistent estimator Σn.

This would allow us to construct Θr
n as an ellipsoid confidence region.

Remark 3.1. It remains to discuss how one would select α1 and α2. As a rule-of-thumb, we

typically choose the midpoint α1 = α2 = α/2. It is tempting to select α = α1 + α2 and choose

Cn as the largest confidence bound over all α1 and α2 satisfying this equality. This would mean

that α1 and α2 are sample-dependent quantities and so Theorem 3.1 will not directly apply.

However, we can reason heuristically that the best choice of α1 and α2 should lie at an interior

point α1 > 0 and α2 > 0. For a fixed sample, as α1 → 0 and α2 → α, Θr
n → B and thus Cn
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approaches the 100(1− α)% confidence interval over the unconstrained problem. As α1 → α

and α2 → 0, Cn → −∞ and thus the confidence interval becomes arbitrarily wide.

Remark 3.2. So far we have focused on inference for the infimum, however, partial identification

problems are often characterized by an identified set of the form I = [νl, νu], where νl =

inf{Q(θ) : θ ∈ Θ} and νu = sup{Q(θ) : θ ∈ Θ} Imbens and Manski (2004) and Chernozhukov,

Lee, and Rosen (2013). Suppose Θr
n is chosen so that pr(Θ ⊆ Θr

n) ≥ 1− α1/2. Moreover, let

νr,ln = inf{Qn(θ) : θ ∈ Θr
n} and νr,un = sup{Qn(θ) : θ ∈ Θr

n} denote the optimal values and ϑr,l
n

and ϑr,u
n denote the corresponding optimal solutions. The estimated interval can be written as

[νr,ln , νr,un ] and we can construct a confidence interval by combining the lower confidence bound

for νl and the upper confidence bound for νu, so that

[νr,ln − Zα2/2σn(ϑ
r,l
n )n−1/2, νr,un + Zα2/2σn(ϑ

r,u
n )n−1/2]

will cover I with probability at least 1−α1−α2. This is the two-sided analogue of the one-sided

confidence interval proposed in eq. (3.12) and Theorem 3.1.

3.3 Sensitivity analysis via a logistic model

3.3.1 Set-up

We now return to the motivating example of selection bias in population-based cohort studies

briefly described in Section 3.1.2. Specifically, we generalize the sensitivity analysis proposed in

Thompson and Arah (2014), who define a logistic model for the probability of sample selection

and propose to select parameters based on domain knowledge, or enumerate a large number of

possible parameters. This approach is challenging to implement in the presence of complicated

selection mechanisms with many parameters. Plausible sets of parameters that introduce bias

in estimates of interest may be overlooked. Therefore, we begin by framing Thompson and

Arah (2014) as an optimization problem over a space of plausible parameters, and describe

how relevant auxiliary information could be introduced to further restrict the parameter space

and provide more informative bounds, such as survey response rates, population means and

negative controls. An additional sensitivity analysis, Aronow and Lee (2013), is generalized in

the Supplementary Material.

Consider an independent and identically distributed draw of size N from an infinite pop-

ulation. For concreteness, we can think of this finite draw as the set of individuals who are

eligible to enter the sample. Let Si ∈ {0, 1} be a selection indicator for whether individual i

enrols in the sample, where Si = 1 indicates sample participation, and let the observed sample

size be denoted by n =
∑N

i=1 Si. For notational convenience, we assume S1 = . . . = Sn = 1 and

Sn+1 = . . . = SN = 0.

Within the observed sample, we observe a vector of variables related to sample selection

Wi ∈ RK . As in Thompson and Arah (2014), we assume that the probability of sample selection
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admits a logistic form,

(3.13) e(Wi; θ) = pr(Si = 1 |Wi) =
exp(θ0 + θ1Wi1 + . . .+ θkWiK)

1 + exp(θ0 + θ1Wi1 + . . .+ θkWiK)
,

where θ = (θ0, θ1, θ2 . . . , θK)T . We further assume that the sample is generated by some true

selection probabilities e(Wi; θ
∗) parametrized by θ∗.

For illustration, suppose that our object of interest is the population mean of a random

variable Xi. We can write the population mean, and corresponding sample mean, in terms of

θ∗ as

(3.14) β(θ∗) = E(Xi) =
E{Xi/e(Wi; θ

∗) | Si = 1}
E{1/e(Wi; θ∗) | Si = 1}

, βn(θ
∗) =

∑n
i=1Xi/e(Wi; θ

∗)∑n
i=1 1/e(Wi; θ∗)

.

The expression in eq. (3.14) relies on Xi ⊥ Si |Wi, which we will assume throughout.

Since we only observe those for whom Si = 1, the true parameter θ∗ cannot be estimated.

Thompson and Arah (2014) propose to consider a space of plausible values for θ∗ and identify

a worst-case lower bound and worst-case upper bound for βn(θ
∗). Inference for β(θ∗) itself was

not considered. Formally, we select a parameter space Θ in which we are confident that θ∗

resides. We then take the infimum and supremum of βn(θ) over the space Θ.

3.3.2 Sensitivity parameters

Since we have assumed a logistic form for the selection probabilities (3.13), we can select

sensitivity parameters which have a natural interpretation in terms of odds ratios.

Without loss of generality, suppose each Wik has mean zero and standard deviation one

within the sample. We can then choose a parameter Λ1 ≥ 1 such that

(3.15) Λ−1
1 ≤ exp(θk) ≤ Λ1, k = 1, . . . ,K.

We can interpret Λ1 as the change in the conditional odds of sample selection from a one

standard deviation increase in Wik, holding all else fixed. When Λ1 = 1, sample selection

is completely random. Of course, we could select sensitivity parameters Λ1k on a variable-

by-variable basis for k = 1, . . . ,K, although choosing a single Λ1 = maxk Λ1k simplifies the

interpretation of the sensitivity analysis.

The intercept term θ0 also needs to be bounded. We can choose two parameters Λl
0,Λ

u
0 ∈ (0, 1)

such that

(3.16) Λl
0 ≤ exp(θ0) ≤ Λu

0

which can be interpreted as the odds of sample selection among those for whom Wik = 0 for all

k.

Rearranging eq. (3.15) and (3.16) shows that the sensitivity parameters (Λl
0,Λ

u
0 ,Λ1) charac-

terize a compact subset of RK+1:

(3.17) θ ∈ Θ = [log(Λl
0), log(Λ

u
0)]× [log(1/Λ1), log(Λ1)]

K
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From here, we can define the estimand and estimator, respectively, for the worst-case lower

bound of β(θ) as

ν = inf{β(θ) : θ ∈ Θ}, νn = inf{βn(θ) : θ ∈ Θ}.

We could of course estimate the worst-case upper bound for β(θ) by taking the supremum of

βn(θ) over Θ (see Remark 3.2). Naturally, we can also consider estimators other than sample

means, such as ordinary least squares or two-stage least squares.

3.3.3 Auxiliary information constraints

We now introduce several common examples where there may be discordance between known

population quantities and quantities implied by the inverse probability weights. In general,

provided we can formulate the constraints as a statistical test with a known null distribution,

they can be placed within our framework.

Example 3.2. Suppose we know the response rate for a survey-based sample r = E{e(Wi; θ
∗)}.

It is straightforward to show that E{1/e(Wi; θ
∗) | Si = 1} = 1/r. This means that the within-

sample expectation of the true inverse selection probabilities is equal to the inverse response

rate. We therefore only want to consider parameters θ which imply this inverse response rate.

The corresponding constraint can be writen as

(3.18) hnj(θ) =
1

n

n∑
i=1

(1/e(Wi; θ)− 1/r) ≤ Zα1j/2 σnj(θ)/n
1/2,

where σnj(θ) is the sample standard deviation of 1/e(Wi; θ).

Example 3.3. Suppose we know the population mean E(Wik) of some Wik ∈Wi. The inverse

probability weighted sample mean of Wik should therefore equal this mean in expectation, since

E{Wik/e(Wi; θ
∗) | Si = 1}

E{1/e(Wi; θ∗) | Si = 1}
= E(Wik).

This is conceptually similar to the raking procedure in survey sampling (Deming and Stephan,

1940), which adjusts sampling weights to match known marginal totals. The covariate mean

constraint can be written as

(3.19) hnj(θ) =
1

n

n∑
i=1

{Wik − E(Wik)}/e(Wi; θ) ≤ Zα1j/2 σnj(θ)/n
1/2,

where σnj(θ) is the sample standard deviation of {Wik − E(Wik)}/e(Wi; θ).

Example 3.4. Suppose we are confident that higher values of Wik are associated with an

increased probability of sample selection. For example, Wik could be years of education and

we might know from comparisons with representative samples, such as the census, that better

educated individuals are more likely to select into the sample, conditional on other selection

variables, so that θj ≥ 0 a priori.
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Example 3.5. Suppose we know that two variables Wik and Wik′ are uncorrelated in the

population. The inverse probability weighted correlation between Wik and Wik′ should therefore

be zero. For example, due to the independent assortment of chromosomes, biological sex and

autosomal genetic variants should be independent in the population, however, Pirastu et al.

(2021) demonstrate that there is significant correlation within UK Biobank. This constraint

can be formulated in several ways, for example fixing the regression coefficient of Wik on Wik′

to be zero.

Examples 3.2, 3.3 and 3.5 are two-sided constraints such that we also want these inequalities

to hold for −hnj(θ).

Remark 3.3. In the population means setting, Miratrix, Wager, and Zubizarreta (2018)

demonstrate how to place shape constraints on the weighted empirical distribution of the

response. Their approach involves constructing the worst-case weighted distribution given the

Aronow and Lee (2013) bounding assumptions (see Supplementary Material). This results in a

set which contains the oracle weighted distribution with probability approaching one. Provided

we have a valid test, we can implement shape constraints within our framework without the

need to characterize the worst-case weighted distribution. In the simplest case, we might want

a variable to follow a known distribution in the population. For example, the distribution of

IQ scores should be normal with mean 100 and standard deviation 15, which is a stronger

constraint than Example 3.3. This could be formulated as a Kolmogorov-Smirnov test and the

relaxed constraint set could be constructed via the null distribution of that test.

3.4 Extension of Aronow and Lee (2013)

3.4.1 Extension to ratio estimators

Another sensitivity analysis that can be made more informative through the addition of auxiliary

constraints is one proposed in Aronow and Lee (2013). This non-parametric sensitivity analysis

computes bounds on an inverse probability weighted sample mean under the assumption that

each weight is bounded between two known constants. To start, we provide a slight generalization

of this sensitivity analysis to ratio estimators. Let the estimator be given by

(3.20) βn =

{ n∑
i=1

f(Ti)/e(Wi)

}/{ n∑
i=1

g(Ti)/e(Wi)

}

where Ti ∈ T ⊆ RM and f, g : RM → R. Unlike Section 3.3, we now assume that the functional

form of e(Wi) is unknown and some Wi may be unmeasured. As with Aronow and Lee (2013),

we assume that e(Wi) lies between two user-specified constants 1 ≤ a ≤ e(Wi) ≤ b <∞ with

probability one.
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To apply our theoretical results in Section 3.2, we need a set Θ of fixed dimension. A simple

assumption is that T is discrete and finite, T = {tk : k = 1, 2, . . . ,K}. Under this assumption,

we can define βn(θ) equal to

βn(θ) =

{ K∑
k=1

θkf(tk)pn(tk)

}/{ K∑
k=1

θkg(tk)pn(tk)

}

β(θ) =

{ K∑
k=1

θkf(tk)p(tk)

}/{ K∑
k=1

θkg(tk)p(tk)

}
where θk = E{1/e(Wi; θ) | Ti = tk, Si = 1} and pn(·), p(·) are (respectively) the sample and

population probability measures. This results in Θ = [1/b, 1/a]K . From here, the infimum takes

the usual form,

νn = inf{βn(θ) : θ ∈ Θ}, ν = inf{β(θ) : θ ∈ Θ}.

It remains to identify assumptions such that the conditions in Section 3.2 are satisfied.

Assumption 3.8. For all θ ∈ Θ, the denominators of β(θ) and βn(θ) are non-zero with

probability one.

Assumption 3.9. For all tk ∈ T , f(tk)/g(tk) ̸= ν.

Assumption 3.8 simply ensures that βn(θ) and β(θ) are well-defined over Θ. Assumption 3.9

is more subtle but will be needed to ensure a unique solution. If this assumption violated for

some k, then the infimum is identical for all values of θk, meaning that the solution is not

unique. An example of a function violating this condition is the following:

β(θ) =
−θ1 − 7θ2 − 10θ3

θ1 + θ2 + θ3
, Θ = [1, 2]3

In this example, ϑ = (1, 1, 2) and ϑ = (1, 2, 2) are both minimizers over Θ. The minimum value

is -7 but f(t2)/g(t2) = −7 as well, which violates the condition. These assumptions jointly

imply that ν has a unique minimizer. We begin with a technical lemma.

Lemma 3.1. νn = βn(ϑn) is a global minimum over Θ if and only if, for all k = 1, ...,K,

qkf(tk) ≤ ν qk g(tk), where qk = ϑk − (1/a+ 1/b− ϑk).

This leads to our main proposition.

Proposition 3.4. Under Assumptions 3.8 and 3.9, the set {θ ∈ Θ: β(θ) = ν} is a singleton

and, for n sufficiently large, the set {θ ∈ Θ: βn(θ) = νn} is a singleton with probability one.

In fact, Proposition 3.4 provides an explicit form for the sample minimizer,

(3.21) ϑnk =

1/b if f(tk)/g(tk) ≥ νn

1/a if f(tk)/g(tk) < νn
,
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and the population minimizer takes a similar form but with νn replaced with ν. Both Proposition

1 of Aronow and Lee (2013) and Section 4.4 of Zhao, Small, and Bhattacharya (2019) propose

equivalent algorithms for computing the optimizing weights in the population means setting.

Proposition 3.4 shows that we can generalize this algorithm to ratio estimators. In short, we can

order f(tk)/g(tk) from smallest to largest and evaluate βn(θ) by enumerating over the weight

at which 1/b changes to 1/a, which has computational complexity O(n).

Proposition 3.4 shows that Assumption 3.1 is satisfied for the generalized Aronow and Lee

(2013) estimator under relatively weak conditions. Furthermore, Assumptions 3.2, 3.4 and 3.3

are satisfied under Assumption 3.8 and the assumption that T is finite. We therefore have that

Proposition 3.2 is satisfied under these same relatively weak conditions.

3.4.2 Auxiliary information constraints

The constraints described in Examples 3.2 and 3.3 can be applied to this estimator. Let

cn = Zα1j/2 n
−1/2, then the response rate constraint can be formulated as

(3.22) hnj(θ) =
(
1 + c2n

){ K∑
k=1

(θk − 1/r)pn(tk)

}2

− c2n

K∑
k=1

(θk − 1/r)2pn(tk) ≤ 0.

Suppose wk ∈ R is an element of tk, then the covariate mean constraint can be formulated as

(3.23) hnj(θ) =
(
1 + c2n

){ K∑
k=1

θk(wk − w̄)pn(tk)

}2

− c2n

K∑
k=1

θ2k(wk − w̄)2pn(tk) ≤ 0.

Both of these constraints are quadratic in θ and can therefore be solved by existing algorithms

for quadratically-constrained linear programs. Example 3.4 cannot be extended to this setting

because it is tied to a parametric model. Example 3.5 can be extended to this setting in principle,

but the resulting optimization problem is intractable.

Uniqueness of ϑ over Θ is needed to invoke Theorem 3.1. The population minimization

problem over Θ is a linearly-constrained linear fractional programming problem. For example,

the population response rate constraint is

hj(θ) =

K∑
k=1

(θk − 1/r)p(tk),

which is linear in θ. Since the level sets of β(θ) are also linear, to establish uniqueness of ϑ it

suffices to assume (in addition to Assumptions 3.8 and 3.9) that the coefficient vectors of hj(θ)

and the level sets of β(θ) over Θ are not parallel.

3.5 Simulations

The aim of these simulations is to provide a brief assessment of the finite sample and limiting

properties of the inference procedure described in Section 3.2. For concreteness, we simulate the
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sensitivity analysis for selection bias described in Section 3.3. Our parameter β(θ) and estimator

βn(θ) are both the coefficient of a weighted linear regression. In particular, a regression of Yi

on Xi for (Xi, Yi) ∼ N (0, I2), where I2 is the identity matrix. The weights take the form in

eq. (3.13) with variables Wi = (Xi, Yi).

We consider three distinct scenarios for the constraints. In the first scenario, we impose

only sensitivity parameters Λl
0 = 0.11, Λu

0 = 0.25 and Λ1 = 3. In the second scenario, we also

impose a direction constraint θ1 ≥ 0 as in Example 3.4. In the third scenario, we impose both

the previous direction constraint and set the response rate equal to 0.15 as in Example 3.2. In

each scenario, we use the discussion in Remark 3.2 to construct a two-sided 95% confidence

interval for the identified set I = [νl, νu], where νl = inf{β(θ) : θ ∈ Θ}, νu = sup{β(θ) : θ ∈ Θ}
and Θ takes the form in eq. (3.17). The first and second scenarios have no sample constraints

and so the confidence interval corresponds to the one in eq. (3.8). The third scenario employs

the confidence interval proposed in eq. (3.12) and Theorem 3.1.

Each scenario has distinct properties. In the first scenario, there are two solutions to the

population optimization problems, thus violating Assumption 3.1. In the second scenario, the

addition of a direction constraint rules out one of the two solutions and satisfies Assumption

3.1. In the third scenario, the introduction of a sample constraint necessitates the use of our

relaxed confidence bound. In this scenario, we use our rule-of-thumb from Remark 3.1 to select

α1 = α2 = 0.025 for both the upper and lower bounds of the two-sided confidence interval.

Table 3.1 summarizes the results and broadly aligns with our theoretical predictions. The

first scenario violates Assumption 3.1 and the impact of this violation is substantial over-

coverage of the confidence interval. Intuitively, this occurs because the sample solution will

occur at, or near, the population solution that happens to minimize βn(θ) in any given sample,

which will result in a systematically wider confidence interval. The second scenario satisfies

all assumptions for Proposition 3.2 and therefore converges to exact nominal coverage. The

third scenario imposes a sample constraint and exhibits some over-coverage. This over-coverage

can occur because our confidence bound in Theorem 3.1 sidesteps the covariance between the

constraints hnj(θ) and objective function Qn(θ), instead imposing a worst-case intersection

bound.

In this simulation exercise, the weight model is comprised of two variables. Section 2 of the

Supplementary Material contains an additional simulation exploring the computation time of

our R package selectioninterval as the number of variables in the weight model increases.

3.6 Applied example: effect of education on income

3.6.1 Description of the design

We implement an instrumental variable design for the effect of education on income in the UK

Biobank cohort (Davies, Dickson, et al., 2018). We consider an instrumental variable design
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Table 3.1: Coverage frequency for the three scenarios over 5000 Monte Carlo replications

Sample size
Scenario 10 25 50 100 200 500 1000

1 0.972 0.992 0.995 0.997 0.998 0.996 0.995
2 0.936 0.974 0.981 0.983 0.979 0.966 0.947
3 0.953 0.985 0.991 0.991 0.987 0.986 0.979

looking at the effect of education on income in the UK Biobank cohort. Our exposure is whether

an individual remained in school at least until age 16 and our outcome is whether an individual

earned more than £31,000 per year in 2006. Our instrument is based on a September 1972

education reform in England which raised the school leaving age from 15 to 16. Individuals

who turned 15 just prior to the implementation of this reform were allowed to leave school,

while individuals who turned 15 just after were required to remain in school until they were 16.

This created a sharp discontinuity in the policies that the two groups were exposed to. Under

the assumption that individuals on either side of the age threshold are otherwise identical, we

can use this policy reform as an instrumental variable. We restrict our sample to individuals

who turned 15 within 12 months of September 1972 and we control for sex and month-of-birth

indicators. The unweighted estimate is 0.18 (95% confidence interval 0.08 - 0.28).

3.6.2 Results from naive sensitivity analysis

We first apply the sensitivity analysis described in Section 3.3.2 without auxiliary constraints,

where the probability weights contain sex, years of education, income, age, days of physical

activity per week and an interaction term between education and income. We choose sensitivity

parameters Λl
0 = 0.02, Λu

0 = 0.25 and Λ1 = 2, so that the average individual in the sample has

an odds of sample selection between 0.02 and 0.25 and each variable in the model can induce a

marginal odds of sample selection between 0.5 and 2. Our sensitivity analysis suggests that

the effect estimate lies in the interval [−1.34, 0.94] (95% confidence interval −1.84, 1.29]). This
interval is completely uninformative as it spans the full range of possible estimates.

One explanation for this conservativeness is that this simple sensitivity analysis does not

utilize all of the information available to us on the target population and the sample selection

mechanism. The minimizing (maximizing) weights corresponding to this interval imply that

the proportion of males in the population is 38.52% (46.6%) and the proportion of households

with a gross income greater than £31000 is 95.84% (95.66%), all of which are inconsistent with

known characteristics of the UK population.
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3.6.3 Results from constrained sensitivity analysis

To address this incongruence, we consider four constraints that are typical of the information

available to applied researchers using datasets such as UK Biobank. The first constraint is the

response rate of UK Biobank (5.5%), which is the proportion of individuals who entered the

cohort after receiving an invitation. The second constraint is the proportion of males in the UK

population within the UK Biobank age range of 40-69 (49.5%). The third is the proportion of

UK households earning more than £31000 per year at the date of UK Biobank recruitment in

2006 (21%). The fourth is the average age of individuals within our 2 year age bracket (48.98).

All statistics were obtained from publicly available records from the UK’s Office of National

Statistics.

Figure 3.1 shows the resulting estimated intervals (thicker lines) and their corresponding

confidence intervals (thinner lines) where each constraint is added sequentially. The estimated

intervals and confidence intervals correspond to those described in Remark 3.2. We can see

that each additional constraint reduces the width of the interval, with constraints 3 and 4

(the household income and age constraints respectively) seemingly having the largest marginal

impact. The top interval includes all constraints and is quite informative for the desired effect,

rejecting the null and suggesting an effect estimate in the range 0.08 - 0.22 (95% confidence

interval 0.04 - 0.38). The unweighted estimate still lies within this interval, but our sensitivity

analysis suggests some increased uncertainty in the range of effect estimates. These results also

suggest that, despite the potential conservativeness of the confidence interval in Theorem 3.1,

it can still produce informative bounds in practice.

3.7 Applied example: risk factors for COVID-19

We demonstrate how the sensitivity analysis in Section 3.3 can be applied to estimate risk

factors for a positive COVID-19 test in a non-random sub-sample of UK Biobank participants.

The data come from the June 2020 wave of the UK Biobank’s Coronavirus Infection Study.

Volunteers were tested for SARS-CoV-2 antibodies, indicating historical infection, using a

lateral flow device. At the time, there was an effort to identify characteristics, such as age and

body mass index (BMI), that predispose individuals to infection (Williamson et al., 2020).

A straightforward approach is to measure the correlation between each characteristic, known

as a risk factor, and the presence of SARS-CoV-2 antibodies. A potential concern with this

approach is that there is self-selection into the study, and individuals with known (or suspected)

infection, and those with certain risk factors, are more likely to participate. This could induce

collider bias when we condition on participation. This concern is exacerbated when looking at

age-related risk factors, since initial UK Biobank recruitment was between 2006 and 2010 and

many older participants will have died between then and 2020.

We have access to measures of age, sex and BMI in the full UK Biobank sample that
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Figure 3.1: Estimated intervals (thick lines) and corresponding confidence intervals (thin lines)
for effect estimates in the applied example. ‘Point’ represents the unweighted point estimate.
Each constraint is added sequentially. No constraint means that only the sensitivity parameters
Λl
0 = 0.02, Λu

0 = 0.25 and Λ1 = 2 are imposed. Constraint 1 sets the response rate equal to
5.5%. Constraint 2 sets the proportion of males in the population to be 49.5%. Constraint 3
sets the proportion of households earning more than £31000 to be 21%. Constraint 4 sets the
average age of individuals to be 48.98 years.

could be used to estimate inverse probability weights. However, one of the most informative

characteristics determining selection is COVID-19 infection itself, which we cannot observe in

the full sample. We construct intervals containing this missing variable in the weight model

and compare them with unweighted estimates and estimates weighted using only variables in

the full UK Biobank sample. We also compare the interval without constraints to the interval

with several constraints: response rate of the Coronavirus Infection Study and means of age,

sex and BMI in the full UK Biobank sample.

Figure 3.2 shows the estimates for two risk factors: age and BMI. The unweighted and

naively weighted estimates are similar for both. The interval estimates without constraints are

too wide to draw meaningful inferences about the size of the association, however, the estimates

with constraints are more informative. For age, the unweighted estimate lies toward the lower

end of the interval, although still within the 95% confidence interval. This interval suggests that

age could be positively associated with COVID-19 infection, which is plausible given the time

frame of the study (Griffith et al., 2020). For BMI, the unweighted estimate also lies within the

interval. The corresponding 95% confidence interval does not contain the null, and we have

reasonable confidence that BMI is associated with a heightened risk of COVID-19 infection.

44



3.8. DISCUSSION
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Figure 3.2: Estimated intervals (thick lines) and corresponding confidence intervals (thin lines)
for the least squares estimate of age (left) and BMI (right) on Covid-19 test result. ‘Raw’
represents the unweighted point estimate. ‘IPW’ represents the estimate using weights estimated
with covariates observed in the full UK Biobank cohort. ‘None’ represents the interval with no
constraints. ‘All’ represents the interval with all constraints. The constraints set the response
rate to its estimated value and the mean of age, sex and BMI to their full cohort values.

3.8 Discussion

There has been some existing work on bootstrap inference for Rosenbaum-type sensitivity

analyses (Zhao, Small, and Bhattacharya, 2019). This approach considers a fixed parameter

space Θ. It is unclear how to select the relaxation parameter ϵn(θ) in a bootstrap analogue

of our method under estimated constraints. Simple approaches, such as constructing Θr
n via

asymptotic approximations and then bootstrapping the distribution of νrn, are plausible but

their statistical properties remain to be explored.

In some instances, including our selection bias application in Section 3.3, the target of

inference is Q(θ∗), where θ∗ is some true parameter lying within Θ, rather than ν. Suppose Θ is

known and we have a two-sided identified set [infθ∈ΘQ(θ), supθ∈ΘQ(θ)] as in Remark 3.2, then

if Q(θ∗) lies near the boundary of this set (and the set has positive width), the non-coverage

probability of the corresponding confidence interval is effectively one-sided in the limit. A naive

two-sided confidence interval constructed around the identified set may be too conservative.

Imbens and Manski (2004) discuss approaches for maintaining uniform coverage of Q(θ∗). The

central limit theorem established by Shapiro (1991) for known Θ is amenable to their framework

(although, to our knowledge, has not been formally used in this setting); extending this result

to sample-constrained problems would be a valuable contribution. Stoye (2009) further extends

Imbens and Manski (2004) by developing confidence intervals that exhibit uniform coverage for

Q(θ∗) without relying on assumed superefficiency of the estimated interval width.

A final consideration is the computational burden of our approach. Our general inference

procedure in Section 3.2 relies on the optimization problems in eq. (3.11) being solvable, but

the computational complexity of these problems will vary depending on the application. Our R

package selectioninterval relies on out-of-the-box global and local optimization algorithms.
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There are no theoretical guarantees of convergence to the global optimum, however, we have

not observed a failure of convergence in our simulations.
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4.1 Introduction

4.1.1 Motivation

Mendelian randomization proposes to use genetic variants that alter, or mirror the biological

effects of, modifiable exposures to study the causal effects of such exposures on downstream

outcomes. The principle underlying Mendelian randomization is that genetic variants are

randomly passed from parents to offspring at conception, resulting in a plausibly unconfounded

source of variation in the exposures with which they are associated. For Mendelian randomization

estimates to inform policies or clinical practices, we must additionally assume that genetic

and environmental modifiers of the exposure produce similar effects on the outcome (Davey
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Smith and Ebrahim, 2003). For example, Mendelian randomization studies of pharmaceutical

exposures typically use genetic variants that code for potential drug targets, assuming that

similar effects would be observed if those targets were altered therapeutically (Plump and

Davey Smith, 2019).

One of the crucial assumptions underlying the Mendelian randomization approach is that

the relationship between the genetic instruments and the outcome is fully mediated by the

exposure, known as the exclusion restriction assumption. However, it is important to draw

a distinction between the true exposure experienced by an individual and our attempt at

measuring it. For practical purposes, we are often restricted to coarsened approximations which

do not fully encapsulate the mechanism by which the true exposure of interest affects the

outcome. Consistent with existing terminology, we define an exposure measurement as coarsened

if it is a discrete measure approximating a continuous latent exposure (Marshall, 2016).

In the Mendelian randomization context, coarsened exposures can violate the exclusion

restriction assumption. If the genetic instruments are acting on a latent exposure, such as body

mass index (BMI), but the measured exposure is a discretization of it, such as obesity status,

then there can exist genetically-driven variation in the true exposure within categories of the

measured exposure. We could imagine that counterfactually altering some BMI-raising single

nucleotide polymorphism (SNP) in an individual could result in a change in their BMI without

necessarily changing their obesity status. This can be viewed a form of measurement error

which opens up potential pathways from the genetic instruments to the outcome that do not

pass through the exposure measure, thus violating the exclusion restriction assumption.

For example, Richardson, Sanderson, et al. (2020) attempt to separate the effects of early

and later life adiposity on disease risk. The adiposity variable is a three-category self-report

measure (‘thinner’, ‘plumper’ and ‘about average’). It is reasonable to conceptualize a continuous

measure of body mass (e.g., BMI) underlying this coarsened categorical measure, such that

genetic variation in this latent continuous measure could occur within categories of the self-

report variable. We later re-analyse Richardson, Sanderson, et al. (2020) in Box 4.5.3 using

the approach proposed in this paper. Another example is Richmond et al. (2019), who apply

Mendelian randomization to investigate the effect of sleep traits (e.g., morning preference, sleep

duration) on breast cancer risk, finding large causal effects of several traits. These traits are

categorical measures, for example, morning preference is measured in six categories and sleep

duration is split into several groups. It is reasonable to conceptualize the true exposures on

which the genetic variants are acting as latent continuous sleep traits and preferences, for which

the measured exposures are discrete markers.

An important class of latent exposures we consider in this paper is disease liabilities, for

which binary disease diagnosis or case status is the typical exposure measurement. There are

an increasing number of Mendelian randomization studies investigating the effects of complex

diseases such as asthma, schizophrenia and attention deficit hyperactivity disorder on various
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outcomes (Lawn et al., 2019; Martins-Silva et al., 2019; Pasman et al., 2018; Sun et al., 2019).

Complex diseases which result from the interaction of environment and multiple genetic variants

are likely to affect outcomes of interest through pathways other than diagnosis, for example,

severity of sub-clinical symptoms. Since genetic instruments are, in turn, likely to influence

the manifestation or severity of the underlying symptoms, rather than diagnosis alone, this

represents a potential violation of the exclusion restriction.

4.1.2 Previous literature

This specific violation of the exclusion restriction assumption has been raised before in both

the economics and political science literatures (Angrist and Imbens, 1995; Marshall, 2016). It

has also been raised briefly in the Mendelian randomization context in Burgess and Labrecque

(2018), who discuss interpretation of estimates with binary exposures. The authors recommend

that findings be framed in terms of this latent exposure but note that the estimates themselves

have no meaningful causal interpretation. The authors do not describe how this bias may distort

estimates nor clarify how to appropriately frame estimates in terms of the latent exposure, which

will depend on the unobservable relationship between the latent exposure and its coarsened

measurement.

There is a rich literature in econometrics on instrumental variables for mismeasured or

latent exposures (Spady, 2007; Song, Schennach, and White, 2015). See Schennach (2020) for

an in-depth review. Hu and Schennach (2008) is the most closely related to the problem in

this chapter. The authors consider identification of a class of non-classical, non-linear errors-

in-variables models under relatively weak assumptions on the conditional distributions of the

instrument, measured exposure and latent exposure. However, Hu and Schennach (2008) cannot

be directly applied in this setting because they must assume that these three variables are

jointly continuously distributed, whereas we are concerned with discrete exposure measures.

The method described in this chapter is distinguished from these approaches by imposing a

stronger set of assumptions grounded in population genetic theory. For example, our assumption

that each SNP has an independent, additive effect on the exposure is empirically justified

(Heyne et al., 2023) and our linear single index assumption is well-studied (Falconer, 1965;

Curnow, 1972). We shall describe and justify these assumptions in further detail later in the

chapter.

4.1.3 Our contribution

Our main contributions are to derive an expression for the bias described in Section 4.1.1 and

introduce a clear set of identifying assumptions under which one can estimate the causal effect

of the latent exposure. We hope to allow researchers to decide whether these assumptions are

plausible in the context of their study. In Section 4.2, we outline our technical framework, which

assumes a linear single threshold model for the relationship between the latent exposure and
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its measurement. That is, we assume that values of the coarsened exposure are determined by

whether the latent exposure is above or below some threshold, which could be individual-specific.

For example, an individual is classified as obese if their BMI is above 30 and not obese otherwise.

This framework also contains the Falconer (1965) liability-threshold model, which assumes that

a disease occurs in an individual, or is sufficiently pronounced to be diagnosed, if a build-up of

underlying liability crosses some threshold. In this model, liability is assumed to capture all

genetic, shared and non-shared environmental risk factors.

In Section 4.3.1, we derive an expression for the bias from the naive approach of using

the coarsened measure as the exposure directly. Then, in Section 4.3.2, we show that, if the

latent exposure is standardized to have a standard deviation of one, its causal effect can be

identified if we have auxiliary information on the genetic variance of the latent exposure. This

may be obtained from GWAS or treated as a sensitivity parameter and varied over a plausible

range of values. In the context of disease liabilities, we may use the coefficient of determination

developed by Lee, Goddard, et al. (2012).

Section 4.4 provides some generalizations to this framework, in particular, allowing two-

sample estimation. Section 4.5 provides a real data example by creating artificially dichotomized

variables from the continuous BMI measure in UK Biobank. Boxes 4.5.2 and 4.5.3 present

reanalyses of two papers which could be interpreted within the framework proposed in this

paper (Pasman et al., 2018; Richardson, Sanderson, et al., 2020). In Sections B.1 and B.2 of

the Appendix, we examine the bias that can emerge when the assumptions of our framework

are violated.

4.2 Framework

We begin by outlining some key notation. Suppose there is a genetic instrument Z ∈ R, other
genetic variants (e.g., pleiotropic, weak) X ∈ RK and an environmental risk factor V ∈ R,
where V is assumed to be continuously distributed with mean zero. We also assume that Z,

X and V are mutually independent. We define G = µ+ αZ + γ′X as the genetic share of the

latent exposure and define the latent exposure itself as

L =G− V

=µ+ αZ + γ′X − V.
(4.1)

It would be equally correct to define L = G+ V , but the formulation in (4.1) simplifies some

later expressions. In the Falconer framework described in Section 4.1, L would represent liability

to some disease. We are able to observe a coarsened exposure characterized by a dichotomization

of the latent exposure.

D =

1 if L ≥ 0

0 if L < 0
.(4.2)
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Disease liability

Disease occurs

Liability distribution

Figure 4.1: In the Falconer framework, liability to a disease is assumed to follow a smooth
(often normal) distribution. The disease occurs at the tail of the distribution, with the grey
region representing prevalence in the population.

If L is disease liability, then D would represent occurrence of the disease. In practice, we

measure diagnosis of the disease, which does not necessarily correspond to occurrence due to

under- or over-diagnosis. We will treat the two as equivalent throughout and discuss violations

of this equivalence in Section 4.6.

Equation (4.2) is the crucial assumption underlying our approach; namely, that L is a linear

index that relates to D according to a single threshold. Section B.1 of the Appendix elaborates

on the importance of this structural assumption. Figure 4.1 illustrates our model within the

Falconer framework. There is a distribution of disease liabilities and the disease occurs at the

right tail of this distribution. The size of the grey region represents the prevalence of the disease

in the population.

We also have an observed outcome Y ∈ R. We restrict ourselves to a linear structural

equation model

(4.3) Y = βL+ ε

which is implicitly conditional on covariates, where ε can be correlated with both V and X. We

make the standard instrumental variable assumptions, namely, that α ̸= 0 and Z is independent

of ε conditional on covariates. The model (4.3) implicitly captures the assumption described in

Section 4.1 that genetic and environmental modifiers of the exposure produce equivalent effects

on the outcome. In this setting, the marginal effect (in absolute value) of both G and V is β.

Figure 4.2 summarizes this model in a directed acyclic graph. We can see that the exclusion

restriction is violated since there exists a path from the latent exposure L to Y which does not

pass through the measured exposure D. The structural equation (4.3) assumes no effect of D

itself. For a disease such as schizophrenia, liability could have a harmful effect on the outcome

but being diagnosed will usually lead to receiving treatment and thus could have a protective

effect. We cannot separately identify the two effects in this setting, although possibilities for
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VZ

X G DL Y

Z Genetic instruments
X Other genetic variants
G Genetic share of the latent exposure
V Environmental share of the latent exposure
L Latent exposure
D Coarsened exposure
Y Outcome

Figure 4.2: The framework proposed in Section 4.2 summarized in a directed acyclic graph.
Dotted circles represent latent variables and complete circles represent observed variables.

doing so are discussed in Section 4.4.2. When D is believed to have a distinct effect on the

outcome, we may instead identify the total effect of liability on the outcome; i.e., the direct

effect β and the indirect effect through D.

The structural assumptions made in this section can be summarized as follows:

Assumption 4.1. (Single threshold) The latent exposure L and its binary measurement D

are related by a single threshold model of the form D = I{L ≥ 0}.

Assumption 4.2. (Additivity) L = G− V , where G and V are, respectively, the genetic and

environmental shares of L.

Assumption 4.3. (Linearity) G is a linear function of the genetic instrument Z and other

genetic variants X, such that G = µ+ αZ + γ′X.

Assumption 4.4. (Environmental share) V has mean zero, standard deviation σV and is

in some family of continuous distributions, with cumulative distribution function given by

F (v/σV ) = FV (v) and density f(v/σV ) = fV (v).

Assumption 4.5. (Risk factor independence) Z, X and V are mutually independent.

Assumption 4.6. (Gene-environment equivalence) The outcome model takes the form Y =

βL+ ε, where ε is a random disturbance and X and V may be correlated with ε.

Assumption 4.7. (Instrumental variable assumptions) Z is independent of ε and α ̸= 0.

4.3 Identification

4.3.1 Bias from the naive approach

The naive approach to Mendelian randomization is to use the coarsened exposure D as the

exposure directly. We show in Proposition 4.1 that this results in a ‘multiplicative’ bias which

will scale the true effect β up or down, but not change its direction. When the distribution of
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L has a light tail (e.g., normal distribution), we will typically see inflation of effect estimates,

with the degree of inflation increasing as the prevalence of D becomes smaller. If D is case

status for a disease, for example, then effect estimates will be more inflated for rarer diseases.

We see this pattern of inflation occurring in our real data examples in Section 4.5.

Proposition 4.1. Consider a binary instrument Z ∈ {0, 1} and exposure G = µ+ αZ. Under

Assumptions 4.1-4.6, the Wald estimand takes the form

βD = cov(Z, Y )/ cov(Z,D) = β/fV (µ
∗),

where µ ≤ µ∗ ≤ µ+ α.

Proof. We start by noting that

cov(Z,D)/ var(Z) = pr(D = 1 | Z = 1)− pr(D = 1 | Z = 0)

= pr(L ≥ 0 | Z = 1)− pr(L ≥ 0 | Z = 0) (Assumption 4.1)

= pr(V ≤ µ+ αZ | Z = 1)− pr(V ≤ µ+ αZ | Z = 0) (Assumptions 4.2, 4.3 and 4.4)

= FV (µ+ α)− FV (µ) (Assumption 4.5)

= αfV (µ
∗) (Assumption 4.4)

by the mean value theorem, where µ ≤ µ∗ ≤ µ+ α.

It follows from Assumption 4.6 that cov(Z, Y )/ var(Z) = αβ. Thus,

cov(Z, Y )/ cov(Z,D) = β/fV (µ
∗).

The interpretation of Proposition 4.1 is that βD is equal to the true latent exposure effect β

divided by the density of V at some value µ∗. This quantity fV (µ
∗) is not identified since the

distribution of V is unknown and µ∗ is defined on the scale of the latent exposure.

4.3.2 The latent variable approach

The bias formula in Proposition 4.1 indicates that the nuisance term is fV (·), which is the

distribution of the environmental share V . We do not need to know fV (·) itself to achieve the

identification result in this section, but it must lie within a known family of distributions.

Assumption 4.8. The family of distributions F in Assumption 4.4 is known.

Lemma 4.1. Under Assumptions 4.1-4.5 and 4.8, G/σV is identifiable from the observed data

(Z,X,D).
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Proof. We can write the distribution of D given Z and X as

pr(D = 1 | X,Z) = pr(L ≥ 0 | X,Z) (Assumption 4.1)

= pr(V ≤ µ+ αZ + γ′X | X,Z) (Assumptions 4.2, 4.3 and 4.4)

=F{(µ+ αZ + γ′X)/σV } (Assumption 4.5 and 4.8)

=F{G/σV }

Thus,

G/σV = F−1{pr(D = 1 | X,Z)}.

Since F is known and (Z,X,D) is observed, G/σV can be identified via an appropriate

generalized linear regression.

Remark 4.1. In practice, we could specify F directly, for example, as a logistic or normal

distribution (corresponding to logistic and probit regressions respectively). Alternatively, to

avoid imposing potentially strong distributional assumptions, we could use semi-parametric

estimation methods for generalized linear models, which only require some smoothness conditions

on F (Ichimura, 1993; Klein and Spady, 1993). Disease liabilities are often assumed be the

product of many small, independent traits. Therefore, by the central limit theorem, a normal

distribution (i.e., probit model) is a natural choice of link function in this context (Curnow,

1972).

Corollary 4.1. G/σG is identifiable from the observed data (Z,X,D).

Proof. We begin by noting that

var(G/σV ) = σ2
G/σ

2
V

is identified and G/σV is identified by Lemma 4.1. Thus,

(G/σV )/(σG/σV ) = G/σG

is identified.

We are now prepared to introduce our sensitivity parameter.

Definition 4.1. Let θ2 = σ2
G/σ

2
L be defined as the genetic variance of the latent exposure.

Suppose we have an appropriate choice of θ2 from external domain knowledge. We can

therefore identify the effect of standard deviation increases in the latent exposure L.

Theorem 4.1. Under Lemma 4.1, Corollary 4.1 and an appropriate choice of the sensitivity

parameter θ2, we can identify

βL = σLβ.
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Proof.

cov(Z, Y )/{θ cov(Z,G/σG)} = (σG/θ)β

= (σL σG/σG)β

= σLβ.

Our latent variable approach can be viewed as proceeding in four steps: 1) estimate the

linear predictor of a generalized linear model of D on Z and X; 2) normalize the linear predictor

to have mean zero and variance one; 3) use this normalized linear predictor as the exposure

in the two stage least squares estimator; and 4) scale the resulting effect estimate up by the

genetic variance of the latent exposure θ2.

The parameter θ2 can be treated as a sensitivity parameter and varied over a plausible

range of values or can, in some instances, be obtained from GWAS which report this measure.

For disease liabilities in particular, Lee, Goddard, et al. (2012) uses the Falconer liability-

threshold model to develop a coefficient of determination for GWAS that is interpretable on the

liability scale, which corresponds to θ2. Therefore, θ2 can be estimated using this approach or

selected from GWAS which report this coefficient. For ease of interpretation, liability is often

assumed to have mean zero and variance one, in which case σL = 1 and β itself is identified on

this scale (Lee, Goddard, et al., 2012).

4.4 Some generalizations

4.4.1 Individual-specific threshold

The formalization of the relationship between disease and liability in equation (4.2) and Figure

4.1 assumes a fixed threshold. That is, all individuals with liability above the threshold will

develop or be diagnosed with the disease and all those below the threshold will not. In reality,

we might imagine that diagnosis has a random component, driven, for example, by preferences

of the diagnosing clinician or imprecision of the testing procedure. It might be more realistic to

assume a model such that

D =

1 if L ≥ R

0 if L < R
(4.4)

where R is a random individual-specific threshold. Provided R is independent of the instrument

Z and other variants X, this random threshold will not affect identification of G/σV of

Lemma 4.1 under correct model specification. However, the link function F of Assumption 4.8

no longer corresponds to the distribution family of V ; instead, it corresponds to the distribution
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family of V +R. This could make correct specification of the link function more difficult and

semi-parametric approaches may be warranted.

4.4.2 Identifying effects of the coarsened exposure

The structural model (4.3) assumes no direct effect of the binary exposure measure D on

the outcome. As discussed in Section 4.3, when D is diagnosis of a disease, we might expect

resulting treatment or therapy to have an effect on the outcome distinct from disease liability,

suggesting a structural equation model of the form

(4.5) Y = βL+ δD + ε.

The exposure measure is downstream of the latent exposure and there are assumed to be

no direct pathways from the genetic instruments to the exposure measure, as illustrated in

Figure 4.2. Therefore, we cannot use our genetic instrument Z to estimate the independent

effect of the exposure measure on the outcome; the genetic instruments induce no unique

variation in the exposure measure independent of the latent exposure. However, consider the

individual-specific threshold of Section 4.4.1. The variable R could represent preferences of the

clinician for diagnosing the disease or a change in clinical practices affecting some individuals

(Brookhart and Schneeweiss, 2007; Davies, Gunnell, et al., 2013). If R is independent of each

individual’s liability, without directly affecting the outcome, then it is a potential instrument for

disease diagnosis. The general rule for separately estimating the effects of the latent exposure

and dichotomization is to have instruments which induce distinct variation in both.

4.4.3 Multi-valued discrete exposure

This method generalizes easily to the multi-valued discrete exposure setting. Suppose we observe

a discretized variable characterized by

(4.6) D =



0 if L ≤ 0

1 if 0 < L ≤ d1
...

K if dK−1 < L

where 0 < d1 < ... < dK−1 are latent thresholds. D could represent number of years in

education and L could represent time in education as a continuous measure. Similar to how

the dichotomous exposure can be formulated as a binary response model as in Lemma 4.1,

exposures of the form (4.6) can be formulated as an ordered response model and the parameters

µ̃, α̃ and γ̃ are still identified, allowing the method to be applied as usual.

56



4.5. REAL DATA EXAMPLES

4.4.4 Two-sample design with GWAS summary statistics

For rare diseases, it is not always possible to observe the coarse exposure measurement D and

the outcome Y in the same sample. It is common practice in Mendelian randomization studies to

use summary statistics from separate GWAS of the exposure and outcome to obtain two-sample

estimates (Burgess, Scott, et al., 2015). This method also generalizes to the two-sample setting

using the popular inverse-variance weighted approach (Burgess, Butterworth, and Thompson,

2013).

Suppose there is a set ZJ = {Zj : j = 1, ..., J} of SNPs from the exposure GWAS, of which

a subset ZJ0 = {Zj : j = 1, ..., J0}, J0 ≤ J , is selected as instruments from the outcome GWAS.

Suppose we have estimates ˆ̃αj on the log-odds scale of the instrument-exposure relationship

α̃j for each instrument in ZJ and estimates of the instrument-outcome relationship Γ̂j for

each instrument in ZJ0 . Additionally, we need the variance σ2
Zj

for each instrument in ZJ ,

which can be obtained from reported allele frequencies. Lastly, we also need estimates for

the inverse-variance weights wj = ˆ̃α2
j/σ

2
Γ̂j
, where σΓ̂j

is the standard error of Γ̂j . Under the

assumption that the instruments in ZJ are mutually independent, the inverse-variance weighted

estimator for βG = cov(Z, Y )/ cov(Z,G/σG) can be obtained from the above summary statistics

as

(4.7)

( J∑
j=1

ˆ̃α2
jσ

2
Zj

)1/2
∑J0

j=1wjΓ̂j/ ˆ̃αj∑J0
j=1wj

which is derived in Section B.3 of the Appendix. We can recover the effect in terms of σL (i.e.,

βL) by rescaling by a suitable choice of θ2 as described in Section 4.3. Conveniently, the second

term in (4.7) is the standard form of the inverse-variance weighted estimator. This means that

we can easily readjust existing Mendelian randomization estimates of coarsened exposures using

only the exposure GWAS and a choice for θ2. The large-sample distribution of the estimator

(4.7) is derived in Section B.3 of the Appendix.

4.5 Real data examples

4.5.1 Effect of BMI on systolic blood pressure

We can assess the performance of this method in a realistic setting by creating a dichotomized

variable from an observed continuous measure, BMI. The idea is to dichotomize BMI at some

threshold value and then treat only the dichotomization as observed. We shall compare the

true standardized effect of BMI on some outcome with our procedure described in Section 4.3

and with the naive approach of using the dichotomization as the exposure.

Our example is based on the Mendelian randomization analysis performed in Lyall et al.

(2017), which estimates the effect of BMI on several cardiometabolic measures in the UK

Biobank cohort. In particular, we look at the effect of BMI on systolic blood pressure. This is a
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convenient exposure-outcome relationship to estimate because we should not expect there to be

threshold effects, i.e., the dichotomizations of BMI should have no distinct effects on systolic

blood pressure except through BMI itself.

Consistent with Lyall et al. (2017), we use as potential instruments the 93 genome-wide

significant SNPs reported in Locke et al. (2015) available in UK Biobank and we control for age,

sex, assessment centre, alcohol intake, smoking status and Townsend deprivation index, along

with genetic batch and the first 10 principal components of the genetic relatedness matrix. To

avoid weak instrument bias, we prune these SNPs by including those which correlate with BMI

with |t| > 4 (conditional on the other SNPs) as instruments. We estimate the ‘true’ standardized

effect of BMI on systolic blood pressure via two-stage least squares, finding that a one standard

deviation increase in BMI corresponds to an increase in systolic blood pressure of 1.53 mm Hg

(95% CI 0.34 - 2.72). At each BMI threshold, we then generate a binary variable equal to 1 if

an individual’s BMI is above the threshold and 0 otherwise. Treating only this binary measure

as observed, we apply the latent variable approach of Section 4.3.2 using a probit link function.

The results of this example are summarized in Figure 4.3, which compares the estimated

effects with the ‘true’ effect of 1.53. The estimates using the dichotomized measure as the

exposure are highly sensitive to the choice of threshold. Since we should not expect there to

be distinct threshold effects in this setting, this demonstrates that the dichotomized exposure

is not capturing the effect of the latent exposure, instead, it is picking up the shape of the

distribution of the environmental risk factor for BMI, as discussed in Section 4.3.1. As predicted

by the bias formula in Section 4.3.1, the estimates were inflated at the extreme thresholds

where the distribution is flatter.

For the latent variable approach, we select a θ2 of 0.0256 based on the R-squared of our

first stage regression of BMI on the genetic variants. The effect estimate from this approach is

much less sensitive to the choice of threshold. Furthermore, the estimates appear to accurately

recover the ‘true’ effect of 1.53 regardless of the threshold value, ranging from 1.35 at a BMI

cut-off of 30 to 1.92 at a BMI cut-off of 22.5.

We can also investigate this approach in a more realistic setting by re-analysing two existing

papers. Box 4.5.2 gives an example of how existing two-sample results which do not have

interpretable effect sizes can be reinterpreted using this method. The original paper finds that

schizophrenia liability increases one’s likelihood of using cannabis, although the effect sizes

are not interpretable (Pasman et al., 2018). Using our approach, we find that a one standard

deviation increase in liability corresponds to an odds ratio in the range 1.15-1.26 (95% CI

1.10-1.44) for ever using cannabis. This approach allows us to infer the size of this effect which,

in this instance, is very modest.

Box 4.5.3 gives an example of how this approach can correct exclusion restriction violations.

In the original paper, self-reported adiposity is measured on a three-point scale (‘thinner’,

‘plumper’ and ‘about average’). Genetic instruments will be acting on the underlying measure
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Figure 4.3: Comparison of estimated effect with ‘true’ effect for various BMI thresholds. N =
70,261, θ2 = 0.0256, 95% confidence intervals are generated over 1,000 bootstrap resamples.
‘True’ corresponds to the sample estimate using BMI as the exposure; ‘naive’ corresponds to
using the dichotomous measurement as the exposure βD; and ‘latent’ corresponds to the latent
variable estimator βL of Section 4.3.2.

of child adiposity (e.g., BMI) rather than the three-point scale, so the exclusion restriction is

likely to be violated (Richardson, Sanderson, et al., 2020). We use our latent variable approach

to ameliorate this bias and to estimate the effect of child BMI directly, which is the exposure of

interest.

4.5.2 Re-analysis of Pasman et al. (2018)

Pasman et al. (2018) performs a two-sample bi-directional Mendelian randomization analysis of

schizophrenia and cannabis use (Burgess, Scott, et al., 2015). The gene-exposure associations for

schizophrenia are pulled from a GWAS of cases and controls and are reported on the log-odds

scale (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2015). While this

avoids the problem of using the dichotomous diagnosis variable as the exposure (as discussed

in Section 4.1), it means that the resulting estimates are interpreted as unit increases in the

log-odds, which are scaled by the unobserved parameter σV . The authors report an odds ratio

of 1.16 (95% CI 1.06 - 1.27) for the effect of genetic liability to schizophrenia. While we can

infer the direction of the effect from this estimate, we cannot draw any conclusions about the

magnitude.

We apply the two-sample generalization of Section 4.4.4. One of the strengths of this

generalization is that we do not need to re-estimate the original inverse-variance weighted

Mendelian randomization estimates ourselves. In addition to the estimates reported in the
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Figure 4.4: Effect of schizophrenia liability on risk of ever using cannabis for several choices
of sensitivity parameter θ2. 95% confidence intervals are estimated as in Section B.3 of the
Appendix.

original paper, we need only an estimate of σG∗ , which can be computed from summary data

from the schizophrenia GWAS, and some plausible choices for the sensitivity parameter θ2.

The schizophrenia GWAS reports that their genome-wide significant loci explain roughly 3.4%

of the variation in schizophrenia liability using the Lee, Goddard, et al. (2012) coefficient of

determination. Using this estimate as a baseline, we select three choices for θ2: 0.02, 0.034 and

0.05.

Our findings are consistent with a modest positive effect of schizophrenia liability on the

odds of cannabis use. As shown in Figure 4.4, a one standard deviation increase in schizophrenia

liability corresponds to a 1.15-1.26 increase in the odds of cannabis use, with 95% confidence

interval range of 1.10-1.44. It is important not to directly compare these estimates with the

original estimates: the two are not on the same scale. We must interpret the estimates of Table

4.4 in terms of standard deviation increases in schizophrenia liability.

4.5.3 Reanalysis of Richardson, Sanderson, et al. (2020)

Richardson, Sanderson, et al. (2020) performs two-sample Mendelian randomization analysis

of child and adult BMI on risk of several diseases: coronary artery disease, type 2 diabetes,

breast cancer and prostate cancer. The instrument-exposure relationship is estimated in the

UK Biobank cohort. However, child BMI is not measured directly in UK Biobank, instead,

there is a measure of self-reported adiposity in three discrete categories (‘thinner’, ‘plumper’ or

‘about average’). In this context, the latent exposure is child BMI and the self-report measure
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Figure 4.5: Effect of childhood BMI on risk of several diseases for several choices of sensitivity
parameter θ2. 95% confidence intervals are estimated as in Section B.3 of the Appendix.

is a coarsening of child BMI. Since the genetic instruments will act on child BMI directly, the

exclusion restriction is likely to be violated.

Therefore, we apply the latent variable method of Section 4.3.2 to this data. We re-analyse

the original univariable effect of child BMI on risk of type 2 diabetes (OR 2.32, 95% CI

1.76-3.05), coronary artery disease (1.49, 1.33-1.68) and breast cancer (0.59, 0.50-0.71).

We apply the two-sample generalization of the inverse-variance weighted estimator of Section

4.4.4, estimating the instrument-exposure relationship in UK Biobank using an ordered probit

model and the instrument-outcome relationships using the MR-Base platform (Hemani, Zheng,

et al., 2018). We choose three values for θ2 based on a large GWAS of adult BMI: 0.01, 0.02 and

0.05 (Locke et al., 2015). The genetic share of child BMI is estimated using an ordered probit

model and standard errors are calculated using the formula in Section B.3 of the Appendix.

Figure 4.5 shows our results for three of the diseases analysed in the paper. Our estimates are

in the same direction as the original estimates, which is expected, however, the interpretation

of the magnitudes is different. For example, the original paper estimates that a per-category

increase in self-reported child adiposity corresponds to an increase in the odds of coronary artery

disease of 1.49 (95% CI 1.33-1.68), which could be inflated due to violation of the exclusion

restriction. For θ2 = 0.02, we estimate that a one standard deviation increase in child BMI

corresponds to an increase in the odds of coronary artery disease of 1.13 (95% CI 0.99-1.28).

It is difficult to directly compare the two sets of estimates since the exposures are different,

however, our estimate is suggestive of a modest effect of child BMI on the risk of coronary

artery disease.
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4.6 Discussion

We propose a simple framework for estimation and interpretation of Mendelian randomization

for coarsened measurements of latent continuous exposures. We begin by demonstrating in

Section 4.3.1 that using the coarse measurement as the exposure results in a multiplicative bias

which will inflate or deflate effect estimates without reversing their sign. However, under the

assumptions of our framework, described in Section 4.2, we can recover the effect of the latent

exposure in terms of standard deviation increases. Section 4.4.4 shows that it is straight-forward

to generalize this approach to the two-sample setting. The key sensitivity parameter in our

approach is the genetic share of the variance of the latent exposure, which may be estimated or

varied over a plausible range of values (Lee, Goddard, et al., 2012). Section 4.5 evaluates this

approach by creating binary exposure measurements from the continuous BMI measure in UK

Biobank. We show that we can accurately recover the effect of a standard deviation increase in

BMI on systolic blood pressure. We also demonstrate this approach in practice by re-analysing

two papers which are likely to suffer from this type of exclusion restriction violation, allowing

us to meaningfully interpret their effect sizes.

The approach proposed in this paper relies on a number of strong structural assumptions

on the relationship between the latent exposure and its corresponding measurement. The

appropriateness of these assumptions must be assessed on a case-by-case basis. Exposure

measurements which are defined by strict thresholds of the latent continuous exposure are

easiest to conceptualize within this framework. In general, the assumption most difficult to

justify is that the thresholds are independent of the genetic share of the latent exposure. One

example where this assumption may be violated is self-report measures of mental health status,

for example, feelings of depression on a 1-5 scale. Individuals who are genetically predisposed

to depression may have different thresholds for reporting their mental wellbeing, either over- or

under-reporting.

An additional complication occurs when this method is applied to disease exposures. We

have assumed throughout that disease occurrence and disease diagnosis are equivalent; that is,

everyone who develops the disease will receive a diagnosis. However, there are often barriers

to seeking and accessing the healthcare services needed to receive a diagnosis. These might

include stigma surrounding the disease, a lack of trust in healthcare providers or a lack of

access to healthcare services due to cost, distance or institutional complexities (Cassim et al.,

2019; Stangl et al., 2019). It is therefore possible that individuals with the disease will fail to

be diagnosed. This can be viewed as a form of misclassification bias. Misclassification-robust

methods for binary exposures could potentially be incorporated into this approach, which we

leave for future work (Lewbel, 2000; Rekaya et al., 2016; Smith, Hay, et al., 2013).

In studies where the assumptions in Section 4.2 are believed to be implausible, it is

important for researchers to be transparent that the magnitude of their effect estimate will not

be well-defined.
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CHAPTER 5. ALMOST EXACT MENDELIAN RANDOMIZATION

5.1 Introduction

5.1.1 Towards an almost exact inference for MR

As parent-offspring trio data become more widely available, it is increasingly feasible to perform

MR within families, as originally proposed by Davey Smith and Ebrahim (2003). There has been

some recent methodological development for within-family designs (Davies, Howe, et al., 2019;

Brumpton et al., 2020). Thus far this has consisted of extensions of traditional MR techniques

in which structural models for the gene-exposure and gene-outcome relationships are proposed

and samples are assumed to be drawn according to these models from some large population.

In particular, Brumpton et al. (2020) propose a linear structural model with parental genotype

fixed effects. Their inference is based on this model and so the role of meiotic randomization is

only implicit.

However, one of the unique advantages of MR as a natural experimental design is that it

has an explicit inferential basis, namely the exogenous randomness in meiosis and fertilization,

which has been thoroughly studied and modelled in genetics since at least Haldane (1919).

Haldane developed a simple model for recombination during meiosis that has demonstrated

good performance on multiple pedigrees across many species. The connection between this

meiosis model and causal inference in parent-offspring trio studies was recently described in the

context of locating causal genetic variants (Bates, Sesia, Sabatti, and Candès, 2020) and was

implicit in earlier pedigree-based methods, such as the genetic linkage analysis in Morton (1955)

and the transmission disequilibrium test in Spielman, McGinnis, and Ewens (1993). Lauritzen

and Sheehan (2003) attempted to represent meiosis using graphical models; however, they

focused on computatational considerations and did not explore the potential of these models

for causal inference.

The idea of the significance test (or hypothesis test, although some authors distinguish the

use of these two terms) dates back to Fisher’s original proposal for randomized experiments and

is well illustrated in his famous ‘lady tasting tea’ example (Fisher, 1935). Pitman (1937) appears

to be the first to fully embrace the idea of randomization tests. This mode of reasoning is usually

referred to as randomization inference or design-based inference to contrast with model-based

inference. With the aid of the potential outcome framework (Neyman, 1990; Rubin, 1974), we

can construct an exact randomization test for the sharp null hypothesis by conditioning on

all the potential outcomes (Rubin, 1980; Rosenbaum and Rubin, 1983). Randomization tests

are widely used in a variety of settings, including genetics (Spielman, McGinnis, and Ewens,

1993; Bates, Sesia, Sabatti, and Candès, 2020), clinical trials (Rosenberger, Uschner, and Wang,

2019), program evaluation (Heckman and Karapakula, 2019) and instrumental variable analysis

(Rosenbaum, 2004; Kang, Peck, and Keele, 2018).
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5.1.2 Our contributions

In this article, we propose a statistical framework that enables researchers to use meiosis models

as the “reasoned basis” for inference in MR. We propose a randomization test that is almost

exact in the sense that the test would have exactly the nominal size if the model for meiosis and

fertilization were perfect. As detailed below, our methodological developement in Section 5.3

combines several important ideas in the literature.

Our first contribution is a theoretical description of MR and its assumptions in Section 5.3.1

via the language of causal directed acyclic graphs (DAGs) (Spirtes, Glymour, and Scheines,

2000; Pearl, 2009). These graphical tools allow us to visualize and dissect the assumptions

imposed on an MR study. In particular, we show how various biological and social processes,

including population stratification, gamete formation, fertilization, genetic linkage, assortative

mating, dynastic effects, and pleiotropy, can be represented using a DAG and how they can

introduce bias in MR analyses. Furthermore, by using single world intervention graphs (SWIGs)

(Richardson and Robins, 2013b), we identify sufficient confounder adjustment sets to eliminate

these sources of bias in Section 5.3.2. Our results further provide theoretical insights into a

fundamental trade-off between statistical power and eliminating pleiotropy-induced bias.

For statistical inference, we propose in Section 5.3.3 a randomization test by connecting

two existing literatures. The first literature concerns randomization inference for instrumental

variable analyses, which usually assumes that the instrumental variables are randomized

according to a simple design (such as random sampling of a binary instrument without

replacement) (Rosenbaum, 2004; Kang, Peck, and Keele, 2018). However, in MR, offspring

genotypes are very high-dimensional and are randomized based on the parental haplotypes.

The second literature attempts to identify the approximate location of (“map”) causal genetic

variants by modelling the meiotic process (Morton, 1955; Spielman, McGinnis, and Ewens,

1993; Bates, Sesia, Sabatti, and Candès, 2020). In Sections 5.3.4 to 5.3.6, we consider some

practical issues with the randomization tests. In particular, we show how the hidden Markov

model for meiosis and fertilization implied by Haldane (1919) can greatly simplify the sufficient

adjustment sets and the computation of our randomization test.

In addition to the considerable conceptual advantages, our almost exact MR approach

has several practical advantages too. First, unlike model-based approaches for within-family

MR (Brumpton et al., 2020), our approach does not rely on a correctly specified phenotype

model. Nonetheless, the randomization test can take advantage of a more accurate phenotype

model to increase its power. Second, Haldane’s hidden Markov model implies a propensity

score for each genetic instrument given a sufficient adjustment set (Rosenbaum and Rubin,

1983). This can be used as a “clever covariate” (Rose and Laan, 2008) to build powerful test

statistics with attractive robustness properties. Third, since the randomization test is exact,

it is robust to arbitrarily weak instruments. For an “irrelevant” instrument which induces no

variation in the exposure, the test will simply have no power. Finally, by taking advantage of
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CHAPTER 5. ALMOST EXACT MENDELIAN RANDOMIZATION

the DAG representation and using a sufficient confounder adjustment set, our method is also

provably robust to biases arising from population structure (including multi-ancestry samples),

assortative mating, dynastic effects and pleiotropy by linkage.

In Sections 5.4 and 5.5, we demonstrate the practicality of the almost exact approach to

MR with a simulation study and a real data example from the Avon Longitudinal Study of

Parents and Children (ALSPAC). The simulation study confirms that the randomization test is

exact under the null and explores the power of the test in a number of scenarios. The applied

examples consists of a negative control and a positive control. The negative control is the effect

of child’s body mass index (BMI) at age 7 on mother’s BMI pre-pregnancy. Although a causal

effect is temporally impossible, the existence of confounders (a.k.a. backdoor paths) may lead

to false rejections of the null. The positive control is the effect of child’s BMI on itself plus

some noise. We compare our results with the results from a “standard” MR analysis that does

not condition on parental or offspring haplotypes. We conclude with some further discussion in

Section 5.6.

Throughout the paper, we use i to index the parent-offspring trio (or just the offspring)

and j to indicate a genomic locus. Bold font is used to represent vectors and script font is used

for sets.

5.2 Background

5.2.1 Causal inference preliminaries

We will express our model and assumptions about almost exact MR using causal diagrams,

then demonstrate that a randomization test for instrumental variables is a natural vehicle for

inference in within-family MR. As such, a good grasp of these concepts is required to understand

the remainder of the article. This section lays out some standard notation in causal inference.

A lengthier introduction to the causal inference concepts used in this article—including causal

graphical models, single world intervention graphs, randomization inference, and instrumental

variables—can be found in Section 2.1.

Suppose we have a collection of N individuals indexed by i = 1, 2, . . . , N and, among these

individuals, we are interested in the effect of an exposure Di on an outcome Yi. For example, the

exposure could be the level of alcohol consumption over some period of time and the outcome

could be the incidence of cardiovascular disease. Individual i’s potential (or counterfactual)

outcomes corresponding to exposure level Di = d are given by Yi(d). We make the consistency

assumption (Hernán and Robins, 2020) which states that the observed outcome corresponds to

the potential outcome at the realized exposure level Yi = Yi(Di).

Note that, in denoting the potential outcomes as Yi(d), we have implicitly made the so-called

stable unit treatment value assignment (SUTVA) assumption (Rubin, 1980; Imbens and Rubin,

2015). That is, we have assumed that there is no interference in the sense that the potential
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outcomes of each individual are unaffected by the exposures of other individuals. We have also

assumed that there are no hidden versions of the same exposure; this could be violated, for

example, if the effect of alcohol consumption on cardiovascular disease has a dose-response

relationship but the exposure Di is only a binary indicator of alcohol consumption.

Potential outcomes may also be defined from a nonparametric structural equation model

associated with a causal diagram using recursive substitution (Pearl, 2009). In such diagrams,

vertices are used to represent random variables and directed edges are used to represent direct

causal influences. The graphical and potential outcomes approaches to causal inference can be

nicely unified via the single world intervention graphs (Richardson and Robins, 2013b). A brief

review of this can be found in the Appendix.

5.2.2 Genetic preliminaries

Before proceeding to present our model of within-family MR, it is also instructive to provide

a basic overview of some relevant concepts in human genetics, with a focus on modelling the

processes in genetic inheritance including meiosis and fertilization. For a thorough exposition

on statistical models for pedigree data, see Thompson (2000).

Human somatic cells consist of 23 pairs of chromosomes, with one in each pair inherited

from the mother and the other from the father. To simplify the discussion we will only consider

autosomal (non-sexual) chromosomes. Each chromosome is a doubled strand of helical DNA

composed of complementary nucleotide base pairs. A base pair which exhibits population-level

variation in its nucleotides is called a single nucleotide polymorphism (SNP). DNA sequences

are typically characterized by detectable variant forms induced by different combinations of

SNPs. These variant forms are called alleles. In this article, we will only consider variants with

two alleles. A set of alleles on one chromosome inherited together from the same parent is called

a haplotype and the unordered pair of haplotypes at the same locus is called a genotype.

Meiosis is a type of cell division that results in reproductive cells (a.k.a. gametes) containing

one copy of each chromosome. During this process, homologous chromosomes line up and

exchange segments of DNA between themselves in a biochemical process called crossover.

The recombined chromosomes are then further divided and separated into gametes. Since

recombinations are infrequent (roughly one to four per chromosome), SNPs located nearby on

the same parental chromosome are more likely to be transmitted together, resulting in genetic

linkage. Fertilization is the process by which gametes in the father (sperm cells) and mother

(egg cells) join together to form a zygote, which will then normally develop into an embryo.

We will mainly be concerned with genetic trio studies, in which we observe the haplotypes

of the mother, father and their child at p loci. Let J = {1, 2, . . . , p} be the set of SNP indices.

In our discussion below we will assume that the SNPs are on a single chromosome, as different

chromosomes are usually modelled independently. We will denote the haplotypes as follows:

offspring’s haplotypes: Zm = (Zm
1 , . . . , Zm

p ) and Zf = (Zf
1 , . . . , Z

f
p ),
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mother’s haplotypes: Mm = (Mm
1 , . . . ,Mm

p ) and M f = (Mf
1 , . . . ,M

f
p ), and

father’s haplotypes: Fm = (Fm
1 , . . . , Fm

p ) and F f = (F f
1 , . . . , F

f
p ),

where the superscript m (or f) indicates a maternally (or paternally) inherited haplotype. We

only consider SNPs with two alleles, so each of the six haplotype vectors above is in {0, 1}p.
Furthermore, let Mmf

j = (Mm
j ,Mf

j ) denote the mother’s haplotypes at locus j and similarly

for Fmf
j and Zmf

j . The offspring’s genotype at locus j ∈ J is given by Zj = Zm
j + Zf

j and let

Z = Zm +Zf ∈ {0, 1, 2}p denote the vector of offspring genotypes.

Figure 5.1: Illustration of the meiotic process for five sites on a chromosome.
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Figure 5.1 illustrates how an offspring’s maternally-inherited haplotype Zm at five loci on a

chromosome are related to the mother’s haplotypes Mm and M f . In a gamete produced by

meiosis, the allele at locus j ∈ J is inherited from either the mother’s maternal haplotype or

father haplotype (excluding mutations). This can be formalized as an ancestry indicator, Um
j ∈

{m, f}. The classical meiosis model of Haldane (1919) assumes that Um = (Um
1 , . . . , Um

p ) follows

a (discretized) homogeneous Poisson process. Haldane’s model is described in Appendix C.1 in

detail and can simplify the randomization test considerably (Section 5.3.5). Nonetheless, our

“almost exact” approach to MR is modular in the sense that it does not rely on a specific meiosis

model and it is theoretically straightforward to incorporate more sophisticated meiosis models

that allow for “interference” between the crossovers (Otto and Payseur, 2019). As the meiosis

model become more accurate, our test will become closer to exact randomization inference.

The description in the last paragraph does not take genetic mutation into account. Many

meiosis models, such as the one in Haldane (1919), assume that there is a small probability of

independent mutations:
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Assumption 5.1. Given mother’s haplotypes Mmf
j , the ancestry indicator Um

j , and that

fertilization occurs (this is represented as S = 1 in Section 5.3),

Zm
j =

M
(Um

j )

j , with probability 1− ϵ,

1−M
(Um

j )

j , with probability ϵ.

The same model holds for the paternally-inherited haplotypes.

The rate of de novo mutation ϵ is about 10−8 in humans (Acuna-Hidalgo, Veltman, and

Hoischen, 2016). When only one generation is considered (as in a genetic trip study), it often

suffices to treat ϵ = 0 (i.e. no mutation) for practical purposes, unless it is desirable to obtain

the exact randomization distribution under a recombination model.

The above meiosis model assumes no transmission ratio distortion. Transmission ratio

distortion occurs when one of the two parental alleles is passed on to the (surviving) offspring at

more or less than the expected Mendelian rate of 50% (Davies, Howe, et al., 2019). Transmission

ratio distortion falls into two categories: segregation distortion, when processes during meiosis

or fertilization select certain alleles more frequently than others, and viability selection, when

the viability of zygotes themselves depend on the offspring genotype. We sidestep this discussion

for now and return to it in Section 5.6.

5.3 Almost exact Mendelian randomization

Returning to the alcohol and cardiovascular disease example in Section 5.2.1, observational

studies suggest that moderate alcohol consumption confers reduced risk relative to abstinence

or heavy consumption (Millwood et al., 2019). However, this could be a result of systematic

differences among people with different drinking patterns (confounding) rather than a causally

protective effect of moderate drinking. For this reason, Mendelian randomization has become

a popular study design to investigate the long-term health effects of alcohol drinking (Chen

et al., 2008).

The ALDH2 gene regulates acetaldehyde metabolism and is often used as an instrumental

variable for alcohol consumption. In East Asian populations, an allele of ALDH2 produces a

protein that is inactive in metabolising acetaldehyde, causing flushing and discomfort while

drinking and thereby reducing consumption. Thus, we might like to use the random allocation

of variant copies of ALDH2 as the basis of causal inference. To this end, we need to carefully

clarify the conditions under which this inference would be valid.

5.3.1 A causal model for Mendelian inheritance

Next, we construct a general grahical model to describe the process of Mendelian inheritance

and genotype-phenotype relationships. This causal model allows us to identify sources of bias
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in within-family MR and construct sufficient adjustment sets to control for them. Under this

causal model, the central idea behind almost exact MR is to base statistical inference precisely

on randomness in genetic inheritance via a model for meiosis and fertilization.
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S

Figure 5.2: The single world intervention graph for a working example of a chromosome with
p = 3 variants. Transparent nodes are observed and grey nodes are unobserved. Square nodes are
the confounders being conditioned on in Proposition 5.2. A is ancestry; M f = (Mf

1 ,M
f
2 ,M

f
3 )

is the mother’s haplotype inherited from her father; Mm,Fm, and F f are defined similarly;
Cm and Cf are generic phenotypes of the mother and father; S is an indicator of mating;
Zm = (Zm

1 , Zm
2 , Zm

3 ) is the offspring’s maternal haplotype and Um is a meiosis indicator; Zf

and U f are defined simlarly; Z = (Z1, Z2, Z3) is the offspring’s genotype; D is the exposure of
interest; Y (d) is the potential outcome of Y under the intervention that sets D to d; C is an
environmental confounder between D and Y .

Figure 5.2 shows a working example of our causal model on a hypothetical chromosome

with p = 3 variants. The directed acyclic graph is structured in roughly chronological order

from left to right, where A describes the population structure, S is an indicator for mating,

and C is any environmental confounder between the exposure D and outcome Y .

At first glance, Figure 5.2 appears to be quite complicated but, by the modularity of

graphical models, it can be decomposed into a collection of much simpler subgraphs that

describe different biological processes (Figure 5.3). By definition, a joint distribution factorizes

according to the DAG in Figure 5.2 if its density function can be decomposed as described in

Table 5.1.

Next, we describe each term in Table 5.1 and what this factorization implies about our

assumptions on the biological processes. To simplify the discussion, we assume all DAGs in
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Table 5.1: Factorization of the joint density of all variables in Figure 5.2. Here p is used as a
generic symbol for density function.

Terms Interpretation More detail

p(A)p
(
Um

)
p
(
U f
)
p(C) Exogenous variables

p
(
Mm,M f | A

)
p
(
Fm,F f | A

)
Pop. stratification Section 5.3.1.1

p
(
Cm | A,Mm,M f

)
p
(
Cf | A,Fm,F f

)
Parental phenotypes Section 5.3.1.2

p
(
Zm |Mm,M f ,Um

)
p
(
Zf | Fm,F f ,U f

)
Meiosis Section 5.3.1.3

p
(
S | Cm, Cf

)
Assortative mating Section 5.3.1.3

p
(
Z | Zm,Zf , S

)
Fertilization Section 5.3.1.3

p
(
D | A,Z, Cm, Cf , C

)
p
(
Y (d) | A,Z, Cm, Cf , C

)
Confounding Section 5.3.1.4

this article are faithful, so conditional independence between random variables is equivalent to

d-separation in the DAG.

5.3.1.1 Parental genotypes

We assume that parental genotypes originate from some arbitrary, latent population struc-

ture. Population stratification is a phenomenon characterized by systematic differences in the

distribution of alleles among subgroups of a population. These disparities typically emerge

from social and genetic mechanisms including non-random mating, migration patterns and

‘founder effects’ (Cardon and Palmer, 2003) and can often be detected by principal component

analysis (Patterson, Price, and Reich, 2006). Population stratification can introduce spurious

associations between genetic variants and traits (Lander and Schork, 1994).

We represent population structure via a latent node A in Figures 5.2 and 5.3a. The arrows

from A to Mm,M f and Fm,F f indicate that the distribution of parental haplotypes depends

on the latent population structure:

A ⊥̸⊥ (Mm,M f ,Fm,F f ).

The node A may also capture any linkage disequilibrium in the parental haplotypes. That

is, because the parental haplotypes are determined by the same process as the grandparental

haplotypes and so on, recombination introduces dependence among nearby genetic variants (see

Section 5.3.1.3 below for more discussion). The precise distribution of A and the conditional

distribution of the parental haplotypes given A are not important below, because an appropriate

subset of the parental haplotypes will be conditioned on and any paths that involve edges from

A to Mm, M f , Fm, and F f will be blocked.
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(a) Population struc-
ture (Section 5.3.1.1).
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(b) Meiotic recombination of the mother’s haplotypes (Sec-
tion 5.2.2).
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tion 5.3.1.3).

Zd

Zy

Z0
C

D d Y (d)
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tion 5.3.1.4).
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(e) Dynastic effects (Section 5.3.1.2).

Figure 5.3: The constituent subgraphs of our within-family Mendelian randomization model.
White nodes represent observed variables; grey nodes represent unobserved variables; and
striped nodes represent variables for which some elements may be unobserved.
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5.3.1.2 Parental phenotypes

We impose no assumptions on the nature and the distribution of the parental phenotypes Cm

and Cf . They can depend arbitrarily on the parental haplotypes Mm,M f ,Fm,F f and the

population structure A:

Cm ⊥̸⊥ (A,Mm,M f ), Cf ⊥̸⊥ (A,Fm,F f ).

It is not necessary to model such dependence because the almost exact approach to MR

conditions on appropriate parental haplotypes.

5.3.1.3 Offspring genotypes

There are two biological processes involved in the genesis of the offspring’s genotypes: meiosis

(gamete formation) and fertilization. The meiotic process has been reviewed in Section 5.2.2,

and the key Assumption 5.1 can be represented by the causal diagram in Figure 5.3b (for

just the mother). A crucial assumption underlying almost exact MR is the exogeneity of the

meiosis indicators Um and U f . This is reflected in Figures 5.2 and 5.3b, as Um and U f have

no parents and their only children are the offspring’s haplotypes. Formally, we assume:

Assumption 5.2. The meiosis indicators are independent of parental haplotypes and pheno-

types and any other confounders:

(Um,U f ) ⊥⊥ (A,Cm, Cf , C,Mm,M f ,Fm,F f ).

Many stochastic processes have been proposed to model the distribution of the ancestry

indicator Um; see Otto and Payseur (2019) for a recent review. Due to the dependence in Um,

nearby alleles on the same chromosome tend to be inherited together. This phenomenon is

known as genetic linkage. In Section 5.2.2, we have described the classical model of Haldane

(1919) which assumes Um follows a Poisson process, which was used by Bates, Sesia, Sabatti,

and Candès (2020) to map causal variants. We will see in Section 5.3.5 that the Markov

properties of a Poisson process greatly simplify randomization inference.

Another mechanism that needs to be modeled is fertilization. In Mendelian inheritance, it

is assumed that the potential gametes (sperms and eggs) come together at random. However,

mating may not be a random event. Assortative mating refers to the phenomenon where

individuals are more likely to mate if they have complementary phenotypes. For example,

there is evidence in UK Biobank that variant forms of the ADH1B gene related to alcohol

consumption are more likely to be shared among spouses than non-spouses (Howe, Lawson,

et al., 2019). This suggests assortative mating on drinking behaviour and may introduce bias

to MR studies on alcohol consumption (Hartwig, Davies, and Davey Smith, 2018).

The subgraph describing assortative mating is shown in Figure 5.3c, where the mating

indicator S ∈ {0, 1} is dependent on the parental phenotypes Cm and Cf . Any MR study
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necessarily conditions on S = 1, otherwise the offspring would not exist and the trio data would

not be available. This is formalized in Figure 5.3c by the arrows from S to Z. In particular, we

may define the offspring’s genotype Z as

Z =

Zm +Zf , if S = 1,

Undefined, if S = 0.
(5.1)

Notice that the above definition recognizes the fact that the gametes Zm and Zf are produced

regardless of whether fertilization actually takes place.

Finally, the assumption of no transmission ratio distortion is formalized by the absence of

arrows from Zm and Zf to S. This is not necessarily a benign assumption, given empirical

evidence that gametes may pair up non-randomly (Nadeau, 2017).

Assumption 5.3. There is no transmission ratio distortion in the sense that

S ⊥⊥ (Zm,Zf ) | (Mmf ,Fmf ).

5.3.1.4 Offspring phenotypes

Finally, we describe assumptions on the offspring phenotypes. We are interested in estimating the

causal effect of an offspring phenotype D ∈ D ⊆ R on another offspring phenotype Y ∈ Y ⊆ R.
We refer to D as the exposure variable and Y as the outcome variable. These phenotypes are

determined by the offspring genotypes and environmental factors (including parental traits).

For a particular realization of the genotypes z, we denote the counterfactual exposure as D(z).

Furthermore, under an additional intervention that sets D to d, we denote the counterfactual

outcome as Y (z, d). These potential outcomes are related to the observed data tuple (Z, D, Y )

by

D = D(Z), Y = Y (Z, D) = Y (Z, D(Z)),

which is a simple extension of Assumption 2.2 (consistency) in Section 2.1.

We are interested in making inference about the counterfactuals Y (d) = Y (Z, d) when

the exposure is set to d ∈ D. As the exposure D typically varies according to the population

structure, parental phenotypes and other environmental factors, it is not randomized in the

sense that

Y (d) ⊥̸⊥ D for some or all d ∈ D.

For example, if D is alcohol consumption and Y is cardiovascular disease, there may exist

offspring confounders such as diet or smoking habits which are common causes of both D

and Y . The exact nature of the confunders is not very important for MR as it tries to use

unconfounded randomness (in Um and U f ) to make causal inference.

It will be helpful to categorize the genetic variants based on whether they have direct causal

effects on D and/or Y .
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Assumption 5.4. The set J = {1, . . . , p} of genetic variants can be paritioned as J =

Jy ∪ Jd ∪ J0, where

• Jy includes all pleiotropic variants with a direct causal effect on Y not mediated by D

(some of which may have a causal effect on D as well).

• Jd includes all causal variants for D with no direct effect on Y .

• J0 = J \ (Jy ∪ Jd) includes all other variants.

In our working example in Figure 5.2, Jy = {3}, Jd = {2}, and J0 = {1}. If the exposure

D indeed has a causal effect on the outcome Y , the loci of the causal variants of Y are given

by Jy ∪ Jd.
For subscripts s ∈ {0, d, y}, we let Zs = {Zj : j ∈ Js} denote the corresponding genotypes,

which has support Zs = {0, 1, 2}|Js|. By Assumption 5.4, our potential outcomes can be written

as (with an abuse of notation)

D(z) = D(zd), Y (z, d) = Y (zy, d),

Y (z) = Y (zy, D(zd)) = Y (zy, zd),

where z = (zd, zy, z0) ∈ Zd ×Zy ×Z0 = Z and d ∈ D.
Figure 5.3d provides the graphical representation of Assumption 5.4. Each element of Z0

has no effect on D or Y (d), each element of Zd has an effect on D and each element of Zy has

an effect on Y (d) (some are also causes of D). The vector Zy contains the so-called pleiotropic

variants that are causally involved in the expression of multiple phenotypes (Hemani, Bowden,

and Davey Smith, 2018). Universal pleiotropy is assumed in the famous infinitesimal model of

Fisher (1918). Currently, the widely accepted view is that pleiotropy is at least widespread and

some have argued for a omnigenic model (Boyle, Li, and Pritchard, 2017).

Dynastic effects, sometimes called genetic nurture (Kong et al., 2018), is a phenomenon

characterized by parental genotypes exerting an influence on the offspring’s phenotypes via the

parental phenotypes. This is depicted in Figure 5.3e, where paths emanate from the parental

haplotypes Mmf and Fmf to the parental phenotypes Cm and Cm and on to the offspring

phenotypes D and Y .

5.3.2 Conditions for identification

With the causal model outlined in Section 5.3.1 in mind, we now describe some sufficient

conditions under which some Zj ∈ Z is a valid instrumental variable for estimating the causal

effect of D on Y . Recall that an instrumental variable induces unconfounded variation in the

exposure without otherwise affecting the outcome. Due to population stratification (Figure 5.3a),

assortative mating (Figure 5.3c), and dynastic effects (Figure 5.3e), the offpsring genotypes Z
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as a whole are usually not properly randomized without conditioning on the parental haplotypes.

That is,

Z ̸⊥⊥ D(z), Y (z, d) for some or all z ∈ Z and d ∈ D.

To restore validity of genetic instruments, the key idea is to condition on the parental

haplotypes as envisioned by Davey Smith and Ebrahim (2003) and used in the context of gene

mapping by Spielman, McGinnis, and Ewens (1993) and Bates, Sesia, Sabatti, and Candès

(2020). This allows us to use precisely the exogenous randomness in the ancestry indicators

Um and U f that occurs during meiosis and fertilization. This idea is formalized in the next

proposition.

Proposition 5.1. Under the causal graphical model described in Section 5.3.1, the offspring’s

maternal haplotype Zm
j (or genotype Zj) at some site j ∈ J is independent of all ancestral and

offspring confounders given the maternal (or parental) haplotypes at site j:

Zm
j ⊥⊥ (A,Cm, Cf , C) | (Mmf

j , S = 1),

Zj ⊥⊥ (A,Cm, Cf , C) | (Mmf
j ,Fmf

j , S = 1).
(5.2)

However, the conditional independence (5.2) alone does not guarantee the validity of Zj as

an instrumental variable. The main issue is that Zj might be in linkage disequilibrium with

other causal variants of Y . Our goal is to find a set of variables V such that Zj is conditionally

independent of the potential outcome Y (d). This is formalized in the definition below.

Definition 5.1. We say a genotype Zj is a valid instrumental variable given V (for estimating

the causal effect of D on Y ) if the following conditions are satisfied:

1. Relevance: Zj ̸⊥⊥ D | V ;

2. Exogeneity: Zj ⊥⊥ Y (d) | V for all d ∈ D;

3. Exclusion restriction: Y (zj , d) = Y (d) for all zj ∈ {0, 1, 2} and d ∈ D.

Similarly, we say a haplotype Zm
j is a valid instrument given V if the same conditions above

hold with Zj replaced by Zm
j and zj ∈ {0, 1, 2} replaced by zmj ∈ {0, 1}.

In our setup (Assumption 5.4), the exclusion restriction is satisfied if and only if j ̸∈ Jy.
To gain intuition on how the set of variables V can be selected, it is helpful to return to

the working example in Figure 5.2. We see that Z3 does not satisfy the exclusion restriction

because Z3 has a direct effect on Y . The causal variant Z2 for D would be a valid instrument if

we condition on the corresponding haplotypes and Z3, but Z2 is not observed in this example.

This leaves us with one remaining candidate instrument: Z1 (and potentially its haplotypes
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Table 5.2: Some paths between Z1 and Y (d) in Figure 5.2.

Name of bias Path Blocking variable

Dynastic effect Zm
1 ←Mmf

1 → Cm → Y (d) Mmf
1

Population stratification Zm
1 ←Mmf

1 ← A→ Y (d) Mmf
1

Pleiotropy Zm
1 ← Um → Zm

3 → Z3 → Y (d) Zm
3 or Z3

Assortative mating Zm
1 ←Mmf

1 ← Cm → S ← Cf ← Mmf
1 or Zf

3

Fmf
3 → Zf

3 → Z3 → Y (d) or Z3 or Fmf
3

Nearly determined ancestry Zm
1 ← Um → Zm

3 ←Mmf
3 ← Mmf

3

A→ Y (d)

Zm
1 and Zf

1 ). The relevance assumption is satisfied as long as V does not block both of the

following paths

Z1 ← Zm
1 ← Um → Zm

2 → Z2 → D;

Z1 ← Zf
1 ← U f → Zf

2 → Z2 → D.

The exclusion restriction is satisfied because Z1 is not a causal variant for Y . Finally, exogeneity

is satisfied if V blocks the path

Z1 ← Zm
1 ← Um → Zm

3 → Z3 → Y (d);

Z1 ← Zf
1 ← U f → Zf

3 → Z3 → Y (d).

Thus, we have the following result:

Proposition 5.2. For the example in Figure 5.2, the following conditional independence

relationships are true for all d ∈ D:

Zm
1 ⊥⊥ Y (d) | (Mmf

1 ,V m
3 , S = 1),(5.3)

Z1 ⊥⊥ Y (d) | (Mmf
1 ,Fmf

1 ,V3, S = 1),(5.4)

where V m
3 = (Mmf

3 , Zm
3 ) and V3 = (Mmf

3 ,Fmf
3 , Z3). The adjustment variables above are

minimal in the sense that no subsets of them satisfy the same conditional independence.

Proof. The conditional independence follows almost immediately from our discussion above. It

is tedious but trivial to show that V = (Mmf
1 ,V m

3 ) is minimal for (5.3). Table 5.2 lists the key

backdoor paths between Zm
1 and Y (d), describes the corresponding biological mechanism and

shows how conditioning on V blocks these paths. The table only includes the maternal paths,

but the same blocking also holds for the corresponding paternal paths.

Remark 5.1. To our knowledge, the bias-inducing path in the last row of Table 5.2, which we

term “nearly determined ancestry bias”, has not yet been identified in the literature. This is a
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form of collider bias introduced because the ancestry indicator can often be almost perfectly

determined if we are given the mother’s haplotypes and the offspring’s maternal haplotype. For

example, if the mother is heterozygous Mm
3 = 1,Mf

3 = 0 and the offspring’s maternal haplotype

is Zm
3 = 1, then we know that Um

3 = m is true with an extremely high confidence. Due to

genetic linkage, there is also an exceedingly high probability that Um
1 = m, inducing dependence

between the potential instrument Zm
1 with maternal haplotypes Mmf

3 . This further challenges

the widely adopted hypothesis that mapping causal variants is equivalent to testing conditional

independence; in our example, Z3 is the only causal variant of Y (d), but Z1 ⊥⊥ Y (d) | Z3 may

not be true even if there is no population stratification and no causal effect from Mmf
1 on Y (d).

We conclude this section with a sufficient condition for the validity of Zm
j and Zj in our gen-

eral setting. To simplify the exposition, let V m
B = (Mmf

B ,Zm
B ) be a set of maternal adjustment

variables, where B ⊆ J \ {j} is a subset of loci. Furthermore, let VB = (Mmf
B ,Fmf

B ,ZB).

Theorem 5.1. Suppose Z = (Z1, . . . , Zp) is a full chromosome. Consider the general causal

model for Mendelian randomization in Section 5.3.1 and let j ∈ J be the index of a candidate

instrument. Then Zm
j is a valid instrument conditional on (Mmf

j ,V m
B ) if the following conditions

are satisfied:

1. Zm
j ̸⊥⊥ Zm

d | (M
mf
j ,V m

B , S = 1);

2. Zm
j ⊥⊥ Zm

y | (M
mf
j ,V m

B , S = 1).

Proof. The relevance of Zm
j follows from the first condition, because Zm

j is dependent on some

causal variants (or is itself a causal variant) of D. The exclusion restriction (j ̸∈ Jy) follows
directly from the second condition. For exogeneity, paths from Zm

j to Y (d) either go through

the confounders A, Cf , Cm, or C, which are blocked by Mmf
j by Proposition 5.1, or through

some causal variants of the outcome as in Zm
j ← Um → Zm

y → Zy → Y (d), which are blocked

by the second condition.

It is straightforward to extend Theorem 5.1 to establish validity of the genotype Zj at locus

j as an instrumental variable. Details are omitted.

Since Proposition 5.1 ensures that, after conditioning on Mmf
j , the instrument Zm

j is

independent of all ancestral and offspring confounders (A,Cm, Cf , C), the only remaining

threats to the validity of Zm
j are irrelevance and pleiotropy. The set B is chosen to ensure that

Zm
j is independent of all pleiotropic variants conditional on V m

B (condition 2 of Theorem 5.1)

but not independent of the set of causal variants (condition 1 of Theorem 5.1).

This highlights an intrinsic trade-off in choosing the adjustment set VB: by choosing a larger

subset B, the second condition is more likely but the first condition is less likely to be satisfied.

The reason is that, when conditioning on more genetic variants, we are more likely to block the

pleiotropic paths to Y but we are also more likely to block the path between the instrument

and the causal variant.
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For now, we will continue our discussion under the assumption that an appropriate set B
can be chosen. In Section 5.3.5, we will return to this and describe a simple construction of B
using Markov properties in Haldane’s model for meiosis.

5.3.3 Hypothesis testing

We are now ready to describe the randomization-based inference for within-family Mendelian

randomization. We will focus on the simplest case where a single genetic variant from the

offspring’s maternally-inherited haplotype is used as an instrumental variable and defer the

discussion on multiple instruments to Section 5.3.6.

Suppose we observe N trios of parent and offspring and within each trio the observed

variables can be described by the causal diagram described in Section 5.3.1. Let i ∈ {1, . . . , N}
be the index of the trio. Following Rosenbaum and Rubin (1983), we define the propensity score

of the instrument Zm
ij at locus j of individual i as

(5.5) πm
ij = P(Zm

ij = 1 |Mmf
ij ,V m

iB )

where B ⊆ J is an appropriately chosen set of loci that satisfies the conditions in Theorem 5.1.

In words, πm
ij describes the randomization distribution of the haplotype Zm

ij conditional on a

set of parental and offspring haplotypes or genotypes. For now, we will treat πm
ij as known.

Let us consider the following model for the potential outcomes that assumes a constant

treatment effect β:

(5.6) Yi(d) = Yi(0) + βd for all d ∈ D and i = 1, . . . , N.

Let F = {Yi(0) : i = 1, . . . , N} denote the collection of potential outcomes for all individuals i

under no exposure d = 0. Our goal is to test null hypotheses of the form

(5.7) H0 : β = β0, H1 : β ̸= β0

where β0 is some hypothetical value of the causal effect. If the null hypothesis is true, equation

(5.6) implies that the potential outcome under no exposure (d = 0) can be identified from the

observed data by

Yi(0) = Yi(Di)− β0Di = Yi − β0Di.

For ease of notation, let Qi(β0) = Yi − β0Di be the adjusted outcome.

Theorem 5.2 and the model (5.6) imply that we are essentially testing the following

conditional independence:

H0 : Z
m
ij ⊥⊥ Qi(β0) | (Mmf

ij ,V m
iB ),

H1 : Z
m
ij ⊥̸⊥ Qi(β0) | (Mmf

ij ,V m
iB ).

(5.8)

Let Zm
j = (Zm

1j , . . . , Z
m
Nj) and similarly define other vector-valued genotypes. Suppose we have

selected a test statistic T (Zm
j | F) whose dependence on (Mmf

j ,V m
B ) is implicit. For example,
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this could be the coefficient from a regression of the adjusted outcome on the instrument. The

randomization-based p-value for H0 can then be written as

(5.9)

P (Zm
j | F) = P̃

(
T (Z̃m

j | F) ≤ T (Zm
j | F)

)
=

∑
z̃m∈{0,1}N

I
{
T (z̃m

j | F) ≤ T (Zm
j | F)

}
×

×
N∏
i=1

(πm
ij )

z̃i(1− πm
ij )

1−z̃i ,

where I{·} is the indicator function, Z̃m
j denotes an independent, random draw from (5.5) and

P̃ denotes its probability distribution. Given the propensity score and the null hypothesis, this

p-value can be computed exactly by enumerating over all 2N possible values of Z̃m, or using a

Monte Carlo approximation by drawing a large sample of Z̃m using the propensity scores πm
j ;

see Algorithm 1 for the pseudo-code. It is straightforward to replace the haplotype Zm
ij with

the genotype Zij ; the randomization distribution of Zij ∈ {0, 1, 2} is a simple function of πm
ij

and πf
ij since meioses in the mother and father are independent.

Equation (5.9) highlights the importance of the vector πm
j of propensity scores in random-

ization inference. However, πm
j describes a biochemical process occurring in the human body

which is not precisely known to, or controlled by, us. Therefore, the best we can do is perform

almost exact inference by replacing πm
j with an accurate approximation. The model we use

in this paper is Haldane’s hidden Markov model described in Appendix C.1. As discussed in

Section 5.2.2 our method is modular in the sense that more sophisticated meiosis models can

easily be substituted as the randomization distribution; see Broman and Weber (2000) and

Otto and Payseur (2019) for discussion and comparison of alternative models.

Remark 5.2. One case we did not consider is multi-levelled exposures where

Yi = Yi(0) +
T∑
t=1

β(t)Di(t)

and Di(t) ∈ {Di(1), . . . , Di(T )} is a collection of mutually exclusive binary exposures (Newey

and Stouli, 2022). Multi-levelled exposures arise naturally in many Mendelian randomization

applications, for example, alcohol consumption is often measured in several categories of

standardized drinks per day. We could test the null H0 : β(1) = β0(1), . . . , β(T ) = β0(T ), but it

is unclear when the instrument Zm
ij induces sufficient variation in Di(1), . . . , Di(T ) to reject

this null. We leave this extension for future work.

5.3.4 Choice of test statistic

Our randomization test retains the nominal size under the null hypothesis, regardless of the

choice of the test statistic. Nonetheless, a well chosen statistic may substantially increase
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Algorithm 1: Almost exact test

Compute the test statistic on the observed data t = T (Zm
j | F);

for k = 1, . . . ,K do

Sample a counterfactual instrument Z̃m
j from the randomization distribution (e.g.

using Theorem C.1 in Appendix C.1 based on Haldane’s model);

Compute the test statistic using the counterfactual instrument t̃k = T (Z̃m
j | F);

end
Compute an approximation to the p-value in Equation (5.9) via the proportion of
t̃1, . . . , t̃K which are larger than t:

P̂ (Zm
j | F) =

|{k : t ≤ t̃k}|
K

.

the power of the test. A practical challenge is that the adjustment set (Mmf
j ,VB) may be

high-dimensional and highly correlated, and their role in designing the test statistic is unclear.

We propose to use the following “clever covariate” in the test statistic:

Xm
ij =

Zm
ij

πm
ij

−
1− Zm

ij

1− πm
ij

.

We may then use the weighted difference-in-means statistic

T (Zm
j | F) =

N∑
i=1

Qi(β0)X
m
ij

or the F -statistic in a linear regression of Qi(β0) on Zm
ij and Xm

ij . A simulation example

in Section 5.4.2 shows that using this clever covariate can increase the power of the test

dramatically.

The idea of using a “clever covariate” is proposed in Scharfstein, Rotnitzky, and Robins

(1999) and Rose and Laan (2008) and is commonly used in semiparametric estimators of the

average treatment effect. Heuristically, the clever covariate exploits the so-called “central role”

of the propensity score (Rosenbaum and Rubin, 1983)

Yi(d) ⊥⊥ Zm
ij | πm

ij ,

provided that 0 < πm
ij < 1. Thus, the propensity score πm

ij may be viewed as a one-dimensional

summary of the sufficient adjustment set (Mmf
ij ,ViB) and is particularly convenient here because

it can be directly computed from a meiosis model.

5.3.5 Simplification via Markovian structure

Thus far, we have sidestepped the issue of choosing the adjustment set VB and computing the

propensity score. Conditional independencies implied by Haldane’s meiosis model allows us to

greatly simplify the sufficient confounder adjustment set. We explain this below.
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The conditions in Theorem 5.1 are trivially satisfied with B = ∅ if Jy = ∅ and Jd ≠ ∅,
i.e., all causal variants of Y on this chromosome only affect Y through D. However, this is

a rather unlikely situation. More often, we need to condition on some variants to block the

pleiotropic paths (such as Z3 in the working example in Figure 5.2). To this end, we can utilize

the Markovian structure on the meiosis indicators Um and U f implied by Haldane’s model.

Roughly speaking, such structure implies that

Zj ⊥⊥ Zl | (Mmf
j ,Fmf

j ,Vk for all j < k < l,

if there are no mutations and mother’s genotype at locus k is heterozygous (i.e. Mf
k ̸= Mm

k ).

More generally, let b1 and b2 (b1 < j < b2) be two heterozygous loci in the mother’s genome,

i.e., Mf
b1
̸= Mm

b1
and Mf

b2
̸= Mm

b2
. Let A = {b1 + 1, . . . , b2 − 1} be the set of loci between b1 and

b2, which of course contains the locus j of interest.

Theorem 5.2. Consider the setting in Theorem 5.1 and suppose

1. The meiosis indicator process is a Markov chain so that Um
j ⊥⊥ Um

l | Um
k for all j < k < l;

2. There are no mutations: ϵ = 0.

Then Zm
j is a valid instrumental variable conditional on (Mmf

j ,V m
{b1,b2}) if the following condi-

tions are true:

3. A ∩ Jd ̸= ∅;

4. A ∩ Jy = ∅.

Proof. Because there are no mutations and Mb1 and Mb2 are heterozygous, we can uniquely

determine Um
b1

and Um
b2

from V m
{b1,b2}. By the assumed Markovian structure, this means that

Zm
j ⊥⊥ Zm

l |M
mf
j ,V m

{b1,b2} for all j < b1 or j > b2.

Thus, the last two conditions in Theorem 5.2 imply the two conditions in Theorem 5.1.

One can easily mirror the above result for using the paternal haplotype Zf
j as an instrument

variable. Furthermore, let b′1 and b′2 (b′1 < j < b′2) be two heterozygous loci in the father’s

genome. Then it is easy to see that Zj = Zm
j + Zf

j is a valid instrument conditional on

(Mmf
j ,Fmf

j ,V m
{b1,b2},V

f
{b′1,b′2}

) if the last two conditions hold for the union A = {min(b1, b
′
1) +

1, . . . ,max(b2, b
′
2)− 1}.

Under the setting in Theorem 5.2, we can partition the offspring genome into mutually

independent subsets by conditioning on heterozygous parental genotypes. This partition is

useful for constructing independent p-values when we have multiple instruments. Suppose we

have a collection of genomic position B = {b1, . . . , bk} that will be conditioned on and let
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Ak = {bk−1 + 1, . . . , bk − 1} be the loci in between (suppose b0 = 0 and bk+1 = p + 1). This

indues the following partition of the chromosome:

(5.10) J = A1 ∪ {b1} ∪ A2 ∪ {b2} ∪ . . . ∪ Ak ∪ {bk} ∪ Ak+1.

Proposition 5.3. Suppose Mm
j ≠ Mf

j for all j ∈ B. Then, under the first two assumptions in

Theorem 5.2, we have

Zm
j ⊥⊥ Zm

j′ | (M
mf
j ,Mmf

j′ ,V m
B ).

for any j ∈ Al and j′ ∈ Al′ such that l ̸= l′.

Proof. The proof follows from an almost identical argument to Theorem 5.1. The assumption

that ϵ = 0 means that Um
j is uniquely determined for all j ∈ B from Mmf

j and Zm
j . Therefore

the assumed Markovian structure implies that conditioning on V m
B , along with the parental

haplotypes Mmf
j and Mmf

j′ , then induces the conditional independence.

5.3.6 Multiple instruments

Proposition 5.3 allows us to formalize the intuition that genetic instruments across the genome

may provide independent pieces of evidence.

Corollary 5.1. Suppose j ∈ Al, j
′ ∈ Al′ , and l ̸= l′. Then Zm

j and Zm
j′ are independent, valid

instruments given (Mmf
j ,Mmf

j′ ,V m
B ) if

1. The first two assumptions of Theorem 5.2 hold;

2. Al ∩ Jd ̸= 0 and Al′ ∩ Jd ̸= 0;

3. Al ∩ Jy = 0 and Al′ ∩ Jy = 0.

Corollary 5.1 says that any two instruments are valid and independent if they lie in separate

regions in the partition (5.10) and each region contains at least one causal variant of the

exposure and no pleiotropic variants (i.e. variants with a direct effect on Y not mediated by D).

As a direct application of this corollary, we can use standard procedures to combine

randomization p-values obtained from different genetic instruments and test the null hypothesis

(see e.g. Bretz, Hothorn, and Westfall, 2016). One such procedure is Fisher’s method (Fisher,

1925): let {p1, p2, . . . , pk} be a collection of independent p-values, then −2
∑k

j=1 log(pj) ∼ χ2
2k

when all of the corresponding null hypotheses are true. We will use this method to aggregate

p-values in the applied example in Appendix A.1.

As some instruments may violate the exclusion restriction, a more robust approach is to test

the partial conjunction of the null hypotheses (Benjamini and Heller, 2008; Wang and Owen,

2019); loosely speaking, this means that we reject the causal null hypothesis only if quite a few

genetic instruments appear to provide evidence against it.
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It may be impossible in practice to separate closely linked instruments into partitions

separated by a heterozygous variant, in which case the hypothesis (5.8) can be tested using

(Zm
j , Zm

j′ ) jointly. Corollary C.2 in Appendix C.2 derives the joint randomization distribution

of a collection of instruments.

Remark 5.3. The multiple instruments case has parallels with the problem of overidentification

in econometrics (Sargan, 1958; Sargan, 1988). Each instrument admits a valid confidence interval

for β in Section 5.3.3 under the randomization of Zm
j . If all instruments are valid, then the

intersection of all confidence intervals should be non-empty with known probability. An empty

intersection can be viewed as evidence that at least one instrument is invalid. See Diemer et al.

(2020) for further exposition of this idea.

5.4 Simulation

5.4.1 Setup and illustration

In this section we explore the properties of our almost exact test via a numerical simulation.

The set up of the simulation is described in detail in Appendix C.3. To summarize, we generate

a dataset of 15,000 parent-offspring trios with a null effect of an exposure on an outcome (i.e.

β = 0), both of which have variance one, and consider 5 genetic instruments on a chromosome

with p = 150 loci. The instruments are non-causal markers for nearby causal variants and there

are also pleiotropic variants in linkage disequilibrium with the instruments.

To make our setup more tangible, Table 5.3 shows the first 6 lines of observed and counter-

factual data (in red) from the simulation for one of the instruments and corresponding parental

haplotypes. We can see that individual 4 will provide almost no information for a test of the null

hypothesis; both of her parents are homozygous so there is no randomization in her genotype

outside of de novo mutations. Conversely, both of individual 1’s parents are heterozygous so

she could receive both major alleles, both minor alleles or one of each.

Suppose we wish to test the null hypothesis H0 : β = −0.3. Column Z̃i in Table 5.3 shows a

counterfactual draw of each individual’s instrument conditional on the adjustment set given

in Equation (C.9) in Appendix C.3, along with the adjusted outcome Qi(−0.3). Note that Z̃i

is independent of Qi(−0.3) by construction, so the null hypothesis is necessarily satisfied for

this counterfactual. As expected individual 4 has the same genotype in this counterfactual,

however, individual 1 inherits both minor alleles in this case. Figure 5.4 plots a distribution of

10,000 counterfactual test statistics drawn under the null hypothesis. The test statistic is the

F-statistic from a regression of the adjusted outcome on the instruments. The bars highlighted

in red are larger than the observed test statistic, such that the almost exact p-value is around

0.13.
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Table 5.3: First 6 rows of observed data from the simulation

i Zi Z̃i Mm
i Mf

i Fm
i F f

i Di Yi Qi(−0.3)

1 1 2 1 0 1 0 1.11 0.73 1.06
2 0 1 1 0 0 0 0.83 -0.52 0.77
3 1 1 1 0 0 0 0.94 0.31 0.59
4 0 0 0 0 0 0 1.43 3.30 3.73
5 0 0 0 0 0 0 0.15 1.34 1.38
6 0 0 0 0 0 0 -0.14 1.60 1.56

Figure 5.4: Histogram of 10,000 test statistics under the exact null hypothesis H0 : β = −0.3
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5.4.2 Power

We now use the simulation to study the power of the randomization test, assuming a correct

adjustment set is used (see Equation (C.9) in Appendix C.3). As the haplotypes are simulated

according to Haldane’s meiosis model, the randomization test should be exact. This is verified by

the near-uniform distributions of the p-values for testing the correct null hypothesis H0 : β = 0

with three different test statistics in the top panels of Figure 5.5.

The histograms in the bottom panels of Figure 5.5 depict the distribution of p-values for a

test of a false null hypothesis H0 : β = 0.5. The power of the test varies significantly according

to the choices of test statistic. The simple F -statistic based on a linear regression of the adjusted

outcome on the instruments (test statistic 1) has almost no power, while the test statistic

obtained from the same model but with the propensity score included as a clever covariate (test

statistic 2) has a reasonable power of about 0.52.
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Figure 5.6 expands upon the previous figure by plotting a power curve for each test statistic.

We can see that test statistic 1 has almost no power between β0 = 0 and β0 = 1. Since test

statistic 1 is unconditional on the adjustment set, resampled offspring haplotypes retain their

correlation with the confounders via the parental haplotypes. This can cause under-rejection

of false null hypotheses around the unconditional instrumental variable estimator. In this

simulation, the Anderson-Rubin 95% confidence interval is 0.64–0.89, which aligns with the

region of under-rejection.

Test statistic 2, on the other hand, conditions on the confounders via a clever covariate. It

has a power curve that is centred on the true null β0 = 0 and has significantly improved power

in the region between β0 = 0 and β0 = 1. However, it should be noted that test statistic 2 is

not uniformly more powerful than test statistic 1.

5.5 Applied example

5.5.1 Preliminaries

We illustrate our approach with a pair of negative and positive controls using the Avon

Longitudinal Study of Parents and Children (ALSPAC). Our dataset consists of 6,222 mother-

child duos from ALSPAC, a longitudinal cohort initially comprising pregnant women resident

in Avon, UK with expected dates of delivery from 1 April 1991 to 31 December 1992. The

initial sample consisted of 14,676 fetuses, resulting in 14,062 live births and 13,988 children who

were alive at 1 year of age. In subsequent years, mothers, children and occasionally partners

attended several waves of questionnaires and clinic visits, including genotyping. For a more

thorough cohort description, see Boyd et al., 2013 and Fraser et al., 2013.1

The negative control is the effect of child’s BMI at age 7 on mother’s BMI pre-pregnancy.

Dynastic effects, as depicted in Figure 5.3e, could induce a spurious correlation between child’s

BMI-associated variants and their mother’s BMI pre-pregnancy. Blocking this backdoor path is

crucial for reliable causal inference. The positive control is the effect of child’s BMI at age 7 on

a simulated, noisy version of itself. We vary the proportion of the outcome that is attributable

to noise to assess the power of our test.

5.5.2 Data processing

We use ALSPAC genotype data generated using the Illumina HumanHap550 chip (for children)

and Illumina human660W chip (for mothers) and imputed to the 1000 Genomes reference panel.

We remove SNPs with missingness of more than 5% and minor allele frequency of less than 1%.

Haplotypes are phased using the SHAPEIT2 software with the duoHMM flag, which ensures that

phased haplotypes are consistent with known pedigrees in the sample. We obtain recombination

1Please note that the study website contains details of all the data that is available through a fully searchable
data dictionary and variable search tool (https://www.bristol.ac.uk/alspac/researchers/our-data/).
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Figure 5.5: Histograms of 1,000 p-values for several null hypotheses and test statistics. Test
statistic 1 is the F-statistic from a linear regression of the adjusted outcome on the instruments.
Test statistic 2 is similar but includes the propensity scores for each instrument as covariates.
Test statistic 3 includes only the parental genotypes for each instrument as covariates.
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(a) H0 : β = 0 and test statistic 1
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(b) H0 : β = 0.5 and test statistic 1
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(c) H0 : β = 0 and test statistic 2
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(d) H0 : β = 0.5 and test statistic 2
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(e) H0 : β = 0 and test statistic 3
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(f) H0 : β = 0.5 and test statistic 3
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Figure 5.6: Power curves for the three choices of test statistic. Test statistic 1 is the F-
statistic from a linear regression of the adjusted outcome on the instruments. Test statistic 2
includes the propensity scores for each instrument as covariates. Test statistic 3 includes the
parental haplotypes as covariates. Each point on the figure is the rejection frequency over 1,000
replications.
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probabilities from the 1000 Genomes genetic map file on Genome Reference Consortium Human

Build 37.

Our instruments are selected from the genome-wide association study (GWAS) of Vogelezang

et al., 2020, which identifies 25 genetic variants for childhood BMI, including 2 novel loci located

close to NEDD4L and SLC45A3. Of the genome-wide significant variants in the discovery

sample, we select 11 with a p-value of less than 0.001 in the replication sample. ALSPAC is

included in the discovery sample, so independent replication is important for avoiding spurious

associations with the exposure. Two of our instruments, rs571312 and rs76227980, are located

close together near MC4R and need to be tested jointly. We exclude rs62107261 because it is

not contained in the 1000 Genomes genetic map file. We condition on all variants outside of a

500 kilobase window around each instrument.

5.5.3 Results

Tables 5.4 and 5.5 show results for the negative and positive controls, respectively. The last

row of each table shows the p-value from Fisher’s method aggregated across all independent

p-values. The aggregated p-value for the negative control is 0.21, indicating little evidence
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Table 5.4: Results from the ALSPAC negative control example.

Instrument (rsID) Chromosome Proximal gene P-value

rs11676272 2 ADCY3 0.45
rs7138803 12 BCDIN3D 0.55
rs939584 2 TMEM18 0.39
rs17817449 16 FTO 0.06
rs12042908 1 TNNI3K 0.35
rs543874 1 SEC16B 0.07
rs56133711 11 BDNF 0.59
rs571312, rs76227980 18 MC4R 0.48
rs12641981 4 GNPDA2 0.62
rs1094647 1 SLC45A3 0.19

Fisher’s method 0.21

Table 5.5: Results from the ALSPAC positive control example. (Chr. = chromosome)

Instrument (rsID) Chr. Gene P-value for noise of
10% 20% 50%

rs11676272 2 ADCY3 0.01 0.01 0.01
rs7138803 12 BCDIN3D 0.01 0.01 0.01
rs939584 2 TMEM18 0.98 0.95 0.88
rs17817449 16 FTO 0.33 0.35 0.44
rs12042908 1 TNNI3K 0.77 0.79 0.85
rs543874 1 SEC16B 0.48 0.64 0.92
rs56133711 11 BDNF 0.12 0.14 0.25
rs571312, rs76227980 18 MC4R 0.31 0.39 0.63
rs12641981 4 GNPDA2 0.49 0.56 0.76
rs1094647 1 SLC45A3 0.23 0.25 0.35

Fisher’s method 0.03 0.05 0.16

against the null. The aggregated p-values for the positive control range from 0.03 (when 10%

of the variance of the simulated outcome is noise) to 0.16 (when 50% of the variance of the

simulated outcome is noise). This indicates weak evidence against the null even when the effect

is quite strong.

We can also compare the results in Tables 5.4 and 5.5 with per-instrument p-values obtained

from two-stage least squares (2SLS) using the same offspring haplotypes as instruments,

unconditional on parental or other offspring haplotypes. For the negative control, the p-value

from Fisher’s method is 0.02, indicating some evidence against the null. This is expected, given

that the backdoor paths remain unblocked. For the positive control, the p-values from Fisher’s

method range from less than 10−20 (when 10% of the variance of the simulated outcome is noise)

to 4.5× 10−11 (when 50% of the variance of the simulated outcome is noise). This indicates that
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the unconditional analysis has significantly more power to detect non-zero effects compared to

our “almost exact” test. We discuss potential reasons for, and implications of, this low power

in Section 5.6

5.6 Discussion

We have presented an almost exact approach to within-family MR, which has a number of

conceptual and practical advantages over model-based approaches to MR using population

GWAS data. However, the applied example in Appendix A.1 demonstrates that power may be

limited relative to conventional MR analyses in unrelated individuals. Since our test leverages

the precise amount of information available in a single meiosis, this suggests that MR in

unrelated individuals is drawing power from elsewhere.

Besides the obvious distinction that conventional MR analyses are model-based (and thus

are not robust to model misspecification), another likely reason for the large difference in the

empirical results is that MR in unrelated individuals use randomness in meioses across many

generations. For example, an offspring with parents who are homozygous for the non-effect

allele offers no power in our test, since their genotype will not vary across meioses. However, if

we assume that genotypes are randomly distributed at the population level (as in MR studies

with unrelated individuals), that same offspring can act as a comparator for individuals with

the effect allele. Brumpton et al., 2020 corroborate this loss of power for their within-family

method, but do not elaborate on the broader implications for how Mendelian randomization is

typically justified. It would be extremely valuable for the MR literature to discuss the extent to

which Mendelian inheritance across multiple generations is driving the power behind existing

results, as such uncontrolled randomness may introduce bias when there are strong dynastic

effects and natural selection.

Continuing the discussion on multiple instruments in Section 5.3.6, our approach closely

resembles the usage of evidence factors in observational studies as advocated by Rosenbaum

(2010) and Rosenbaum (2021) and Zhao, Lee, et al. (2022). Using (conditionally) independent

instruments in different genomic regions may also be viewed as a form of triangulation to

improve causal inference (Lawlor, Tilling, and Davey Smith, 2017). Although all the p-values

are obtained using the same study design, different genetic variants may influence the exposure

through different biological mechanisms and the fact that they provide corroborating evidence

strengthens the causal conclusion.

We must also return to the problem of transmission ratio distortion (TRD) discussed in Sec-

tion 5.2.2. TRD violates the assumptions of our meiosis model that alleles are (unconditionally)

passed from parents to offspring at the Mendelian rate of 50%. We could represent TRD in our

causal model in Figure 5.2 via an arrow from the gametes (Zm,Zf ) to the mating indicator

S. This indicates that the gametes themselves influence survival of their corresponding zygote
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to term. If our putative instrument Zm
1 is in linkage with any variant exhibiting TRD, then

this invalidates it as an instrument. Suppose Zm
3 exhibits TRD, then this opens collider paths

via the parental phenotypes Cm and Cf , for example, Y (d)← Cm → S ← Zm
3 ← Um → Zm

1 .

The intuition is that parental phenotypes related to the likelihood of mating become associated

with offspring variants related to the likelihood of offspring survival. Within our causal model,

this pathway can be closed by conditioning on Zm
3 , with unconditioned variants obeying the

meiosis model. If any unconditioned variants exhibit TRD, then this bias will remain and our

meiosis model will incorrectly describe the inheritance patterns of any linked variants, resulting

in an erroneous randomization distribution. Expanding resources of parent-offspring data may

allow us to test the prevalence of transmission ratio distortion, which will help to inform the

reasonableness of maintaining Mendel’s First Law in our meiosis and fertilization model.
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Chapter 6

Discussion

6.1 Recap

The motivation underlying all three chapters in my thesis is that causal inference always rests

on untestable assumptions and interrogating, or assessing sensitivity to, those assumptions

can lead to more reliable and interpretable scientific results. Although the chapters tackle

seemingly disconnected problems, this theme unites them. In what follows, I briefly review

the main takeaways of each chapter. I then discuss the implications of my thesis work for two

stakeholders – methodologists and practitioners – and potential areas for future work.

In Chapter 3, I consider the problem of selection bias in large population cohort studies,

demonstrating that causal inference in this setting can be highly sensitive to sample selection

patterns. I also show that relatively few population-level auxiliary constraints are needed

to significantly improve the precision of partially-identified intervals for inverse probability

weighted estimators. In the process of developing this sensitivity analysis for selection bias, I

developed a flexible procedure for conducting statistical inference in stochastic optimization

problems with estimated constraint sets.

In Chapter 4, I explore the exclusion restriction violation that can occur in an instrumental

variable analysis when the exposure measure is a coarsened approximation to some true latent

exposure. I derived a simple expression for the resulting bias and proposed a sensitivity analysis

for the effect estimate on the scale of the latent exposure, with the sensitivity parameter being

the genetic variance of the latent exposure.

Finally, in Chapter 5, I describe how Mendelian randomization (MR) studies in unrelated

individuals make a number of strong assumptions about the population-level distribution of

genotypes and the absence of biasing pathways from population structure, parental phenotypes

and assortative mating, among others. The “almost exact” test proposed in that chapter is

based on an explicit model for Mendelian inheritance, embedded within a broader causal

model for MR itself. I use the causal model to identify sufficient confounder adjustment sets

and I use the model for meiosis and fertilization to derive a randomization distribution for
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offspring genotypes conditional on this adjustment set. This approach to sensitivity analysis

relaxes the need for many of the assumptions made in MR studies among unrelated individuals.

Disagreement between my test and these existing studies could therefore indicate a violation of

one or more of these assumptions.

6.2 Extended discussion for methodologists

6.2.1 Chapter 3

One of the central contributions of Chapter 3 is developing a procedure for statistical inference

in a difficult class of stochastic optimization problems where the constraint set must also be

estimated. This has implications beyond the selection bias example considered in the chapter.

For example, Duarte et al. (2021) propose an “automated” approach to partial identification

with discrete data, specifically, a procedure for generating asymptotically sharp bounds given a

desired causal estimand and causal graph. The authors note that statistical inference over the

resulting bounds remains to be developed. The procedure in Chapter 3 could be applied in this

setting, allowing valid statistical inference in a broad range of causal inference problems.

Chapter 3 also contributes to the literature on inverse probability weighting for sample

selection. Chattopadhyay, Hase, and Zubizarreta (2020) discuss two approaches for weighting:

balancing and modelling. Modelling weights attempt to explicitly model the selection process

using observed covariates, for example, estimating a logistic regression with sample selection

(S ∈ {0, 1}) as the response. By contrast, balancing weights are chosen to minimize the difference

in moments of the covariate distribution (typically means or variances) between the selected

and non-selected group. The authors demonstrate conditions under which these two approaches

are equivalent.

A feature of Chapter 3 is that it utilizes both approaches: a model is specified for the weights

and the model parameters are selected subject to some balancing conditions. Other authors have

considered this formulation (Nevo, 2003; Signorovitch et al., 2012) but I frame it as a partial

identification problem. An advantage of the partial identification formulation is flexibility. Since

I am not concerned with exactly identifying the weights, I can use a more flexible model for

the probability weights (e.g., include interactions or higher order terms that are unlikely to be

available as population moments) and a more diverse set of auxiliary information (e.g., shape

constraints on the covariate distribution). A drawback of this flexibility is that I do not formally

characterize the information content of each constraint – it is unclear which constraints are

informative, in the sense of narrowing the identified interval, and which are not.

6.2.2 Chapter 4

As discussed in Section 2.1.8, Chapter 4 is not the only contribution to the problem of

coarsening bias in instrumental variable analyses. Angrist and Imbens (1995) introduce the
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common interpretation of the Wald estimand with a multi-valued exposure as a weighted

average of the complier average causal effect at each exposure level. In doing so, they discuss the

bias that arises when a multi-valued exposure is miscoded as a binary exposure. The authors

demonstrate that this results in a multiplicative bias that will tend to inflate effect estimates

(see Section 2.1.8 for a more formal discussion). This is consistent with my bias formula in

Section 4.3.1 under a linear index relationship between the latent continuous exposure and

coarsened exposure. In my set-up with a continuously-distributed latent exposure (as opposed

to a multi-valued discrete latent exposure), coarsening can also induce a downward bias.

I did not explore in much detail the connection between my sensitivity analysis and the

literature on coefficients of determination on the liability scale. The sensitivity parameter θ in

my sensitivity analysis is the genetic variance of the latent exposure. Lee, Goddard, et al. (2012)

propose a method of estimating this quantity under the same Falconer (1965) liability-threshold

model that motivated my work. It is likely that an estimator for β could be conceived in which

θ is replaced with an appropriate estimator. This would sidestep the need to view this as a

sensitivity analysis, provided the estimator for θ is reliable.

6.2.3 Chapter 5

Chapter 5 reveals some novel – often subtle – characteristics of the MR design that could serve

as an impetus for methodological work in MR and population genetics more generally. For

example, nearly determined ancestry bias (Table 5.2) can arise in my causal model when we

condition on offspring genotypes without conditioning on the corresponding parental genotypes.

This type of conditioning is common in genetic fine-mapping methods, which attempt to locate

causal variants for diseases and other phenotypes (Wang, Sarkar, et al., 2020). In the presence

of nearly determined ancestry bias, existing approaches to fine-mapping could lead to erroneous

inferences about causal variants, although this has not yet been recognized, to my knowledge.

Another characteristic that was not explicitly explored in this chapter is the unique challenge

implied by our causal model in diverse and admixed samples. Admixture is said to occur when

two previously divergent or isolated populations produce offspring (Gopalan et al., 2022). The

majority of studies in human population genetics have been conducted in samples of white

Europeans, ostensibly for ease of data collection and to minimize bias from population structure.

However, there is growing recognition of the need for studies in non-European populations

(Sirugo, Williams, and Tishkoff, 2019; Caliebe et al., 2022). This recognition is occurring in

MR studies as well (Zollner et al., 2022).

Admixture can induce long-acting linkage disequilibrium along a chromosome. This can

be illustrated with a simple derivation using the HMM in Chapter 5. Suppose an offspring’s

mother is admixed, with her mother from population A and her father from population B.

Suppose we also have two variants indexed by j ∈ {1, 2} on the same chromosome, with the

probability of a crossover occurring in a single meiosis given by p. We can write E(Mm
j ) = fA

j
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and E(Mf
j ) = fB

j , where f denotes population allele frequencies. It follows from the HMM in

Appendix C.1 that

pr(Zm
2 = 1 | Zm

1 = 1) =
[
fA
2 (1− p) + fB

2 p
] fA

1

fA
1 + fB

1

+
[
fA
2 p+ fB

2 (1− p)
] fB

1

fA
1 + fB

1

.

This expression is a generalization of the one in Price et al. (2008), who consider two

perfectly-linked variants such that p = 0. If fA
1 = fB

1 then pr(Zm
2 = 1 | Zm

1 = 1) = 1
2f

A
2 + 1

2f
B
2 ,

indicating that Zm
1 and Zm

2 are independent. If fA
2 = fB

2 = f2 then pr(Zm
2 = 1 | Zm

1 =

1) = f2, also indicating independence. If the variants are far apart, such that p ≈ 1
2 then

pr(Zm
2 = 1 | Zm

1 = 1) ≈ 1
2f

A
2 + 1

2f
B
2 , once again indicating independence. This suggests that

admixture resulting in differential allele frequencies, along with some correlation between the

meiosis indicators (captured by p), is necessary to induce this form of linkage disequilibrium.

Since p only converges to one half over long distances (for example, two variants that are 10

Mb apart will have p ≈ 0.1), this suggests that linkage disequilibrium from admixture can

extend far along a chromosome. This is problematic for MR studies because it can induce

correlation between the instrument and potentially many pleiotropic variants located along

the chromosome. Conditioning on parental genotypes is sufficient to address this bias, but

methodologists developing approaches for MR in unrelated admixed samples should be cognizant

of the need to consider pleiotropy induced by long-acting linkage disequilibrium.

6.3 Extended discussion for practitioners

Each chapter in my thesis proposes a sensitivity analysis for a problem of relevance to applied

researchers, and it is my hope that my proposals will receive some uptake. I aim to provide a

compelling case for addressing each of the three methodological problems and to remove barriers

to implementing my proposed solution. To this end, I have written open source R packages for

two of my chapters: selectioninterval (Chapter 3) and almostexactmr (Chapter 5). These

can be freely installed and modified by users. I also released a GitHub repository containing

all scripts used to generate the results in Chapter 4 (https://github.com/matt-tudball/

mrlat_replication). Alongside software packages and scripts, each chapter contains several

applications of the proposed methods to real data.

6.3.1 Chapter 3

Chapter 3 can be viewed in the broader push for awareness of the problem of selection

bias in applied research. This was highlighted by Griffith et al. (2020), who note that many

epidemiological studies of COVID-19 rely on highly selected samples, such as the influential

COVID Symptom Tracker Study (Menni et al., 2020). Recent studies have also been raising

concerns about the representativeness of large population cohorts such as UK Biobank (Fry et al.,

2017; Munafò et al., 2018; Huang, 2021). Given the growing importance of rigorously addressing
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selection bias in applied studies, Chapter 3 contributes by proposing a way of quantifying

selection bias even in the absence of data on non-selected observations or insufficiently many

population moments to identify balancing weights (Chattopadhyay, Hase, and Zubizarreta,

2020). This is most likely to be useful in self-selected surveys or cohorts where there is little

data on individuals who deny to participate.

A practical challenge of implementing my sensitivity analysis is selection of the sensitivity

parameters. This is a challenge common to many sensitivity analyses (Thompson and Arah,

2014; Smith and VanderWeele, 2019; Cinelli and Hazlett, 2020) and there is no optimal choice.

Smith (2020) advocates selecting sensitivity parameters which shift a non-zero estimate toward

the null. An advantage of this conceptualization is that it yields sensitivity parameters which

result in a qualitative change in a study’s conclusions. From there, the practitioner can decide

whether sensitivity parameters of that magnitude are plausible or not. Cinelli and Hazlett (2020)

instead advocate choosing sensitivity parameters based on domain knowledge, that is, referring

to previous studies or consulting domain experts. An advantage of this conceptualization is

that the sensitivity parameters are more justifiable and take advantage of existing knowledge.

The two approaches are, of course, not mutually exclusive.

A feature of the sensitivity analysis in Chapter 3 is that there are two avenues for reducing

the width of the identified interval: decreasing the sensitivity parameters and adding additional

constraints. I argue that the most compelling sensitivity analysis is one in which the sensitivity

parameters are set sufficiently large to capture most plausible selection patterns, but the

interval is tightened using auxiliary data – in the UK, this can often be obtained from the

Office of National Statistics (https://www.ons.gov.uk/) which publishes the census and other

population-level metrics. This approach allows us to utilize existing information about the

population in a formal way.

A practical problem with my sensitivity analysis is that the optimization problem (3.11) can

theoretically induce very extreme weights. In practice, this is often handled via trimming, where

observations with extreme weights are removed from the analysis (Lee, Lessler, and Stuart,

2011), such that the sample is given by {i = 1, . . . , N : e(Wi; θ) ∈ [α, 1− α]} for some specified

α > 0. Crump et al. (2009) propose a more principled approach of only using observations

whose covariates lie within a subspace of their support such that the variance of the estimator

is minimized. Under some conditions, this is equivalent to trimming. It is unclear how to utilize

weight trimming within my sensitivity analysis. It is tempting to follow a naive approach of

including constraints such that the weights cannot be too extreme, however, this does not trim

outlying observations; indeed, it could lead to artificially tight intervals by forcing the weights

of outlying observations to lie within a certain range. I view the potential dependence of the

identified interval on a few extreme weights as a drawback of my sensitivity analysis.
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6.3.2 Chapter 4

Chapter 4 serves two purposes for practitioners. Firstly, it raises awareness about the problem

of coarsening bias in MR studies. Much of the discussion about exclusion restriction violations

in the MR literature has centred on pleiotropy (Hemani, Bowden, and Davey Smith, 2018),

which occurs when a variant (or group of closely linked variants) exert biological effects on

multiple phenotypes. Exclusion restriction violations related to coarsening, and measurement

error more generally, have received considerably less attention. Secondly, Chapter 4 proposes

a method for recovering an interpretable effect estimate on the scale of the latent exposure,

under some strong structural assumptions.

Since publication of this chapter, a couple of studies have implemented my method to

address coarsening bias. Lai et al. (2022) estimate the bidirectional effects of hypertension and

gout. Given that both phenotypes are measured as a binary diagnosis variable, the authors

apply my coarsening bias method to estimate effects on the liability scale. The authors select

ranges for the sensitivity parameter θ2 based on GWAS estimates of closely-related continuous

phenotypes: blood pressure for hypertension and uric acid for gout. I view this as a clever

approach that could be utilized in other applications of my method. Wang, Richardson, et al.

(2022) estimate the effect of atrial fibrillation on a large number of phenotypes (referred to

as a phenome-wide study). Similar to the previous paper, atrial fibrillation is measured as

a binary diagnosis variable and the authors instead estimated effects on the liability scale,

using θ2 derived from Lee, Goddard, et al. (2012)’s coefficient of determination introduced in

Section 4.3.2.

6.3.3 Chapter 5

Chapter 5 also serves a dual purpose for practitioners. Firstly, one of the primary motivations

for this paper is the lack of a rigorous biologically-grounded justification for MR as a study

design, and a clear description of the underlying assumptions. I view this chapter as being

a useful pedagogical tool, particularly for econometricians, applied statisticians, and others

with a technical background who would like to see a formal exposition of the assumptions

and testing procedure. Secondly, it provides a statistical procedure for parent-offspring MR,

with accompanying software package. It is increasingly being recognized that certain traits are

more heavily influenced by patterns of ancestry and demography than others. For example,

Howe, Nivard, et al. (2022) demonstrate that behavioural traits, such as educational attainment,

exhibit greater attenuation from a within-sibship analysis than molecular traits, such as lipids.

The authors argue that this attenuation is driven by blocking some of the backdoor paths

described in Table 5.2. Researchers studying such traits could strengthen their analyses by

demonstrating consistency between my robust, but less powerful, “almost exact” test and more

conventional approaches in samples of unrelated individuals.
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6.4 Future work

There are several promising avenues for expanding and generalizing the work in this thesis.

Chapter 5 is restricted to parent-offspring designs, however, we could build upon parent-offspring

principles to develop a general framework for causal inference in family-based studies containing

arbitrary pedigrees (e.g., parent-offspring, siblings, cousins, grandparents). The observation

that would guide my initial approach to this problem is that the genotypes of any two related

individuals can be characterized by their identity-by-descent (IBD) state (Thompson, 2000).

Furthermore, there are algorithms that can infer IBD states quickly and accurately (Young

et al., 2022). For a sibling pair, the IBD state of a particular variant simply reflects whether the

siblings inherited it from the same parental haplotypes or different parental haplotypes. This

could serve as an instrumental variable for the difference in the siblings’ alleles, independent

of biases introduced by assortative mating or dynastic effects. Hypothetically, this principle

could be generalized to more distant kin. The potential impact of this work is twofold. Firstly,

we could improve the power of within-family designs by allowing valid inference for a broader

range of pedigrees, potentially overcoming the power limitations of relying on a single meiosis

(see Section 5.6). Secondly, we could assess the extent of, and alleviate, potential biases that

exist in traditional methods for within-family designs, e.g., first differencing, linear fixed effects

(Brumpton et al., 2020).

Within the parent-offspring design, there are opportunities to address applied questions for

which existing methods are ill-suited. One such problem is the effect of skin tone discrimination

on mental health or educational outcomes. This is an important question from a public health

perspective, however, there are likely to be large ancestral biases, restricting us to a within-

family design. Furthermore, the admixture that drives much of the genetic variation in skin

tone is likely to introduce pleiotropy via long-acting linkage disequilibrium. My method can

adjust for this, whereas other within-family methods cannot. My first step would be to apply

for data from Born in Bradford, which is a parent-offspring birth cohort in the English city of

Bradford, in which roughly 50% of newborns are of South Asian ancestry (Wright et al., 2013).

The sensitivity analysis in Chapter 3 allows users to specify population characteristics in

the form of statistical tests, such that inverse probability weights that are inconsistent with

these characteristics will be unlikely under the null distribution. I have identified three areas of

future work. Firstly, the general statistical inference procedure for sample-constrained stochastic

optimization problems is overly conservative because it does not consider the covariance between

the objective function and constraint set. Bootstrapping the plug-in estimator νpn in eq. (3.4)

could yield a more efficient, if computationally expensive, inference, but the statistical properties

of such an approach remain to be explored. Secondly, genetic data has unique properties that

could be characterized within my framework and there is growing recognition that genetic

association studies are not immune to sample selection bias (Mitchell et al., 2022). For example,

autosomal variants should be independent of biological sex in the population (Pirastu et al.,
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2021) and genetic segments shared IBD between two related individuals should not be enriched

for certain alleles compared to non-IBD segments (Benonisdottir and Kong, 2022). I could

formulate statistical tests for these characteristics and use them as constraints in the sensitivity

analysis. Thirdly, while the sensitivity analysis in Chapter 3 is flexible, it is unclear that it is

the most efficient way of utilizing these population characteristics. Dorn and Guo (2022) derive

an asymptotically sharp interval for a class of inverse probability weighted estimators that

utilizes quantile balancing of covariates. It would be valuable to assess whether this quantile

balancing approach could be applied to the broader class of estimators I consider.

I view three important areas of future work for the coarsening bias method in Chapter 4.

Firstly, my method assumes that we have a single coarsened exposure for a single latent exposure.

In practice, we often have multiple coarsened measures of the same latent trait. Jin et al. (2021)

describe an approach for integrating multiple measures of a latent exposure in MR studies

using second-order summary statistics, for example, CRP, IL-6 and MCP-1 as biomarkers

for underlying inflammation. It would be valuable to allow multiple coarsened exposures to

provide evidence for the causal effect of a latent exposure. Secondly, my method relies on a

strong structural assumption that the coarsened and latent exposures are related via a linear

index model. It may be possible to relax some of these assumptions, for example, by assuming

that the coarsened exposure is simply rank-preserving with respect to the latent exposure.

Alternatively, we could consider a sensitivity analysis which partially identifies the effect of

the latent exposure under a weaker set of assumptions. Thirdly, my method does not provide

a way of assessing whether the exclusion restriction is violated due to coarsening bias. This

last extension has been undertaken since publication of Chapter 4 by Tian et al. (2022), who

propose a Gelman–Rubin uniformity statistic to test for exclusion restriction violations.
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A.1 Further details for the applied example

A.1.1 Varying the sensitivity parameters

It is important to report a few choices for the sensitivity parameters to understand which

parameters are driving the width of the interval. Selecting Λ1 < 1.75 results in an empty

constraint set, indicating that there are no parameters which satisfy all of the auxiliary

information constraints provided. The response rate constraint of Example 3.2 appears to be

more informative when the interval (Λl
0,Λ

u
0) is wider, which is expected. For all choices of

parameters we consider, the constraints are informative and recover an interval that rejects the

null.

A.1.2 Visualizing the feasible region

It is also illustrative to plot the feasible region for a couple of simple examples. Suppose that

Wi consists only of the sex variable. We select sensitivity parameters (Λl
0,Λ

u
0 ,Λ1) = (0.02, 0.2, 2)

as usual and consider two constraints: setting the response rate to be 0.055 and setting the

population mean of male sex to be 0.495.

Figure A.2 plots the two feasible regions. The feasible regions are both small in comparison

to the space implied by the sensitivity parameters. Imposing both constraints simultaneously

will result in a non-empty feasible region. In fact, Nevo (2003) shows that the parameters of the

selection model are exactly identified in this case provided each constraint provides a unique

restriction on θ, in the sense that the outer product of the corresponding equality constraints is

of full rank.
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Figure A.1: This figure presents several choices of sensitivity parameters for the applied example
described in Section 3.6.
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Figure A.2: This figure plots the feasible region (purple region) for a simple selection model
with one variable and an intercept. Panel (a) sets the response rate to be 0.055 and panel (b)
sets the population mean of male sex to be 0.495.

A.1.3 Implied selection probabilities within covariate strata

We can check the implied probabilities of sample selection within different covariate strata.

Strata for which the implied probabilities are extreme, or inconsistent with known patterns of

sample selection, could be addressed by introducing additional constraints. To illustrate this

idea, Tables A.1 and A.2 show the implied probabilities within strata of sex and educational

attainment of the sensitivity analysis in Section 3.6. Table A.1 shows the probabilities with

only the response rate constraint and Table A.2 shows the probabilities with all constraints.

The probabilities in Table A.1 exhibit sample selection patterns that are inconsistent with

known characteristics of UK Biobank (Fry et al., 2017). In particular, at both the lower and

upper bounds, better educated individuals are less likely to select into the sample. At the lower

bound, men are more likely to select into the sample than women.

The probabilities in Table A.2 are more consistent with UK Biobank selection patterns. At

the lower bound, better educated individuals are now more likely to select into the sample.

Women are more likely to select into the sample than men across most strata of educational

attainment. Despite this, the selection pattern for education is still contrary to our expectations

at the upper bound. This could indicate that a constraint on average educational attainment

would tighten the upper bound. Alternatively, we could constrain the coefficient for educational

attainment to be non-negative in the weight model.

A.2 Computation time of selection bias method

This simulation illustrates the computation time of our R package selectioninterval as the

number of weight model increases. We replicate the simulation set-up in Section 3.5. To reiterate,

our parameter is the regression coefficient of Yi on Xi for (Xi, Yi) ∼ N (0, I2), i = 1, . . . , 200.

The variables in the weight model are Wi = (Xi, Yi, Z
d
i ), where Z

d
i ∼ N (0, Id). Figure A.3 shows

the single-core computation time in seconds of the lower and upper bounds as the dimension d
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Table A.1: Implied probabilities across sex and education strata, response rate constraint

Age finished school Probabilities at lower bound Probabilities at upper bound
Female Male Female Male

14 0.59 0.72 0.33 0.17
15 0.43 0.60 0.27 0.12
16 0.40 0.56 0.35 0.17
17 0.28 0.43 0.31 0.13
18 0.22 0.33 0.28 0.11
19 0.21 0.30 0.22 0.08
20 0.14 0.30 0.19 0.07
21 0.09 0.17 0.17 0.06
22 0.10 0.16 0.11 0.04

Table A.2: Implied probabilities across sex and education strata, all constraints

Age finished school Probabilities at lower bound Probabilities at upper bound
Female Male Female Male

14 0.07 0.06 0.20 0.17
15 0.10 0.09 0.20 0.17
16 0.13 0.12 0.21 0.18
17 0.16 0.17 0.21 0.17
18 0.19 0.20 0.19 0.16
19 0.20 0.22 0.15 0.13
20 0.24 0.22 0.14 0.10
21 0.29 0.28 0.13 0.10
22 0.27 0.31 0.09 0.08

is varied from 1 to 20. For this simulation, computational complexity appears to be sub-linear.

A.3 Sufficient conditions for Assumption 3.6

Assumption A.1. For sufficiently large n, Θr
n ⊆ B with probability one.

Assumption A.2. For all j = 1, . . . , J , hnj(θ) converges to hj(θ) and ϵnj(θ) converges to 0

with probability one as n→∞ uniformly on B.

Assumption A.3. For any θ ∈ Θ, let A(θ) = {j : hj(θ) = 0} be the indices of active constraints,
which could be empty. We assume that the gradient vectors ∇hj(ϑ), j ∈ A(ϑ), are linearly

independent.

104



A.4. TECHNICAL DETAILS

10

20

30

40

5 10 15 20
Dimension

C
om

pu
ta

tio
n 

tim
e 

(s
ec

on
ds

)

Figure A.3: This figure plots the computation time in seconds of our R package for a sample
size of 200. The dimension d is varied between 1 and 20.

A.4 Technical details

Proof of Lemma 3.1

Proof. Consider the population problem. We will prove the ‘if’ statement since the ‘only if’

statement follows from some simple algebra. We will begin by noting that, since ν is the solution

to a linear fractional programming problem and since Θ is a compact, convex polyhedron, the

maximizing weight vector ϑ will lie at a vertex. In other words, ϑ ∈ {1/b, 1/a}K . Take an

arbitrary weight vector θ ∈ {1/b, 1/a}K . Suppose there are 1 < m ≤ K elements of θ which

differ from ϑ. Without loss of generality, suppose these are the first m elements. Then we can

write

β(w) =

∑K
k=1 θkf(tk)p(tk)∑K
k=1 θkg(tk)p(tk)

=

∑K
k=1 ϑkf(tk)p(tk)−

∑m
k=1 qkf(tk)p(tk)∑K

k=1 ϑjg(tk)p(tk)−
∑m

k=1 qkg(tk)p(tk)

≥
ν
∑K

k=1 ϑkg(tk)p(tk)− ν
∑m

k=1 qkg(tk)p(tk)∑K
k=1 ϑkg(tk)p(tk)−

∑m
k=1 qkg(tk)p(tk)

= ν

∑K
k=1 ϑkg(tk)p(tk)−

∑m
k=1 qkg(tk)p(tk)∑K

k=1 ϑkg(tk)p(tk)−
∑m

k=1 qkg(tk)p(tk)

= ν

The same holds with probability one for the sample problem by replacing p(tk) with pn(tk).
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Proof of Proposition 3.4

Proof. Consider the population problem. Suppose that there are two global minima, ν1 = β(ϑ1)

and ν2 = β(ϑ2), such that ν1 = ν2 = ν and ϑ1 ̸= ϑ2. Since ν1 and ν2 are both global minima

then, by Lemma 3.1, for all k = 1, . . . ,K,

(A.1)
qk f(tk) ≤ ν1 qk g(tk)

qk f(tk) ≤ ν2 qk g(tk)

Without loss of generality, we assume that ϑ1 and ϑ2 differ by the first m elements. Then,

ν = ν1 =

∑K
k=1 ϑ1jf(tk)p(tk)∑K
k=1 ϑ1kg(tk)p(tk)

=

∑K
k=1 ϑ2kf(tk)p(tk)∑K
k=1 ϑ2kg(tk)p(tk)

=

∑K
k=1 ϑ1kf(tk)p(tk)−

∑K
k=1 qkf(tk)p(tk)∑K

k=1 ϑ1kg(tk)p(tk)−
∑m

k=1 qkg(tk)p(tk)

where qk = ϑ1k − (1/a+ 1/b− ϑ1k). Rearranging, we obtain,

m∑
k=1

qk f(tk) p(tk) = ν
m∑
k=1

qk g(tk) p(tk)

However, (A.1) implies that this equality will only hold if, for all k = 1, ...,m, f(tk)/g(tk) = ν,

which cannot be true by Assumption 3.1. Therefore, by contradiction, the set {θ ∈ Θ: β(θ) = ν}
must be a singleton. The same holds with probability one for the sample problem by replacing

p(tk) with pn(tk).

Proof of Proposition 3.3

Proof.

|σ2
n(ϑn)− σ2(ϑ)| = |σ2

n(ϑn)− σ2(ϑn) + σ2(ϑn)− σ2(ϑ)|

≤ |σ2
n(ϑn)− σ2(ϑn)| + |σ2(ϑn)− σ2(ϑ)|

≤ sup
θ∈Θ
|σ2

n(θ)− σ2(θ)| + |σ2(ϑn)− σ2(ϑ)|

→ 0 with probability one,

where the last inequality holds by the uniform strong consistency and the second term on the

last line goes to zero with probability one since ϑn → ϑ with probability one by Proposition 3.1

and σ2(θ) ∈ C(S).
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Before proving Theorem 3.1, we begin with some notation and preliminary lemmas. Denote

the confidence bound for a particular θ and α as

Cn(θ, α) = Qn(θ)− Zα σn(θ)n
−1/2

and the sample minimum over Θr
n at α2 as

ζrn ∈ argmin{Cn(θ, α2) : θ ∈ Θr
n}.

Recall that ϑr
n ∈ argmin{Qn(θ) : θ ∈ Θr} and ϑ = argmin{Q(θ) : θ ∈ Θ}, which is assumed to

be unique. These quantities can be ordered deterministically as

Cn(ζ
r
n, α) ≤ Cn(ϑ

r
n, α) ≤ Qn(ϑ

r
n) ≤ Qn(ζ

r
n).

The first lemma provides a lower bound for the coverage probability of Cn(ϑ
r
n, α2).

Lemma A.1. Let δn = Zα2 ϵ n
−1/2 be a deterministic sequence where ϵ > 0 is any positive

constant, then

pr

{
Cn(ϑ

r
n, α2) ≤ ν

}
≥ pr

{
Cn(ζ

r
n, α2) ≤ ν − δn

}
+ pr

{∣∣σn(ζrn) − σn(ϑ
r
n)
∣∣ ≤ ϵ

}
− 1.

Proof.

pr

{
Cn(ϑ

r
n, α2) ≤ ν

}

= pr

{
Qn(ϑ

r
n) − Zα2 σn(ϑ

r
n)n

−1/2 ≤ ν

}

= pr

[
Qn(ζ

r
n) − Zα2σn(ζ

r
n)n

−1/2 +
{
(Qn(ϑ

r
n)−Qn(ζ

r
n)
}
+ Zα2

{
σn(ζ

r
n) − σn(ϑ

r
n)
}
n−1/2 ≤ ν

]

≥ pr

[
Qn(ζ

r
n) − Zα2σn(ζ

r
n)n

−1/2 + Zα2

{
σn(ζ

r
n) − σn(ϑ

r
n)
}
n−1/2 ≤ ν

]

≥ pr

{
Qn(ζ

r
n) − Zα2σn(ζ

r
n)n

−1/2 + δn ≤ ν, Zα2

∣∣σn(ζrn) − σn(ϑ
r
n)
∣∣n−1/2 ≤ δn

}

≥ pr

{
Cn(ζ

r
n, α2) ≤ ν − δn

}
+ pr

{
Zα2

∣∣σn(ζrn) − σn(ϑ
r
n)
∣∣n−1/2 ≤ δn

}
− 1

= pr

{
Cn(ζ

r
n, α2) ≤ ν − δn

}
+ pr

{∣∣σn(ζrn) − σn(ϑ
r
n)
∣∣ ≤ ϵ

}
− 1.
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Lemma A.2. Suppose a sequence of functions Q̃n : Rp → R is in C(B) and converges to Q(θ)

with probability one as n → ∞ uniformly on B. Furthermore, let ν̃n = inf{Q̃n(θ) : Θ
r
n} and

ϑ̃n ∈ {θ : Q̃n(θ) = ν̃n}. Then, under Assumptions 3.1, 3.2 and A.1 - A.3, ν̃n → ν and ϑ̃n → ϑ

with probability one as n→∞.

Proof. The proof of this lemma combines Theorem 5.3 and Theorem 5.5 in Shapiro, Dentcheva,

and Ruszczyński (2009). Theorem 5.3 establishes consistency of optimal values and solutions

when Θ is known. Theorem 5.5 generalizes this result to an estimated constraint set, in our

case Θr
n.

In particular, Theorem 5.5 requires that the following two conditions are satisfied:

a) If θn ∈ Θr
n and θn converges with probability one to a point θ∗, then θ∗ ∈ Θ.

b) There exists a sequence θn ∈ Θr
n such that θn converges to ϑ with probability one.

We begin with the proof of condition (a). Suppose θ∗ ̸∈ Θ. Then there exists some j = 1, . . . , J

such that hj(θ
∗) ≥ δ, where δ > 0 is some constant. By the triangle inequality,

|hjn(θn)− hj(θ
∗)| ≤ |hjn(θn)− hjn(θ

∗)|+ |hjn(θ∗)− hj(θ
∗)|.

The first term converges to zero with probability one because θn converges to θ∗ and hjn(θ) ∈
C(B), both with probability one. The second term also converges to zero with probability one

by Assumption A.2 because hjn(θ)→ hj(θ) uniformly on B with probability one. This means

that for all ϵ > 0 there exists an n ≥ nϵ such that

|hjn(θn)− hj(θ
∗)| < ϵ.

However, since hj(θ
∗) ≥ δ and θn ∈ Θr

n, such that hjn(θn) ≤ ϵjn(θn), this is equivalent to

hj(θ
∗)− hjn(θn) < ϵ

whenever δ > ϵjn(θn). Without loss of generality, we can set ϵ = δ − ϵjn(θ) > 0. From here, we

can rearrange,

hjn(θn) > hj(θ
∗)− ϵ ≥ δ − ϵ ≥ ϵjn(θn),

which means that θn ̸∈ Θr
n, which is a contradiction. Therefore, it must be that θ∗ ∈ Θ.

Condition (b) follows from the constraint qualification imposed in Assumption A.3 and the

discussion in Shapiro, Dentcheva, and Ruszczyński (2009, p. 161-162).

Proof of Theorem 3.1

Proof. We begin by invoking Lemma A.1, which states that

pr

{
Cn(ϑ

r
n, α2) ≤ ν

}
≥ pr

{
Cn(ζ

r
n, α2) ≤ ν − δn

}
+ pr

{∣∣σn(ζrn) − σn(ϑ
r
n)
∣∣ ≤ ϵ

}
− 1,
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where δn = Zα2 ϵ n
−1/2 and ϵ > 0 is any positive constant. We claim that

lim
n→∞

pr

{∣∣σn(ζrn) − σn(ϑ
r
n)
∣∣ ≤ ϵ

}
= 1.

This follows from Proposition 3.3 and Assumption 3.6. A sufficient condition for satisfying

this assumption is that ϑr
n → ϑ and ζrn → ϑ with probability one. This follows from Lemma A.2

since Qn(θ) and Cn(θ, α) both converge to Q(θ) with probability one uniformly on B by

Assumption 3.3. Therefore, we have that

lim
n→∞

pr

{
Cn(ϑ

r
n, α2) ≤ ν

}

≥ lim
n→∞

pr

{
Cn(ζ

r
n, α2) ≤ ν − δn

}

≥ lim
n→∞

pr

{
Cn(ζ

r
n, α2) ≤ ν − δn, Θ ⊆ Θr

n

}

≥ lim
n→∞

pr

{
Cn(ϑn, α2) ≤ ν − δn, Θ ⊆ Θr

n

}

= lim
n→∞

[
pr

{
Qn(ϑn)− Zα2σn(ϑn)n

−1/2 ≤ ν − δn

}
− pr

{
Cn(ϑn, α2) ≤ ν − δn, Θ ̸⊆ Θr

n

}]

≥ lim
n→∞

(
pr

[
n1/2

{
Qn(ϑn) − ν

}
σ(ϑ)

σ(ϑ)

σn(ϑn)
≤ Zα2(1− ϵ)

]
− pr

{
Θ ̸⊆ Θr

n

})

≥Φ{Zα2(1− ϵ)} − α1

where the last inequality follows by Slutsky’s theorem, Proposition 3.3 and Proposition 3.2.

Since ϵ > 0 is an arbitrarily small constant, this lower bound can be set arbitrarily close to

1− α2 − α1.
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B.1 Importance of the identifying assumptions

Assumptions 4.1 and 4.3 require that the latent exposure and measurement are related by a

linear single index model. This assumption imposes considerable structure on the relationship

between the two. To see why this assumption is necessary for identification, consider the more

general model L = G−V = ν(Z,X)−V , where ν(·) is some continuous function. D is invariant

to any monotone transformation t(·) in the sense that

D = I{ν(Z,X) ≥ V } = I{t(ν(Z,X)) ≥ t(V )}(B.1)

One such monotone transformation we can take is t(·) = FV (·), where FV (·) is the cumulative

distribution of V , such that

D = I{FV (ν(Z,X) ≥ FV (V )} = I{pr(D = 1 | Z,X) ≥ U}(B.2)

where U ∼ Unif(0, 1). This means that the observable data distribution f(Z,X,D, Y ) is

consistent with any monotone transformation of ν(Z,X), including pr(D = 1 | Z,X) itself. By

imposing the structural assumption that G = ν(Z,X) = µ+ αZ + γ′X, we reduce the class of

models that the observed data distribution is consistent with to ν(Z,X) that are proportional

to G. This allows us to separate G, which is linear in parameters, from the non-linear link

function. In the absence of this linear index assumption, this separation does not occur. This

approach to identification is within the class of ‘identification by functional form’ methods

described in Lewbel (2019), which provides an overview of this class of methods and discusses

their limitations. Section B.2 provides some simulation results when other assumptions fail,

namely, correct specification of the link function and independence between the threshold and

Z and X, both of which can introduce considerable bias. Bias from misspecification of the link
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function can be ameliorated by using more flexible semi-parametric binary outcome estimators

(Ichimura, 1993; Klein and Spady, 1993). Independence of the threshold from Z and X is a

reasonable assumption when these are genetic factors and D is disease diagnosis or when D is

a deterministic categorisation of the latent exposure (i.e., splitting BMI into obesity status).

B.2 Simulating violations of the identifying assumptions

In this section, we present some simulation results which violate the identifying assumptions

stated in Section 4.2. Our data generating process is as follows:

Z
iid∼ N (0, 1), X

iid∼ Exp(1), V
iid∼ SN(0, 1, a)

G = αZZ + αXX

L = G− V,

D = I(L ≥ bX)

Y = βLL+ βXX + βV V + ε, ε
iid∼ N (0, 1)

We set parameters (αZ , αX , βL, ) equal to 1, (βX , βV ) equal to 0.2, normalize Z, X and V to

have mean 0 and normalize the variances as follows: var(Z) = 2θ2/5, var(X) = 3θ2/5 and

var(V ) = 1 − θ2, where θ2 = 0.1, meaning that σL = 1. SN(0, 1, a) denotes the skew normal

distribution with skewness parameter a. We vary the skewness parameter over a range of values

in Table B.1. When a = 0, this is equivalent to the standard normal distribution, meaning that

the probit link will be correctly specified. As V becomes more skewed, the bias increases. This

bias can be ameliorated with semi-parametric methods for binary outcomes (Ichimura, 1993;

Klein and Spady, 1993).

Table B.1: Ratio of estimated to true βL with link function misspecification

Link function Skewness parameter a
0 1 2 3 4 5

Logistic 1.01 1.02 1.03 1.05 1.06 1.07
(1.01-1.02) (1.01-1.03) (1.03-1.04) (1.04-1.06) (1.05-1.07) (1.06-1.07)

Probit 1.01 1.02 1.03 1.05 1.06 1.07
(1.00-1.02) (1.01-1.03) (1.02-1.04) (1.04-1.06) (1.05-1.07) (1.06-1.08)

Semi-parametric† 1.00 1.00 1.00 1.00 1.01 1.01
(0.99-1.00) (0.99-1.01) (0.99-1.01) (1.00-1.01) (1.00-1.01) (1.00-1.02)

†Klein and Spady (1993) estimator. Estimates are means over 1,000 draws each of sample size 2,500. The
parameter b = 0 throughout. 95% Monte Carlo confidence intervals are in parentheses.

Another assumption that can be violated is independence between the threshold of D and

the observed variables Z and X. This dependence is captured by the parameter b. Since αX = 1,

b can be interpreted as the relative contribution of X to the threshold compared to the latent
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exposure L (e.g., b = 0.5 means that X contributes half as much to the threshold as to the

latent exposure). In Table B.2, we vary the parameter b over a range of values and report the

resulting bias. Despite the link function being correctly specified, there is significant bias from

dependence in the threshold, which is roughly equal to b (e.g., when b = 0.5, relative bias in

βL is roughly 50%). Unlike misspecification of the link function, semi-parametric techniques

cannot correct this bias. When X determines the threshold value, we cannot separately identify

G in this framework. This simulation also suggests that threshold dependence may be bigger

concern in this approach than misspecification of the link function.

Table B.2: Ratio of estimated to true βL with threshold dependence

Link function Skewness parameter b
0 0.1 0.25 0.5 1

Logistic 1.01 1.08 1.17 1.34 1.71
(1.01-1.02) (1.07-1.08) (1.16-1.18) (1.33-1.36) (1.69-1.72)

Probit 1.01 1.07 1.17 1.33 1.69
(1-1.02) (1.06-1.08) (1.16-1.18) (1.32-1.34) (1.68-1.70)

Semi-parametric† 1.00 1.05 1.15 1.30 1.67
(0.99-1) (1.05-1.06) (1.14-1.16) (1.29-1.31) (1.66-1.69)

†Klein and Spady (1993) estimator. Estimates are means over 1,000 draws each of sample size 2,500. The
parameter a = 0 throughout. 95% Monte Carlo confidence intervals are in parentheses.

B.3 Two-sample estimator and variance derivation

We begin by deriving equation (4.7). For some instrument Zki in ZJ0 , the estimand βG can be

written as

σGβ = cov(Zki, Y )/ cov(Zki, G/σG)

= σGσZkY / cov(Zki, G)

= σGσZkY / cov(Zki,
∑J

j=1 αjZji)

= σGσZkY /αkσ
2
Zk

= σG̃Γk/α̃k

(B.3)

which we can estimate from GWAS summary data. We can use inverse-variance weighting

to ‘meta-analyse’ over these estimates for each Zki in ZJ0 , which recovers the estimator (4.7).

Denote β̂ as the inverse-variance weighted estimator for σV β, then our two-sample estimator

can be written as

(B.4) σ̂G̃β̂ =

( J∑
j=1

ˆ̃α2
jσ

2
Zj

)1/2

β̂.
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If we make the common assumption that ˆ̃αj has negligible uncertainty (i.e., ˆ̃αj ≈ α̃j), then we

can write an estimator for the variance of (B.4) as

(B.5)

( J∑
j=1

ˆ̃α2
jσ

2
Zj

)
σ2
β̂
.
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Appendix C

Supplementary material for

Chapter 5

C.1 Randomization distribution of offspring alleles

The distribution of offspring haplotypes is often approximated by a first order hidden Markov

model (HMM) (Haldane, 1919; Thompson, 2000; Bates, Sesia, Sabatti, and Candès, 2020). This

model assumes “no interference”, such that the location of crossover events are independent

and the likelihood of an offspring inheriting a SNP from a given maternal or paternal haplotype

depends only on the inheritance at adjacent loci. This induces a Poisson renewal process for the

distribution of distances between crossovers, however, it should be noted that there is evidence

of positive crossover interference in human meioses which results in a more even spread of

crossovers than would be expected with random placement. Recent literature has therefore

suggested that a Gamma renewal process may be a more appropriate model, although we do

not provide this extension here (Otto and Payseur, 2019).

The randomness in our randomization distribution arises from both the location of crossover

events (i.e., the transition distribution) and the small probability of independent de novo

mutations (i.e., the emission distribution). Without loss of generality, we describe the distribution

of offspring alleles inherited from the mother Zm given maternal haplotypes Mm and M f .

Inheritance from the father is an independent instance of the same model. The transition

distribution for the meiosis indicator at site j is assumed to be Poisson with mean equal to the

genetic distance in centimorgans rj between site j − 1 and j:

P(Um
j = umj−1 | Um

j−1 = umj−1) = P(even number of recombinations between j − 1 and j)

= 1
2(1 + e−2rj );

P(Um
j = Um

j′ ) = 1
2(1 + e−2(dj+...+dj′ ))

where umj−1 ∈ {m, f} and j < j′. Genetic distance is not proportional to physical distance

115



APPENDIX C. SUPPLEMENTARY MATERIAL FOR Chapter 5

on the chromosome due to the presence of recombination hotspots where crossover events are

more likely to occur (Belmont et al., 2005; Bherer, Campbell, and Auton, 2017). As rj becomes

large, the likelihood of an even number of recombinations approaches one half since genetically

distant sites are transmitted almost independently.

The emission distribution is characterized by the probability of independent de novo single

nucleotide mutations. A de novo mutation is said to occur when the base pair at some offspring

SNP differs from the base pair they inherited from the parental haplotype. Within the context

of the model, conditional on Um
j = umj ∈ {m, f}, each Zm

j is sampled according to

(C.1) P(Zm
j = M

(um
j )

j | Um
j = umj ) = 1− ϵ

The probability of a de novo mutation ϵ is approximately 1 · 10−8 in humans (Acuna-Hidalgo,

Veltman, and Hoischen, 2016).

The graphical structure of the hidden Markov model is shown in Figure C.1. This graph

differs from the more general structure shown in Figure 5.3b in that each meiosis indicator Um
j

depends only on the previous indicator Um
j−1. Figure C.2 embeds the hidden Markov model

within the complete causal model used throughout Section 4.3.

Our primary use of the Markovian structure described above is to derive propensity scores

for offspring haplotypes Zm
j ∈ {0, 1}. In particular, our goal is to express the propensity score of

some SNP Zm
j given the adjustment set (Mmf

j ,V m
B ) of Theorem 5.1, where V m

B = (Mmf
B ,Zm

B )

and B ⊆ J \ {j}. Throughout this section we will assume that B = {1, . . . , l} ∪ {h, . . . p} for
l < j < h. Suppressing conditioning on Mmf

j and Mmf
B for ease of notation, the propensity

score for Zm
j can be written as

(C.2) P(Zm
j = 1 | Zm

B = zm
B ) =

∑
u∈{m,f}

P(Zm
j = 1 | Um

j = u)P(Um
j = u | Zm

B = zm
B ).

It is therefore more convenient to consider the conditional probability of Um
j . We state the

following theorem:

Theorem C.1. Using the conditional independence properties implied by Figure 5.3b, the

conditional probability of Um
j = m can be factorized as

P(Um
j = m | Zm

B = zm
B )

∝
[ ∑
u∈{m,f}

βm
h−1(u)P(Um

h−1 = u | Um
j = m)

][ ∑
u∈{m,f}

P(Um
j = m | Um

l = u)αm
l (u)

]
.

The forward weights are defined recursively as

αm
1 (um1 ) =

1
2(1− ϵ) if M

um
1

1 = zm1
1
2ϵ if M

um
1

1 ̸= zm1

αm
k (umk ) =

∑
u∈{m,f}

P(Zm
k = zmk | Um

k = umk )P(Um
k = umk | Um

k−1 = u)αm
k−1(u), k = 2, . . . , p
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and the backward weights are defined recursively as

βm
p (ump ) = 1

βm
k (umk ) =

∑
u∈{m,f}

βm
k+1(u)P(Um

k+1 = u | Um
k = umk )P(Zm

k+1 = zmk+1 | Um
k+1 = u), k = 1, . . . , p− 1,

for umk ∈ {m, f} and j, k ∈ J .

If we impose the simplifying assumption that ϵ = 0, so that there is zero probability of de

novo mutations, then the distribution of Um
j derived in Theorem C.1 can be simplified further.

Corollary C.1. Suppose the probability of a single nucleotide de novo mutation is ϵ = 0 and

suppose that the maternal haplotypes at b1, b2 ∈ J are heterozygous, where b1 < l < j < h < b2.

That is, Mm
b1

≠ Mf
b1

and Mm
b2
̸= Mf

b2
. Then the propensity score in Theorem C.1 can equivalently

be written as

P(Um
j = m | Zm

B = zm
B )

∝
[ ∑
u∈{m,f}

β̃m
h−1(u)P(Um

h−1 = u | Um
j = m)

][ ∑
u∈{m,f}

P(Um
j = m | Um

l = u) α̃m
l (u)

]
.

where

α̃m
b1+1(u

m
b1+1) = P(Zm

b1+1 = zmb1+1 | Um
b1+1 = umb1+1)P(Um

b1+1 = umb1+1 | Um
b1

= umb1)

α̃m
k (umk ) =

∑
u∈{m,f}

P(Zm
k = zmk | Um

k = umk )P(Um
k = umk | Um

k−1 = u)α̃m
k−1(u), k = b1 + 2, . . . , p;

and

β̃m
b2−1(u

m
b2−1) = P(Um

b2
= umb2 | U

m
b2−1 = umb2−1)P(Zm

b2
= zmb2 | U

m
b2

= umb2)

βm
k (umk ) =

∑
u∈{m,f}

β̃m
k+1(u)P(Um

k+1 = u | Um
k = umk )P(Zm

k+1 = zmk+1 | Um
k+1 = u), k = 1, . . . , b2 − 2.

We will occasionally have multiple instruments lying in the same window. We will then

need to compute a multivariate propensity score. We state the following corollary without proof

because it follows almost immediately from Theorem C.1.

Corollary C.2. Suppose we have a collection of instruments J = {j1, j2, . . . , jr} such that

l < j1 < j2 < . . . < jr < h. Then the propensity score can be written as

P(Um
j1 = umj−1, U

m
j2 = umj2 , . . . , U

m
jr = umjr | Z

m
B = zm

B )(C.3)

= P(Um
j1 = umj1 | Z

m
B = zm

B )
r∏

k=2

P(Um
jk

= umjk | U
m
jk−1

= umjk−1
,Zm

B = zm
B )(C.4)

The first propensity score P(Um
j1

= m | Zm
B = zm

B ) takes the form in Theorem C.1 and

P(Um
jk

= m | Um
jk−1

= umjk−1
,Zm

B = zm
B )(C.5)

∝ P(Um
jk

= m | Um
jk−1

= umjk−1
)

[ ∑
u∈{m,f}

βm
h−1(u)P(Um

h−1 = u | Um
jk

= m)

]
(C.6)

where βm
h−1(u) is the backward weight defined in Theorem C.1.
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Figure C.1: Graphical representation of Haldane’s hidden Markov model
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Figure C.2: Haldane’s hidden Markov model embedded in our full causal model
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C.2 Technical proofs

Proposition 5.1

Proof. From Assumption 5.1 we know that, conditional on (Mm
j ,Mf

j , F
m
j , F f

j ), Z
m
j and Zf

j only

depend on Um and U f , respectively, and exogenous mutation events. By (5.1), Zj = Zm
j + Zf

j

given that S = 1 (fertilization occurs). Finally, by Assumption 5.2, the meiosis indicators

Um and U f are independent of all confounders (A,Cm, Cf , C). Therefore, the conditional

independence statement immediately follows.

Theorem C.1

Proof. The conditional probability of Um
j can be factorized as

P(Um
j = m | Zm

B = zm
B )

∝ P(Um
j = m,Zm

B = zm
B )

= P(Zm
h:p = zm

h:p | Um
j = m)P(Um

j = m,Zm
1:l = zm

1:l)

=

[ ∑
u∈{m,f}

P(Zm
(j+1):p = zm

(j+1):p, U
m
h−1 = u | Um

j = m)

][ ∑
u∈{m,f}

P(Um
j = m,Um

l = u,Zm
1:l = zm

1:l)

]

=

[ ∑
u∈{m,f}

P(Zm
(j+1):p = zm

(j+1):p | U
m
h−1 = u)P(Um

h−1 = u | Um
j = m)

]
[ ∑
u∈{m,f}

P(Um
j = m | Um

l = u)P(Um
l = u,Zm

1:l = zm
1:l)

]

=

[ ∑
u∈{m,f}

βm
h−1(u)P(Um

h−1 = u | Um
j = m)

][ ∑
u∈{m,f}

P(Um
j = m | Um

l = u)αm
l (u)

]
.

The forward weight αm
1 (um1 ) for some um1 ∈ {m, f} can be derived as

αm
1 (um1 ) = P(Um

1 = um1 , Zm
1 = zm1 )

= P(Zm
1 = zm1 | Um

1 = um1 )P(Um
1 = um1 )

= 1
2P(Z

m
1 = zm1 | Um

1 = um1 )

where the emission probability is known. A recursive expression for the forward weight αm
j (umj )

for j = 2, . . . , p can be derived as

αm
j (umj ) = P(Um

j = umj ,Zm
1:j = zm

1:j)

=
∑

u∈{m,f}
P(Um

j = umj , Um
j−1 = umj−1,Z

m
1:j = zm

1:j)

=
∑

u∈{m,f}
P(Zm

j = zmj | Um
j = umj )P(Um

j = umj | Um
j−1 = u)P(Um

j−1 = u,Zm
1:(j−1) = zm

1:(j−1))

=
∑

u∈{m,f}
P(Zm

j = zmj | Um
j = umj )P(Um

j = umj | Um
j−1 = u)αm

j−1(u).
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The backward weight βm
j (umj ) for some umj ∈ {m, f} and j = 1, . . . , p− 1 can be derived as

βm
j (umj ) = P(Zm

(j+1):p = zm
(j+1):p | U

m
j = umj )

=
∑

u∈{m,f}
P(Zm

(j+1):p = zm
(j+1):p, U

m
j+1 = u | Um

j = umj )

=
∑

u∈{m,f}
P(Zm

(j+2):p = zm
(j+2):p | U

m
j+1 = u)P(Zm

j+1 = zmj+1 | Um
j+1 = u)P(Um

j+1 = u | Um
j = umj ).

Writing the probability of Um
p shows that βm

p (u) = 1 for all u ∈ {m, f}.

Corollary C.1

Proof. The proof involves some manipulation of conditional independencies. We simplify the

probability with respect to b1 and omit simplification with respect to b2 for brevity. As with

the proof of Theorem C.1 we begin by factorising the conditional probability of Um
j .

(C.7) P(Um
j = m | Zm

B = zm
B ) =

P(Zm
h:p = zm

h:p | Um
j = m)P(Um

j = m,Zm
1:l = zm

1:l)

P(Zm
B = zm

B )
.

Since b1 < j we are concerned with simplifying the second probability in the numerator of

equation (C.7).

P(Um
j = m,Zm

1:l = zm
1:l)

=
∑

u∈{m,f}
P(Um

j = m,Um
b1 = u,Zm

1:l = zm
1:l)

=
∑

u∈{m,f}
P(Um

j = m,Zm
(b1+1):l = zm

(b1+1):l | U
m
b1 = u)P(Um

b1 = u,Zm
1:b1 = zm

1:b1)

= P(Um
j = m,Zm

(b1+1):l = zm
(b1+1):l | U

m
b1

= m)P(Um
b1

= m,Zm
1:b1

= zm
1:b1

)

= P(Um
b1 = m,Zm

1:b1 = zm
1:b1)

∑
u∈{m,f}

P(Um
j = m | Um

j−1 = u)P(Um
j−1 = u,Zm

(b1+1):(j−1) =

zm
(b1+1):(j−1) | U

m
b1

= m)

= P(Um
b1 = m,Zm

1:b1 = zm
1:b1)

∑
u∈{m,f}

P(Um
j = m | Um

j−1 = u)α̃m
j−1(u).

where

α̃m
b1+1(u

m
b1+1) = P(Zm

b1+1 = zmb1+1 | Um
b1+1 = umb1+1)P(Um

b1+1 = umb1+1 | Um
b1

= m)

α̃m
k (umk ) =

∑
u∈{m,f}

P(Zm
k = zmk | Um

k = umk )P(Um
k = umk | Um

k−1 = u)α̃m
k−1(u),

for k = b1 + 2, . . . , j − 1.

We now factorize the denominator of equation (C.7).

P(Zm
B = zm

B ) = P(Z(b1+1):l = z(b1+1):l,Zh:p = zh:p | Um
b1 = m)P(Um

b1 = m,Z1:b1 = z1:b1).
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Substituting these simplified expressions back in equation (C.7) we obtain

(C.8)

P(Um
j = m | Zm

B = zm
B )

=
P(Zm

h:p = zm
h:p | Um

j = m)P(Um
b1

= m,Zm
1:b1

= zm
1:b1

)
∑

u∈{m,f} P(Um
j = m | Um

j−1 = u)α̃m
j−1(u)

P(Z(b1+1):l = z(b1+1):l,Zh:p = zh:p | Um
k = m)P(Um

b1
= m,Z1:b1 = z1:b1)

=
P(Zm

h:p = zm
h:p | Um

j = m)
∑

u∈{m,f} P(Um
j = m | Um

j−1 = u)α̃m
j−1(u)

P(Z(b1+1):l = z(b1+1):l,Zh:p = zh:p | Um
b1

= m)
.

which does not depend on Zm
1:k.

C.3 Simulation description

Table C.1: Description of the simulation variables and parameters

Variable Description of how the variable is constructed Parameters

Mm
i ,M f

i ,F
m
i ,F f

i The parental haplotypes are constructed to al-

low linkage disequilibrium in nearby SNPs. For

each parental haplotype we first sample from a

p-variate normal such that Xij ∼ N (0, 1) and

Cov(Xij , Xik) = ρ|j−k|, 0 < ρ < 1, j, k ∈ J .
Thresholds Vij ∼ Unif(a, b) are sampled and the

haplotypes are defined as Mm
ij = I{Xij > Vij}

where I{·} is the indicator function (and simi-

larly for the other haplotypes).

ρ = 0.75

a = Φ−1(0.6)

b = Φ−1(0.95)

where Φ−1(·) is the

inverse normal CDF.
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Cm
i , Cf

i We first define a variable

µ̂m
i =

1

p

p∑
j=1

(Mm
ij +Mf

ij).

It follows from our construction of the parental

haplotypes that

µm = E[µ̂m] = 2

(
1− 1

b− a

∫ b

a
Φ(x)dx

)
.

where Φ(·) is the normal CDF. For each individ-

ual i we sample the parental confounder such

that

Cm
i ∼ N (µ̂m

i − µm, 1).

We follow an identical procedure for Cf
i .

N/A

Ci We construct the offspring confounder as

Ci ∼ N (0, 1).

N/A

Zm
i ,Zf

i We sample the offspring haplotypes using Al-

gorithm 1 in Bates, Sesia, Sabatti, and Candès

(2020). This algorithm unconditionally samples a

full haplotype Zm
i or Zf

i according to the hidden

Markov model described in Appendix C.1. It de-

pends on the genetic distances r and de novo mu-

tation rate ϵ. We sample rj ∼ Unif(c, d) and set

rk =∞ for k = 37, 62, 86, 112 so that the instru-

ments are unconditionally independent. From

these haplotypes we choose a subset Jg ⊂ J to

be instruments.

ϵ = 10−8

c = 0

d = 0.75

Jg = {25, 50, 75,
100, 125}
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Di The exposure follows a linear structural equation

model

Di = γ⊺Zi + θmCm
i + θfCf

i + θcCi + νi

where νi ∼ N (0, 0.7). We choose γ so that it

is zero everywhere except for γ24, γ49, γ74, γ99

and γ124 which represent causal variants. The

parameters are chosen so that V ar(Di) = 1.

θm = θf =
√
0.3

θc =
√
0.75

γj =
√
0.1

for j = 24, 49, 74, 99,

124.

Yi The outcome follows a linear structural equation

model

Yi = βDi + δ⊺Zi + ϕmCm
i + ϕfCf

i + ϕcCi + υi

where υi ∼ N (0, 0.7). We choose δ so that it

is zero everywhere except for δ23, δ27, δ48, δ52,

δ73, δ77, δ98, δ102, δ123 and δ127 which represent

pleiotropic variants. The parameters are chosen

so that V ar(Yi) = 1.

β = 0

ϕm = ϕf =
√
0.3

ϕc =
√
0.75

δj =
√
0.05

for j = 23, 27, 48, 52,

73, 77, 98, 102, 123,

127.

Theorem 5.1 implies that a sufficient adjustment set for this simulation is

(C.9) (Mmf
Bg

,Fmf
Bg

,ZB)

where

B = J \ {24, 25, 26, 49, 50, 51, 99, 74, 75, 76, 99, 100, 101, 124, 125, 126}

and

Bg = B ∪ {25, 50, 75, 100, 125}.
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