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Abstract 

Localised Prostate Cancer (PCa) is a slow-growing and heterogenous disease, with both 

indolent and aggressive phenotypes, which are very difficult to differentiate at diagnosis. 

Circulating biomarkers measured at diagnosis that distinguish indolent from lethal PCa are 

yet to be established and could be used clinically to avoid both over- (for indolent disease) 

or under- (for aggressive cancer) treatment. 

This thesis investigated whether circulating metabolites, measured by nuclear magnetic 

resonance (NMR), are observationally associated with PCa progression (clinical progression, 

PCa metastases or PCa death) in a cohort of patients with localised disease and eligible to be 

randomised into a controlled trial (RCT). Using genetic data (Mendelian randomization), the 

thesis also examined if circulating metabolites are causally linked to PCa mortality. The 

thesis next explored whether the circulating metabolome of men with localised PCa, who 

had been randomised to lifestyle (brisk walking) and dietary (lycopene supplementation or 

increased fruit and vegetable and reduced dairy milk intake) interventions, was altered by 

these interventions and if, in turn, the altered metabolites were causally linked to PCa death.   

Finally, the thesis also evaluated the performance of two metabolomic risk scores, 

previously developed in the general population, at predicting PCa death in men with 

prostate specific antigen (PSA) detected localised PCa, in a clinical setting.  

In the observational analyses, there was suggestive evidence that some metabolites 

(lipoproteins, cholesterol, glycolysis, fluid balance and inflammation markers) were 

associated with PCa progression. In the Mendelian randomization genetic analysis, there 

was evidence that the following metabolites causally increased PCa mortality: total-, free- 

and esterified-cholesterol, some measures of intermediate-, low- and very low-density 

lipoprotein cholesterol, sphingomyelins, apolipoprotein B, omega-3 fatty acids, 

docosahexaenoic acid and valine. Some high-density and very low-density lipoprotein 

related measures, histidine and the ratio of omega-6 to omega-3 fatty acids were causally 

associated with decreased PCa mortality. There was some evidence that the randomised 

lifestyle and dietary interventions may alter lipids, alanine, lactate and pyruvate. In the 

Mendelian randomization causal analysis, there was evidence that some of the altered 

metabolites in the brisk walking intervention (cholesterol esters in medium VLDL, 

phospholipids in chylomicrons and extremely large VLDL) may be linked to increased PCa 
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mortality risk. Lastly, there was evidence that two metabolomic risk scores developed in the 

general population did not predict PCa or all-cause mortality in a clinical setting 

This thesis supports a role for circulating metabolites in PCa progression, with implications 

for diagnostic and interventional research. Further studies of localised PCa with larger 

sample sizes and staging information are however needed to establish the role that 

metabolites, particular lipids, play in PCa progression and to allow for clinical translation.  
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Chapter 1.  Overview of thesis  

1.1. Thesis rationale 

Prostate cancer (PCa) is a leading cause of mortality in men worldwide, with more than 

336,000 deaths each year (1). While overall PCa 5-year survival is 87% in the UK, stage 

at diagnosis plays a crucial role, and there is a marked difference in survival between 

those with the lowest stage (96%) and those in the highest stage (49%)(2). Prostate 

Specific Antigen (PSA) is an enzyme which can be quantified in blood and is used to 

help detect the presence of PCa and track disease progression. However, most cancers 

that are detected via PSA testing do not progress and patients may be subject to 

overdiagnosis and treatment. Multiple trials have looked at the effectiveness of PSA 

testing in relation to survival, and there is still weak evidence to suggest that PSA 

screening leads to better PCa survival (3–5). In order to establish the aggressiveness of a 

tumour, biopsies are performed, and staging is attributed to the cancer. Gleason score is 

generated following the biopsy by comparing the prostate tumour cells to normal cells 

and analysing the two most common patterns observed. A score between 2 and 10 is 

generated, with 10 suggesting the most abundance of abnormal cells and most 

aggressive disease. Establishing the aggressiveness of disease is done using a 

combination of measures, such as PSA, Gleason scoring, and more recently using 

magnetic resonance imaging (MRI)(6). The staging assignment is therefore dependent 

on the method and quality of performing biopsies, and while recent advances have 

allowed for this process to be more precise, there are still over 20% of PCa cases that are 

missed and 14% that are under-graded (7,8). Therefore, missed diagnoses of aggressive 

localised PCa cases are still a significant problem in the clinical management of PCa. 

More accurate tools that distinguish between localised PCa cancers that progress and 

those that are indolent are required.  

Scientific fields that quantify a large number of molecular measurements, called ‘omics, 

have been able to provide comprehensive snapshots of the underlying biological 

systems and have been used in instances where standard clinical approaches did not 

address the need, such as predictive or prognostic models of a particular disease. 
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Metabolomics, is an ‘omics field, and represents the simultaneous study of many 

metabolites which are small molecule end products of many genetic and proteomic 

functions (9). Small changes at genetic, transcriptomic and proteomic level can lead to 

considerable changes at metabolite level which can provide an overall picture of the 

biological status of health, disease risk and progression (9–11). Metabolomics can also 

explore disease aetiology through pathway assessment, as well as providing a new 

approach to identification of predictive biomarkers for prognosis and treatment 

response (12–15). Recent technological advances have allowed rapid, high throughput,  

and cheaper quantification of metabolites. Metabolomic lipid profiling has shown that 

there is an association between lipids and prostate cancer death (16). 

Identifying risk and protective factors for progression in localised PCa is challenging. 

Multiple aspects contribute to this. The factors mentioned above, such as the slow growing 

nature of localised PCa and the limited indicators of progression contribute to the lack of 

identified risk and protective factors for localised PCa. The variable incidence and survival 

around the globe have inspired many studies to look at identifying lifestyle factors that 

could explain the geographic variation (17). In England, overall PCa survival is 80% at 10 

years, while survival from localised PCa is high, nearly 100% at 5 years (2). However, some 

men experience clinical progression of disease and develop castration-resistant prostate 

cancer which is associated with worse PCa outcomes (18). The Prostate Testing for Cancer 

and Treatment (ProtecT) trial has found that nearly 20% of men in the active surveillance 

group developed clinical progression over the 10-year follow-up (19). Therefore, dietary and 

lifestyle factors that could help prevent the progression of PCa need more thorough 

investigation. This could reduce the need for radical treatment and improve outcomes in 

men with PCa who are undergoing active surveillance.  

Evidence of a link between diet and lifestyle in PCa progression has yet to be established. 

Fruit and vegetable consumption, dairy intake and physical activity levels have been 

suggested to play a role in PCa progression (20–26). Lycopene, a carotenoid mainly found in 

tomatoes, and increased fruit and vegetable intake, has been suggested to reduce PCa 

progression (20–22,27). Increased high-fat dairy milk intake was observed to have a 

detrimental effect on PCa progression in men diagnosed with localised disease (22,28). 

However, recent systematic reviews suggest the evidence is inconsistent and many of the 

interventional studies that follow an RCT design are poorly conducted and have a high risk 

of bias (20,27,29–31). Physical activity, particularly moderate and vigorous exercise and 
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brisk walking, has also been suggested to delay the progression of localised PCa disease 

(22,32). However, the evidence was mainly observational and the results were not replicated 

when an RCT design was used (20).  

Causal metabolites, which are causally linked to PCa progression, can further the 

understanding of disease aetiology and mechanisms of progression, and provide 

therapeutic targets to reduce PCa progression. Metabolites which are non-causally 

linked to PCa progression, can serve as markers of disease progression and can be used 

in developing clinical prognostic biomarkers. In this thesis, I aimed to better understand 

the causal and predictive role (non-causal) that circulating metabolites may play in PCa 

progression and assess whether randomised dietary and physical activity interventions 

act on these metabolites to impact on the progression of PCa to metastases and death.  

 

1.2. Aims and Objectives  

The aims of my thesis are two-fold: i) to better understand molecular mechanisms 

underlying PCa progression, so as to identify new potential therapeutic or behavioural 

targets for interventions to reduce PCa progression; and ii) investigate the performance 

of metabolomic risk scores which could be used to distinguish indolent from lethal  

localised PCa in a clinical setting. These aims will be achieved by the following 

objectives:  

  

(1) Identify metabolic traits which are associated with localised PCa progression 

(clinical progression, PCa metastases or PCa death) in men with screen detected 

localised PCa  

(2) Estimate the causal effect of individual metabolic traits on PCa survival using 

Mendelian Randomisation (MR) 

(3) Assess the effects of a randomised intervention (lycopene supplementation, 

reduced dairy milk consumption or brisk walking) on metabolic traits of men 

with localised PCa, and then estimate their causal effect on PCa survival using 

MR  
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(4) Investigate the performance of two metabolomic risk scores previously 

developed to predict progression in localised PCa cases in clinical settings               

1.3. Thesis outline  

This PhD thesis starts with a description of the clinical aspects of PCa, its progression, 

epidemiology, as well as a review of known lifestyle risk and protective factors in Chapter 2. 

Chapter 3 introduces general concepts in the field of metabolomics and the link of 

metabolomics to PCa, lifestyle and physical activity. The methodological Chapter 4 

introduces the data sources and methodological approaches used in answering the research 

questions of the thesis. This chapter includes statistical methods used in analysing 

metabolomic data, and methodologies of observational (survival and prediction analyses) 

and causal (intention to treat, instrumental variable and MR analyses) epidemiology. The 

visual representation of research questions for the results chapters (5, 6 and 7) are presented 

in Figure 1.1. Chapter 5 presents the results of an observational and a causal (MR) study 

which assessed the link between individual metabolites in relation to PCa progression. The 

observational analysis used metabolomic data from the ProtecT trial, an embedded trial in 

the Cluster randomised triAl of PSA testing for Prostate cancer (CAP) trial while the MR 

analysis used genetic data from the Prostate Cancer Association Group to Investigate Cancer 

Associated Alterations in the Genome (PRACTICAL) and UK Biobank (UKBB). Chapter 6, 

discusses the findings from the Prostate Cancer Evidence of Exercise and Nutrition trial 

(PrEvENT) feasibility trial, assessing if interventions of lycopene supplementation, increased 

fruit and vegetable and reduced dairy milk intake and physical activity altered the 

metabolome of men with localised PCa. The second part of Chapter 6 investigates whether 

the metabolites altered by the intervention are causally linked to PCa mortality, by using 

results from the MR analysis of metabolites in relation to PCa mortality from Chapter 5. 

Chapter 7 uses two already developed metabolomic risk scores in the general population 

and assesses their predictive performance in a clinical setting within the ProtecT trial. In 

Chapter 8, I bring together the results of the three results chapters, and discuss how they fit 

within the overall PCa progression picture, and the implications of the findings in the 

clinical and public health context. In addition, I present how metabolomics via 

methodologies employed in this thesis allowed the investigation of new potential 

mechanisms of progression in PCa. Chapter 8 aims to also to identify intermediate 
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biomarkers potentially causally linked to PCa progression, which could be altered by 

lifestyle interventions. Lastly, I present the strength and weaknesses of my studies and 

methodologies used and suggest future research that may help tackle the limitations. 
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Figure 1.1: Diagram of Thesis research questions 
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Figure 1.2 Schematic Thesis summary 
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1.4. Datasets used   

The datasets used in this thesis are described in detail in methodology Chapter 4.  

Four main datasets were used within this thesis.  

The ProtecT trial is a large randomised controlled trial (RCT) in which 82,429 men aged 

50-69 years were PSA tested and those men who were subsequently diagnosed with 

localised PCa (n=2,417) were invited to be randomised to three possible treatments: 

radical prostatectomy, radical radiotherapy or active surveillance (33). Data on 

circulating metabolites measured by NMR were available for men at baseline (their first 

visit). Men were followed-up for a median of 10 years for PCa progression outcomes: 

clinical progression (evidence of metastases, diagnosis of clinical T3 or T4 disease, long-

term androgen-deprivation therapy, ureteric obstruction, rectal fistula, the need for a 

urinary catheter owing to local tumour growth or PCa death), metastases and PCa specific 

death.  

The second dataset used was the PrEvENT trial (34). This is a 3x2 factorial RCT, in 

which 81 men were randomised twice to both a dietary (lycopene supplementation, 

increased fruit and vegetable and reduced dairy milk intake or control) and a physical 

activity intervention (brisk walking or control). The active interventions were applied 

over a period of 6 months. Blood samples and patient reported outcomes were collected 

at baseline and follow-up using questionnaires that captured information on diet, 

physical activity, mental health and urinary symptoms.   

The third and fourth datasets consist of genetic wide association studies (GWAS) data 

which were used in the MR analyses. Genetic data from a GWAS of metabolites in UKB 

was used, which contained genetic data from 115,078 participants (35). Genetic data 

from the PCa mortality GWAS was obtained from the PRACTICAL consortium which 

holds data from over 133 study groups and over 120,000 PCa cases (23). 
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1.5. Statistical Methods  

The analyses employed in this thesis focus on metabolomic data. Chapter 4 describes in 

detail all the statistical methods used throughout this Thesis to answer the research 

questions. Briefly, Cox proportional hazard models were used to assess the association of 

the individual metabolic traits in relation to PCa progression in the ProtecT trial in Chapter 

5. Mendelian Randomisation (MR) was employed to estimate a causal effect of metabolites 

on PCa survival, using the PRACTICAL mortality data and UKB genetic data. MR employs 

a form of instrumental variable (IV) analysis using genetic variants, which are randomly 

assigned at birth and thus less likely to be subject to be confounded by environmental 

factors, to proxy exposures of interest, in this case metabolite levels. 

Chapter 6 investigated the effects of multiple lifestyle and dietary interventions on 

metabolite levels in the PrEvENT feasibility RCT. The RCT was analysed using both 

intention to treat (ITT) and IV analyses to estimate the causal effect and complier-adjusted 

causal effect of multiple lifestyle and dietary interventions on metabolic levels. I then 

employed a novel extension of MR which aimed to estimate the causal effect of the 

interventions on PCa survival, acting via metabolic trait levels. Chapter 7 evaluated the 

performance of two previously developed metabolomic prediction risk scores for PCa and 

all-cause mortality, at predicting PCa death in the ProtecT study using confusion matrix 

measures (negative and positive predictive values, accuracy, Cohen’s Kappa), area under 

the receiver operating curve (AUROC).  
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Chapter 2.  Prostate Cancer 

epidemiology and lifestyle 

factors  

 

2.1. Introduction  

Prostate Cancer (PCa) affects men worldwide, particularly in the developed world, with 

over 1.2 million new diagnoses and 359,000 deaths recorded globally in 2018 (1,36). Large 

variations in PCa incidence and survival across the world has led to many studies 

investigating modifiable factors that could explain these observed patterns (17,18).  

 

2.2. Prostate Cancer epidemiology  

2.2.1. PCa prevalence  

PCa is one of the top five cancers for incidence and mortality, with 1.2 million newly 

diagnosed cases globally every year (37). The prevalence of PCa, i.e. number of men living 

with the disease, is generally high globally, with western and developed income countries 

having the highest rates (Figure 2.1) (38). 1 in 8 Caucasian men and 1 in 4 Black men develop 

PCa during their lifetime (39). In the UK, there are around 475,000 men living with PCa and 

PCa has an estimated 5-year prevalence rate of 705/100,000 population (40).  Approximately 

80% of those living with PCa in the UK are aged 65 and over, with similar patterns observed 

worldwide (41).  
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Figure 2.1: Heatmap of the estimated proportion of prevalent Prostate Cancer cases globally. 

 

Credit:  Global Cancer Statistics and International Agency for Research on Cancer (41) 

 

2.2.2. Prostate Cancer incidence rates  

Cancer incidence is a standard measure of frequency of primary cancer diagnoses made 

within a specified time period and population. Generally, incidence is expressed as a rate 

per 100,000 or per million in the case of a rare disease. This crude measure does not take into 

account the age distribution of the populations and therefore incorrect conclusions can be 

drawn when comparisons are made between multiple populations or regions that have 

different age distributions. For example, if country A has an older population and a higher 

incidence of a particular disease which is more common in the elderly, compared to country 

B, then it would be misleading to state that country A has more incident cases. This is 

because the likelihood of developing the disease is higher in older people and country A has 

more elderly people, thus the incident rates cannot be reasonably compared. To address this 

issue, incident rates are commonly age standardised, or adjusted to take into account the age 

distribution within each population, allowing inter-population comparisons to be made 

(42,43).     

In the UK, PCa is the most common cancer with approximately 48,500 new diagnoses made 

every year, accounting for 26% of all new cancer cases in males (2). Similar to the prevalence 

figure, 76% of all new cases are diagnosed in men over 65 years of age (2). PCa age-adjusted 
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incidence has increased over the last 40 years worldwide, mainly due to the rise of PSA 

testing. However there is substantial global variation (Figure 2.2) (1). Many factors have 

been attributed as contributing to the variation, such as the extent of PSA screening 

programmes, genetics, environmental and lifestyle factors (1). For example, the odds of 

someone being diagnosed with PCa before 79 years of age is 1 in 47 in low-middle income 

countries, and 1 in 6 in high-income countries (1,44). Asian countries have lower incidence 

of PCa, and it is unclear whether this is a result of genetics, lifestyle or underdiagnosis. 

However, studies that looked at the pattern change in incidence for people migrating from a 

lower incident country (e.g., Asian countries) to a higher incidence country (e.g., United 

States) noticed that the incidence within this group was higher than that of their native 

country, but lower than that of the host country (1,45,46). Whilst PSA screen programmes 

may have been the main contributor to the observed increased incidence rates in western 

countries, by detecting indolent cases which would otherwise not be detected 

(overdiagnosis of 23-42%), there is evidence that even before the introduction of PSA testing 

there was still variation in rates globally (1,17,47,48). This would suggest while there may be 

a genetic aspect and healthcare or screening differences, lifestyle factors such as western 

diets, sedentary behaviour and obesity may also contribute to the observed patterns 

(17,49,50).   

 

 

 

 

 

 

 

 

 

 

 



 

 

13 

Figure 2.2: Prostate Cancer age-standardized incidence rates globally, 2020. 

 

The rates are computed using estimated number of cases and are per 100,000 population.   

Credit: Global Cancer Statistics and International Agency for Research on Cancer (41)  

2.2.3. Prostate Cancer mortality rates and survival  

PCa specific mortality rates vary less than incidence rates, and the highest mortality 

estimates are observed in low to middle income countries of the Caribbean, southern and 

western Africa and South America. The lowest PCa mortality rates are observed across Asia, 

north Africa and North America (17,38). Although PCa is the most common cancer in males 

in many countries, mortality from PCa is mainly concentrated in areas of the Caribbean, 

South America and Sub-Saharan Africa (Figure 2.3) (17). Age standardized mortality rates 

worldwide vary from 41.7 per 100,000 population in Zimbabwe to 0.54 per 100,000 

population in Bhutan (Figure2.4). In the UK, the estimated mortality rate is 12.4 per 100,000, 

three times less than that of Zimbabwe and nearly 20 times higher than the lowest global 

mortality rate of Bhutan. Some countries have likely been over diagnosing PCa for over 20 

years, particularly the type of indolent disease that would very rarely lead to death 

(17,47,51). This may have introduced lead time bias in survival statistics, which occurs when 

detection happens before symptoms arise and does not affect the time of death (17). In the 

US, men of African ancestry are at higher risk of death from PCa, with African American 

men being 2.5 times more likely to die from PCa than Caucasians in the US (52). However, 

the reasons for this are believed to be influenced more by inequality rather than genes, since 
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compared to white men, African American men have less access to healthcare, present with 

later stages of disease at diagnosis are more likely to be undertreated due to institutionalised 

racism (52,53). A literature review found no differences in PCa specific mortality between 

races in equal access healthcare systems (Veterans Affairs in the United States, National 

Health Service (NHS) in the UK, Health Canada) while a systematic review found consistent 

higher risk of PCa mortality in black men after taking into account the impact of PSA 

screening and access to free healthcare (54,55). A large study conducted in routinely 

collected cancer and mortality data in the UK, found that black men are twice as likely to die 

from PCa compared to white men during their lifetime (39). A recent study of metastatic 

castration-resistant PCa which used real world data from the largest healthcare trust in 

England found that black men may have better PCa specific mortality compared to white 

men (56). The limited ethnic data and multiple sources of social factors that affect the link 

between PCa mortality and race make the current evidence hard to disentangle. 

 

 

Figure 2.3: Map of Prostate Cancer age-standardized mortality rates globally, 2020. 

 

The rates are computed using estimated number of deaths and are per 100,000 population.   

Credit: Global Cancer Statistics and International Agency for Research on Cancer (41) 
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Figure 2.4: Prostate Cancer age-standardized mortality rates globally, 2020. 

The rates are computed using estimated number of deaths and are per 100,000 population.  

Credit: Global Cancer Statistics and International Agency for Research on Cancer (41) 

Cancer survival is the percentage of people who are alive after a given period of time 

following primary diagnosis, generally 1, 5 or 10 years. PCa survival has been increasing 

over time, but this could (at least partially) be an artefact of lead time bias, due to an 

increased number of diagnoses of indolent disease been made through PSA testing(47,57). 

Thus, when assessing PCa survival patterns over time, regional screening and detection 

practices should be taken into account.   

According to estimates from CRUK, between 2013-2017 in England overall PCa survival was 

97% at one year, 87% at five years and 78% at 10 years (Table 2.1). Five-year survival was 

lowest in the 80-99 years age-group (66%) and highest in the 60-69 age group (94%), most 

likely due to higher rates of PSA testing within this age group (Figure 2.6).  PCa mortality is 

strongly associated with age, and in the UK 75% of all PCa deaths occurred in those aged 75 

and over. Age specific mortality rates increase markedly from 55-59 and steeply from 

approximately 70-74, with the highest mortality rates in those aged over 90 (Figure 2.6) (2). 

Although over time the age standardised mortality rate has decreased by 10%, the rates vary 

by age groups, with those between the ages of 25-49, 50-59 and 60-69 remaining stable, those 

aged 70-79 decreasing by 13%, and the over 80s increasing by 45% (Figure 2.7). In England, 

net survival at one year varies from 95.9% in South Yorkshire and Bassetlaw to 98.7% in 
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Suffolk and North East Essex (Figure 2.8). Five-year PCa survival is highest in the localised 

disease groups (100% for stages 1 and 2) and lowest in the metastatic stage 4 disease (49%) 

(Table 2.2).   

 

Table 2.1: Prostate Cancer age-standardised survival at one, five and ten years after 

diagnosis, 2013-2017, England. 

Years after 

diagnosis  

Number of 

cases  

Net 

survival  

Lower 

Confidence 

Interval  

Upper 

Confidence 

Interval   

one year  204,175.0  96.6  96.5  96.7  

five years  204,175.0  86.6  86.2  87.0  

ten years  365,274.0  77.6  76.5  78.7  

Credit: Cancer Research UK (2) 

 

Figure 2.5: Bar chart of Prostate Cancer net survival by age, 2009-2013, England 

 

Credit: Cancer Research UK  (2) 
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Figure 2.6: Average number of deaths per year, by age group, per 100,000 population, UK, 

2016-2018. 

 

Credit: Cancer Research UK  (2) 

 

Figure 2.7: European age-standardised mortality rates per 100,000 population, by age group, 

in the UK, 1971-2018.  

  

 

 

 

 

 

Credit: Cancer Research UK(2) 
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Figure 2.8: One-year net survival for Prostate Cancer in England at local authority level, 

2019. 

 

Source: National Cancer Registration and Analyses Service (58) 

 

Table 2.2: Five-year net survival for Prostate Cancer, by stage, 2013-2017, England. 

Stage  Number of 

cases  

Net 

survival  

Lower 

Confidence 

Interval   

Upper 

Confidence 

Interval   

1  62,158.0  100.1  99.5  100.8  

2  37,942.0  100.2  99.4  101.1  

3  40,086.0  95.6  94.7  96.6  

4  39,141.0  49.0  47.9  50.2  

Unstageable  512.0        

Unknown / 

missing  

24,336.0  82.1  81.2  83.0  

Credit: Cancer Research UK (2) 

2.3. Clinical aspects of Prostate Cancer  

Despite being the second commonest cause of death due to cancer in men, in the UK, PCa 

that is localised to the gland tends to progress slowly, with most tumours not spreading 

from the prostate. PCa can be indolent and before symptoms appear death could occur from 

other causes. Men with PCa do not usually exhibit symptoms of PCa until the tumour has 
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grown large enough to put pressure on the urethra, as this can lead to urinary symptoms 

such as frequent urination, hesitancy and straining while urination, haematuria (blood in 

urine) or haematospermia (blood in semen). In addition, PCa that has spread beyond the 

gland will include symptoms such as back, neck and testicle pain, loss of appetite and 

unexplained weight loss. The following sections have been written with reference to the 

latest update of the 2019 NICE guidelines on PCa diagnosis and management (59). 

2.4. Diagnosis of Prostate Cancer in the UK 

The first steps in assessing and diagnosing PCa are the clinical history assessment, digital 

rectal examination and a PSA test which are conducted in general practice. These 

investigations allow the clinician to assign a suspected localised PCa diagnostic. The first-

line investigation for suspected localised PCa is a multiparametric MRI scan of the prostate. 

The scan allows for a prostate Imagining-Reporting and Data Systems or a Likert score to be 

generated, which helps identify more high-risk PCa and inform what further investigations 

should be performed. The Likert score is generated by combing the findings from multiple 

images generated from different perspectives. A Likert score of 1 or 2 suggests there is low 

risk of clinically significant PCa presence (i.e., the cancer may affect the man during his 

lifetime) and the clinician may decide against a biopsy but recommend regular PSA tests. A 

Likert score of 3 or more suggests the man is at increased risk of having clinically significant 

PCa. 

For men with a Likert score of 3 or more, a multiparametric MRI prostate biopsy should be 

offered. Of those diagnosed with low-risk MRI, 11-28% will have clinically significant cancer 

which represents a problem of underdetection. However, prostate biopsies detect less than 

half the missed cases by MRI scans, mainly due to the incorrect acquisition of tissue 

following the MRI image, a common problem when performing MRI targeted transrectal 

ultrasound-guided biopsies (60,61). The multiparametric MRI-influenced transrectal 

ultrasound-guided biopsy is the most common type of biopsy used in the NHS for PCa 

diagnosis. It uses the information generated from the multiparametric MRI images to 

determine the biopsy needle placement, which is guided via ultrasound. Following the 

biopsy, overdetection occurs in 18-23% of those with a low-risk MRI, who are diagnosed 

with clinically insignificant disease, which is unlikely to be life-threating, but could lead to 

further tests and treatment (61). The pathologist will examine the biopsy and assign two 
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histological scores from 1 to 5, which are used in calculating the Gleason score. The Gleason 

score is made up of the most common (first number) and the second most common (second 

number) pattern in the carcinoma cells, by assessing the glandular differentiation and the 

pattern of growth of the tumour (62). The Gleason score is calculated by adding the two 

histological scores. The grade group is a system based on Gleason score which was  

developed to help clinicians grade PCa in relation to the severity of cancer (Table 2.3) (63).  

Table 2.3: Definition and clinical implications of the Gleason score.  

 

 

 

 

 

 

 

 

 

 

 

Credit: Cancer Research UK(2) 

 

TNM staging is the most common system of assessing cancer severity available in clinical 

practice (64). The scoring is based on tumour growth (T), lymph node spread (N) and 

metastasis presence (M). Table 2.4 provides the breakdown of stages within each category 

for PCa. The most common sites for metastases to develop in PCa are in the bones and 

lymph nodes. Localised PCa is defined as PCa of T1 or T2 stage, while locally advanced 

disease is generally defined as having T3 or T4 stage. 
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Table 2.4: Description of the TNM staging classification for Prostate Cancer  

  

Credit: Cancer Research UK  (2) 

Until 2019, NICE guidelines recommended a three-tier risk stratification system for risk 

stratification of PCa severity. In 2019, the 3-tier system was replaced by the 5-tier Cambridge 

prognostic group classification (65) (Table 2.5). 
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Table 2.5: The 3- and 5-tier risk stratification classifications according to the National 

Institute for Care and Excellence guidelines (28,34,35). 

 

 

PSA=Prostate specific antigen 

Reproduced from: National Prostate Cancer Audit Report 2021. Copyright © 2022 Healthcare Quality Improvement Partnership. 

Reproduced with permission (66)  

 

2.4.1. Treatment of Prostate Cancer  

There are three main treatment options for localised disease, active surveillance, radical 

prostatectomy and radiotherapy. Active surveillance is an option for patients with low- and 

intermediate-risk PCa where the patient is monitored long term with the option to have 

radical treatment or hormone therapy on signs of disease progression. Radical 

prostatectomy removes the whole of the prostate gland, while radical radiotherapy uses 

external beam radiotherapy, either hypofractionated or conventional, to destroy the 

cancerous area of the prostate. Men with intermediate- and high-risk PCa are offered an 
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androgen deprivation therapy before, during and after external beam therapy. Treatment 

choices for PCa are made based on the Cambridge risk stratification model (Table 2.6). 

 

Table 2.6: Risk Stratification and treatment options for patients with localised and locally 

advanced Prostate Cancer, according to the National Institute for Health and Care 

Excellence (NICE) guidelines. 

 

  

2.4.2. Side effects of prostate biopsy and of treatment of 

localised prostate cancer 

Transrectal biopsy is the most common type of biopsy used in the diagnosis of PCa. They 

are reasonably well tolerated. However nearly 7% of men rate the pain following the biopsy 

as a major moderate problem and 7 days after the biopsy, nearly 20% would consider a 

follow-up biopsy to be a major or moderate problem (67).  In rare cases (1 in 100) it can lead 

to sepsis which is a serious condition that can require hospitalization (61).  

All treatments for PCa have side effects. Men who undergo radical prostatectomy for 

localised PCa are more likely to have poorer urinary and sexual function compared to men 

receiving active surveillance or radiotherapy (19). The ProtecT trial, which randomised men 

to active surveillance, radical radiotherapy, and radical prostatectomy found that men in the 

prostatectomy group had the worst outcomes in terms of sexual side effects and urinary 

continence compared to the other groups, and that even though some recovery was made, 
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the negative effects remained throughout the 6 years’ follow-up of the trial (68). Absorbent 

pads, for urinary incontinence, were used by 46% of men at 6 months after surgery in the 

prostatectomy group compared to 4% and 5% after starting active-monitoring and radical 

radiotherapy, respectively. Furthermore, the prostatectomy group maintained the highest 

rate of use of pads 6 years on (68). Erectile function decreased in all men regardless of 

treatment over the 6 years, with the active surveillance group experiencing the least negative 

effects on erectile function and the prostatectomy group the greatest (68). Men who 

underwent radiotherapy seemed to have worse bowel function than men on other treatment 

groups; however, the bowel function side effects were generally short term only (68).  

2.5. Risk and protective factors for Prostate Cancer 

progression  

Due to the slow rate of progression of PCa, particularly in localised disease (stages T1 and 

T2), research into identifying potential risk factors for disease progression is challenging. 

Proxy measures which do not have a direct link to progression, such as rate of change of 

PSA, are generally used in progression studies. This makes findings difficult to interpret 

since the findings observed in the proxy measures may not extrapolate well to observed 

disease progression outcomes. This means that while studies may find risk factors for proxy 

measures, these may not be risk factors of actual PCa progression. Research into diet and 

physical activity is often complicated by the complex interventions required to assess their 

impact on disease in the absence of good proxies for clinical outcomes (22).  

In addition to the above aspects, methodology variability, poor study design and 

inconsistency of results of these studies contribute to the lack of evidence around risk factors 

for disease progression for PCa (20). General recommendations from the World Cancer 

Research Fund (WCRF) suggest eating a diet rich in wholegrains, vegetables, fruit and 

beans, not smoking and being at least moderately physically active should be undertaken to 

prevent the development and progression of many cancers, including PCa.  

The next section presents the existing evidence in relation to PCa progression for the most 

investigated dietary and physical activity factors. Systematic reviews on the impact of 

dietary, nutritional and physical activity interventions on PCa progression have come to no 

reliable conclusions on the impact of such interventions on disease progression 
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(20,27,29,69,70). Some observational epidemiological studies have reported a range of 

potential risk and protective factors such oily fish intake, dairy products, fruits and 

vegetables, tomato and lycopene products, selenium, isoflavones, vigorous physical activity 

on PCa development and progression (22,25,26,28,32,71). However, these findings were not 

replicated when interventions using an RCT design, the gold standard in assessing causality, 

were conducted (22,25,28,32,72). Observational studies are prone to confounding, 

particularly when the disease is slow growing and exposure to environmental and lifestyle 

factors is accumulated over many years and poorly documented. On the other hand, existing 

RCTs may have been underpowered and at high or unclear risk of bias, may not have 

intervened long enough, or used outcomes of dubious link to clinical outcomes of 

progression (20,72,73).   

2.5.1. Dietary Factors  

2.5.1.1. Lycopene   

Lycopene is a natural compound found in plants, particularly in tomatoes, which acts as an 

antioxidant, and has been suggested to reduce inflammation (74). Because inflammation has 

been suggested to be a precursor of PCa, compounds targeted at reducing inflammation 

have been investigated as a tool to delay PCa progression. Lycopene has been linked to 

reduced PCa risk, although the evidence is inconsistent, with high quality observational 

studies with longer follow-up showing the greatest protective effect (75–77). A recent meta-

analysis of RCTs found that lycopene did not decrease PSA levels in men with non-

metastatic cancer, except in men with higher baseline PSA (70). However, it is unclear what 

the implications of these findings are on the long-term effects of lycopene on PCa 

progression since the outcome investigated was changes in PSA levels rather than PCa 

progression.  

Multiple mechanisms of action for lycopene’s impact on PCa risk or progression have been 

proposed. One plausible mechanism links lycopene supplementation to the upregulation of 

the connexin 43 expression and gap junctional intercellular communication, which have 

been showed to decrease with disease severity and have been suggested to be useful 

intermediate biomarkers in PCa chemoprevention clinical trials (78–80). Another mechanism 

through which lycopene could affect PCa progression is the peroxisome proliferator-

activated receptor gamma, a nuclear receptor responsible for cell growth, differentiation, 
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and homeostasis which has been shown to exhibit anti-tumour apoptotic effects in human 

PCa cells (81,82). Lycopene has also been postulated to affect insulin-like growth factor-1 

(IGF-1) inhibition which has been linked with increased risk of development of PCa (83,84).  

However, none of these mechanisms have been established and there is still much 

uncertainty around the bioavailability of lycopene and its effects on PCa risk and 

progression.   

2.5.1.2. Dairy/calcium  

Dairy intake, particularly in the form of milk, has been suggested to increase risk of 

developing and progression of PCa (85–93) . Meta-analyses linking dairy intake and 

increased PCa risk have given inconsistent results, with different values of risk estimations 

and high uncertainty, possibly due to the inaccurate and inconsistent ways of measuring 

dairy intake (27,94). This led to the WCRF to conclude that the evidence is limited and 

suggestive that dairy products and high calcium intake may increase the risk of PCa (24). 

There is limited epidemiological evidence linking PCa progression and dairy intake, with 

most studies using proxies for survival such as non-localised and high-grade disease status. 

The few studies which used PCa mortality data were restricted to three cohorts. Two were 

US health professional based cohorts which were similar in cohort characteristics and had 

cases diagnosed via PSA screening and the third was a Swedish cohort in which cases were 

not diagnosed via screening but following attendance for prostate-related symptoms 

(24,28,85,95). Dairy intake has been shown to be linked to increased risk of death from PCa, 

however it is still unclear which subsets of cases and what type and quantity of dairy most 

influence this association. For instance, Yang et al. found that in men with non-metastatic 

PCa cancer, dairy intake was associated with a higher risk of dying from PCa and the 

association was stronger for high-fat dairy (95). Other studies found that high-fat, but not 

total dairy intake was associated with increased risk of PCa mortality (28,71,85). The 

evidence between calcium intake and PCa progression is not well established. Studies that 

investigated the association between calcium intake and PCa progression found a positive 

relationship between calcium intake for high grade disease or advanced PCa status, but no 

link to PCa mortality (85,96).  

Mechanisms of actions linking dairy and calcium intake to PCa progression have been 

proposed, however none fully explain the epidemiological evidence. One hypothesis is that 

dairy calcium inhibits the concentration of plasma calciferol, the active form of vitamin D, 
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which has been associated with pro-differentiating, antiproliferative and anti-metastatic 

effects in PCa cells. Calciferol has been hypothesised to slow down metastatic disease 

through multiple mechanisms, such as by down regulating the parathyroid hormone related 

protein expression, leading to reduced bone resorption and deceleration of PCa metastases 

(95,97). Another hypothesis that has been proposed to explain the link between dairy intake 

and PCa progression is through IGF-1, a hormone molecularly similar to insulin, which is an 

anti-apoptotic and mitogenic hormone involved in prostate carcinogenesis and which has 

been shown to increase due to dairy consumption (83,85,98,99). Despite the many proposed 

mechanisms, none has been consistently linked to PCa progression.  

2.5.1.3. Fruit and vegetables   

The WCRF, along with clinical guidelines, suggest that eating a diet rich in fruit and 

vegetable could be beneficial in reducing PCa risk and progression (24,100,101). A study 

carried out in the Health Professionals’ Follow-up Study looked at the pattern of 

consumption of vegetables after a diagnosis of PCa in relation to PCa mortality and 

found that intake of cruciferous vegetables (e.g broccoli, cauliflower, Brussels  sprouts 

etc.) was associated with decreased PCa progression (25). However, the study was 

observational, and had no pre-diagnostic diet exposure data and a limited number of 

events (25). A recent review of diet and lifestyle for patients with PCa has suggested 

that multimodality studies, which combine various factors, may be a better approach to 

investigating the effects of dietary and lifestyle factors on PCa outcomes (102). An 

example of this is the Men’s Eating and Living study, a phase III RCT, which 

randomised patients with early stage PCa to a telephone counselling intervention that 

aimed to encourage participants to eat at least 7 servings of fruit or vegetables per day 

over a period of 24 months (103,104). This behavioural intervention which increased 

carotenoid, cruciferous and leafy green vegetables intake over a period of two years did 

not find evidence of a decrease in the risk of PCa progression in the intervention arm 

when compared to the control group. The study emphasizes the lack of reliable 

evidence generated via observational epidemiology of risk and protective dietary 

factors in PCa progression. 

One mechanism that has been proposed that could link fruit and vegetable intake and 

better PCa progression is the molecular mechanism for the proposed anti-cancerous 

agent apigenin (105). Apigenin which is a flavone and is commonly found in many 
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fruits and vegetables, has been suggested to have anti-cancerous properties, through 

multiple mechanisms of actions such as cell growth arrest, apoptosis of tumorous cells 

and signalling pathways (105). The evidence linking apigenin and PCa progression is 

based on studies of cell lines and animal models. Apigenin has been shown to decrease 

levels of antiapoptotic protein, which led to increased rate of apoptosis, and inhibited 

expression of multiple genes which are involved in PCa progression and are regulated 

by histone decetylase enzymes (105,106). Histone deacetylases are being proposed as 

molecular targets for anti-cancerous drugs, however inhibitors of histone deacetylases 

that have been investigated in clinical trials have shown considerable side-effects, such 

as atrial fibrillation (106). Apigenin has also been found to supress PCa progression by 

altering the IGF-1 signalling(107). Apigenin, a plant derived histone decetylase and 

widely present in fruit and vegetables, is showing to be a promising agent in PCa given 

its potential antiproliferative and apoptotic properties (106).  

2.5.1.4. Other dietary factors    

Pomegranate is a fruit which contains a large amount of flavonoids and polyphenols, 

both of which have been suggested to have anti-cancerous properties (108–110). 

Pomegranate has been shown to have antiproliferative effects in PCa cells and to inhibit 

factor kB which is linked to PCa progression and biochemical relapse post 

prostatectomy (108,111–113). Interventions which randomised men to pomegranate 

supplementation have found better outcomes in PSA levels, PSA doubling time and 

reduced indicators of oxidative stress and androgen signalling when compared to the 

control groups (108,114,115). A trial in men with PCa undergoing active surveillance 

found that a supplement containing pomegranate, green tea, broccoli and turmeric 

slowed down the PSA increase compared to the control group, however no other 

indicators of progression were assessed. Other dietary factors such as Vitamin D, 

genistein (soy) and selenium were not shown to affect PCa progression when assessed 

in an RCT design (20).   

 

2.5.2. Prostate Cancer and physical activity  

According to the World Health Organization (WHO) physical activity is the bodily 

movement generated by skeletal muscle which requires energy expenditure and includes 
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movement for leisure, transport and working purposes (116). Exercise is type of physical 

activity, which is repeated and planned with the aim to improve or maintain physical fitness 

(117). Physical activity has been suggested to play a protective role in PCa risk and 

progression, by increasing cardiorespiratory and muscular fitness, reducing BMI and 

improving fatigue associated with PCa treatment and health related quality of life 

(24,69,118–120).  

Observationally, physical activity has also been found to be associated with reduced rates of 

PCa specific and all-cause mortality; however, RCTs where physical activity interventions 

were delivered to patients have not investigated the effects on PCa progression, but rather 

on proxy measures of survival and quality of life such as PSA levels, fatigue levels and 

fitness, most likely due to the fact that PCa progression can take many years to develop.  

A systematic review of dietary and physical activity randomised interventions found that 

none of the physical activity interventions had consistent effects on PSA measures of 

progression in men who underwent hormone therapy, androgen deprivation therapy or 

radiotherapy and the same patterns were observed in RCTs which combined both 

nutritional and physical activity aspects (20). Different types of physical activities produce 

different changes in the body, for example cardiovascular exercise mainly benefits weight 

loss, cardiorespiratory fitness, and fat related measures, while resistance training stimulates 

and increases muscle mass. In the context of cancer, cardiovascular and resistance training 

can help with different aspects of the issues experienced by people living with cancer, such 

as decreased fitness, muscle loss and fatigue (121). Hackshaw et al. identified four RCTs 

which had a physical activity intervention and all of them included resistance training. 

There was no evidence of change in PSA levels in any of the trials in the intervention groups 

(resistance training alone, resistance training and cardiovascular training and cardiovascular 

training alone), however only one of the four trials was at low risk of bias, with the other 

three having an unclear or high risk of bias (20,120,122–124). Increased levels of physical 

activity, including brisk walking has been suggested to decrease PCa progression and PCa 

specific mortality, however only two randomised controlled trials have investigated the 

effects of brisk walking in men with PCa (32,118,125–127). One pilot trial which randomised 

participants to group walks once a week for an hour and encouraged participants to reach 

10,000 steps per day over 11 weeks, found increased high-density lipoprotein and decreased 

low-density lipoprotein and C-reactive protein levels in the intervention group compared to 

control (126). However, no indicators of progression such as PSA levels were investigated. 
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In another trial, which randomised men with localised PCa who underwent prostatectomy, 

to a brisk walking intervention for 30 minutes, 5 times a week, indicators of progression 

were not assessed (34,127).  

Many mechanisms have been proposed that link physical activity and PCa risk and 

progression. A recent review of exercise training in obesity and PCa suggests that exercise 

training can impact metabolic health (lower circulating glucose and insulin levels, reduce 

adipose tissue mass and whole-body inflammatory markers), as well as alter genes which 

are particular susceptible to hypermethylation following bouts of exercise training (128,129). 

One proposed hypothesis is that physical activity triggers epigenetic alterations in the 

calcium release activated channel regulator 2A gene, a gene encoding a key regulator of 

calcium channels. A recent study found that men with localised PCa, who exercised 

vigorously once or more per week were found to have a reduced risk of developing 

metastases over the average follow-up time (11.3 years) (130). In the subset of participants 

with tissue samples the study found some evidence of differently methylated promoter 

region of calcium release activated channel regulator 2A between men who exercised 

vigorously once or more per week compared to men who did not (130). The evidence 

supports calcium release activated channel regulator 2A as a mediator between physical 

activity and PCa progression.  

While there is some evidence that increased physical activity, both cardiovascular and 

resistance training, may be beneficial to men with PCa, the effect on PCa progression 

remains uncertain.   

2.6. Conclusions  

PCa is one of the most commonly diagnosed cancer worldwide. Survival is generally high 

for localised cases, and there is a large proportion of cases diagnosed which do not pose 

clinical problems. However, some cancers advance fast and lead to worse outcomes. Due to 

the fact that some cancers are diagnosed while the disease is still indolent (i.e., not clinically 

significant), overtreatment is common, and this can lead to lifelong negative effects on 

urinary, erectile and bowl functions. There are no established or highly predictive indicators 

of PCa progression at present, with the best performing ones being the Gleason score and 

PSA readings over time. Risk factors for PCa progression are not yet established, however it 

is believed that diet and physical activity may play a role. As it takes a long period of time 
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for PCa to progress it is difficult to accurately establish risk and protective factors for 

prognosis and most of the research has been performed using proxies of progression such as 

PSA levels in randomised studies.  
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Chapter 3.  Introduction to 

metabolomics  

3.1. Introduction 

The previous chapter focused on the clinical and epidemiological aspects of PCa, presenting 

measures of incidence, prevalence and survival, as well as dietary and lifestyle factors 

influencing PCa progression. This chapter introduces and reviews the background evidence 

relating to factors influencing PCa progression with a focus on circulating metabolomic 

measures, diet and lifestyle research. The chapter opens with a general introduction to 

metabolomics and its application in the field of cancer. It then presents current evidence of 

the application of metabolomics in nutritional and physical activity epidemiology and their 

potential role as intermediate markers of disease progression. The chapter ends by 

highlighting the complex mechanisms of PCa progression, with a focus on the role of 

various classes of metabolites in PCa metabolic pathways. Understanding the way 

metabolites affect PCa metabolic pathways is a crucial aspect in assessing the role that 

metabolites may have in PCa progression and their role as intermediate biomarkers of 

disease progression.   

 

3.2. The field of metabolomics 

Metabolomics is the large-scale study of metabolites, which are small molecules within cells, 

biofluids, tissues or organisms that collectively form the metabolome (131). The metabolome 

encompasses all metabolites in a biological sample and is dynamic in nature. Metabolomics 

studies small molecules that are end products of many functions in the body. Metabolites 

are generally defined as small, low-weight molecule intermediates and end products of 

biochemical reactions with a mass lower than 1,500 Daltons (Da) (132,133). Metabolomic 

profiling includes the detection and quantification of metabolites and can reflect changes 

occurring from different conditions in lifestyle, diet and genetic factors (10). The assessment 

of metabolites, which are downstream of changes in genes and proteins, can indicate 
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functional alterations in pathways affected by multiple pathological states (133). Therefore, 

metabolomic profiling can provide a comprehensive and dynamic description of the 

biological state of an organism through the integration of genetic regulation, enzyme 

activity, and metabolic reactions (133).  

Another advantage of metabolomics is the potential it holds to demonstrate altered cellular 

activity within various disease states, using a much smaller number of measures compared 

to other ‘omics fields such as genomics or proteomics (133). Metabolomic analysis can be 

conducted both at cellular and systemic levels, by measuring metabolites in the peripheral 

system, for example in serum or plasma which can be particularly useful when assessing 

systemic metabolomic markers in metabolically complex diseases such as cancer (134). 

Advancements in the instruments used to detect and quantify metabolites, which are 

presented in more detail later in the chapter, along with developments in the field of 

bioinformatics, allowed improvements in the knowledge of the metabolome (10,135,136). 

Better characterisation and understanding of the metabolome provides an opportunity to 

inform the use of circulating metabolites as markers of disease risk and progression since 

metabolites hold the advantage of being downstream of genetic and proteomic changes 

(133). Metabolites may be useful potential indicators of functional alterations in pathways 

affected by multiple factors, integrating enzymatic, genetic and metabolic activity in a 

dynamic profile (133,137).   

3.2.1. Untargeted metabolomics 

Untargeted metabolomics refers to the analysis of all measurable analytes in a sample, 

including chemically unknowns(138). Untargeted metabolomic studies measure a large 

number of metabolites and are frequently used in hypothesis generating studies where no 

specific set of metabolites are planned to be investigated. Mass spectrometry (MS) is a 

technique that is widely used in the study of untargeted metabolomics and uses the ratio 

between mass and charge in complex molecules to identify and quantify the structure of the 

molecule (11,139). The sample must first be ionised, and the ionised compounds, which 

produce peak patterns, allow for the identification and quantification of the original 

molecule. To reduce the complexity of the original molecule and perform MS, the sample 

undergoes a separation step which can be done through gas chromatography or liquid 

chromatography, the most used techniques for spectral data in MS (11,139–141). By 
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performing the separation step, this technique’s specificity, sensitivity and reproducibility 

are enhanced (Table 2) (10).  

Gas chromatography MS and liquid chromatography MS methods provide a relatively cost-

effective method to identify and quantify a large number of metabolites, achieve high 

sensitivity and specificity and identify novel metabolites and their physical and chemical 

properties, even at very low concentrations (11,142,143). However, the separation steps are 

time consuming, costly and can lead to a significant loss in sample quantity, with some 

techniques impacting the classes of metabolites that can be investigated  (9–11). From both a 

bioinformatic and statistical point of view, correctly analysing the vast number of 

metabolites represents a real challenge, with various techniques and methodologies being 

implemented to avoid misinterpretation of results (11,139,142). This is a particularly difficult 

problem in studies with large populations where the value of metabolomics lies in the high 

through-put, the low sample volume required and the low costs of assays.   

Figure 3.1: Definitions of measures of test performance in the context of Gas 

chromatography or liquid chromatography in metabolomics 

 

• Sensitivity refers to the ability to detect a signal for the metabolite at very low 

concentrations  

• Specificity represents measures of how well the technique performs at 

correctly distinguishing a metabolite from other substances present in the 

sample 

• Reproducibility is the ability of the technique to display consistency in signals 

across replicated experiments 

 

3.2.2. Targeted metabolomics 

Targeted metabolomics refers to the measurement of a pre-defined group of metabolites, 

which are normally identified and quantified using an established platform (138). Similarly 

to untargeted metabolomics, targeted metabolomics can be quantified through MS and 

suffer from the same problems, such as separation step related issues in gas 
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chromatography and liquid chromatography. In addition, inter-laboratory reproducibility is 

an issue particularly important in biomarker discovery research, as in order for it to be 

widely used, it must be easily reproducible across different laboratories (144).  

Another technique for targeted metabolomics is using proton (1H) nuclear magnetic 

resonance (NMR) spectroscopy, where the compound is placed in a magnetic field and the 

resulting resonant frequencies allow the identification of the different molecules it contains 

(137). NMR holds a few advantages over the MS technique: it is a non-destructive, easily 

quantifiable, and inherently quantitative technique that requires a simple sample 

preparation and thus has high throughput at low costs (137,145–147). It also provides 

excellent reproducibility, with predictable spectra, and allows a precise structure 

determination of the molecules contained within the compound (145). However, the NMR 

method requires a larger sample quantity and has poor sensitivity, therefore is only able to 

detect molecules present at much higher concentrations than MS, leading to a lower number 

of metabolites that can be identified and quantified (145,146). 

3.2.2.1 The Nightingale Nuclear Magnetic Resonance platform 

The Nightingale NMR platform (Nightingale Health©, Helsinki, Finland)  is a low-cost high-

throughput metabolomics method that uses two different approaches of identification and 

quantification of metabolites to provide metabolomic profiles of both lipoprotein measures 

and metabolites with a low molecular weight (148). The sample preparation is minimal and 

includes multiple automated steps which allows for 96 samples to be prepared in 

approximately 2 hours (148). Serum or plasma samples can be analysed, using 100 or 350 µL 

volume of blood, respectively, in both fasted and non-fasted samples. The platform (as 

released in 2014), yields 228 metabolic measures, 150 of which are primary concentrations, 

with the rest being derived ratios (149). There are 14 lipoprotein classes investigated, with 

each of these having 12 measures quantified (149). The processing of the spectrum for one 

serum sample is done automatically in approximately 9 minutes (148). The platform has 

been previously used in epidemiological studies in multiple disease areas and biobanks 

(149,150). 
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3.3. Metabolomics in cancer 

Cancer is complex and dynamic disease and remains challenging to prevent and treat due to 

the lack of understanding around its aetiology and progression (151). Hanahan and Weinger 

(2000) introduced the concept of the “six hallmarks of cancer”, a set of underlying principles 

which were extended to eight in 2011, that aim to break down the complexity of the disease, 

by characterising the essential alterations in cell physiology which support malignant 

growth (Table 3.1) (152,153).   

It has been long established that one hallmark of cancer is altered metabolism that allows the 

increased nutrient requirements for proliferation of cancerous cells to be fulfilled (154,155).  

Metabolic alterations in tumours have also been proposed; however, it was the recent 

developments in the biochemical and molecular biological tools in areas such as imagining, 

cell culture, genetics, proteomics and metabolomics, that advanced the understanding of the 

mechanisms and importance of metabolic alterations in cancer research (156).  Fundamental 

to the six hallmarks of cancer are genome instability, inflammation and metabolic 

reprogramming (153). 

Metabolomics is a relatively new field compared to other ‘omics studies, such as genomics, 

proteomics or transcriptomics. However, it has captured great interest in cancer research, 

due to its ability to provide a characterisation of the tumours’ cellular physiology and 

biochemistry, by using metabolites as intermediate and end-point indicators of altered 

molecular pathways (157). Changes in both intra- and extra- cellular metabolite levels, 

which are observed in cancer metabolic reprogramming, can greatly affect gene expression, 

cellular differentiation and the tumour environment, making metabolites an important area 

of focus in cancer research (156).   
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Table 3.1: The eight hallmarks of Cancer according to Hanahan and Weinberg (152,153). 

3.4. Metabolomics, lifestyle and diet  

Lifestyle and dietary factors have long been believed to influence cancer risk and 

progression and many studies investigated the link between them (24). However, it is 

difficult and sometimes impossible to assess the relationship between cancer and diet and 

lifestyle factors, particularly in observational studies due to a wide range of limitations (158). 

Some of the most common limitations of nutrition research are, recall bias, measurement 

error, inability to split combined effects from closely related exposures and nutrient 

bioavailability which varies with food type and cooking methods (159).  

By measuring downstream components, metabolomics may be more suited to measure 

dietary exposures and thus provide more accurate estimates of disease risk in nutritional 

epidemiological research (160). In addition, metabolites have also been shown to be 

correlated with intake levels for alcohol, vitamins and food groups (e.g. citrus fruit) and be a 

good predictor of these (160). Metabolomic signatures can also be used to reflect broader 

dietary patterns in addition to specific dietary exposures. For example, a metabolic signature 

which contains 67 metabolites was shown to robustly reflect the adherence to a 

Mediterranean diet and also be causally associated with risk of coronary heart disease and 

stroke (34). 

The link between physical activity and metabolomics has been studied for decades, and a 

recent review of the effects of physical activity on the metabolome concluded that various 

degrees and types of physical activity are associated with quantifiable changes in the 

metabolome, measured in both MS and NMR spectroscopy (162). Measures of overall 

physical activity and exercise have been shown to be associated with changes in levels of 

The six hallmarks of  cancer (152) :  The two emerging hallmarks of cancer (153): 

Inducing angiogenesis Evading immune destruction 

Resisting cell death  Reprogramming of energy metabolism 

Evading growth suppressors  

Enabling replicative immortality  

 Activating invasion metastasis  
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fatty acid, cholesterol, glycolysis related measures and amino acid. The type, intensity, 

frequency and timeframe of the physical activity exposures have been suggested to affect 

the metabolomic response, suggesting the metabolomic response to physical activity is 

multifactorial dose dependent (162–166). 

To provide definitive evidence on the causal effect of any potential protective intervention 

(and its harms), appropriately powered and well conducted (i.e., unbiased) RCTs are the 

gold standard. RCTs are costly, time and resource intensive, particularly when a long 

follow-up time is required. In addition, it can be unethical and physically challenging for 

participants to complete an intervention over a long period of time, which would be needed 

for cancer risk and progression. Assessing the effects of the intervention on appropriately 

chosen intermediate biomarkers could provide preliminary evidence of the effect of the 

intervention on long term outcomes. For instance, a shorter dietary or lifestyle intervention 

could be implemented to investigate its effects on metabolomic markers which could then be 

investigated separately to assess their role in cancer risk and mortality. Metabolites are good 

candidates for intermediates in dietary and lifestyle interventions as they are markers of 

genetic and proteomic functions, and they can provide an overall picture of the effects of an 

intervention on multiple groups of compounds and pathways (9,12,13).  

There has been a great increase in the number of nutritional studies that use metabolomics 

since metabolomic analysis can provide a deeper insight into the effects of the dietary 

intervention on metabolomic perturbations (167). Metabolomics shows great potential in 

advancing the understanding between lifestyle and dietary factors and disease and a recent 

review of metabolomic methodologies in human nutritional studies emphasises the field’s 

potential and the need of harmonization in the future (167).  

3.5. Metabolomics and Prostate Cancer 

progression  

3.5.1. Circulating metabolites 

To evaluate the evidence linking PCa progression and circulating metabolites I conducted a 

literature search on PubMed.  

I used the following search strategy: 
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(Prostat*[TITLE]) AND (Cancer*[TITLE]) AND (metabolite*[TITLE] OR metabol*[TITLE] OR 

AMINO*[TITLE] OR GLYCOLY*[TITLE] OR LIPID*[TITLE] OR LIPOPROTEIN*[TITLE] OR 

glycoprotein*[TITLE] OR CHOLESTER*[TITLE] OR PHOSPHOLI*[TITLE] OR 

GLYCER*[TITLE] OR lipoprotein*[TITLE] OR FATTY[TITLE] OR KETON*[TITLE] OR 

CREATIN*[TITLE] OR ALBUMIN*[TITLE]) AND ( [surviv*[TITLE] OR progress*[TITLE] 

OR metasta*[TITLE] OR death[TITLE] OR mortality[TITLE]) 

 

Inclusion criteria 

All publication abstracts were accessed and assessed for inclusion into the literature review. 

Publications were included in the literature review if they satisfied all the following criteria: 

- Full text was available 

- The study was metabolomic 

- The study presented original findings, or it was a review of available evidence 

(methodological, case reports or ecological studies were excluded) 

- Progression measures were investigated 

Following abstract screening, full-text assessment followed, and studies were included if 

they fulfilled the following criteria: 

- Performed in human subjects, in plasma or blood 

- Presented original findings  

Given the limited evidence linking circulating metabolites and PCa progression, the search 

term used was broad and identified 261 publications. 196 publications were excluded for the 

following reasons: not from metabolomic studies (n=156), were commentary or correction 

(n=14), case reports (n=8), methodology publications (n=7) or ecological study(n=1), text 

was not available (n=7), had no progression indicator (n=3). Of the remaining 65, 29 were in 

human subjects, 13 were evidence reviews, 10 were in animals, 18 were in cell lines and 1 

was in both cell lines and animals. Since this thesis investigates the role of circulating 

metabolites in relation to PCa progression, this literature review focuses on circulating 

metabolomic evidence. There were 17 publications that investigated the link between 

circulating metabolites and PCa progression. Table 3.2 presents the sample sizes, findings, 

strength and weaknesses of each study.  
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Figure 3.2: Selection process for inclusion of publications into the literature search 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study quality  

Overall, studies only assessed a few circulating metabolites, albumin, glucose and 

cholesterol being the most investigated. Only 2 of the 17 studies used a metabolomic 

platform with high throughput and thus investigated a large number of metabolites (16,168). 

Most of the studies included had a retrospective case-control study design, and did not 

allow for survival analyses, since time to event was not measured. Low power was a 

predominant limitation of the included studies, with low number of participants which were 

occasionally further split into PCa disease phenotypes (169,170).   
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Main findings 

Both studies which quantified a large number of metabolites (109-763 measures) were 

underpowered, with low number of participants (under 300). Few individual metabolomic 

measures were found to be linked to increased risk of PCa mortality, such as N-oleoyl 

taurine and fatty acid measures (polyunsaturated, acyl glycyl, monohydroxy acids, 

dicarboxylic acids) (16). 

 Lipids 

Lipids in general and total free cholesterol were shown to be inversely associated with 

overall survival and radiographic progression-free survival in men with metastatic PCa, 

who underwent different treatments (168). However, the evidence around cholesterol 

measures remains unclear. The largest study identified in this literature review (5,893 PCa 

cases) found weak evidence that cholesterol was associated with PCa mortality (171). 

However, the study did not have any information on tumour characteristics or 

socioeconomic factors. A study in the Finish cancer registry, which covers 99% of all cancers 

diagnosed in Finland, also found weak evidence of association of cholesterol and 

progression, although PCa specific mortality analyses were not undertaken due to small 

number of events.  

Fatty acids  

The link between fatty acids and PCa progression were assessed in three studies (16,172–

174). One study that investigated the effects of eicosanoids, found that 

hydroxyeicosatetraenoic acid and arachidonic acid were positively and inversely correlated 

with advanced stages of PCa, however no survival analysis was performed (173). A study 

conducted in men with low-risk PCa, from a previously completed RCT, found that omega-3 

fatty acids were not associated with PCa progression(172). The progression indicator was 

defined as moving from a Gleason score of 6 to a Gleason score of 7, at the 6-month repeat 

biopsies which were performed(172). Another study which assessed a large number of 

metabolites, found that fatty acids (polyunsaturated, acyl glycyl, monohydroxy acids, 

dicarboxylic acids) were associated with increased risk of PCa morality (16). The study used 

data from the Alpha-Tocopherol, Beta-Carotene Cancer Prevention study which recruited 

Finnish men who were aged 50-60 years old and smokers from 1985 to 1988. Follow up data 

was available through the Finish cancer registry, and 92 of the 197 cases included had a PCa 

death event(175). 
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Amino acids, fluid balance measures and ketone bodies 

Four studies assessed the effects of amino acids on PCa progression (16,169,170,176). All 

studies found evidence of a link between amino acids with PCa progression. N-oleoyl 

taurine was associated with increased PCa mortality, in the only study of the four that 

assessed PCa mortality (16). Medium-chain acyl-carnitine hexanoylcarnitine and 

trimethylamine were positively and long-chain acyl carnitine, acetylcarnitine, 

isovalerylcarnitine, l-carnitine and isovalerylcarnitine, inversely associated with PCa 

progression (169). The study had a case-control design and it included multiple progression 

indicators such as repeat PSA measures, local lymph node and bone metastases. Another 

study found that creatine, creatinine and glutamine were associated with increased levels in 

early PCa cases and reduced levels in more advanced cases (170). The study also found 

histidine, leucine, valine, lysine and acetate to be inversely associated with PCa progression 

(170). When assessing the link between the amino acids and progression, the study 

compared men with early, advanced, metastatic and castrate resistant PCa to men with 

benign prostatic hyperplasia but did not conduct survival analyses. Homocysteine, 

cystathionine and cysteine were higher in men with biochemical recurrence compared to 

recurrence-free men (176). The same study showed that sarcosine was higher in urine but 

not in serum for men with biochemical recurrence when compared to men without 

biochemical recurrence. Albumin and albumin-globulin ratios were investigated in 6 of the 

studies (177–182). The evidence supports a role for decreased albumin with increased risk of 

PCa progression, however the threshold has not yet been established. In addition, albumin-

globulin ratio is showing to be a good predictor of PCa progression (180,181). The studies 

that investigated albumin and the albumin-globulin ratio were generally in men with more 

advanced instances of PCa. Therefore, it is unclear from the available evidence what the link 

between albumin and PCa progression is, in men with localised PCa (16).  

Glycolysis measures 

Glucose was the most glycolysis measure investigated in the selected studies. In the largest 

study glucose was not associated with PCa progression (171). However, the study did not 

take into account socioeconomic and cancer staging factors and compared low versus high 

levels rather than continuous measures (171). Citrate was found to be lower in metastatic 

and castrate PCa cases compared to benign prostatic hyperplasia cases (170).  
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Table 3.2: An overview of studies which examined metabolomics in relation to Prostate Cancer progression 

Author 

name, year 

and PMID 

Study design 
Population 

size 
Metabolite Findings Strengths Limitations  

Haggstrom 

(2014), 

25207955 

Prospective 

cohort  

5,893 PCa 

cases, 1,013 

PCa deaths 

Glucose, 

total 

cholesterol, 

triglycerides 

Men with high vs low levels of glucose 

triglycerides and cholesterol had similar 

PCa mortality(171) 

Large samples sizes from 7 European Cohorts 

 

Long follow-up (average 12 years) 

No information on tumour or 

socioeconomic status 

Few metabolites assessed, with 

no breakdown of cholesterol or 

triglyceride molecules 

Huang 

(2019), 

29878065 

Prospective 

cohort  

197 PCa 

cases 

625 

metabolites 

(Metabolon): 

carbohydrate

s, cofactors 

and 

vitamins, 

energy 

metabolites, 

lipids 

(including 

fatty acids, 

nucleotides, 

peptides or 

xenobiotics 

N-oleoyl taurine associated with PCa 

mortality (HR=1.72, 95%CI:1.34,2.20, 

p<0.0001)(16) 

 

Pathway analysis showed some 

evidence that lipids and steroid/sterols 

were associated with increased PCa 

mortality (p<0.006) 

 

Pre-diagnostic serum N-oleoyl taurine 

and sterol/steroid metabolites 

associated with PCa survival 

 

Fatty acids (polyunsaturated, acyl 

glycyl, monohydroxy acids, dicarboxylic 

acids) were associated with increased 

PCa mortality 

Survival analysis adjusted for PCa staging 

Follow-up data originated from Finish cancer 

registries which cover 99% of total diagnoses 

cancer cases  

Participants were all smokers 

 

Low power (small number of 

PCa cases and large number of 

metabolites investigated) 

 

Median survival was low for 

localised PCa cases (7 years) 
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Zoni 

(2019), 

31842810 

Case-control 

10 PCa free 

and 42 PCa 

cases 

11: low risk 

PCa  

12 high risk 

with no 

progression 

10 high-risk 

with 

progression 

9 metastatic 

17 carnitine 

metabolites 

Medium-chain acyl carnitine positively 

associated with PSA progression 

(p=0.036)(169) 

 

Long-chain acyl carnitine inversely 

associated with local and bone 

progression (p=.034) 

 

No strong evidence of association with 

lymph node progression and short, 

medium or long-chain acylcarnitines  

 

Acetylcarnitine(0.016) and 

isovalerylcarnitide (0.01) inversely 

associated with PSA progression 

 

Hexanoylcarnitine(p=0.035) positively 

associated with PSA progression 

 

L-carnitine(p=0.006) and 

isvalerylcarnitine (p=0.027) inversely 

associated with lymph node progression 

Overall, the study had long follow up time for 

non-metastatic cases (minimum 5 years) 

 

Multiple progression indicators assessed (PSA 

increase, local, node and bone metastases) 

Low power, small numbers in 

each of the risk categories 

investigated 

 

Low follow-up time in the low 

risk PCa category (7 years) 

Zheng 

(2020), 

31758937 

Cross-

sectional 

76 

participants: 

18 benign 

prostatic 

hyperplasia 

16 early PCa 

20 

metabolites 

(lipid, 

glucose and 

amino acid 

metabolism) 

Metabolomic patterns more clearly 

defined in tissue compared to 

serum(170) 

 

Overall patterns identified 9 important 

differential metabolites in PCa 

Allowed comparison between metabolites in 

plasma, urine and tissue 

 

Compared progression across multiple PCa 

progression phenotypes 

Case-control study design, not 

allowing for time to event 

analyses 

 

Low power- reduced number of 

participants across 5 categories 
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11 advanced 

PCa 

23 metastatic 

PCa 

8 castrate-

resistant PCa 

progression in serum samples: citrate, 

creatine, histidine, lysine, glutamine, 

creatinine, valine, leucine, and acetate 

 

Citrate was lower in metastatic and 

castrate resistant PCa cases compared to  

benign prostatic hyperplasia (p=0.004) 

 

Glutamine levels were inversely 

associated with PCa progression 

(p=0.001) 

 

Creatine (p=0.002) and 

creatinine(p=0.005) were inversely 

associated with progression from benign 

hyperplasia and castrate-resistant PCa  

 

Trimethylamine was higher in early PCa 

compared to metastatic and castrate-

resistant PCa (p=0.008) 

Cook 

(2006), 

16740758 

Prospective 

cohort 

643 PCa 

metastatic 

cases 

Albumin 
Albumin was not associated with overall 

survival(177) 

Large number of participants  

 

Clearly defined inclusion criteria as data was 

generated via a multicentre randomised 

controlled trial 

Only quantified albumin 

 

Survival analysis outcome was 

overall survival not PCa specific 

mortality 

Stabler 

(2011), 

21853037 

Nested case-

control 

58 PCa cases, 

28 with 

progression 

Sarcosine, 

dimethylglyc

ine, 

Homocysteine, cystathionine and 

cysteine were higher in the progressed 

men (p<0.001) (176) 

Age-matched cases and controls 

 

Model adjusted for serum PSA< Gleason 

Case-control study design, not 

allowing for time to event 

analyses 
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and 30 

progression 

free 

methionine, 

homocystein

e, 

cystathionin

e, cysteine, 

methylmalo

nic acid and 

methylcitrate 

 

Weak evidence of association for 

sarcosine, dimethylglycine, folate, 

methylcitrate, and methylmalonic acid 

and progression 

score, clinical stage and pre-surgical clinical 

variables 

 

Low power, with small number 

of participants in both 

progressed and progression free 

cases 

 

Short follow up for the 

participants defined as non-

progressed (5 years) 

 

Majority of participants 

included had T1c stage 

 

Evidence of differences in 

clinical factors cases vs controls  

 

Progression indicator based on 

PSA (rise of at least 0.2 ng/ml) 

Blanco 

(2014), 

24435810 

Cross-

sectional 

(discovery 

dataset) 

and 

prospective 

cohort 

(validation 

dataset) 

Discovery 

sample: 

20 PCa cases 

56 PCa free 

cases 

 

Validation 

sample: 

44 PCa cases 

45 PCa free 

controls 

Hydroxyeico

satetraenoic 

and 

arachidonic 

acids 

Hydroxyeicosatetraenoic and 

arachidonic acids increase and decrease 

respectively with PCa aggressiveness 

(173) 

relatively large sample size compared to other 

studies in the field 

 

Clearly defined categories of disease 

Low power, small numbers in 

each of the risk categories 

investigated 

 

Progression category is rather 

measure of aggressiveness 

 

Case-control study design not 

allowing for survival analyses 
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Moreel 

(2014), 

24824038 

Prospective 

cohort 

120 

participants 

Omega-3 

fatty acids 

Eicosapentaenoic acid was higher in the 

non-progressed cases compared to the 

progressed cases in tissue but no 

association was observed in serum (172) 

Randomised controlled trial design with well-

defined inclusion criteria 

Low power to detect association 

between serum omega-3 fatty 

acids and PCa progression 

 

Only total omega-3 serum 

measures were assessed 

 

PCa progression indicator is not 

widely use in literature (Gleason 

score change from 6 to 7) 

Pan (2021), 

34414685 

Prospective 

cohort 

2,205 

participants 
Albumin 

Patients with low albumin had worse 

overall survival pre and post 

chemotherapy( p<0.001). (182) 

 

Albumin independently predicted 

overall survival in both trials (HR=1.54, 

95%CI:1.34-1.78; and HR=1.40, 

95%CI:1.21-1.64) 

Participants originated from two clinical trials, 

thus the studies had clearly defined inclusion 

criteria 

 

Patients in the two trials followed different 

treatments 

Patients not representative of 

most PCa cases since these were 

men with advanced stages of 

disease 

 

Generally, included men had 

better health than men with 

metastatic PCa 

Lin (2021), 

34638448 

Prospective 

cohort 

274 

participants 

Lipids and 

cytokines 

(109-763) 

Lipid levels were generally associated 

with poorer overall survival, and were 

enriched with sphingolipids, 

particularly ceramides(168) 

 

Higher level of free cholesterol was 

associated with shorter overall survival 

Three different cohorts of participants 

 

Prospective study 

 

Multiple treatments 

Small number of participants 

compared to number of 

measures being investigated 
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Radiological progression free followed 

similar associations with lipids as did 

overall survival 

Lv (2017), 

27837416 

Retrospective 

cohort  
168 Albumin 

Men with high albumin progressed to 

castrate-resistant PCa slower than men 

with high albumin (HR: 0.57, 95%CI: 

0.37-0.89, p<0.013)(178) 

Men were followed up frequently and with 

clearly defined procedures 

 

All men were treated with androgen 

deprivation therapy as their initial therapy 

Retrospective study 

 

Short follow-up time 

 

74% of participants had 

metastatic disease 

 

No area under the curve 

statistics were generating when 

appraising prediction value of 

albumin 

 

No other metabolites other than 

albumin were measured 

 

Albumin was analysed as a 

binary variable (low vs high) 

Rantaniemi 

(2018), 

30362865 

Prospective 

cohort 

1314 

participants 

HDL and 

LDL 

cholesterol 

There was weak evidence that 

cholesterol levels are associated with 

PCa prognosis in surgically treated men 

(183) 

 

Normal HDL and higher LDL levels 

were associated with lower all-cause 

Mortality data available through linked 

through the Finish cancer registry, which 

covers 99% of cases in Finland 

 

Bloods were take post a 12 hour fast 

 

The data had prescribing information gathered 

PCa mortality was not evaluated 

in this study due to low 

numbers of cases who died of 

PCa 

 

Progression was proxied by PSA 

recurrence and overall mortality 
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mortality in a time dependent analysis, 

however the effects were only short 

lived 

 

 

 
 

through a centralised system which covers 

95% of prescriptions 

 

Cholesterol measures available pre and post 

prostatectomy 

 

Analyses were stratified by tumour risk score 

 

BMI and smoking were not 

available, which could affect al 

cause mortality  

 

The study had low adherence to 

follow-up 

Mak 

(2022), 

35331214 

Prospective 

cohort 
191 men 

3 lipid 

signature 

biomarker 

The three lipid signature biomarker was 

associated with radiographic 

progression free survival (HR:1.71, 

95%CI:1.09-2.66, p=0.02) and overall 

survival (HR:2.15, 95%CI:1.4-3.3, 

p<0.001)(184) 

Used radiological survival progression as 

progression marker 

Small sample size 

 

Follow-up statistics were not 

available 

Hirano 

(2020), 

32349610 

Retrospective 

cohort 
351 men 

Total 

cholesterol 

Total cholesterol was associated with 

bone and lymph node metastasis 

(OR:1.017, 95%CI:1.004-1.030, p=0.01) 

(185) 

Participants were Japanese, thus providing 

evidence on effects of cholesterol in Asian 

population 

No time to event analysis was 

performed 

 

Retrospective study design 

 

No follow-up length available 

Sejima 

(2013), 

24579009 

Prospective 

cohort 
179 Albumin 

Men in the low serum albumin group 

(<4g/dl) had a worse bio-chemical 

recurrence free rate compared to men in 

the high albumin group (p=0.02)(179) 

 

Low Serum albumin was associated 

with lymph node progression (OR:12.3, 

95%CI: 1.63, 92.55, p=0.02) 

 

The multivariate analysis included intra and 

post operative factors 

 

Progression was assessed by both PSA and 

lymph node involvement 

Short follow-up (25 months) 

 

Albumin levels were categories 

and not assessed as continuous 

variables 
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Serum albumin was not associated with 

bio-chemical recurrence in a 

multivariable model which included 

PSA, Gleason and intra and post 

operative variables(surgical margin, 

extracapsular extension, seminal vesicle 

involvement, peri-neural invasion, 

lympho-vascular) 

Wang 

(2018), 

30027930 

Prospective 

cohort 

214 

metastatic 

PCa 

participants 

Albumin 

globulin 

ratio 

Progression free survival was higher in 

men with a albumin globulin ratio 

higher or equal to 1.45 (180) 

 

The albumin globulin ratio was 

associated with increased risk of 

progression after adjusting for pre-

operative PSA, BMI, Gleason score, 

albumin, haemoglobin, neutrophil count 

and Eastern Cooperative Oncology 

Group performance status. 

 

Albumin globulin ratio was associated 

with PCa specific mortality 

 

Albumin was independently associated 

with decreased PCa mortality and 

increased progression free survival, 

however the associations did not hold 

after adjusting for pre-operative PSA, 

BMI, Gleason score, albumin, 

Progression was assessed by PSA, rectal 

examination and bone scans for metastatic 

disease 

 

PCa specific mortality was used as indicator of 

progression to fatal disease 

 

Used receiver operating curve (ROC) curve to 

determine the value of albumin globulin ratio 

that best predicted progression 

 

Men were followed up for 11 years 

 

50% of men died from metastatic PCa which is 

representative of the general population 

Low number of participants 

 

Only metastatic participants 

were included thus may not be 

representative of all men with 

PCa 
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haemoglobin, neutrophil count and 

Eastern Cooperative Oncology Group 

performance status. 

Aydh 

(2021), 

34184136 

Retrospective 

cohort 

6,041 

patients with 

non-

metastatic 

PCa 

Albumin-

globulin 

ratio 

Low albumin-globulin ratio (≤1.31) was 

associated with increased risk of 

biochemical recurrence (HR:1.40, 

95%CI:1.21-1.62, p<0.01) after adjusting 

for preoperative and postoperative 

factors(181) 

 

 

Albumin-globulin ratio remained 

associated with biochemical recurrence 

in a multivariable analysis (adjusted for 

Cut-off for the albumin-globulin ratio was 

calculated using ROC curve 

Retrospective analysis 

58% of participants had lymph 

node metastasis as baseline as 

unknown (evaluation failed) 

Progression indicator was 

limited to biochemical 

recurrence (PSA) 

 

Short follow-up time (45 

months), stage assignment was 

not standardised and  

mortality data was not available 
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3.5.2. Non-circulating metabolites 

Given the limited literature identified on circulating metabolites and PCa progression, some 

background evidence generated from mechanistic (metabolomic, genetic and proteomic) 

studies using PCa tissue, animal or PCa cell lines is provided. These studies generally 

focused on cellular pathways, which are not investigated in the Thesis, but are used in 

interpreting findings in my results chapters, particularly where no circulating metabolomic 

evidence exists. To adequately present these studies, manual searches were conducted 

aiming for more mechanistic evidence in PCa and its progression.  

3.5.2.1. Introduction to Prostate Cancer molecular mechanisms 

PCa cells produce citrate, PSA and polyamines (e.g. spermine) and therefore have a specific 

metabolic profile (132,133,186). PCa progression has been linked to activation of androgen 

receptors, lipid and amino acid pathway abnormalities, and more generally to a deregulated 

metabolism (187,188). In addition to the unique metabolic profile at tumour level, there is 

evidence to suggest that serum levels of metabolites may differentiate low, high-grade and 

lethal disease (189–191). This and the lack of prognostic factors for PCa progression make 

serum metabolites great candidates for PCa aggressiveness and progression biomarkers. 

However, as seen earlier in this Chapter, due to the long latency period of PCa to 

progression, few studies have assessed the role of metabolomics in PCa progression. Thus, 

the next section presents the most well-known metabolic pathways and the metabolites 

involved in these which have been shown to play a role in PCa risk and progression, in 

cellular, animal and human studies.  

3.5.2.2. The Krebs cycle 

The Warburg effect refers to the ability that cancerous cells have to produce adenosine 

triphosphate (ATP), an energy-carrying molecule though a glycolytic pathway (anaerobic) 

even in the presence of oxygen, unlike noncancerous cells which use oxygen (aerobic) 

during the Kerbs cycle (132,154,155,192) (Figure 3.2). However, in the case of PCa, the Kerbs 

cycle and more recently, oxidative phosphorylation, have been found to also play an 

important role in cellular metabolism (193). In contrast to noncancerous prostate cells, 

cancerous PCa cells have a very low amount of citrate. This is a consequence of the very low 

levels of zinc found in PCa tissue, in the prostate peripheral zone which is the most 
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voluminous part of the prostate gland and the most common area for malignancy (85%) 

(186,194). Low levels of zinc in PCa cells is an unique aspect of PCa which allows extra ATP 

to be produced aerobically by prolifically allowing oxidative phosphorylation to occur, 

which leads to accelerated neoplasm formation (186). Since PCa is not glycolytic (i.e does not 

rely on glucose for the higher energy demand) and there is a high demand of lipids for 

membrane formation and intercellular signalling in cell proliferation, an increased lipid 

biosynthesis is a required metabolic change associated with prostate malignant 

transformations (133). For the lipid biosynthesis to occur, citrate must be converted to acetyl-

coA, a process that recruits a number of enzymes involved in fatty acid and cholesterol 

synthesis, which are androgen-regulated and have been shown to be abundant in PCa cells 

(133,195,196). Another observed source for the acetyl CoA production has been suggested to 

be acetate obtained from circulation, with cancer patients exhibiting much lower levels of 

acetate in arterial blood compared to cancer free individuals (194,197).  

Figure 3.3: Net citrate production metabolic pathway. 

 

Adapted from Costello and Franklin (2006) (194) 

3.5.2.3. Fatty acid metabolites 

Overall, observational epidemiological studies found that PCa is associated with increased 

lipogenesis, high levels of triglycerides, low high-density cholesterol (HDL) and high levels 

of low-density lipoprotein (LDL) in blood (198). PCa is characterised by an increased fatty 
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acids synthesis and overexpression of lipogenic and lipid-modifying enzymes at tumour 

level (188,199,200). For example, carnitine which is a metabolite derived from lysine and 

methionine amino acids, has been shown to be a regulator of adaptive metabolic 

reprogramming in PCa cells (188,201). Stearoyl-CoA desaturase-1 enzyme which coverts 

saturated fatty acids into monosaturated fatty acids is overexpressed in PCa tissue, 

androgen sensitive and castration-resistant PCa cells and has been linked to neoplastic 

transformation and tumour cell proliferation and invasiveness (188,202,203).  

3.5.2.4. Cholesterol related metabolites 

As described in the previous sections, biosynthesis plays an important role in PCa. 

Furthermore, cholesterol makes up a third of the plasma membrane lipids, and thus has a 

critical part in membrane synthesis and steroidogenesis, two essential aspects of PCa 

survival and tumour upkeep (188,198,204). Cholesterol is also the largest compound 

contained in the “lipid rafts”, which are glycoprotein lipid membrane microdomains with 

regulatory functions in signal transduction and extracellular stimuli channelling (205). The 

concentration of cholesterol in lipid rafts and the degree of saturation of fatty acid chains in 

the phospholipid layer regulate these signals (188). The composition of the lipid raft can be 

in turn directly regulated by pathways that have the ability to alter cholesterol and lipid 

metabolism (206).  

Cholesterol’s important role in PCa progression is supported by the fact that cholesterol is a 

precursor for androgen synthesis and an agonist of the steroidogenic genes, with high levels 

of circulating cholesterol (hypercholesterolemia) in PCa patients being associated with 

higher levels of intratumor androgens and tumour cell proliferation (188,204). Another 

adaptation of PCa cells in cholesterol biogenesis is their ability to esterify cholesterol to 

avoid cellular toxicity, while maintaining high cellular cholesterol levels, independent of 

free cholesterol, through the permanent activation of sterol regulatory element binding 

proteins (188). Sterol regulatory element binding proteins, which are regulated by androgen 

receptors, are elevated in PCa tissue, with levels dropping following androgen therapy 

(207). In addition, sterol regulatory element binding proteins are also activated in the 

phosphoinositide 3-kinases, PI3K pathway, which is in turn is activated by loss of the 

phosphatase and tensin homolog gene expression, a common (70%) occurrence in metastatic 

PCa (188,196,208,209).  
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Statins, a cholesterol lowering drug, has been recently shown to improve biochemical 

recurrence free 5- and 10-year survival in men who underwent radical prostatectomy (210). 

A prospective observational study in men with metastatic castration resistant prostate 

cancer undergoing taxane treatment, found that high serum cholesterol levels were 

independently (adjusted for clinical factors) correlated with shorter biochemical 

progression/first progression free survival, supporting the hypothesis that cholesterol 

metabolic pathways may play a role in PCa progression (187).  

3.5.2.5. Amino acid metabolites 

Sarcosine is an amino acid and an intermediate product in the synthesis and degradation of 

glycine. As seen has been suggested to play a role in PCa progression by stimulating 

metastatic PCa cells (157,191,211,212). Previous studies that looked at metabolomics and PCa 

progression found that urinary and particularly tissue sarcosine were high in PCa cases 

which were progressing or had progressed to metastases, suggesting tissue sarcosine levels 

may be useful in monitoring or predicting disease progression (132,191). Urinary and serum 

sarcosine were also associated with PCa and serum sarcosine had a very good 

discriminating performance (area under the receiver operating curve (AUROC)=0.97) for 

newly diagnosed PCa (213,214). The Prostate, Lung, Colorectal and Ovarian Cancer 

Screening Trial found an association of serum sarcosine with low grade PCa which was 

stronger than that of high-grade PCa and suggesting that plasma sarcosine may be a good 

biomarker for PCa aggressiveness (215). However, the association was stronger if the blood 

was drawn within two years of diagnosis and since 40% of the small number of aggressive 

PCa cases investigated had their bloods drawn 5 years post diagnosis, it is uncertain 

whether sarcosine is truly only associated with low-grade PCa or the observation is an 

artefact of low power (215). Since the association of sarcosine and low-grade PCa was 

stronger for samples taken closer to diagnosis, sarcosine may have the potential to be an 

early diagnostic measure (215).  

Furthermore, recent evidence shows that sarcosine has a very good discriminating capability 

at differentiating between prostatic intraepithelial neoplasia (AUROC=77%) and PCa 

(AUROC=79%) in relation to noncancerous prostate hyperplasia (214). Although there is 

evidence for both urinary and serum sarcosine to be a potential marker of PCa diagnosis 

and progression, more replication work is required to fully assess the predictive value of 

sarcosine in this case (132,189,216). Some replication studies found weak associations for 
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sarcosine as a biomarker of PCa; however, the discrepancy in findings is most likely due to 

the differences in sample selection, processing and analysis, a particular issue in non-

standard metabolomic analysis, as well as the limited sample sizes of the studies ranging 

from 25 to 2244 participants  (132,191,213–218). 

Glutamine is an amino acid that is used in the biomass cycle for energy production (187). 

Glutamine metabolism has been found to be regulated by both AR signalling and MYC 

proto-oncogene, a regulator oncogene associated with neuroendocrine differentiation, 

introducing another pathway which may be critically involved in PCa progression  

(187,219,220). Glutamate, the catabolised compound resulting from glutaminolysis, has been 

shown to be correlated with Gleason scores ≥8 and was suggested to be a promising 

biomarker candidate for PCa aggressiveness (220). A recent study in patients with metastatic 

castration resistant PCa receiving treatment with taxanes, found that high levels of plasma 

glutamine were associated with shorter biochemical/clinical progression-free survival and 

overall survival in men with metastatic castration resistant PCa, introducing the potential 

role of glutamine metabolic pathways in PCa progression (187). 

3.5.2.6. Glucose and related metabolites 

Despite the increased requirement for energy, which in most cancers relies on aerobic 

glycolysis (Warburg effect), PCa cells use active glycolysis and oxidative phosphorylation 

and only rely on the Warburg effect for energy production in metastatic PCa (221–226).  The 

increased glycolytic activity in advanced PCa cells supports cell proliferation and migration 

by altered activity and expression of key regulator enzymes such as glucose transporters, 

hexokinasae and phosphofructokinase (221,227–230). Glucose transporter 1, a subtype of 

glucose transporters, is overexpressed in PCa and has been associated with glycolytic 

activity, high glucose uptake and enhanced cell proliferation (207,229–231). Pyruvate is the 

end product of the glycolytic process and is converted into lactate, which has been 

suggested to play an important role in PCa (226,232,233). In cell models lactate promotes 

proliferation of PCa cells, decreases apoptosis and increases migration and invasion of 

castrate resistant PCa cells (221,233–236). The glucose metabolic alterations presented 

illustrate the many complex mechanisms that are involved in PCa progression.  
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3.6. Chapter summary 

With its unique metabolic profile and the lack of reliable predictive biomarkers of 

progression, localised PCa remains a challenge to manage. This is because many localised 

PCa instances remain indolent throughout a man’s lifetime, but some will progress to 

metastasize and to cause death, and it is very difficult to accurately distinguish at diagnosis 

between indolent versus more aggressive PCa cases. The circulating metabolome, through 

its ability to detect changes at very small levels, can provide a comprehensive picture of the 

biological activity of PCa at various stages of the disease, and thus provide mechanistic 

insights into disease progression. Understanding how the multiple pathways that are 

involved in PCa metabolism work on their own, and interact with each other, is a complex 

and vital aspect of elucidating the mechanisms of progression. In addition, metabolomics is 

a useful tool for assessing the effects of diet and lifestyle interventions on PCa progression, 

by providing a detailed snapshot of metabolomic processes footprints. In conclusion, 

metabolomics can help investigate the causal and non-causal predictors of PCa progression.  
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Chapter 4.  Methodology 

4.1. Chapter introduction  

This chapter introduces the five major datasets – from the ProtecT, CAP and PrEvENT 

randomised controlled trials (RCTs), UK biobank (UKBB) and PRACTICAL consortium - 

and the statistical methods used throughout this Thesis. The latter are: the general analytical 

tools used for metabolomic data (Chapters 5 and 6); survival analysis (Chapter 5); intention-

to-treat analysis (Chapter 6); instrumental variable analyses (Chapters 5 and 6); and the 

statistical methods employed in validating a predictive biomarker (Chapter 7).  

 

4.2. Study populations  

4.2.1. The Cluster randomised triAl of PSA testing for 

Prostate cancer and The Prostate Testing for Cancer 

and Treatment trials  

4.2.1.1 Trials overview  

The Cluster randomised triAl of PSA testing for Prostate cancer (CAP) trial is an RCT that 

aims to test the effectiveness of a single PSA test in men aged 50-69 years, in reducing PCa 

mortality and to assess whether it is cost-effective (237). The trial compares the group who 

received an invitation to attend population-based PSA testing for prostate cancer with 

standard National Health Service (NHS) care.  

The Prostate Testing for Cancer and Treatment (ProtecT) trial is embedded within the 

intervention arm of the CAP trial (237) (See Figs 4.1 and 4.2). Men who responded to the 

invitation, had a PSA test as part of the CAP trial and who were diagnosed with localised 

PCa, were considered for entry into the ProtecT trial (237). The ProtecT trial aimed to assess 

the comparative effectiveness of the three major treatments at the time for localised PCa: 

radical prostatectomy, external beam three-dimensional conformal radiotherapy and active 
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monitoring. Some participants from the ProtecT trial were also followed up through the 

CAP trial. This thesis used data collected from both the CAP and ProtecT trial. However, 

given that the ProtecT trial was imbedded within CAP, for simplicity, with the exception of 

this Chapter, I will only be referring to the data as originating from the ProtecT trial. 

The Prostate Mechanisms of Progression and Treatment (ProMPT) study is embedded in the 

ProtecT study and was responsible for the collection of samples for basic research. The aim 

of the ProMPT study was to help explore the molecular pathologies and mechanisms for 

tumour progression and developing new treatment strategies and novel markers. Men who 

attended the recruitment appointment for ProtecT were asked to complete an additional 

consent form for inclusion in the ProMPT study. 

 

4.2.1.2 Ethical approval and consenting  

All men provided written informed consent to be included in the ProtecT (ISRCTN08435261) 

and CAP (ISRCTN92187251) studies as well as the linked Prostate Cancer: Mechanisms of 

Progression and Treatment (ProMPT) study (ISRCTN20141297), the latter being responsible 

for the collection of the serum samples, BMI, exposure and diet data used in the present 

study. ProtecT (MREC/01/4/025) and ProMPT (MREC/01/4/061) received Multicentre 

Research Ethics Committee (MREC) approval (01/04/025).  The CAP trial additionally had 

ethics approval for the flagging and reviewing of medical records for men with PCa 

(MREC/03/4/093 and MREC/03/4/093). Individual informed consent was sought from 

men who were alive at the time when the trial team were notified of a PCa diagnosis (237). 

The CAP trial had PIAG/NIGBECC approval which allows medical records to be reviewed 

post-mortem if a man died of a cause potentially linked to PCa (PIAG 1-05(f)/2006) (237). 

This applied to men who were no longer alive at the time of the notification and had no 

previous objection to their medical records being used for research (237). 

4.2.1.3 Recruitment  

Recruitment into the feasibility pilot of the ProtecT trial was undertaken between June 1999 

and September 2001, in three cities in England and in 24 primary care centres (238). In 2001, 

recruitment into both trials in nine cities across England, Scotland and Wales commenced 

and finished in 2009 (239,240). 
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As previously mentioned, the CAP trial is an extension of the ProtecT trial, which 

randomised primary care centres in the UK to either undertake the ProtecT prostate specific 

antigen (PSA) testing intervention or standard UK NHS management. The CAP trial created 

clusters of general practices which were randomised, blocked and stratified by geographical 

area by an independent statistician. The general practices were invited to participate into the 

trial and written consent was obtained. The overlap between the CAP and ProtecT trial 

recruitment is presented in Figure 4.1.  In the control arm of the CAP trial, all men aged 50-

69 years, registered at the recruited practices were eligible to be included (239). Men were 

not contacted about their participation in the study, however they had an opportunity to 

opt-out from being followed-up through the general practice (237).  

Figure 4.1:  The overlap between the CAP and embedded ProtecT trial. 

 

 

 

 

 

 

 

 

 

PSA=prostate specific antigen 

NHS=National Health Service 

ProectT= Prostate Testing for Cancer and Treatment 

Reproduced with no changes from Turner et al, 2014, " Design and preliminary recruitment results of the Cluster randomised 

triAl of PSA testing for Prostate cancer (CAP)", license CC BY3.0 (237). 

 

In the intervention arm of the CAP study, all men identified followed the ProtecT study 

protocol and had one PSA test. Following randomisation of general practices, in total, 337 

practices were assigned to participate in the Protect trial. In the intervention arm (Figure 4.2) 

all registered men aged 50-69 years old were sent a written invitation for a PSA test, except 

for the following:   

• Men with a life expectancy less than 10 years  

• Men with a previous malignancy (except skin cancer)  

• Men who underwent renal transplant or who were on renal dialysis  
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• Men with major cardiovascular or respiratory comorbidities  

• Men who underwent bilateral hip replacement  

Men who accepted the invitation were provided with an information sheet and a nurse 

appointment. At the appointment, the process was explained, trial eligibility was assessed, 

written consent was sought and a blood sample was taken for a PSA test amongst men who 

consented. Men who had a PSA result of at least 3.0 μg/L were invited to attend another 

appointment where a rectal examination and a standardised ten-core transrectal-ultrasound 

guided prostate biopsy were performed. Men with a PSA higher than 20 μg/L were 

excluded from randomisation in the 3-arm ProtecT treatment trial, as these were likely 

advanced PCa cases so were referred for specific NHS management.  

The flow of men through the recruitment process is presented in Figure 4.1. Cancer 

diagnosis and staging were done at each centre based on PSA measurements, biopsy results 

and isotope bone scanning (for participants who had a PSA ≥10 μg/L or Gleason score 

higher than 7). MRI was used for staging in some centres in the later part of the trial. Men 

diagnosed with benign prostate disease, or locally advanced (T3, T4) or advanced PCa, were 

excluded from the ProtecT treatment trial and were managed within routine NHS urological 

services. Men with a benign first biopsy were offered further biopsies if they had a free-to-

total PSA ratio below 11%, atypical small acinar proliferation or high-grade prostatic 

intraepithelial neoplasia. No further ProtecT trial follow-up occurred after the first round of 

PSA testing for PCa free patients or after referral to NHS for cases. However, all men were 

followed up for cancer and morality outcomes via linkage to NHS Digital under the 

auspices of the CAP trial.   
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Figure 4.2: Flow diagram of the Prostate Testing for Cancer and Treatment and the Cluster 

randomised triAl of PSA testing for Prostate cancer trial from invitation to diagnosis 

 

PSA=Prostate specific antigen; PIN= Prostatic intraepithelial neoplasia; ASAP=Atypical small acinar proliferation 

Adapted from "Active monitoring, radical prostatectomy, or radiotherapy for localised prostate cancer: study design and 

diagnostic and baseline results of the ProtecT randomised phase 3 trial" , Lane et al, 2014, license CC BT 4.0 (239).  
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4.2.1.4 Randomisation and follow-up processes  

Men who consented to be included in the ProtecT 3-arm treatment trial were randomly 

assigned to one of the 3 treatments using a computer system, which stratified by site and 

used stochastic minimisation to balance the trial arms in terms of age, Gleason score groups 

(<7, =7, >7) and mean PSA results (from baseline and first biopsy measurements). Men who 

declined randomisation were followed-up identically to trial participants, and form part of a 

cohort within the study design and are referred in this thesis as ‘eligible to be randomised’. 

Progression of PCa in the ProtecT trial was assessed at annual nurse-led follow-up 

appointments following a detailed schedule for each trial arm. Participant questionnaires on 

anxiety, depression, urinary symptoms, sexual function, and treatment-related quality of life 

were collected at 6 months post the first information appointment and every 12 months 

thereafter.  

4.2.1.5 Follow-up variables  

Men who were not ‘eligible to be randomised’ in the ProtecT trial were followed-up through 

the CAP study for cancer diagnosis and mortality status, but no other formally measured 

progression indicator (237). This was done passively through the Healthcare and Social Care 

Information Centre system where cancer registration or death events are flagged. For men 

who died, medical records were searched, and clinical facts were recorded by a researcher 

blinded to the death certificate information (237). An international Cause of Death 

Evaluation committee, blinded to trial arm and each man’s death certificate, reviewed the 

information extracted by the researcher on all possible PCa deaths and assigned a definite, 

probable, possible, unlikely or definitely not PCa status (237). Definite and probable PCa 

mortality after a median 10-year follow-up is the primary outcome of the trial and for the 

purpose of all analyses in this thesis they are defined as PCa-specific deaths. 

Similarly, to the CAP trial, the primary outcomes of the ProtecT trial was definite or 

probable PCa specific death at a median of 10 years of follow-up ascertained and 

adjudicated as above for the CAP trial. Multiple secondary outcomes, such as all-cause 

mortality, progression indicators (incidence of metastases, clinical progression), treatment 

complications, as well as patient reported outcomes were measured.   
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4.2.1.6. Variables used in this thesis  

4.2.1.6.1. Progression variables  

In the ProtecT trial, clinical progression was defined as evidence of regional metastases, 

diagnosis of clinical T3 or T4 disease, long-term androgen-deprivation therapy, ureteric 

obstruction, rectal fistula, or the need for a urinary catheter owing to local tumour growth. 

Metastatic disease was defined as bony, visceral, or lymph-node metastases on imaging or 

PSA levels above 100 ng per millilitre. PCa specific death was available for both the ProtecT 

and CAP trial. Where ProtecT mortality data was unavailable (e.g., in the case of ‘not eligible 

to be randomised’ participants), mortality status was assigned by using information 

gathered through the CAP trial.  

  

4.2.1.6.2. Metabolomic measures 

Baseline serum samples were collected as part of the ProMPT study, which is the linked 

study to the ProtecT trial and responsible for the collection of the serum samples. These 

were collected at the time of the participant’s first visit (at the prostate clinic check) and were 

available for both cases and controls. The samples were aimed to be processed at the 

prostate clinic check (inverted and centrifuged) and stored in a cool box until they arrived in 

the laboratory the same day. In the laboratory all samples were checked and frozen at -80 

Celsius. The samples were stored in the laboratory until they were shipped to the bio-

repositories. Samples were shipped again for metabolomic analysis. All shipping was done 

using dry ice. Proton nuclear magnetic resonance (NMR) was used to identify and quantify 

two hundred and twenty-seven metabolites using the Nightingale NMR platform 

(Nightingale Health©, Helsinki, Finland). Details of the platform has been described in 

Chapter 3 section 3.2.2.1.  

4.2.1.6.3. Other variables  

This thesis used demographic (sex, age, socioeconomic class), anthropometric (height, 

weight, BMI), lifestyle (physical activity, alcohol, smoking) and morbidity measures (heart 

attack, stroke, angina, heart failure, hypertension, high cholesterol, nervous trouble or 

depression, asthma, bronchitis). Overweight and obesity was defined as having a BMI 

higher than 25 kg/m². Harmful drinking was defined as having two or more alcoholic 

drinks daily, while the upper limit of alcohol consumption for moderate drinking was one 



 

 

65 

drink almost daily. PCa specific variables (T stage, Gleason grade and PSA level) were all 

obtained using the standardised definitions above. Men were split into two categories of 

Grade based on their Gleason scores: low (lower or equal to 7) and high (Gleason of 8 and 

higher).   

4.2.2. The Prostate cancer: Evidence of Exercise and 

Nutrition Trial  

4.2.2.1. Trial overview  

The Prostate cancer: Evidence of Exercise and Nutrition Trial (PrEvENT) trial is a feasibility 

RCT which aimed to investigate if men who have undergone radical prostatectomy adhered 

to nutritional and physical activity interventions and assessed the effects of the intervention 

on intermediate outcomes. The full details of the trial protocol have been previously 

published (34).   

4.2.2.2. Ethical approval  

The PrEvENT trial (ISRCTN9904894) obtained full ethical approval from Cornwall and 

Plymouth Research Ethics Committee (REC) (ref: 14/SW/0056) and all men provided 

informed consent.  

4.2.2.3. Participants and randomisation  

Men who were diagnosed with localised PCa and whose planned management was radical 

prostatectomy were invited into the PrEvENT trial in one NHS Trust in the South-West of 

England. All men due to have radical prostatectomy who consented to participate in 

PrEvENT were first enrolled in a baseline cohort, completed preoperative questionnaires, 

and had bloods sampled (Figure 4.3). Six weeks after undergoing radical prostatectomy, 

men in the baseline cohort were then re-approached to be randomised within the PrEvENT 

trial. Exclusion criteria included inability to give informed consent, follow-up unavailability, 

a decision by the treating clinician which deemed the patient unsuitable to participate, major 

comorbidities that would make the participation difficult or impossible (e.g., uncontrolled 

congestive heart failure, angina, myocardial infarction, respiratory difficulties requiring 

oxygen or hospitalisation), regular lycopene supplementation or uptake of high levels of 
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physical activity. Randomisation was performed online using a system that ensured 

concealment of allocation.  

 

Figure 4.3: The Consolidated Standards of Reporting Trials diagram of the The Prostate 

cancer: Evidence of Exercise and Nutrition Trial. 

 

RCT=Randomised controlled trial; PA=Physical activity  

Adapted from "Phase II randomised control feasibility trial of a nutrition and physical activity intervention after radical 

prostatectomy for prostate cancer",  Hackshaw-McGeagh LE, et al. (2019), license CC BY 4.0 (127).  
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4.2.2.4. Interventions and follow-up  

The PrEvENT trial had a 2x3 factorial design and randomised men to both a dietary and a 

physical activity intervention. The dietary intervention consisted of either lycopene oral 

supplementation, a plant-based diet advice or no change in diet (control group). Men in the 

lycopene group were asked to ingest one 10 mg lycopene capsule (Holland and Barrett) 

daily which was supplied and paid for by the trial. The advice for the plant-based diet arm 

was to eat as many portions of fruit and vegetables as possible, with a minimum of 5 

portions, to reduce dairy milk intake as much as possible, by swapping dairy milk with a 

non-dairy milk alternative. Men in the control diet group were asked to continue as normal 

with their diet.  

Since the trial was set-up, the term plant-based diet has taken a different meaning and it 

now generally refers to an exclusive plant-based diet, which contains no animal products. 

Although the intervention is referred to as plant-based diet in the trial, in this thesis, with 

the exception of this Chapter, where PrEvENT trial terminology is used, I will be referring to 

the intervention as ‘dietary advice’. This is to avoid confusion on the trial’s intervention and 

the current literature around plant-based diets vs increased fruit and vegetable 

consumption.  

Men in the physical activity intervention group were asked to walk at a brisk pace for 30 

minutes on at least 5 days of the week in addition to their current levels of physical activity. 

For the purpose of this trial, physical activity and exercise terms were used interchangeably, 

however the definitions and differences of each were discussed in Chapter 2. Men in the 

physical activity control group were advised to continue with their current level of physical 

activity. 

 Men were asked to adhere to the intervention for 6 months and were prompted to attend 

nurse-led research appointments at trial baseline (randomisation), 3- and 6-months post 

randomisation. Blood samples were collected at baseline and 6 months, and questionnaires 

(physical activity, diet, mood, prostate symptoms) were completed at baseline, 3- and 6-

months post randomisation. Men received regular motivational, inspirational (e.g. recipe 

ideas) and gratitude communications in the form of text, emails and relating to their 

participation in the trial (34). Messages personalised for each interventional group were sent 

out at 1,2,5,8,13,15 and 18 weeks post-randomisation (34).  
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4.2.2.5. Main variables  

The primary outcomes of the trial were two feasibility related measures: randomisation rates 

and intervention adherence at 6 months. Secondary outcomes were blood biomarkers 

(antioxidants, metabolomic data, PSA) and self-reported patient outcomes (urinary 

symptoms, psychological factors, quality of life, fatigue, dietary and physical activity). Other 

data that were collected were demographic (sex, age, socioeconomic class) and 

anthropometric (height, weight, BMI) measures.   

 

4.2.3. United Kingdom Biobank (UKBB)  

The UKBB is a large-scale study that was established with the aim of allowing detailed 

investigations of genetic and nongenetic factors in middle and old age diseases. The UKBB is 

a prospective population-based study which recruited over 500,000 participants aged 40-69 

years between 2006 and 2010. There were 22 assessment centres across the UK, and 

participants from a varied socioeconomic, ethnic and urban-rural mix took part. Data was 

collected on a wide range of phenotypes, through questionnaires, interviews, tissue 

collection and physical measurements (Appendix A, Table A2). Additional assessments 

have been undertaken in UKBB to enhance the phenotyping data (Appendix A, Table A3).  

This thesis used genetic data from 115,078 participants (males and females) in UKBB which 

identified 2,542 unique genetic variants associated with 245 metabolites (Appendix A, Table 

A4 ) (35).  

4.2.4.  The Prostate Cancer Association Group to 

Investigate Cancer Associated Alterations in the 

Genome (PRACTICAL) consortium  

The PRACTICAL consortium includes 133 different study groups from across the world and 

aims to collaboratively combine data from studies to investigate the inherited risk of PCa 

and its progressions (23). The consortium was established in 2008 and at present it contains 

samples from over 120,000 PCa cases with mortality status and genetic data available for 
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75,672 participants of which 7,914 died of PCa. This thesis used the meta-analysed genetic 

data generated through a Cox regression analysis with left truncation and right censoring of 

the 75,672 participants from 43 studies (Appendix A, Table A4).    

4.3. Observational statistical methods 

4.3.1. Metabolomic methods  

4.3.1.1. Identification and quantification of metabolites  

As described in Chapter 3 there are multiple methods for identifying and quantifying 

metabolites, such as mass spectrometry and NMR. This chapter discusses NMR metabolites 

measured and identified using the Nightingale NMR platform (see Chapter 3, section 

3.2.2.1), which assays over 200 metabolites, mostly lipid parameters, and generates ratios of 

metabolites, which are used to proxy enzyme activity (241).     

4.3.1.2.  Metabolomic data methods  

4.3.1.2.1. Data cleaning  

The results obtained from the Nightingale NMR platform have undergone internal quality 

control and therefore minimal additional data cleaning was required. Basic data checking 

and cleaning was performed to ensure the metabolites were correctly assigned to men in the 

PrEvENT trial. All metabolites with undetected levels of metabolites were set to the 

minimum value observed in the dataset.   

4.3.1.2.2. Metabolite processing  

All individual level results that were more than 4 times the interquartile range (IQR) away 

from the group median were considered outliers, given that they were more likely to be 

analytical rather than biological outliers and they were dropped(242). To compare the 

magnitudes of the associations of metabolic traits with different scales and units, all 

metabolic trait concentrations were standardised using z-scores in all studies in this thesis 

(243,244). Chapter 8 uses additionally log (natural) transformed the metabolites to reduce 

skewness and follow data processing procedures consistent with those of my Nightingale 

Health collaborators, an important step for between-group comparability.    
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4.3.1.2.3. High correlation adjustment  

A large number of the metabolites were analysed many of which were also highly correlated 

with each other, and the samples sizes of the studies assessed were small in comparison to 

the number of participants. To overcome the high correlation of metabolic traits and the 

multiple testing, a Principal Component Analysis (PCA) method was employed (245–247). 

PCA is a statistical method that allows multiple variables to be assessed simultaneously, to 

reduce dimensionality in multivariable analysis (245,246,248). This data-driven approach 

investigates the dataset as a whole and generates a number of components that explain the 

variance observed, by assessing the metabolite correlation matrix. Each principal component 

can be linked to an amount of variance explained, using eigenvalues. The investigator 

should therefore set a suitable level of variance that would be appropriate in the study, and 

based on the variance explained by the eigenvalues, determine the number of 

components.  The number of components will then be used to adjust the significance 

threshold using the equation below:    

  

   

PCA method has been used in genomics and metabolomic epidemiological studies as a tool 

to visualise structure and reduce data dimensionality (245,248,249). I set the variance 

parameter at 95% based on previous metabolomics epidemiological studies that took this 

statistical approach and I calculated the adjusted significance threshold using the number of 

principal components based on the explained variance of 95% (243,244,250). The adjusted p-

value obtained was used as indication of strength of association, however no formal 

statistical threshold was set.  

4.3.2. Survival analysis  

Survival analysis represents the collection of statistical methods that investigate the time to 

an event. For example, if the outcome was death, survival analysis would aim to investigate 

the time between origin (entry into the study) and time of death, by creating a survival 

function. The two main probability terms used to describe and model survival analysis are 
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survival and hazard (251). The survival probability represents the probability that an 

individual survives from origin until the specified time, while hazard is the probability that 

the individual under observation has an event at the specified time (251).   

4.3.2.1. Censoring  

Time zero is the point when the analysis time starts and is different depending on the study. 

For example, in an RCT time zero starts the day of randomisation while in a retrospective 

study of disease risk, time zero is the day the subject became considered “at risk” of that 

disease. The time ends upon the occurrence of an event with a well-defined criterion (e.g., 

death). Censoring occurs when the real survival time (i.e., the period from time zero to time 

at which the event occurs) of the subject is unknown. This can happen for various reasons 

and depending on the situation it carries different names (Table 4.1). Right-censoring is the 

most commonly occurring type of censoring (252).    

Table 4.1: Censoring in survival analysis. 

Censoring type  Description  Examples  

Right censoring  The event has not 

happened before the end 

of the follow-up period  

• Subject did not experience the 

outcome before the end of study 

follow-up  

• A patient is lost to follow-up 

before they experienced the event  

• Patient experiences a different 

event that does not allow follow-up to 

be continued  

Left censoring  The event occurred 

before the observation 

period started (time 

zero)  

• The subject experienced the 

event of interest before the 

observation period started  

Interval 

censoring  

When patients come in 

and out of observation   

• A subject is follow-up at 

discrete time points and the time of 

the event happening can only be 

estimated between the two points 

between which the event occurred  
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4.3.2.2. Kaplan Meier survival curves  

Kaplan-Meier (KM) survival curves are generated by splitting the given length of time in 

multiple small time intervals and plotting the probability of surviving at each of the 

intervals (253,254). There are three assumptions that the KM require:  

1. Participants who are censored have the same survival as those who are still being 

followed up, at any given time.  

2. The survival probability is identical regardless of the time of entry into the study.  

3. The event occurs at the specified time.  

 

Given the assumptions, the probability formula at any given time is:  

 

  

Therefore, at each time interval, the survival probability is calculated by diving the number 

of subjects who did not experience the outcome during the time period by the total number 

of patients who were outcome-free at the beginning of the time period (“at risk”). Since the 

events are independent (i.e., one event occurring will not change the probability of another 

event occurring), the total probability of survival at any time is given by the multiplication 

of all probabilities preceding that time. KM curves are useful tools to assesses summary 

survival patterns (e.g., median survival) particularly when comparing different groups. A 

vertical gap between curves suggests that at a specific time, one group had a larger 

proportion of subjects not experiencing the outcome, while a horizontal gap suggests one 

group was slower to experience the same proportion of outcomes (253).    
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4.3.2.3. The log-rank test  

While KM survival curves are useful tools to investigate overall survival patterns, they are 

unable to ascertain the statistical significance strength of the difference between multiple 

curves. The log-rank test evaluates whether differences observed  between groups achieve 

statistical significance by testing the null hypothesis (i.e., that there is no difference between 

the two groups in terms of survival) (253,255). The log-rank test uses the number of 

estimated events and compares it to the number of observed events and the value obtained 

is used to generate a p-value, using a χ2 distribution with n-1 degrees of freedom (251). The 

formulas for the calculations are presented below:  

 

n = number of groups  

𝑂𝑖= number of observed events in group i  

𝐸𝑖= number of expected events in group i  

4.3.2.4. Cox regression  

KM survival curves and the log-rank test allow comparisons between survival time for two 

groups or more. However, they do not consider the effect that other variables could have on 

the survival function. The distribution of survival time accounting for covariates can be 

described by a fully parametric survival model. This distribution can also be described 

semiparametrically by relaxing parametric assumptions on time dependence. The Cox 

proportional hazards model is a semiparametric survival model in which the hazard ratio is 

constant over time. The mathematical formula for the Cox regression distribution is given 

by:  

 

, where 

 

t=survival time  

h(t)=hazard function determined by covariates 𝑥1,𝑥2….𝑥𝑝 
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β= effect size of covariates  

ℎ0=baseline hazard  

The proportional hazards assumption can be investigated via three methods.   

1. Graphical approach log minus log plot   

Since the survival function involves two exponentiations (one of the hazard ratio and one of 

the explanatory variable) a log minus log transformation will produce two curves. If the two 

curves are parallel or nearly parallel, then the proportional hazard assumption is not 

violated, since the distance between the two lines which is the difference in predictor values 

remains constant over time. As the assessment is subjective in nature, a conservative 

approach should be taken, and strong evidence of violation should only include instances 

where the curves cross or meet.  

2. Goodness of fit test   

The goodness of fit compares the observed and estimated values of the survival values. 

Schoenfeld residual is a type of goodness of fit test that is used to test the proportional 

hazards assumption and uses the difference between the observed and estimated 

explanatory variables for subjects who experienced an event (256). Schoenfeld residuals are 

independent of time because the hazard ratio is constant, thus if the graphical 

representations of the Schoenfeld residuals show a relationship with time, this would 

indicate a violation of the proportional hazards assumption. Since this method relies on 

statistical significance determined by p-value, artificially strong evidence can be detected in 

large sample sizes and potential violation can be dismissed as weak evidence (256,257).   

 3. Applying a time-dependent covariate  

Another method to test the violation of the proportional hazard assumption is to include an 

interaction term of time and the variable being investigated into the model. Using Wald or 

likelihood ratio statistics, both of which are methods of goodness of fit for statistical models. 

If the interaction terms show strong evidence at improving the model, then violation of the 

proportional hazards should be considered.  

No one method described is better and as each comes with limitations; it is therefore advised 

that more than one test is performed to comprehensively investigate the violations of 

proportional hazards assumptions (257–259).   



 

 

75 

  

4.3.3. Predictive biomarker validation analysis  

4.3.3.1 Confusion matrix 

Confusion matrix is a table used in statistics when investigating classification 

performance(260). The confusion matrix counts the frequency of observed outcomes against 

predicted outcomes (Table 4.3) (260). Multiple measures can be derived from the confusion 

matrix and the measures used in this thesis are presented in Table 4.4.  

Table 4.2: Confusion matrix table model for an outcome A 

 

Observed outcome A Predicted outcome A 

 No Yes 

No True negative (TN) False positive (FP) 

Yes False negative (FN) True positive (TP) 

 

Table 4.3: Confusion matrix measures 

 

Measure Formula Definition  

Classification 

accuracy 

TN + TP

TN + FP + FN + TP
 

The ratio of correctly classified 

predictions (negatives and 

positives) to all predictions made 

Positive 

predictive value 

(PPV) 

TP

TP + FP
 

The probability that a positive 

prediction is truly positive 
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Negative 

predictive value 

(NPV) 

TN

TN + FN
 

The probability that a negative 

prediction is truly negative 

Sensitivity TP

TP + FN
 

The ratio of correct classified 

positive predictions to total 

observed positives 

Specificity TN

TN + FP
 

The ratio of correctly classified 

negative predictions to total 

observed negatives 

TN=True negative; FP=False positive; FN=False negative; TP=True positive  

Classification accuracy is a measure of how good the classifier is at making true predictions. 

PPV and NPV are useful measures that assess how likely it is that given a predicted positive 

or negative outcome this is truly positive or negative.   

Sensitivity, or true positive fraction, refers to the ability of a test to detect an individual with 

the positive outcome as positive, while specificity, or true negative fraction, is the ability of 

the test to designate the individual with the negative outcome as negative. The false positive 

fraction (FPF) is 1-specificity, and it represents the proportion of false positives (individuals 

detected through the test as positive but who do not have the outcome) from all individuals 

who do not have the outcome.  

Cohen’s Kappa  

Cohen’s Kappa is a measure of agreement between two classifiers (261). In the context of the 

confusion matrix, the Kappa coefficient compares the agreement between the predicted and 

observed classifiers, by taking into account imbalances in the classifiers’ distributions(262). 

Thus, the Kappa coefficient can provide additional information to overall accuracy when 

dealing with unbalanced data. The Kappa coefficient is calculated using the following 

formula:    

κ =
ρ0−ρe

1−ρe
  , where 

ρ0 is the overall accuracy  
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ρe is a measure of how well that predicted values agree with the observed values by chance. 

In the confusion matrix ρe = ρe1 +  ρe2, where ρe1 represents the probability that the 

predictors agree with observed values in the “No” category, while ρe2 represents the same 

but in the “Yes” category.  The formula for calculating ρe1 is presented below: 

ρe1 = (
FP+TP

TN+FP+FN+TP
×

TN+FP

TN+FP+FN+TP
) + (

FP+TP

TN+FP+FN+TP
×

FN+TP

TN+FP+FN+TP
)  

 

Kappa can take values from -1 to 1, where -1 represents perfect disagreement, 0 represents 

no difference and 1 represents perfect agreement between the predicted and observed 

classifiers. 

4.3.3.2 Receiver operating curves (ROC) 

To evaluate the performance of predictive models, ROCs and area under the curve statistics 

were used. The ROC plots the sensitivity vs 1-specificity and serves as test performance tool 

to assess how accurately a test can discriminate between those with and those without the 

outcome of interest (263).  By overlapping the two distributions (sensitivity and 1-

specificity), the ROC allows the assessment of each of the two measures at a specific cut-off 

point. For example, if we set a cut-off at a specific sensitivity value, we can then calculate the 

FPF value at that point. If we changed the sensitivity cut-off value, then the FPF value would 

also change. The ROC curve is built by plotting the two distributions at multiple cut-offs 

values. In the hypothetical ROC curve from Figure 4.3, I present the discriminating power of 

test 1 and 2 to predict outcome X. The closer the curve is to the top left of the graph, the 

better the test is at discriminating the outcome. For example, in Figure 4.4, Test 1 has a better 

discriminating ability than Test 2, since at any chosen sensitivity value, it will have a higher 

FPF. The orange line represents the chance level (i.e., test that generates a positive or 

negative result unrelated to true outcome status). The area under the receiver operating 

curve (AUROC) (or c-statistic) is a summary measure of the whole ROC curve and is 

computed by calculating the area under the ROC curve. The AUROC value represents the 

ability of the test to distinguish between the positive and negative individuals. The closer 

the AUROC is to 1, the better the model is at distinguishing between the individuals with 

and without the outcome. An AUROC of 0.5 indicates that the model has no discriminating 

capability and will follow the chance line (orange line in Figure 4.3).  
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Figure 4.4: A receiver operating curve for Test 1 and 2 for outcome X. 

 

 4.3.3.3 Calibration curves 

In addition to discrimination, which was discussed above, another key element of 

performance is calibration. Calibration represents the reliability of the predicted risk 

estimates in matching the observed proportions of the outcome (264). In a well calibrated 

model, for example in a study where PCa death is the outcome, this would mean that 

participants who had a predicted higher risk of PCa death will truly experience the 

outcome. In this thesis I chose calibration curves to evaluate the calibration for the models 

investigated, since a visual representation provides more information than numerical 

indicator (265). Calibration slopes describe the linear relationship between predicted risk of 

the outcome and the observed proportion outcome as the predicted risk increases(266). 

Figures 4.5 a and b show different calibration curves and their interpretation.  
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Figure 4.5: Theoretical calibration curves examples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reproduced  from Van Calster et al, 2019, with permission (266). The diagonal for each curve represents perfect calibration.  

a. The dashed line represents underestimation of predicted risk, while the dotted line represents overestimation. 

b. The dashed line represents overly extreme risk estimates. The line both dashed and dotted shows an 

underestimation and overly extreme risk estimates. The dotted line represents estimate risks that are not extreme 

enough 
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Calibration is very important in clinical practice, particularly if used in decision-making 

(266). Even if an algorithm has a good discrimination ability, it can still be poorly calibrated. 

In clinical practice, unreliable risk estimates (i.e., poorly calibrated) could give patients and 

healthcare professional inaccurate expectations, which could lead to misguided personal or 

treatment choice (266).  Since calibration and discrimination are independent of each other 

and serve different purposes, when assessing the performance of an algorithm, both 

measures should be evaluated. 

Many factors can influence the calibration of risk predictions. Disease incidence can affect 

calibration, if patterns are different in the population in which the algorithm was developed 

compared to those in which it is used. Other factors such as healthcare policy, treatment and 

screening guidelines may change the population over time which in turn can lead to 

changes in the calibration of algorithms linked to those change (266–270). There are also 

methodological causes for poor calibration such as statistical under and overfitting, 

measurement error and inadequate modelling strategy (266).  

4.3.3.4 Predictive metabolomic risk models 

4.3.3.4.1 The all-cause mortality metabolomic risk score model (all-cause mRS) 

An all-cause mRS was developed in a study of 12 cohorts, in 44,168 participants, with age at 

baseline between 18 and 109. Over the cohorts’ follow-up (mean follow-up range: 2.76-16.70 

years) 5,512 participants died (271). The metabolomics profiling was done using the 

Nightingale NMR platform and the model used 63 of the 226 measures to avoid overfitting 

(271). Briefly, the score was generated by using Cox proportional hazards regression to 

identify the metabolites associated with all-cause mortality, and a forwards-backwards step-

wise process based on successive rounds of meta-analyses (271). Of the 63 metabolites 

included, 14 reached the Bonferroni p-value threshold and were therefore included in the 

all-cause mRS. 

 

4.3.3.4.2 The PCa mortality metabolomic risk score model (PCa mRS) 

Collaborators at Nightingale Health developed a PCa mRS in UKBB using the platform. The 

score was derived in the general population, on metabolite plasma samples from 55,000 
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male participants from UKBB, with ages between 37 and 70, using 37 clinically validated 

biomarkers from the Nightingale NMR panel (Nightingale Health©, Helsinki, Finland). The 

score aimed to predict PCa specific mortality in pre-diagnostic blood samples of participants 

in UKBB. The model was trained in half of the population (N=24,895 participants and 1,234 

PCa deaths), using penalised logistic regression with L1/LASSO regularisation and five-fold 

cross validation to optimize the regularization parameter λ. The score performance was 

evaluated in the remaining half of the dataset using ROC curves and AUROC measures. The 

score performed well at predicting all-cause mortality in men in UKBB (AUROC=0.71). In 

addition, the score’s performance was evaluated in FINRISK 1992 and 1997, which are 

population-based cohorts, followed-up for cancer diagnoses and mortality (all-cause 

mortality only), through a national registry system. 

4.3.3.4.3 Applying the models’ weights 

In order to evaluate the performance of the models in my dataset, I applied the model 

weights for each of the metabolites included in the score and generated the overall score for 

each participant. This was done by following the same pre-processing steps used in the 

model development. Firstly, I dropped measurements that were outside four interquartile 

range in each dataset and scaled to standard deviation (SD) and log transformed all 

concentration values. I then multiplied the weights to my observed values for each 

metabolite and summed these together to obtain the overall risk score value for each 

participant.  

4.4. Causality statistical methods 

In this section I introduce intention to treat analysis, IV and Mendelian Randomisation (MR) 

analyses, which I used in Chapter 5 and 6. Their aim is to assess the causal link between 

metabolite levels and PCa mortality and causal effects of randomised interventions on 

intermediate biomarkers. In addition, this chapter provides a succinct introduction to MR, 

concepts and methodologies employed in this thesis. 

4.4.1. Intention to treat analysis  

Intention to treat analysis (ITT) is the most commonly used method of analysing data in a 

RCT. It includes the analysis of all participants who were randomised, in their respective 
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groups, regardless of adherence, actual received treatment or reasons for withdrawal 

(272,273). The aim of the ITT is to assess if the different interventions prescribed to the 

participants produced an effect in the pre-determined outcomes. ITT can be performed by 

using statistical methods (e.g., linear regression for a continuous outcome) to compare 

differences in outcomes between the intervention groups (arms) and the control groups. The 

strengths and limitations of ITT are presented in Table 4.2.  

  

Table 4.4: Strength and consideration for inference of ITT analyses 

Strengths  Considerations for inference 

A comprehensive trial strategy included at 

various stages of the trial (design, conduct 

and analysis)   

Leads to an attenuated treatment effect 

amongst all compliers, as it analyses those 

participants who did not receive treatment as 

having received treatment  

Maintains the prognostic balance resulting 

from random allocation  

Dilution due to noncompliance  

Unbiased treatment effect  Introduces heterogeneity if noncompliant and 

compliant subjects are analysed together  

Maximises the sample size as it takes all 

randomised participants to the analysis stage  

Difficult to interpret if significant crossover 

between treatment arms occurs  

Limits bias due to ad hoc subgroups   
 

Greatest generalisability    

  

Despite the considerations listed above, that impact on inference (e.g., the magnitude of the 

causal effect amongst compliers), ITT remains the recommended strategy for analysing RCT 

results by the Consolidated Standards of Reporting Trial (CONSORT).    

4.4.2. Introduction to instrumental variable analysis 

IV analysis is a statistical method used to make and estimate causal inferences, by 

controlling for unmeasured confounders. IV analysis uses a variable (or instrument) that is 

robustly correlated with the exposure of interest (e.g., treatment), but which has no direct 

effect on the outcome, to estimate the effect of the exposure on the outcome (274). There are 

three important assumptions in IV analysis which if not met could invalidate the analysis 
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and bias the results, namely that the instrument: i) is robustly associated with the exposure 

of interest (relevance assumption); ii) does not share common causes with the outcome 

(independence assumption) that influence the exposure-outcome relationship; and iii) only 

affects the outcome through the exposure of interest (exclusion restriction criteria) (Figure 

4.6).  IV analysis is often conducted in two stages. The first stage assesses how well the 

“instrument” predicts the exposure via the F-statistic. As the F-statistic increases, the risk of 

weak instrument bias decreases and causal effect estimation is more reliable (274–277). The 

second stage uses this information to determine the causal effect of the exposure on the 

outcome.  

Figure 4.6: Diagram of the three IV assumptions 

  

1 = relevance assumption; 2 = independence assumption; 3 = exclusion restriction criteria 

4.4.3. Instrumental variable analysis in RCTs  

ITT analysis estimates the causal effect of prescribing an intervention or treatment, rather 

than the causal effect of the exposures modified by the intervention. To establish the causal 

effect of the treatment dosage on the measured outcomes, instrumental variable (IV) 

analysis can be conducted (278). IV analysis, which is explained in more detailed in section 

4.4 of the thesis, can be conducted in an RCT and along with the ITT results, can provide a 

more detailed interpretation of the results, particularly if there is interest in assessing the 
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causal role of the treatment (in those who adhere to it) and its dosage on the outcome. This is 

performed using 2-stage least squares regression. An F-statistic and 𝑟2 for the first stage 

regression was computed to assess the IV assumption, that the instrument is sufficiently 

associated with the exposure. The F-statistic assesses the strength of the instrument, the 

higher the F-statistic, the lower the risk of weak instrument bias. Where the F-statistic 

suggested a high risk of weak instrument, the second stage of the regression was not 

performed. If the F-statistic was suitable, I considered the instrument to be at low risk of 

weak instrument bias and ran the second stage of the regression, which estimated the causal 

effect of the instrumented exposures (274–277).    

4.4.4. Introduction to Mendelian Randomisation (MR) 

4.4.4.1 Introduction 

MR is a method that uses germline genetic variation to assess causality between modifiable 

risk factors and health outcomes (279). Details of MR have been published extensively over 

the last decade (280). Briefly, germline genetic variants, which are fixed at conception, are 

used to proxy modifiable risk factors, in an instrumental variable framework and used to 

establish causality on health outcomes of interest (280). At conception, germline variants 

that are associated with a particular trait are randomly distributed with respect to other 

unrelated traits and environmental factors, akin to random assignment of exposure to 

treatment or intervention in a conventional RCT (279–281). An experiment can be 

constructed in which people are naturally randomly allocated to a particular exposure based 

on the presence or absence of a genetic variant associated with the exposure of interest. 

Similar to a traditional RCT, and in its simplest form, MR based on one single nucleotide 

polymorphism (SNP) yields an “exposed group” of individuals who have the variant which 

can be compared with an “unexposed group” of individuals without that variant to 

determine if the outcome occurs more or less frequently in the exposed group compared to 

the unexposed one. By comparing the outcomes by groups, it can be established whether the 

relationship between exposure and outcome of interest is likely to be causal (282). DNA, 

although itself unmodifiable, operates through modifiable pathways. MR exploits this to 

identify modifiable exposures that can be used for disease prevention and therapeutic 

strategies, although a fundamental assumption is that of “gene-environment equivalence”: 
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that the downstream physiological effects of modifying an exposure are the same whether 

they are genetically or non-genetically triggered.  

4.4.4.2 Conducting Mendelian Randomisation 

There are multiple types of MR studies. In one sample MR the genotypes, risk factors and 

outcomes all come from the same set of people. In a two-sample MR, two different sources 

of data are used to conduct the study, with data on genotyping and risk factors in one study 

and genotyping and health outcome data in another. There are important challenges in 

understanding MR studies, based on the type of study and the assumptions made (279,283). 

The three key assumptions that are made about the instrumental variables (see section 4.4.1.) 

allow an MR study to be valid. In brief, instrumental variables should be associated with the 

risk factor of interest, they should be independent of the outcome, and they should only 

affect the outcome via the risk factor (Figure 4.4) (283–286).  

Testing the assumptions: 

1. Instrument strength (relevance strength) 

Instrument strength is vital for a well conducted MR. A weak instrument will have a low 

statistical power for hypothesis testing, will amplify bias from the core instrumental variable 

assumptions and will bias the results towards the outcome in one-sample MR and towards 

the null in two-sample MR even with very large sample sizes (287). Weak instruments can 

be detected using the F-statistic, and a value of under 10 is indicative of a weak instrument 

(276).   

2. Independence assumption 

Rather than proving independence, the aim of this assumption testing is to dismiss 

dependence. By evaluating the effects of the genetic instrument on a wide range of 

characteristics, inferences on the plausibility of the independence (that the instrument is not 

influenced by confounders) can be made. This assumption can be investigated using 

negative control outcomes or populations, or measuring covariates that could confound the 

variant-outcome association (288,289).  

3. Exclusion restriction 

The exclusion restriction (instrument only affects the outcome through the exposure) can be 

assessed through multiple methods. The most common sensitivity methods are the standard 
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inverse-variance weighted (IVW) methods, the median estimator, MR Egger, weighted-

mode based estimation and MR-PRESSO (287,290,291). The Wald ratio is a statistical test 

which assess whether a set of parameters are equal to some value and is used in most of 

these methods. The Wald ratio estimate is the causal estimate obtained for each genetic 

variant and is equal to the gene-outcome association divided by its gene-exposure 

association. The IVW method can be used to estimate the causal effect of the exposure on the 

outcome, by combining the ratio estimates for each genetic variant. All genetic variants must 

be valid IVs and not be correlated (i.e., not in linkage disequilibrium) for the IVW method to 

produce an unbiased estimate. Even if only one genetic variant is invalid, the IVW will yield 

bias estimates. However, the median ratio estimator allows for up to 50% of the genetic 

instruments to be invalid and will produce a consistent estimate of the causal effect, 

although inefficiently. To improve this, a weighted median estimator was developed, where 

the weight assigned to each ratio is generated using empirical density functions of the ratio 

estimates. This method will yield consistent causal estimates as long as 50% of the weight 

will come from valid IVs (292). MR Egger is a statistical method that allows a causal estimate 

to be calculated when the IV assumptions do not hold, by setting an estimated intercept 

rather than zero as is the case in IVW.  

Since many biological processes are yet to be fully understood due to their complexity, it is 

unlikely that a single genetic variant could satisfy the three assumptions, which could lead 

to using a weak instrument, unless the link between the risk factor and outcome is well 

understood (293). It is therefore important and ideal to use more than one genetic variant 

when conducting MR to robustly infer causal relationships. Genetic variants can affect the 

outcome of interest not just through the risk factor pathway, but other pathways which 

would invalidate them as instruments. This is referred to as horizontal genetic pleiotropy 

and is a particularly common issue in ‘omics analysis. Vertical genetic pleiotropy occurs if 

the genetic variant affects the risk factor though a pathway which in turn affects the 

outcome. Unlike horizontal pleiotropy, vertical pleiotropy does not invalidate the 

instrumental variable and will not bias the findings. Comprehensive analysis methods have 

been developed which address the issue of pleiotropy in MR studies and have been well 

documented and are presented above (290,292,294,295). Multiple statistical methods should 

be employed for causal inferences, particularly methods that make different assumptions, to 

provide a comprehensive assessment on whether the IV assumptions are satisfied (296).   
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4.4.4.3 Strengths and Weaknesses of Mendelian Randomisation 

studies 

Unlike traditional observational studies, MR studies can produce unbiased, unconfounded 

estimates of the effect of modifiable risk factors on the health outcomes, by proxying 

exposures through genetic variants which are randomly distributed at birth. This is 

particularly important when dealing with confounding by common causes and reverse 

causation. Reverse causation can occur when pre-cancerous or early stages of cancer lead to 

metabolic changes that result in a positive association that is not causal, but potentially 

predictive. Such an effect could also result in inverse associations of metabolic changes with 

later or more advanced cancer stages, when undertaking an analysis that compares late vs 

early stages.  

Provided the IV assumptions are met, MR studies are less prone to confounding by 

environmental factors or to reverse cause, and there are various analyses that can be 

undertaken to assess these issues. Furthermore, MR studies are less likely to be invalidated 

by selection bias than observational studies, since it has been shown that selection bias only 

introduce significant bias and Type 1 error when the selection effects are large (297). Unlike 

observational studies, MR studies are also not prone to diluted strength of associations due 

to “attenuation by measurement error” since the differences in exposure levels are across 

lifetime and thus unlikely to suffer from measurement imprecision (298).  

MR studies can assess a wide range of exposures, some of which may not feasibly or 

ethically be tested in an RCT design which would ultimately provide the best evidence on 

causality. For example, assessing the link between smoking during pregnancy and offspring 

autism related disorders could not be ethically investigated in an RCT due to the potential 

harm to the participants and their offspring, however an MR study was conducted and did 

not find enough evidence to support a causal relationship between maternal smoking and 

offspring autism related disorders (299).  

With the development of large genome wide consortia, and the two-sample MR, the causal 

impact of many risk factors on a large number of health outcomes can be investigated. MR 

studies can be quickly and easily run using freely available online platforms, such as MR 

Base (https://www.mrbase.org/), where both data and user-friendly interfaces allow this 

(300). MR can also provide evidence on causality between intermediate phenotypes and 
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disease, which could generate potential targets for interventions. Lifetime, hard to measure 

or dose dependant exposures, which are an issue in traditional epidemiological studies, can 

be addressed by the MR framework as well. 

Population stratification, participant overlap, weak instrument bias, linkage disequilibrium 

and pleiotropy are common MR limitations; however, they can be investigated by 

measuring other factors as described above (279,283,293,301–303) (Appendix A, Table A5). 

In some cases of quantitative approaches in MR a very large sample size may be required for 

hypothesis testing, and this may not be achievable, thus leading to an underpowered study 

and biased results. Canalization and development stability refer to compensatory 

mechanisms that could develop during intra-uterine periods when exposure to certain 

factors could trigger life-long immunity to that factor via tissue structural and functional 

alteration (304). This concept of developmental compensation continues to affect MR studies 

as there are no current methods to address it.   

4.4.5. Mendelian Randomisation techniques used in this 

thesis 

4.4.5.1 Rationale for using Mendelian Randomisation 

The evidence around risk and protective factors for PCa survival is still unclear. Although 

cholesterol has been suggested to play a crucial role in PCa and its progression, 

observational epidemiological studies have produced conflicting evidence and have been 

unable to establish any causality (305–308). An MR study which assessed the causal effect of 

lipid fractions (LDL, HDL, TG) on PCa, found some evidence that higher circulating LDL 

and TG levels increase and that a variant in the HMGCR gene, which mimics the lowering 

effect of statins on LDL, decreases the risk of developing aggressive PCa (308). Vitamin D is 

a compound that has been considered to affect PCa risk and progression for decades, with 

evidence from animal, cell and epidemiological studies, as well as clinical trials (309–312).  

The hypothesis generated from epidemiological studies, that Vitamin D, through Vitamin D 

receptors, decrease PCa progression, was investigated in a MR study. The authors found 

that a causal link between Vitamin D and PCa progression was unlikely, however the study 

only had one instrument for Vitamin D, putting it at high risk of weak instrument bias (313). 

Alcohol, a carcinogenic in many cancers, has an uncertain role when it comes to PCa risk 
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and progression, with meta-analyses highlighting the inconsistent evidence (314–319). An 

MR study performed in 23,868 PCa cases and 23,091 controls in the PRACTICAL dataset has 

found that genetically instrumented alcohol intake was associated with increased mortality 

in men with localised PCa, but not with PCa risk (320). Observational epidemiological 

studies have found that BMI and measures of adult stature may influence PCa risk, however 

few studies assessed their effects on PCa mortality (321,322). Another MR study conducted 

in the PRACTICAL dataset found that genetically increased height and BMI levels were 

associated with increased mortality of PCa specific and all-cause mortality, respectively 

(323).  

4.4.5.2 Investigating the Instrumental Variable assumptions 

To assess the strength of the instrument (assumption 1) I conducted two-stage least square 

regression as described in section 4.3.4 to assess the strength of each metabolite instrument 

used in the MR analyses. The F-statistic and 𝑟2 obtained from the first stage of the regression 

indicated the strength of the association between the genetic instrument and metabolite. A 

large F-statistic indicates that the risk of weak instrument bias is minimised. For the 

independence assumption, I investigated whether the genetic instruments used were 

reported to be associated with potential confounders. Lastly, I investigated the exclusion 

criteria through sensitivity analyses (MR Egger, simple mode, weighted median, weighted 

median). In addition, I checked if the genetic variants used to instrument the metabolites 

showed signs of horizontal pleiotropy, that is that they were associated with other 

metabolites which were likely on different pathways.  

4.4.5.3 Collider bias  

Collider bias occurs when conditioning on a variable that is a common effect of two 

variables. Collider bias is a particular problem in studies of disease progression since the 

factors that are shown to influence progression could be an artefact of the associations of the 

same factors with disease risk. For example, in a study of  PCa progression, when only cases 

are selected, associations may artificially arise between the PCa risk factors (if at least one is 

associated with both risk and progression) leading to spurious associations with progression 

(324,325). For unmeasured confounding between incidence and progression, any factor 

associated with incidence will also affect prognosis, with direction and size dependent on 

the incidence mechanism (326).Therefore, in an MR study of PCa progression within the 

cases, collider bias can occur since the independence assumption, that states the genetic 
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instrument has to be independent of the factors that confound the associations between 

exposure and PCa progression, could be violated (283,297).  

An example of how collider bias can invalidate results, is the conclusion reached in two 

studies that glucose-6phosphate dehydrogenase deficiency, which is associated with severe 

malaria, is protective over cerebral malaria (327,328). A study that assesses collider bias in 

these studies found that the risk reduction in cerebral malaria could have been entirely 

attributed to collider bias (325). Only few methodologies that investigate the effects of 

collider bias in genetic studies have been proposed.  

One proposed method uses the residuals from the regression of genetic effects on prognosis 

and the genetic effects on incidence (329). This method assumes that the genetic effects on 

incidence and outcome are independent, which is generally not the case in metabolomic 

research, since metabolites share many pathways (326). Another method that addresses 

collider bias subtracts the causal effect a trait on the outcome calculated using MR from the 

total genetic variant outcome estimate, however this method cannot be applied in case-only 

studies.  

Thus, in this thesis I selected the slope-Hunter correction, a method that uses model-based 

clustering. The method allows the genetic effects on incidence and outcome to be correlated 

and estimates a correction factor using genetic variants that are only associated with 

incidence (326). This method was shown to eliminate or substantially minimise collider bias 

and performed better than the other two methods, particularly in case-only studies and in 

instances where there are correlated genetic effects on incidence and outcome (326). The 

method produces a corrected estimate of the causal association between the genetic variant 

and outcome by subtracting from the biased estimate the effect of the genetic variant that 

only affects the incidence adjusted using the correction factor. The formula for the corrected 

estimate using Hunter-slope method, adapted from Mahmoud et al, 2022 states: 
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4.4.6.  Mendelian Randomisation in feasibility trials 

4.4.6.1 Introduction 

The following section contains excerpts from a methodological publication I wrote in 

conjunction with Rhona Beynon and is currently available in preprint format (330). All text 

included in this thesis originating from this methodological publication was solely written 

by myself. The idea originated from a previous publication of Rhona Beynon where the 

method described in this section was developed, while the manuscript I wrote in 

conjunction with Rhona Beynon focused on the methodological aspects that should be 

applied or taken into account when using the method.  

Feasibility studies are small-scale studies, often with a randomised controlled trial (RCT) 

design, which aim to assess whether an intervention can be delivered, and a future trial 
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performed, in a particular setting (281). Feasibility trials do not set out, and are not typically 

powered, to evaluate the effects of the intervention on clinical outcomes, such as disease risk 

or progression. Furthermore, participants are not usually followed-up for enough time to 

assess long-term outcomes, and thus ITT investigating clinical outcomes is rarely used in 

feasibility trials (281). In addition, even though RCTs are the gold standard for assessing the 

efficacy or effectiveness of treatments or interventions, there are potential limitations and 

threats to causal inference (Table 4.5). For example, non-adherence in randomised trials (i.e., 

people failing to adhere to their assigned intervention) could result in attenuated estimates 

of the causal effect of perfect adherence with the intervention on the outcome in the ITT 

analysis (introduced in section 4.3.3). On the other hand, people who do not adhere cannot 

get any potential positive effect of the intervention. Thus, if there was a clear adverse effect 

in patients who do not benefit from treatment, then an ITT analysis would not capture the 

full extent of that adverse effect amongst the intervention group, resulting in an inflated 

estimate of the benefit: harm trade off caused by the intervention. As such, ITT may not 

reflect the potential causal effect of the intervention on the outcome, as it does not consider 

participants’ behaviours and their effect on adherence and outcomes. 

Table 4.5: Potential issues in feasibility RCTs  

 

Issue Discussion Further reading 

INTERNAL VALIDITY  

Inadequate blinding 

Inadequate blinding in an RCT, both for 

participants and trial staff, can introduce bias in 

the way the intervention is delivered, 

participants are followed-up and change 

participants’ behaviours. 

(331,332) 

Non-compliance in 

the intervention 

group. 

Non-compliance refers to the failure of patients 

to follow the treatment or intervention assigned 

by randomisation. 

(331,333)  
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Inadequate 

concealment of 

allocation 

Allocation concealment ensures that the 

clinicians and participants are not aware of 

upcoming assignments, thus minimising 

selection bias.  

(334,335) 

Loss to follow-up 

Loss to follow-up occurs when a patient who 

was active in the trial is lost at the follow-up 

point of the trial. This can introduce bias as the 

participants in the study who were followed-up 

may systematically differ from those who were 

not followed-up. 

(336) 

Contamination in the 

control group 

Contamination in the control group occurs 

when participants in the control group receive 

treatment or are exposed to the treatment or 

intervention and can lead to an attenuation in 

the difference of the measured outcomes 

between the intervention and control groups.  

(337,338) 

EXTERNAL VALIDITY  

Inappropriate subject 

selection criteria 

Subject selection criteria should be pertinent to 

the question being investigated. A balance 

between a homogenous or heterogenous group 

being selected should be achieved by assessing 

what the focus of the study is, either 

generalisability or non-dilution of treatment. For 

example, occasionally an overly complex criteria 

can result in nongeneralizable findings, even if it 

achieves a very concentrated treatment effect.  

(331) 

Low recruitment 

Low recruitment can occur for multiple reasons, 

such as inadequate inclusion/exclusion criteria, 

inability to reach recruitable patients, consent 

refusal etc. Low recruitment can introduce bias, 

by only recruiting a specific subset of 

(331) 
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participants and the trial findings may not be 

generalisable. Low recruitment is particularly 

important in feasibility trials as the sample size 

is generally small.   

Although feasibility trials cannot test for any effects of the interventions on outcomes, they 

may give some indication of the effects of a novel intervention on short-term intermediate 

endpoints, such as minimally invasive biomarkers of a biological effect of the intervention 

which may lie on the causal pathway to clinical endpoints. These biomarkers may be 

established measures of clinical significance, for example Gleason score measurements in a 

study of PCa progression, or more novel biomarkers of cancer progression, such as measures 

of the epigenome, metabolome or proteome (34,281). Such biomarkers can serve as 

supportive endpoints, which may then predict the clinical and long-term impact of a novel 

intervention. If such biomarkers are directly influenced by the intervention and in turn 

modify clinical outcomes, they may be used to both determine the potential magnitude of 

the effect of the intervention on long-term outcomes and to advance understanding of 

biological mechanisms which underlie intervention effects.  

While MR can be applied in feasibility studies directly to estimate the causal effect of the 

exposure (intervention) on the clinical outcome of interest, this relies on the availability of 

genetic data and power, which is often inadequate in feasibility studies. Thus, an alternative 

approach would be an MR implemented using a two-sample approach based on summary 

genetic association data from a genome-wide association study (GWAS) of the exposure 

(sample 1) and a GWAS of the outcome (sample 2).   

This section presents a two-stage randomisation analysis (Figure 4.7) process for estimating 

the effects of novel interventions on long-term clinical outcomes using data from feasibility 

trials on supportive endpoints. The two-stage process involves estimating causal effects of 

an intervention on supportive endpoints from a feasibility RCT (stage 1), which is then 

coupled with estimates of the causal effect of the supportive endpoints on outcomes 

obtained from large-scale GWASs (stage 2). The process relies on knowledge and 

application of three statistical techniques: intention-to-treat analysis (339); instrumental 

variable analysis (278); and MR analysis (280,284).  
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Figure 4.7: Two-stage randomisation in feasibility trials diagram 

 

 

Stage 1: ITT, stage 2: MR 

 

4.4.6.2 Method overview 

In the first stage, ITT and IV analysis are conducted to establish the effects of the novel 

intervention on supportive endpoints. For a biomarker to be a valid surrogate endpoint i) it 

must be highly correlated with the long term clinical outcome that it is proxying; and ii) the 

effects of the intervention on it fully capture it’s net effect on long-term clinical or public 

health outcomes (340,341). However, in proof-of-concept trials, as is the case of feasibility 

RCTs, the supportive endpoint does not necessarily need to be a surrogate endpoint as it can 

still provide evidence around the biological mechanisms of action of the interventions being 

assessed. Those supportive endpoints altered by the intervention are then investigated 

further in the second stage of the process, an MR analysis, to predict the potential long-term 

effect of the intervention on clinically or public health relevant outcomes. This second stage 

requires the establishment of germline genetic variants (SNPs) that are robustly associated 

with the supportive endpoint of interest, and which can act as proxy instrumental variables 

for these endpoints. Such genetic instruments are usually identified from previously 
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conducted, large-scale and replicated GWAS. After establishing the SNPs that will be used 

as instruments, those SNPs are integrated with data from large GWAS consortia 

investigating the outcome of interest using the two-sample MR approach. This second stage 

assesses the causal effect of the intermediates on outcomes, such as disease risk or 

progression.  

By considering the results from the two stages, it is possible to predict the potential impact 

of the novel intervention on long-term clinically or public health relevant outcomes via the 

estimated effect of the intervention on supportive endpoints. In addition, physiologically 

related adverse effects and potential off-target effects (including unsuspected adverse 

effects) of the intervention, that it was not specifically designed to produce, can be assessed 

via phenome-wide association studies (PheWAS) that test associations between the 

intervention as proxied by the instrumental variable and multiple phenotypes (342,343). 

Using this two-step approach, the predicted effects of novel interventions on the outcomes 

of interest and on off-targets effects provides information that could potentially be used to 

justify the development and conduct of a large-scale, definitive phase III RCT that directly 

measures the clinical or public health outcome of interest. 

4.5. Chapter summary  

This Chapter presented the methods of the four studies of which data I used in the Thesis 

and their measured variables on which the analyses are based. In addition, I provided an 

overview of analytical and statistical methods for analysing metabolomics data in a cohort 

study (Chapter 5) and RCT setting (Chapter 6). I introduced MR as a tool to assess causality 

between metabolites and long-term clinical outcomes and its application in feasibility trials. 

Finally, I introduced the general concepts of prognostic replication analysis which have been 

used in Chapter 7.   
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Chapter 5.  Assessment of systemic 

metabolic biomarkers to detect 

PCa progression in the Prostate 

Testing for Cancer and Treatment  

(ProtecT) trial 

5.1. Chapter overview 

In this chapter, I present: i) associations of baseline circulating metabolites in relation to 

Prostate Cancer (PCa) progression using survival analysis in the Prostate Testing for Cancer 

and Treatment (ProtecT) randomised controlled trial (RCT); and ii) estimates of causal 

associations between circulating metabolites and PCa mortality in the Prostate Cancer 

Association Group to Investigate Cancer Associated Alterations in the Genome 

(PRACTICAL) consortium. 

 The Chapter opens with a succinct summary of the methodology and statistical analyses 

employed, with the main description of the methodology discussed in Chapter 4. The results 

section is split into two parts. The first part presents the results of the survival analysis for 

the association of baseline circulating metabolites and PCa progression in the ProtecT trial. 

A broader measure of PCa disease progression (clinical progression, metastases or PCa 

death) and a more specific definition of progression which includes PCa metastases or PCa-

specific death only are used. The second part presents the causal analysis, using Mendelian 

randomisation (MR), assessing the link between circulating metabolite levels and PCa 

progression (PCa-specific mortality only). The UK Biobank (UKBB) genome-wide 

association study (GWAS) was used to identify genetic instruments for metabolites and the 

PRACTICAL consortium to investigate how these genetically instrumented levels relate to 

PCa mortality. The chapter ends with a triangulation of evidence by bringing together the 

observational and causal evidence in the discussion and summary sections. 



 

 

98 

5.2. Research questions 

1. Are circulating metabolite levels at baseline associated with subsequent risk of 

clinical progression in men with localised PCa? Clinical progression has been 

defined as evidence of metastases, diagnosis of clinical T3 or T4 disease, long-term 

androgen-deprivation therapy, ureteric obstruction, rectal fistula, the need for a 

urinary catheter owing to local tumour growth or PCa death. 

2. Are circulating metabolite levels at baseline associated with subsequent risk of PCa 

metastases or PCa-specific mortality in men with localised disease? 

3. Do circulating metabolite levels at baseline have a causal role in subsequent PCa-

specific mortality? 

5.3. Methods 

In this section I briefly present the methods I used to analyse the ProtecT trial. A detailed 

description of the ProtecT trial, UKBB and PRACTICAL consortium and the methodology 

used in this Chapter can be found in Chapter 4 (23,35,237–240,344).  

5.3.1. Study population 

The main survival analysis used data from the ProtecT trial and included all men with 

localised disease for whom I had metabolomics data (n=1,827). Survival analyses using the 

complete case sample were also conducted; that is, men on whom there was complete 

anthropometric, lifestyle and morbidity questionnaires data (n=1,232). In addition, a 

sensitivity analysis was run on a subset of the ProtecT data, which was generated by 

censoring the dataset at 10 years of follow-up. This was done since there were few events 

after this timepoint and there was some evidence of the proportional hazards’ assumption 

being violated.  

For the two-sample MR analysis, which assessed the causal link between metabolites and 

PCa death, data from the UKBB GWAS (n=115,078) was used as the exposure dataset 

(sample 1) which identified genetic instruments for metabolites. The PRACTICAL 

consortium GWAS study of PCa mortality (n=75,672) was used as the outcome dataset to 

identify genetic instruments associated to PCa mortality (sample 2).   
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5.3.2. Measures  

In this chapter, for the survival analyses I used circulating metabolites as my exposure 

variables and clinical progression and PCa metastases or PCa-specific death as outcome 

variables for the main (minimally adjusted) and complete case analysis. Due to small 

numbers of PCa-specific deaths, I grouped these with metastases and throughout this 

Chapter they are analysed as a combined outcome (metastases or PCa death). These 

progression categories follow the ProtecT trial definitions which are discussed in detail in 

Chapter 4. The definition of clinical progression in the trial includes metastases or PCa 

death, thus the clinical progression category in the current analyses includes the metastases 

or PCa death category. 

In the main analysis I included the following potential confounders: Gleason score, tumour, 

nodes and metastasis (TNM) stage, baseline PSA, study centre and age. Gleason score, TNM 

stage and baseline PSA are the three well established marker of PCa aggressiveness and thus 

could be confounders of the metabolite PCa progression relationship. Given that the ProtecT 

trial is a multi-centre study, differences between centres may result from different 

geographies and social economic aspects of the areas and internal study specific procedures. 

This would introduce a heterogeneity in the data, which may confound the observed results. 

Age is another potential confounder given that it is associated with higher PCa mortality. 

For the fully adjusted analysis (in the complete case analysis) in addition to the variables 

used in the minimally adjusted analysis I also included the following variables which could 

be related to the progression outcomes, given that they are known risk factors for all-cause 

mortality: BMI, self-reported alcohol consumption, smoking and morbidity measures 

(angina, coronary or myocardial heart attack, stroke, hypertension, high cholesterol, asthma, 

bronchitis, emphysema, diabetes, nervous trouble, or depression). Details on generating 

nuclear magnetic resonance (NMR) metabolomic data, as well as the processing of it are 

described in detail in Chapter 4. Briefly, 229 metabolites were generated using the 

Nightingale NMR platform (Nightingale Health©, Helsinki, Finland), which were then 

processed to address correlation, distribution skewness and analytical outliers (149,244). 

PCa specific death was the outcome for the MR analysis, as defined in each of the 

PRACTICAL studies, generally obtained through mortality registries from various countries 

(23).  
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5.3.3. Statistical analyses 

5.3.3.1. Descriptive analysis 

Baseline characteristics were stratified by progression status at the end of follow up, (men 

who did not progress, those who clinically progressed, and those who experienced PCa 

metastases or PCa death). For continuous variables, means and standard deviations were 

computed, and for categorical variables percentages were used.  

5.3.3.2. Missing data 

There were no missing data for the variables included in the main analysis (minimally 

adjusted). For the variables used in the fully adjusted analysis, 33% of men had missing 

data. Whilst weight was collected by nurses at the ProtecT screening and enrolment visit, 

height, along with all other variables included in the fully adjusted model, were collected 

via questionnaires if men entered the additional ProMPT epidemiological study at the same 

visit. The pattern of the variables missing is not assumed to be at random given that these 

were participants who did not consent to enter the ProMPT study and return their first 

questionnaire.  However, participants in the complete case analysis (67% of the ProtecT 

cohort) had similar age, PSA, weight and proportion of clinical progression and metastases 

or death compared to participants who had missing questionnaire data.  Whilst not 

employed in this thesis, multiple imputation could have been used to attempt to fill values 

for the variables with missing data. Multiple imputation, in this context, would use the 

metabolite measures to compute the missing values for BMI. However, since the measures 

are highly correlated with each other and with BMI, using metabolite measures to compute 

BMI could lead to issues of collinearity and inflated variances, which would make the 

multiple imputation method unreliable and difficult and potentially impossible to 

implement (345). Therefore, since multiple imputation would not produce reliable estimates, 

and the two groups are believed to have similar demographic and clinical characteristics 

thus unlikely to introduce substantial bias, I excluded the observations with missing BMI 

values in the fully adjusted analysis.  

5.3.3.3. Survival analysis 

I used Kaplan-Meier (KM) survival curves to visualise the differences in survival patterns 

for the categorical values included as covariates in the multivariable survival analysis: 
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Gleason groups, BMI (normal (BMI≤25kg/m2) vs overweight or obese (BMI>25kg/m2), 

TNM stage (T1 vs T2, as T3 were ineligible to be included in the  ProtecT trial) and age 

groups (under 60, 60 to 65 and over 65). I undertook Cox proportional hazards regression to 

examine the risk of developing PCa progression (clinical progression and PCa metastases or 

PCa death) per standard deviation increase of metabolite level, in the minimally adjusted 

model.  

Sensitivity analyses were conducted by running the following Cox regression analyses: i) a 

minimally adjusted model in the complete case subset; ii) a fully adjusted model in the 

complete case subset. Evidence of violation of the proportional hazard assumption was 

investigated using the “estat phtest” command in STATA (346). The command tests whether 

Schoenfeld residuals are time independent. There were only few events after 10 years of 

follow-up, mainly because most participants did not have follow-up after 10 years. There 

was some evidence of nonproportional hazards after this timepoint (age groups and weight 

category survival curves overlap). To address this, an additional sensitivity analysis was 

conducted with the minimally adjusted model in the main dataset censored at 10 years of 

follow-up.  

Given the large number of correlated metabolites which were investigated and the limited 

number of observations in the dataset, I employed principal component analysis to adjust 

the threshold for statistical significance. Description of the reasoning and methodology of 

this method has been provided in Chapter 4 section 4.3.1.2.4. There were 15 principal 

components that explained 95% of the variance and calculated an adjusted p-value of 0.003 

(0.05/15), with associations under the threshold treated as providing strong evidence. I also 

investigated potential suggestive evidence i.e. where associations did not meet the p-value 

threshold but were p<0.05 and considered other measures, such as effect size and confidence 

intervals, to assess the strength and importance of the evidence (347).  

5.3.3.4 Mendelian randomisation 

Detailed descriptions of IV and MR analyses as well as the techniques employed in this 

Chapter are presented in Chapter 4, section 4.4. In summary, two-sample MR analyses were 

used to assess the causal link between metabolites and PCa-specific mortality, building 

genetic instruments for each metabolite (Sample 1) and generating causal estimates for the 

instruments on PCa-specific mortality (Sample 2). First, an adjusted effect size for the PCa 

mortality GWAS was calculated, using the Slope Hunter correction for collider bias (326). F-
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statistic and 𝑟2 measures were computed to assess the strength of association between the 

individual genetic instruments and each metabolite. The inverse variance weighted (IVW) 

method was used to estimate the causal effect if more than one genetic variant was available 

and the Wald estimate for instances where only one genetic variant was present. As a 

sensitivity analysis, where possible (i.e., if three or more instruments were available), the 

causal effect estimates were also computed using MR Egger, weighted median, weighted 

mode and simple mode methods. Where genetic variants were found to be associated with 

the majority of metabolite measures, the MR analysis was re-run after exclusion of such 

genetic variants. One of the strengths of this MR study is its ability to assess a wide range of 

metabolites, with genetic instruments available for 246 metabolites. Rather than using a 

multiple testing adjusted p-value, I assessed the strength of evidence by looking at the 

95%CI, effect size and p-value together to minimise the risk of dismissing important 

findings which could be penalised by adopting a strict statistical threshold of significance 

(347–349). 

5.3.3.5 Correlation analysis 

To assess the consistency between the results from the observational and causal analyses, 

the logged odds ratio of developing metastases or PCa death for each metabolite in the 

analysis of the ProtecT trial was plotted against the logged odds ratio for PCa mortality in 

the MR study. To assess the consistency between the observational and causal estimates, a 

forest plot was constructed which presents the odds ratios in the ProtecT trial alongside the 

odds ratios in from the MR analysis for each metabolite. Logistic regression with metastases 

or PCa death as a binary outcome and individual metabolites as explanatory variables, with 

the covariates from the minimally adjusted Cox regression model (Gleason, age, centre, 

stage, baseline PSA) was used to calculate the odds ratio for metastases or PCa death in the 

ProtecT trial.  

5.4. Results 

5.4.1. Baseline descriptive analysis 

The baseline characteristics for the ProtecT trial participants are presented in Table 5.1. 

Overall, 201 (11%) men with PCa experienced clinical progression over the median 9.5 (8.0-
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10.9 interquartile range) years of post-randomisation follow-up. At baseline, men who 

experienced clinical progression had a mean age of 63 years, 27.4% were overweight or 

obese and 4.0% had a Gleason score higher than 7. Sixty-four men experienced metastases or 

PCa-specific death over the follow-up period. They had a mean baseline age of 63 years, 

26.6% were overweight or obese and 4.7% had a Gleason score higher than 7. There were no 

meaningful differences between men who progressed compared to men who did not 

progress (clinical progression) by age, BMI, alcohol intake or smoking status. Baseline PSA 

was lower in men who did not progress compared to men who progressed clinically (mean 

concentrations 5.56 ng/ml and 6.62 ng/ml, respectively, mean difference =1.06ng/ml, 

95%CI:0.63-1.48, p<0.001). The proportion of men with a Gleason score higher than 7 was 

greater in men whose disease clinically progressed compared to men whose disease did not 

(4.0% and 1.7%, respectively, difference in percentage= 2.3%, 95%CI: 0.4%-0.4%, p=0.03).  

Table 5.1: Baseline characteristics, by progression category in the The Prostate Testing for 

Cancer and Treatment trial 6 

PSA=Prostate specific antigen 
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5.4.2. Survival analysis 

5.4.2.1. Associations of potential confounders with Prostate Cancer 

progression 

The Kaplan Meier (KM) curves for clinical progression and metastases or death by Gleason, 

BMI, stage, and age groups are presented in Figures 5.1-5.8.  

5.4.2.1.1. Clinical Progression 

Of the 201 (11%) instances of clinical progression, 193 occurred in men with a Gleason lower 

or equal to 7, and 8 in men with a Gleason score higher than 7 (Table 5.1). The KM curve 

shows that the probability of developing clinical progression was consistently higher for 

men with a Gleason score higher than 7 throughout the follow-up period, compared to men 

with a Gleason score lower or equal to 7 (log rank test p=0.01) (Figure 5.1a). There were 147 

clinical progression events for which BMI was measured, 77 (52.4%) of which occurred in 

the overweight group (BMI>25kg/m2). Overall, the probability of developing clinical 

progression was similar between the normal weight and overweight groups (log rank test 

p=0.4) (Figure 5.1b). Of the total 201 clinical progression events, 125 were to men with a T1 

stage and 76 to men with a T2 stage (Figure 5.1c). There was evidence that men with stage 

T2 had a higher probability of developing clinical progression overall compared to men with 

stage T1 (log rank test p<0.001) (Figure 5.1c). There were 60, 61 and 80 clinical progression 

events in men under the age of 60, 60 to 65 and 65+ years, respectively. The KM curves 

showed similar probabilities of developing clinical progression by age groups overall (log 

rank test p=0.09) (Figure 5.1d). 
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Figure 5.1: Kaplan Meier plot of Prostate Cancer clinical progression by categorical 

confounding variables in The Prostate Testing for Cancer and Treatment trial (Gleason score 

grouping, weight category, Tumour, Node andMetastasis stage, age group) 

 

 

Each of the lines in the graphs represent the probability of not experiencing clinical progression in specific groups of 

participants: 

(A) Gleason ≤ 7 and Gleason>7 

(B) Normal weight (BMI≤25) and overweight >25 

(C) TNM stage T1 and T2 

(D) Age <60, 60-65 and ≥65 

5.4.2.1.2. Metastases or PCa death 

Of the 64 (3.5%) metastases or PCa death events, only 3 were in men with a Gleason score 

higher than 7. The KM curve shows some, but not strong evidence of a gradual increase in 

the probability of developing metastases or PCa death in participants with a Gleason score 

lower or equal to 7 (log rank test p=0.14) (Figure 5.2a). However, only three events were 

observed in the group of men with a Gleason score higher than 7, therefore there was little 

statistical power to detect a difference in survival between the two groups. There were 15 

normal weight and 33 overweight (BMI>25kg/m2) participants who developed metastases 
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or PCa death. The KM curves presented in Figure 5.2b show a similar gradual increasing 

probability of developing metastases or PCa death in both groups throughout the study 

(p=0.59). Of the 64 men who developed metastases or PCa death, 36 and 18 had stage T1 and 

T2, respectively. The KM curve shows both groups had an increasing probability of 

developing metastases or PCa death (p<0.001) (Figure 5.2c). There were 20 men who 

experienced metastases and PCa death in the under 60-year-old category, 14 in the 60-to-65-

year group and 30 in the over 65s. The probability of developing metastases or PCa death 

increased in all three groups throughout the follow-up period (p=0.04) (Figure 5.2.d). 

Figure 5.2: Kaplan Meier plots of Prostate Cancer metastases and death by categorical 

confounding variables in the The Prostate Testing for Cancer and Treatment trial (Gleason 

score grouping, weight category, Tumour, Node and Metastasis stage, age group) 

 

The lines in the graphs represent the probability of not experiencing metastases or PCa death in specific groups of 

participants: 

(A) Gleason ≤ 7 and Gleason>7 

(B) Normal weight (BMI≤25) and overweight >25 

(C) TNM stage T1 and T2 

(D) Age <60, 60-65 and ≥65 
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5.4.2.2 Associations of metabolic traits with Prostate Cancer 

progression and metastases or Prostate Cancer death in Cox 

regression  

The full list of results for each metabolite in relation to PCa clinical progression and 

metastases or PCa death are available in Tables B1 and B2, Appendix B. For simplicity, 

Figure 5.3 presents all metabolites with the exception of lipoprotein subclass measures for 

which only the total lipid value is shown. Overall, there was limited evidence of associations 

between individual metabolites and clinical progression, metastases or death, with none of 

the associations surpassing my pre-defined statistical threshold (p<0.003). There was 

suggestive evidence of associations of lipoproteins, cholesterol, fatty acid ratios, amino acids 

and measures of glycolysis and fluid balance and disease progression (HR range from 

protective, OR as low as 0.78, to positive ORs up to 1.31). Generally, patterns observed for 

clinical progression followed those for metastases or PCa mortality (Figure 5.3). The effect 

sizes were larger in magnitude but estimated with wider confidence intervals in the 

metastases or PCa death analysis compared to the clinical progression category, probably 

because the numbers of these outcomes were fewer (Figure 5.3 and Table B1 Appendix B). In 

sensitivity analyses, the associations observed in the fully adjusted model generally 

followed the same patterns as those in the minimally adjusted model (Table B1, B2 and 

Figures B1, B2, B3, Appendix B). The direction and magnitude of associations were largely 

maintained after censoring the data at 10 years of follow-up (Table B1, B2 and Figure B4, B5 

and B6, Appendix B). 
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Figure 5.3: Forest plot of hazard ratios for clinical progression and metastases or death, in the 

minimally adjusted Cox models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VLDL=Very low-density lipoprotein; LDL=low-density lipoprotein; HDL=high-density lipoprotein; C=Cholesterol; 

MUFA=monounsaturated fatty acids; PUFA=polyunsaturated fatty acids; n3 =omega; n6=omega 6 
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The forest plot presents the odds ratio for each individual metabolite in relation to clinical progression and metastases or PCa 

death in the minimally adjusted (Gleason score, tumour, TNM stage, baseline PSA, study centre and age) Cox model. The lipid 

subclasses presented in this graph are for total lipids for each subclass. For all other measures (total lipids, phospholipids, total 

cholesterol, cholesterol esters, free cholesterol and triglycerides) please see Table A1 in Appendix B. Lipid and lipoprotein 

measures consist of lipoprotein sub-classes, lipoprotein particle size, cholesterol, glycerides and phospholipids, and 

apolipoproteins. Fatty acid measures include fatty acids and fatty acid ratios. 

5.4.2.2.1 Associations of progression with lipid and lipid related measures 

Clinical progression 

There was some evidence suggesting that clinical progression was positively associated with 

circulating measures of very low-density lipoprotein (VLDL) and triglycerides and inversely 

associated with non-triglyceride measures of high-density lipoprotein (HDL) (Figure 5.3 and 

Table B1, Appendix B). The largest effect-sizes were for triglycerides in medium HDL (not 

shown on the graph) (HR per standard deviation increase = 1.14, 95% CI: 1.00-1.30; p=0.05) 

and HDL3 cholesterol (HR=0.86, 95%CI: 0.75-0.99, p=0.04). The associations observed in the 

minimally adjusted model were generally maintained in the fully adjusted model, with 

comparable effect sizes and precision (Table B1 and Figure B2, Appendix B). 

 

Metastases or PCa-specific death (cumulative measure) 

There was some evidence that metastases or PCa-specific mortality measures were 

associated with medium, very large and extremely large VLDL, some triglyceride measures 

and particle diameter for low-density lipoprotein (LDL) (Figure 5.3 and Table B2, Appendix 

B). The largest effect-size was for concentration of chylomicrons and extremely large VLDL 

particles (not shown on graph) (HR= 1.26; 95% CI: 1.04-1.53; p =0.02) (Table B1, Appendix 

B). There was some evidence for inverse associations of metastases and PCa specific 

mortality with small HDL measures, small, medium, and large LDL, and multiple 

intermediate density lipoprotein measures (Figure 5.3; Table B2, Appendix B). The largest 

effect-size was for cholesterol esters in small HDL (HR= 0.78, 95% CI: 0.61-0.99; p =0.04) 

(Figure 5.3; Table B2, Appendix 5). The associations observed for metastases and death were 

maintained in the fully adjusted model, with comparable effect sizes and precision to those 

in the minimally adjusted model, with the exception of LDL particle size which showed a 

stronger effect size in the adjusted model (minimally adjusted model: HR=1.26, 95%CI:0.98-

1.55,p= vs. fully adjusted model: HR=1.39, 95%CI:1.07-1.82,p=0.01) (Table B2 and Figure B3, 

Appendix B).  



 

 

110 

5.4.2.2.2 Associations of progression with fatty acid measures 

There was limited evidence for an association of clinical progression, metastases or death 

with fatty acid measures in the minimally adjusted model, with small effect sizes and 

confidence intervals crossing the null (Figure 5.3, Tables B1 and B2, Appendix B). The largest 

effect sizes for clinical progression were observed for the ratio of omega-6 fatty acids (HR= 

0.90; 95% CI: 0.79-1.04, p=0.13) and the ratio of monounsaturated fatty acids to total fatty 

acids (HR=1.11, 95%CI: 0.97, 1.27, p=0.12). For metastases and PCa death, the largest effect 

sizes were for the ratio of saturated fatty acid to total fatty acid (HR=1.20; 95%CI: 0.93-1.55, 

p=0.16) and degree of unsaturation (HR=0.82, 95%CI: 0.64-1.06, p=0.13). Similar patterns 

were observed in the fully adjusted model for clinical progression (Table B1 and Figure B1, 

Appendix B). The associations for metastases or death were stronger in the fully adjusted 

model, with larger magnitude effect sizes but wider confidence intervals (Table B2 and 

Figure B3, Appendix B). The association for the degree of unsaturation had the largest 

difference in effect size in the fully adjusted compared to the minimally adjusted model and 

was stronger but estimated with similar precision (HR=0.77; 95%CI: 0.57-1.05, p=0.10) (Table 

B2 and Figure B3, Appendix B). 

 

5.4.2.2.3 Associations of progression with glycolysis related measures 

There was limited evidence that clinical progression was associated with measures of 

glycolysis. In the minimally adjusted model, there was some evidence that citrate was 

inversely associated with clinical progression (HR= 0.87, 95%CI: 0.75-1.00, p=0.05) (Figure 

5.3 and Table B1, Appendix B). The association was maintained in the fully adjusted model, 

with similar effect sizes and precision (Table B1 and Figure B2 Appendix B). There was 

weak evidence of association for metastases or PCa death with glycolysis related measures, 

with direction and effect sizes of associations similar to those in the clinical progression 

category but with wider confidence intervals (Figure 5.3 and Table B2, Appendix 5). 

 

5.4.2.2.4 Associations of progression with amino acids and ketones measures 

There was limited evidence of associations between clinical progression, metastases or PCa 

death and amino acids and ketones in the minimally adjusted model, with most hazard 

ratios centred around the null (Figure 5.3 and Tables B1 and B2, Appendix 5). The largest 
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effect size for clinical progression was observed for glutamine which was inversely 

associated with clinical progression (HR=0.90; 95% CI: 0.78-1.04, p=0.15 (Table B1, Appendix 

B). The effect size and precision were similar in the fully adjusted model compared to the 

minimally adjusted one (Table B1 and Figure B2, Appendix 5). Leucine had the largest effect 

size for metastases and PCa death in the minimally adjusted model (HR=1.19; 95%CI:0.94-

1.50; p=0.14), with the association becoming stronger but estimated with less precision in the 

fully adjusted model (HR=1.29; 95%CI:0.98-1.70; p=0.07) (Table B2 and Figure B3, Appendix 

B).  

 

5.4.2.2.5 Associations of progression with inflammation and fluid balance 

measures 

There was some evidence that clinical progression and metastases or PCa death were 

associated with some measures of fluid balance and inflammation (Figure 5.3, Tables B1 and 

B2, Appendix B). Although not strong, there was some evidence that glycoprotein acetyls 

were associated with clinical progression (HR=1.18; 95%CI:1.03-1.35; p=0.01), and 

metastases or PCa death (HR=1.31, CI:1.04-1.64, p=0.02) in the minimally adjusted model, 

with the effect sizes being maintained in the fully adjusted model (Tables B1 and B2 and 

Figures B1, B2 and B3, Appendix B). 

5.4.2.3. Censored sensitivity analysis 

To address the lack of follow-up for most participants and the few events observed after 10 

years of follow-up, a sensitivity analysis was run which censored the data at 10 years of 

follow-up for clinical progression and metastases or PCa death. The results are presented in 

Tables B1 and B2 and Figures B5 and B6 in Appendix B. Generally, the associations between 

metabolite levels and clinical progression and metastases or PCa death were consistent 

between the non-censored and censored analysis, with similar effect sizes and precision. The 

exception was LDL particle size which showed a larger effect size but similar precision in 

the metastases or PCa death category (uncensored minimally adjusted HR=1.23; 95%CI:0.98-

1.55; p=0.08 and censored minimally adjusted HR=1.31; 95%CI:1.03-1.67; p=0.03) (Figure B6, 

Appendix B).   
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5.4.2.4 Cox Proportional hazard assumption 

The results for the test of the Cox proportional hazard assumption are presented in Table B3, 

Appendix B. There was no strong evidence to suggest that the proportional hazard 

assumption did not hold (global p>0.003). There was weak evidence to suggest that the 

proportional hazard assumption was violated for some HDL, VLDL and fatty acid measures 

in the clinical progression category (global p<0.05).  

5.4.3. Causal analysis using Mendelian randomisation 

The F-statistic and r² for the genetic instruments of the metabolites in UKBB GWAS studies 

are presented in Table B4 in Appendix B. Generally, all instruments showed a strong 

association with the metabolites that were taken into the second step, with the lowest F-

statistic of 49, and r² between 0.002 and 0.15. The results of the two-sample MR are 

presented in Figure 5.4 and Table B5 in Appendix B.  

Overall, I found evidence to support causal roles of cholesterol related molecules, 

lipoproteins, fatty acids and amino acids on PCa mortality. Total, free and esterified 

cholesterol, some measures of IDL, LDL and VLDL, sphingomyelins, apolipoprotein B, total 

omega-3 fatty acids, docosahexaenoic acid, and valine were found to causally increase PCa 

mortality risk. Weaker evidence found that beta-hydroxybutyrate alanine, the concentration 

of branched-chain amino acids (leucine, isoleucine and valine) and lactate may also be 

causally linked to increased PCa mortality. I also found evidence of causal association of 

histidine, phospholipids to total lipids ratio in small and large HDL cholesterol, ratio of 

triglyceride to total lipids in very small VLDL and ratio of omega-6 to omega-3 with 

decreased PCa mortality.  

The consistency between the PCa mortality associations in the ProtecT study and the causal 

estimates from the MR analysis are shown in Figures 5.5 and 5.6 and Supplementary Table 

B6. Figure 5.5 and presents a scatter plot of the logged odds ratios in the ProtecT trial and 

MR study, showing an r² value <0.001, suggesting inconsistent estimates between the 

observational and causal odds ratios. However, when comparing the odds ratios between 

each individual metabolite in the observational (ProtecT) and MR (PRACTICAL) only LDL, 

HDL and total measures of cholesterol look inconsistent (Figure 5.6). All other metabolites 

have small effect sizes (OR close to 1) and are estimated with large confidence intervals. In 

Figure 5.6 there are a number of outliers, with larger effect sizes which will contribute to 
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shifting the overall trend and could explain the slope nearing the zero value. Sensitivity 

analyses for the MR analysis conducted using MR Egger, simple mode, weighted median, 

weighted mode methods are presented in Table B5 in Appendix B and the results are 

consistent with those using the inverse variance weighted method.  

5.4.3.1.  Lipid and lipid related measures  

There was evidence that total sphingomyelins, apolipoprotein B, cholesterol, total esterified 

cholesterol, and measures of IDL, LDL and VLDL increased subsequent PCa mortality, 

except the ratio of triglycerides to total lipids in very small VLDL which decreased 

subsequent PCa mortality. I found that HDL related cholesterol measures decreased 

subsequent PCa mortality, except free cholesterol measures in HDL which increased PCa 

mortality (Figure 5.4 and Table B5, Appendix 5). The largest effect size was observed for the 

ratio of cholesterol esters to total lipids in large LDL which were associated with higher PCa 

mortality risk (OR=1.32; 95%CI:1.07-1.62; p=0.008) (Figure 5.4 and Table B5, Appendix 5). 

The sensitivity analyses found that the associations were generally maintained, with similar 

direction effect sizes (Appendix B, Table B5). 

 

5.4.3.2. Fatty Acid measures  

There was some evidence that total fatty acids and docosahexaenoic were causally 

associated with increased PCa mortality and the ratio of omega-6 to omega-3 fatty acids 

with decreased PCa mortality. The largest effect size was seen for the ratio of linoleic acid to 

total fatty acid which was associated with decreased PCa mortality (OR=0.85; 95%CI:0.68-

1.05; p=0.13) (Figure 5.4 and Table B5, Appendix B). The estimates had similar direction and 

effect sizes in the sensitivity analyses (Table B5, Appendix B). 

 

5.4.3.3. Glycolysis related measures  

There was weak evidence to suggest that glycolysis measures were causally associated with 

PCa mortality (Figure 5.4 and Table B5, Appendix B). Lactate showed one the largest effect 

sizes in my MR analysis (OR=1.49; 95%CI:0.95-2.34; p=0.09), however estimated with 
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imprecision. Sensitivity analyses found that the effect size fluctuated from 1.38 (95%CI:0.15-

12.9; p=0.8) to 1.63 (95%CI:0.80-1.51, p=0.24), with wide confidence intervals.  

 

5.4.3.4. Amino acids and ketones measures  

There was evidence that alanine, valine and the concentration of total branched-chain amino 

acids (leucine, isoleucine and valine) were causally associated with increased PCa mortality, 

(Figure 5.4 and Table B5, Appendix B). Histidine showed some causal link with decreased 

PCa mortality. Sensitivity analyses found similar direction and size of the effects for these 

metabolites; however, the effects were estimated with less precision and wider confidence 

intervals (Table B5, Appendix B). Beta-hydroxy butyrate showed one of the largest effect 

sizes in this MR analysis, however the estimate was estimated with imprecision (OR:1.43; 

95%CI:0.89-2.30; p=0.15). Sensitivity analyses found similar effect sizes but estimated with 

larger confidence intervals (Table B5, Appendix B). 

 

5.4.3.5. Inflammation and fluid balance measures  

There was weak evidence that inflammation and fluid balance measures were linked to PCa 

mortality, with small effect sizes estimated with imprecision (Figure 5.4 and Table B5, 

Appendix B). Albumin showed the largest effect size of association with decreased PCa 

mortality (OR= 0.89; 95%CI: 0.73-1.08; p=0.25).  
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Figure 5.4: Forest plot of MR estimates (odds ratios) using IVW or Wald ratio and their 95%CI for the effects of metabolites on PCa mortality 

among 67,758 PCa cases in the PRACTICAL consortium, using instruments developed in the UKBB GWAS. 
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VLDL=Very low-density lipoprotein; LDL=low-density lipoprotein; HDL=high-density lipoprotein; IDL=intermediate-density lipoprotein 
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Figure 5.5: Scatter plot of the logged odds ratios of developing metastases or Prostate 

Cancer death in the observational (Prostate Testing for Cancer and Treatment) and 

logged odds ratios for Prostate Cancer mortality in the MR (Prostate Cancer Association 

Group to Investigate Cancer Associated Alterations in the Genome) studies. 

 

MR=Mendelian randomisation; ProtecT =Prostate Testing for Cancer and Treatment; PRACTICAL=Prostate Cancer Association 

Group to Investigate Cancer Associated Alterations in the Genome 

The x-axis represents the odds ratios for PCa specific death for each metabolite in the MR study using instrument genetic 

data from UKBB GWAS studies and outcome genetic data form the PRACTICAL consortium. The y-axis represents the 

odds ratios of developing metastases or PCa specific death in relation to each metabolite in the ProtecT trial. Only 

metabolites that have odds ratios for both the ProtecT and UKBB MR studies are presented. The red line is the slope. 
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Figure 5.6: Forest plot of odds ratio for metastases or death in the Prostate Testing for 

Cancer and Treatment trial and odds ratio of Prostate Cancer mortality in the Mendelian 

Randomisation analysis in the Prostate Cancer Association Group to Investigate Cancer 

Associated Alterations in the Genome consortium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VLDL=Very low-density lipoprotein; LDL=low-density lipoprotein; HDL=high-density lipoprotein; C=Cholesterol; FA=fatty acids; 

DHA= docosahexaenoic acid; MUFA=monounsaturated fatty acids; PUFA=polyunsaturated fatty acids; n3 =omega; n6=omega 6 
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The forest plot presents the odds ratio for each individual metabolite in relation to metastases or PCa death in the 

minimally adjusted (Gleason score, tumour, TNM stage, baseline PSA, study centre and age) logistic regression model in 

the ProtecT trial and the odds ratios in the MR analysis, corrected for collider bias using the slope hunter method, in the 

PRACTICAL consortium, using instruments developed in UKBB. The lipid subclasses presented in this graph are for total 

lipids for each subclass. Lipid and lipoprotein measures consist of lipoprotein sub-classes, lipoprotein particle size, 

cholesterol, glycerides and phospholipids, and apolipoproteins. Fatty acid measures include fatty acids and fatty acid 

ratios. 

5.5. Discussion 

5.5.1. Main findings 

In this chapter I assessed the potential link between metabolites and PCa progression 

using observational and causal evidence. I found suggestive observational evidence 

(ProtecT results) that individual metabolites were associated with PCa clinical 

progression, metastases or PCa specific death, with lipoproteins, cholesterol and 

glycolysis related metabolites, fluid balance and inflammation measures showing the 

strongest evidence. I found causal evidence (PRACTICAL MR results) that cholesterol 

related metabolites, lipoproteins, amino acid measures and fatty acids may be linked to 

PCa mortality. Total, free and esterified cholesterol, some measures of IDL, LDL and 

VLDL, sphingomyelins, apolipoprotein B, total fatty acids, docosahexaenoic acid and 

valine increased PCa mortality. Some HDL-related measures, ratio of triglyceride to total 

lipids in very small VLDL, histidine and the ratio of omega-6 to omega-3 fatty acids 

were causally associated with decreased PCa mortality. To a lesser extent since the 

evidence was not strong, lactate, alanine, the total concentration of branched-chain 

amino acids and beta-hydroxybutyrate were causally linked to increased PCa mortality.  

Although the metabolites identified as potentially affecting PCa mortality in the causal 

analysis and clinical progression or metastases or PCa mortality in the observational 

analysis differ or are discordant, both studies support a role for cholesterol and 

lipoproteins in PCa progression to metastasis and death. In the causal analysis, the 

instruments used to proxy metabolite levels estimated a lifetime effect whilst in the 

observational analysis the effect of metabolites on PCa progression was assessed over a 

period of 10 years after a PCa diagnosis. This could explain the lack of correlation 
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observed between the effect estimates from the two analyses. In addition, the less precise 

estimates in the ProtecT trial could be a consequence of the much lower number of 

progression events observed in the ProtecT trial than in the PRACTICAL consortium, 

which again explains the lack of correlation observed between the observational and 

causal estimates. Also, the disease pathologies were different between the two studies, 

with the ProtecT trial only including participants with localised cases (T1 and T2) while 

the PRCATICAL consortium included all stages of disease. Lastly, it has been previously 

found in the ProtecT trial that metabolites, particularly lipoprotein and cholesterol 

measures were associated with PCa risk (350). This suggests that the metabolomic 

analysis in the ProtecT trial could suffer from collider bias, since if metabolites were 

associated with risk of developing PCa, they could lead to spurious associations with 

PCa progression. Outcome ascertainment for PCa death was performed by a committee 

who evaluated clinical notes along the mortality records in the ProtecT trial, while for 

studies included in the PRACTICAL consortium these were generally done via mortality 

records alone (323,351). In addition, the data in the PRACTICAL consortium comes from 

many countries, and thus the progression indicator could be influenced by other factors 

not present in the ProtecT trial, as a result of each country’s healthcare and surveillance 

systems. 

 My findings highlight the important role that metabolites may play in PCa progression, 

particularly through cholesterol, fatty acid and amino acid pathways. They also present 

opportunities for identifying novel causal biomarkers which could become intervention 

targets for delaying PCa progression. 

 

5.5.1.1. Lipids and lipid related measures  

 

While the observational analysis did not find any strong associations (p>0.003) of PCa 

progression with measures of cholesterol in the main analysis, the measures with the 

highest effect sizes (e.g., phospholipids in LDL, free cholesterol in medium LDL) 

appeared stronger after adjusting for BMI, morbidity, and lifestyle factors. This was not 
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surprising given that increased adiposity has been previously shown to alter metabolic 

profiles (243). I found that multiple measures of cholesterol, such as VLDL (small, 

medium, extremely large), LDL (overall measures, small, medium, and large), IDL 

(overall measures), total, free and esterified cholesterol, sphingomyelins and 

apolipoprotein B showed evidence of being causally associated (p<0.05) with increased 

PCa mortality. Generally, the metabolites with the largest effect size in the causal 

analysis showed inconsistency in direction and effect size in the observational analysis 

for metastases and PCa death. For example, some lipoprotein measures such as LDL 

cholesterol, total cholesterol and esterified cholesterol which showed large effect sizes on 

increasing PCa mortality in the causal analysis, showed inverse associations in the 

observational analysis. However, the estimates for these metabolites were measured 

with imprecision in the observational analysis, with large confidence intervals, thus 

making the inconsistencies hard to interpret.  

A previous study of metabolites and PCa risk in the ProtecT study found some evidence 

that these metabolites (HDL and LDL measures, total free and esterified cholesterol) are 

associated with PCa risk. This suggests that collider may be an issue in my observational 

analysis, since the metabolites were found to decrease the risk of developing PCa 

progression. This could explain the opposite direction of association observed in the 

ProtecT trial compared to the MR analysis. On the other hand, the genetic variants used 

for instrumenting the effects of the strongest associated cholesterol-related metabolites 

(total lipids, cholesterol, cholesterol esters, phospholipids, free and total cholesterol in 

large LDL measures) were associated with 112 lipoprotein measures (IDL and VLDL), 

apolipoprotein B and fatty acid measures. VLDL is a subclass of lipoprotein which 

contains apolipoprotein B and is responsible for the transport of synthesized lipids, thus 

making it likely for the two to be on the same pathway which links cholesterol to PCa 

mortality. The degree of unsaturation, which is a fatty acid measure, is also likely to be 

on a shared pathway of cholesterol and PCa mortality since cholesterol esters have fatty 

acids, which can be either saturated or unsaturated, attached to it. It is therefore likely 

that rather than horizontal pleiotropy, where these genetic variants affect PCa mortality 

through other pathways other than cholesterol ones, this is a case of vertical pleiotropy 
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in which multiple cholesterol, apolipoprotein measures and fatty acid measures share 

the same pathways and thus do not invalidate my MR analysis.  

Deregulated lipid metabolism have been suggested to play an important role in PCa 

progression, particularly as unlike most cancerous cells, PCa cells are not glycolytic and 

rely on lipid biosynthesis for the extra energy demands (133). Furthermore, cholesterol is 

of particular interest in PCa progression, as it is a precursor of androgen synthesis and 

agonist of steroidogenic genes and believed to contribute to the cancerous cell 

proliferation mechanism (188,204). PCa cells have also been shown to have the ability to 

esterify cholesterol to avoid cellular toxicity, whilst maintaining high levels of 

cholesterol required for proliferation, through the androgen regulated  sterol regulatory 

element binding proteins (188,196,208,209).  In vivo, statins, a cholesterol lowering drug 

was shown to improve the 5- and 10-year biochemical recurrence free survival in 

patients who underwent radical prostatectomy (210). My findings support a causal role 

for cholesterol in the mechanisms of PCa progression, with higher circulating levels of 

cholesterol related measures, such as total cholesterol and total esterified cholesterols, 

cholesterol measures in large LDL particles being causally linked to increased PCa 

mortality.  

 

5.5.1.2. Amino acids and ketone measures 

 

I found some evidence to suggest a role for amino acids and ketones in relation to PCa 

progression in both the observational study and causal analyses. Leucine and isoleucine 

which were found to have the largest effect sizes in relation to increased metastases or 

PCa mortality in the observational study also showed some evidence of association with 

increased PCa mortality in the causal analysis. Alanine, valine and beta-

hydroxybutyrate were found to be causally linked to increased and histidine to 

decreased PCa mortality. The strongest evidence was for valine and histidine. However, 

the MR findings were not supported by the observational analysis, with inconsistent 
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direction and effects of the associations with both PCa clinical progression and 

metastases and PCa death which were estimated with poor precision.  

One genetic variant (rs1260326) was found to be associated with multiple metabolic 

measures from different subclasses, including amino acids. The variant is located in the 

regulatory area of the glucokinase regulatory gene which encodes a protein involved in 

the inhibition of glucokinase in liver and pancreatic cells. The gene has been previously 

suggested to play a role in the development of many conditions such as type 2 diabetes 

mellitus, non-alcoholic liver disease and metabolic syndrome (352–356). This suggests 

that using the genetic variant, which is associated with a range of other metabolites, to 

instrument for the acetate and acetoacetate could lead to invalid MR findings and would 

be an instance of horizontal pleiotropy. However, after the exclusion of this genetic 

variant in the sensitivity analyses, the estimates obtained were similar in effect size and 

precision to the main results. 

 Previous cellular evidence supports the link between leucine uptake, proliferation and 

malignant transformation of PCa cells in castrate resistant PCa, suggesting increased 

levels of  leucine may play a role in PCa progression (191,357). Histidine has been 

previously found to affect inflammation, and in a study of PCa metabolic phenotypes, 

lower levels of histidine was observed in patients with the most aggressive PCa (358–

360). Another study found serum histidine to be reduced in castrate resistant PCa, 

however the mechanisms of action are still not well understood (170). However, one 

major limitation of the current evidence of the link between circulating amino acids 

levels and PCa progression is that the evidence relies on studies with small sample sizes. 

In addition, progression indicators were not measured using follow-up data as would be 

expected in studies of disease progression. Rather, progression was assessed simply by 

comparing the levels of amino acids between participants with various PCa stages and 

phenotypes (170,358). This may not accurately reflect the link between the metabolite 

levels and disease progression, given that more advanced stages will have been exposed 

to other factors, such as androgen deprivation therapy, and androgen exposure has been 

previously shown to alter amino acid metabolism (170,361). 
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One reason for the opposite direction observed in my MR analysis for histidine and 

valine compared to the observational analysis, could be due to low power in the 

observational analysis, with effect estimates near one and large confidence intervals 

crossing the null. Another reason for this could be collider bias in both the MR and 

observational analyses. In an MR study of PCa risk in relation to metabolites, histidine 

and valine were not found to be associated with PCa risk, suggesting that collider bias 

may not affect my MR estimates of PCa progression. However, collider bias cannot be 

fully excluded, despite the inclusion of a collider bias correction method in my MR 

analysis, since the GWAS study of metabolites used to perform the MR study on PCa 

risk had less genetic variants (n=881) than the present GWAS (n=1600) to instrument the 

metabolites, and was performed in a smaller number of participants (24,925 vs 115,078) 

(350,362). An observational study of PCa risk in the ProtecT trial found some evidence 

that both valine and histidine were associated with reduced risk of developing PCa. 

These findings suggest that the association observed in the ProtecT trial for histidine 

with reduced metastases or PCa death may be partly due to collider bias, since histidine 

was shown to increase the risk of developing PCa. 

 

5.5.1.3. Inflammation and fluid balance measures  

 

In the ProtecT trial, I found some, but not strong, observational evidence of glycoprotein 

acetyls, which are markers of chronic inflammation, with increased PCa progression 

(clinical progression and metastases or PCa death), with large effect sizes and narrow 

confidence intervals. In my MR analysis, there was weak evidence of a causal link 

between glycoprotein acetyls and decreased PCa mortality, with causal estimates having 

small effect sizes and wide confidence intervals. The heterogenous glycoproteome of 

PCa tumours has been previously investigated to better understand and predict PCa 

detection, grading and differentiation between aggressive and nonaggressive disease, 

however it has yet to be fully explored (363–365). A recent study into the complexity and 

dynamism of the glycoproteome in PCa tissue found glycoprotein markers associated 

with PCa progression (366). My findings suggest that, in addition to the role observed at 
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tissue level, glycoproteins may also play an important role in PCa progression at 

circulating level however, the link is unlikely to be causal. 

5.5.2. Strengths and limitations 

This study has multiple strengths and some limitations. Firstly, it provides both 

observational and causal epidemiological evidence on the link between metabolites and 

PCa progression. The UK-wide ProtecT RCT is a population-based PSA screening trial in 

which participants diagnosed with PCa have similar characteristics to those in 

unscreened populations, making it a highly generalisable trial (239,367). In addition, the 

ProtecT trial had a high follow-up rate at 10 years for primary outcomes (93%) 

suggesting good internal validity (33,239,368). Nightingale NMR platform measures 

metabolite levels from multiple subclasses, and has been previously shown to detect 

metabolites with high reproducibility and accuracy (362,369). The genetic data used in 

the MR analysis originated from large consortia and biobank datasets, with average 

sample sizes of 117,313 and 67,758 for the exposure and outcome datasets, respectively. 

This allowed the investigation of the causal effects of metabolites on PCa mortality using 

an adequately powered two-sample MR study.  

A limitation of this study is the inclusion of localised only PCa cases in the ProtecT trial 

which tend to progress slowly, and I was unable to investigate advanced disease which 

may have a different aetiology. Although the ProtecT trial found similar PCa mortality 

across treatment groups, there was evidence of increased clinical progression and 

metastases in the active surveillance groups compared to the other treatment options 

(prostatectomy and radiotherapy) (19). Since treatment was not a covariate in the main 

Cox regression model, if treatment affected metabolites levels in addition to clinical 

progression and metastases, then treatment could be a confounder and thus bias the 

estimates in the observational analysis. The limited follow-up time and low number of 

progression events in the ProtecT trial, both of which are to be expected in localised PCa 

cases, impacted on the power to detect associations of metabolites and PCa progression 

events, yielding estimates with hazard ratios near 1 and large confidence intervals. In 

addition, the power was further reduced due to the large number of metabolites being 
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assessed. All these aspects made it difficult to triangulate the observational and causal 

evidence, given the lack of consistency between the two, and the different limitations of 

each methodology.  

Although principal component analysis was employed to address multiple testing, this 

approach can be too conservative leading to low power in detecting true associations, 

especially given the low number of observed events (244,248). Whilst genetically 

instrumenting the metabolites, there were 42 SNPs per instrumented metabolite. Since 

multiple classes of metabolites were identified as causal, and metabolites can be highly 

correlated, it is difficult to establish without further mechanistic work, how these 

metabolites interact with one another and at organism level to cause PCa progression. 

This is an essential aspect that warrants further investigation, as progression regulatory 

mechanisms and their downstream consequences are complex. More in-depth 

investigations of the independent role of metabolites on progression mechanisms can be 

conducted, for example using multivariable MR, in which a collection of genetic variants 

is used to predict a set of exposure variables (370). Such further analyses can explore the 

effects of metabolites in particular areas of regulatory mechanisms which characterise 

progression. This could potentially identify mediating mechanisms, and metabolomic 

biomarkers that can be used as therapeutic targets in clinical and public health practice 

(371–373). Both the ProtecT trial and the studies within the PRACTICAL consortium are 

largely based on men of white ethnicity so may not be representative of the disease 

aetiology in other ethnicities e.g., in black men where there is a higher prevalence of 

disease. 

5.6. Chapter Summary 

In this Chapter, I investigated the link between baseline circulating metabolites 

measured using NMR and measures of PCa progression using observational (ProtecT 

trial) and causal analysis (based on the PRACTICAL GWAS consortium) evidence. I 

found suggestive observational evidence of a link between metabolite subclasses 

(lipoproteins, amino acids, cholesterol and glycolysis related measures, fluid and 

inflammation measures) and PCa progression in men with localised disease. I found 
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causal evidence that total cholesterol, total esterified cholesterol, sphingomyelins, 

apolipoprotein B, measures of IDL, LDL and VLDL cholesterol and total concentration 

of branched-chain amino acids (leucine, isoleucine and valine) and valine increased PCa 

mortality. The causal analysis also found that some HDL-related measures, histidine and 

the ratio of omega-6 to omega-3 fatty acids were causally associated with decreased PCa 

mortality. However, the observational evidence did not support the causal findings, 

with effect estimates centred around the null or in the opposite direction to the causal 

estimates and large confidence intervals. Despite inconsistencies in effect magnitude and 

direction, I found causal evidence and some observational evidence to support 

previously proposed theories on the altered amino acid, lipid and inflammation 

mechanisms as hallmarks of PCa progression (76,77,187,188). My findings support the 

use of metabolomics in PCa progression research, in disease aetiology and progression 

biomarker development. Whilst this Chapter focused on the observational and causal 

link between metabolites and PCa progression, the next Chapter aims to explore the 

potential of metabolites in predicting PCa progression. 
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Chapter 6.  Effects of exercise and 

nutrition on the metabolome of 

men with localised Prostate 

Cancer: the Prostate Cancer 

Evidence of Exercise and 

Nutrition trial (PrEvENT) 

randomised controlled trial and 

a Mendelian randomisation 

analysis 

 

6.1. Chapter overview 

In the previous chapter I investigated the link between circulating metabolites and 

Prostate Cancer (PCa) progression. The observational associations were tested in the 

Prostate Testing for Cancer and Treatment (ProtecT) trial and causal estimates generated 

using data from the Prostate Cancer Association Group to Investigate Cancer Associated 

Alterations in the Genome (PRACTICAL) consortium. As seen in Chapter 2, fruit and 

vegetable consumption, dairy and lycopene intake and physical activity have been 

hypothesised to influence PCa progression. However, the evidence has been 
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contradictory and no causal link has yet been established. Metabolites are the by-

products of many cellular processes and thus can contribute to the understanding of 

some of the mechanisms underlying cancer metabolism. Mendelian randomisation (MR) 

can advance knowledge of disease aetiology, through assessment of causality between 

exposures and outcomes. The aim of this Chapter is to investigate: i) the effects of 

randomised dietary (lycopene supplementation, dietary advice to increase fruit and 

vegetable and decrease dairy milk consumption) and physical activity (brisk walking) 

interventions on the circulating metabolome of men with localised PCa in the PrEvENT 

trial; and ii) investigate the causal effect of the metabolites altered by the interventions 

on PCa mortality by applying MR in the PRACTICAL consortium.  

The chapter starts with a brief overview of the study populations and methodologies 

used, with the full details presented in Chapter 4. The results section is split into three 

parts. The first two parts present the results from the intention to treat (ITT) analysis, 

followed by the instrumental variable (IV) analysis in the PrEvENT feasibility 

randomised controlled trial (RCT), investigating the effects of lycopene 

supplementation, dietary advice to increase fruit and vegetable and decrease dairy milk 

consumption, and brisk walking interventions on the metabolites of men with localised 

PCa. The ITT analysis presents the changes in metabolite levels as a result of prescribing 

the intervention. The IV analysis shows the adherence-adjusted effects that the 

intervention had on the metabolite levels while retaining the randomised allocation. The 

third part presents the results of the MR analyses, estimating the causal effects of the 

metabolites which were found to be altered in the PrEvENT trial, on PCa mortality. The 

chapter ends with a discussion of the triangulated evidence from the PrEvENT trial and 

MR analyses, the implications for future research and the limitations of this study.   

6.2. Research questions 

1) Is the metabolome of men with PCa altered following lifestyle interventions 

comprising either: i) lycopene supplementation; or ii) dietary advice to increase 

fruit and vegetable consumption and reduce dairy milk consumption; or iii) a 

brisk walking physical activity intervention? 
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2) What is the causal effect of the metabolites altered by these lifestyle interventions 

on PCa mortality? 

6.3. Methods 

This section briefly describes the methodology employed in this Chapter, with full 

details of the methodology, the PrEvENT trial, UK Biobank (UKBB) and the 

PRACTICAL consortium presented in Chapter 4 (5,23,237,239,344,374).  

6.3.1. Study population 

From the 81 men recruited into the PrEvENT trial, bloods and follow-up information 

were available for 74. The same dataset of study men (n=74) was used in both the 

unadjusted and adjusted ITT analyses as well as the IV analysis. The UKBB genetic-wide 

association study (GWAS) dataset (n=115,078) was used to identify genetic instruments 

for the metabolites altered by the intervention, and the PRACTICAL mortality GWAS 

study (n=75,672) was used to generate the causal estimates for the instrumented 

metabolites on PCa death.  

6.3.2. Measures 

All measures used in this analysis were collected as part of the PrEvENT trial with the 

exception of the 229 serum metabolomic measures, which were quantified after the trial 

ended, from banked samples, using the Nightingale NMR (nuclear magnetic resonance) 

platform (Nightingale Health©, Helsinki, Finland). The blood samples were collected 

from the participant at the trial enrolment visit and aimed to be processed and frozen as 

soon as possible on the same day. The centrifuging of the samples was aimed to be 

started within 3 hours of collection. However, no formal information was collected on 

the length of time that the samples were stored before being frozen. The samples were 

frozen at -80 degrees Celsius and remained in the freezer until shipping to the NMR 

laboratory. All samples were transported on dry ice and were defrosted in the freezer 

overnight. In total 156 metabolites were quantified at both trial baseline (before 
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intervention) and 6-month follow-up time (6-months post randomisation). This included 

measures for 14 lipoprotein subclasses (small, medium, large and very large high-

density lipoprotein (HDL), low-density lipoprotein (LDL) and very low-density 

lipoprotein (VLDL)), apolipoproteins (A and B), fatty acids and their ratios, glycolysis 

related metabolites, amino acids, ketone bodies, and fluid and inflammation measures. 

For the unadjusted ITT and IV analyses I used the following variables: metabolite 

values, intervention or control arm, serum lycopene, and self-reported daily portions of 

fruits and vegetables, millilitres of dairy milk intake and step count per day. For the 

adjusted analyses, I also used age and smoking status. 

6.3.3. Statistical analyses 

6.3.3.1. Descriptive Analyses 

The baseline characteristics for the participants were stratified by intervention arm. The 

distribution of continuous variables was presented using mean and standard deviation 

(SD) and percentage for the categorical variables.  

6.3.3.2.  Intention-to-treat analyses 

Effects of the interventions on serum lycopene, fruit and vegetable and dairy milk 

intake, and step count were investigated using linear regression in an ITT analysis. The 

effects of the dietary and physical activity interventions on serum metabolic traits were 

also evaluated by an ITT analysis, comparing the metabolic traits at follow-up for each 

of the intervention arms in relation to the control group. As described in Chapter 4 

section 4.3.1.2, metabolic trait concentrations were transformed to standard deviation (Z-

scored) and principal component analysis was used to establish a multiple testing 

significance threshold. Linear regression was used to examine the associations between 

follow-up metabolic traits and the intervention arms separately for the dietary and 

physical activity interventions, using the control group as reference. Robust standard 

errors were used as the metabolic traits were skewed and the residuals were not 

normally distributed (375). The principal component analysis identified 12 principal 

components that explained 95% of the variance in the metabolites and thus the adjusted 
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p-value was 0.004 (0.05/12). When discussing precision, I use the pre-defined value 

(p=0.004) as indicative of strong evidence and the traditional p-value (p=0.05) for 

suggestive evidence. However, I assessed the strength of the associations by looking at 

the effect size and precision rather than simply just relying on a p-value threshold for 

statistical significance (347).  

To assess the similarities in metabolic perturbations caused by the multiple 

interventions, I assessed correlations of the effect estimates obtained in the ITT analysis, 

between all intervention groups: dietary advice vs lycopene supplementation groups, 

brisk walking vs lycopene supplementation groups and brisk walking vs the dietary 

advice groups. This was done by fitting a linear regression model between the ITT 

results for each of the pair, which generated a slope, intercept and r² statistic. 

6.3.3.3. Instrumental variable analyses 

I employed an IV analysis approach to estimate the complier-adjusted causal effects of 

the exposures (274). This approach maintains the randomisation status while accounting 

for non-adherence (men who received the intervention but did not adhere) and 

contamination in the controls (men who did not receive the intervention but adhered to 

the intervention). I used the randomisation status as the IV, to assess the full magnitude 

of the causal effects of changes in the exposures (serum lycopene, fruit and vegetable 

intake, dairy milk intake and physical activity) on follow-up metabolite measures 

(274,278,375). This was performed using 2-stage least squares (2SLS) regression 

implemented in the STATA statistical software suite (346). Applying Ordinary Least 

Squares regression I computed the F-statistic and r² for the first stage regression to assess 

the IV assumption that the instrument (diet or physical activity intervention arm) is 

sufficiently associated with the exposures: serum lycopene, self-reported fruit and 

vegetable intake and dairy intake, and self-reported number of steps.  

For the physical activity intervention, the number of steps per day (in thousands) and 

percentage of days with at least 10,000 steps were investigated as instruments. I chose 

the measure of step count per day since the intervention would be expected to increase 

the step count of men. I also chose a frequency measure (number of days achieving 

10,000 steps) because men in the intervention arm were asked to brisk walk for 30 
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minutes, on at least 5 days of the week, in addition to their current exercise. If men 

adhered, the extra exercise would lead to at least an extra 5,000 steps on the brisk 

walking days, thus driving the total number of steps per day closer to 10,000.  

All IV regression coefficients were calculated in units of 1-SD metabolite concentration 

per one unit increase in exposure (μmol/L for lycopene, number of servings for fruit and 

vegetable intake, 100mL for dairy milk intake and mean number of steps per day and 

percentage of days with at least 10,000 steps for physical activity). IV analyses were 

conducted in the dietary advice vs control groups, using self-reported dairy milk intake 

and number of fruit and vegetable servings per day as the exposure. In the physical 

activity intervention, I chose mean steps per days as exposure, since it had similar 

suitability to be an instrument (F-statistic and r²) compared to percentage of days with 

more 10,000 steps. In addition, it had a better interpretability and public health message 

(i.e., metabolite levels change per one thousand steps per day).  

6.3.3.4. Sensitivity analyses for intention-to-treat and 

instrumental variable analyses 

No covariates were included in the main analysis (unadjusted) because the distribution 

of confounders was expected to be balanced across the arms with successful 

randomisation. Before undertaking any analyses, I set out to also produce an ITT 

analysis, adjusted for baseline metabolic measures, and any other baseline characteristics 

that looked unbalanced (244). When conducting the analyses, I investigated baseline 

characteristics between the intervention groups to check which variables showed some 

evidence of being unbalanced. Although randomisation should lead to random 

allocation of participants to the intervention arms, in the present feasibility RCT I 

detected some evidence (p<0.05) that certain metabolites, age and lifestyle factors were 

unbalanced across intervention arms (Table 6.1 and Tables C1, C2 and C3, Appendix C). 

Based on the differences at baseline in these potential confounders, post-hoc sensitivity 

analyses were performed for both ITT and IV analyses in the diet arm, adjusting for 

baseline metabolic traits and smoking in the lycopene arm, and metabolic traits in the 

dietary advice arm. In the physical activity arm, post-hoc groups sensitivity analyses 

were performed by adjusting for age and baseline metabolic traits. The aim of the 
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adjusted ITT analysis was to investigate the effects that the potentially unbalanced 

variable had on the effect size and precision of the main results. All participants with 

follow-up metabolite data also had baseline data and thus they were all included in the 

sensitivity analysis.  

6.3.3.5. Causal analysis 

A detailed description of the use of MR in feasibility studies is presented in Chapter 4, 

Section 4.4.4. Briefly, a two-stage randomisation process was employed. Figure 6.1 

presents the two-stage randomisation processed applied in the PrEvENT trial, and 

PRACTICAL consortium. The first stage assessed the effects of the intermediate 

endpoints (metabolites) which were altered by the intervention, using ITT and IV 

analyses. In stage 2, causal estimates of the genetically instrumented metabolites on PCa 

mortality are generated. First, the metabolites were instrumented using genetic variants 

from the UKBB GWAS (i.e genetic variants associated with the metabolites are 

identified). The instruments (genetic variants associated with the metabolites) were then 

used to run the MR analysis which estimates the causal effect that these instruments 

(genetic variants) have on PCa mortality using genetic mortality data in the 

PRACTICAL consortium. By combining the two stages, I was able to identify 

metabolites the that the interventions in the PrEvENT altered and estimate the causal 

effect of these altered metabolites on PCa mortality. 

The two-sample MR analysis used in this Chapter was conducted as part of Chapter 5’s 

causal analysis (Section 5.6.3). In this Chapter, I only present the causal effects on PCa 

mortality of the metabolites for which I found some evidence of being altered by the 

interventions. MR analysis is not meant to provide definitive evidence of the causal 

effect of the interventions on PCa mortality, but rather indicate potential mechanisms of 

action and provide evidence for future work. In addition, the measurement of 

metabolites in the PrEvENT trial was not a primary outcome, the sample size was small, 

and the statistical threshold obtained through principal component analysis was 

conservative. For these reasons, I took through to the MR analysis the metabolites with 

the strongest evidence of association (p-value<0.05) observed in the trial and treated the 

investigated metabolites with caution. In addition, due to the low power to detect 
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changes in metabolites in the PrEvENT trial, I conducted an ad hoc sensitivity analysis 

and selected the metabolites to be taken forward to the MR analysis based on their effect 

sizes in each of the trial’s unadjusted ITT analysis. I compared the metabolites which 

were taken forward using the p<0.05 cut-off to the top 10% of metabolites within each 

arm. For each of these two sensitivity analyses, when estimating the causal effect, I used 

the Wald ratio or inverse variance weighted as the main estimating method. As 

sensitivity analyses to the causal estimation process, I used alternative estimating 

methods (MR Egger, simple mode, weighted median and mean), where possible (if more 

than 3 instruments available).  
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Figure 6.1: The two-stage randomisation process in the Prostate Cancer Evidence of 

Exercise and Nutrition trial and Prostate Cancer Association Group to Investigate 

Cancer Associated Alterations in the Genome consortium.  

 

ITT=Intention-to-treat; IV=Instrumental variable; MR=Mendelian randomisation; PrEvENT= Prostate Cancer Evidence of Exercise 

and Nutrition trial; PRACTICAL= Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome 

consortium; UKBB=UK biobank; PCa=Prostate Cancer 
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6.4. Results 

6.4.1. Descriptive analysis 

Eighty-seven men were invited to take part in the trial and 81 men were randomised. 

Three participants withdrew, three were lost to follow-up and one participant did not 

have blood samples taken at his 6-month follow-up appointment (Chapter 4, Figure 4.2). 

In total, metabolomics data were available for 81 and 74 participants at trial baseline and 

6-month follow-up, respectively. The participants had a mean age of 64.0 years 

(SD=6.54), a BMI of 26.6 kg/m2 (SD=3.39) and a mean baseline PSA of 0.17 ng/ml 

(SD=1.25) following prostatectomy.  

Table 6.1 presents the baseline characteristics for men, by intervention arm, for each of 

the dietary and physical activity groups. For most of the clinical, sociodemographic and 

lifestyle factors investigated, there were no marked differences across the intervention 

arms within the dietary or physical activity intervention groups, as would be anticipated 

given the randomised design of the study. However, in the dietary intervention, the 

participants in the control arm, compared to those in the lycopene and dietary advice 

arms, appeared to have higher PSA, were more likely to be smokers or ex-smokers and 

drink hazardous levels of alcohol. The prevalence of PCa family history was higher in 

the lycopene arm compared to the dietary advice and control arms. Overall, there were 

few people with diabetes in the trial, with noninformative numbers across the trial arms. 

In the physical activity group, age was higher in the brisk walking arm than in the 

control arm.  
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Table 6.1: Baseline characteristics of the men by intervention group 

 

PCa=Prostate Cancer

 

 Dietary arm (N=81) Physical activity arm (N=81) 

  Lycopene Dietary advice  Control Brisk Walking Control 
 

  N Mean (SD) N Mean (SD) N Mean (SD) N Mean (SD) N Mean (SD) 

Age (years) 28 62.54 (7.98) 27 64.63 (5.44) 26 65.06 (5.78) 42 65.77 (5.49) 39 62.19 (7.12) 

Body mass index (kg/m2) 24 26.16 (3.61) 26 26.71 (3.57) 26 26.82 (3.07) 39 26.58 (3.34) 37 26.56 (3.49) 

PSA, (ng/ml) 28 0.04 (0.13) 27 0.00 (0.01) 26 0.43 (2.10) 39 0.03 (0.10) 34  0.33 (1.83) 

Lycopene (umol/l) 27 1.36 (0.46) 26 1.26 (0.37) 26 1.20 (0.40) 40 1.34 (0.42) 38  1.21 (0.40) 

Fruit & Vegetable intake (servings/day) 25 8.43 (4.10) 26 8.82 (5.51) 25 7.31 (2.39) 36 8.85 (4.83) 41 7.60 (3.50) 

Amount of dairy milk intake(100mL/day) 25 3.08 (1.62) 26 2.80 (1.86) 26 2.37 (1.57) 40 2.97 (1.80) 37 2.50 (1.55) 

          

 
 

N Percent (%) N Percent (%) N Percent (%) N Percent (%) N Percent (%) 

Smoking status                 

   Current smoker 0 0 0 0 2 7.69 1 2.7 1 2.5 

      Ex-smoker 9 37.5 13 48.15 16 61.54 21 56.76 17 42.5 

    Never Smoker 15 62.5 14 51.85 8 30.77 15 40.54 22 55.0 

Family history PCa               

    Yes 11 44.0 3 11.11 2 7.69 9 24.32 7 17.1 

      No 10 40.0 14 51.85 16 61.54 16 43.24 24 58.5 

    Don’t know 4 16.0 10 37.04 7 26.92 11 29.73 10 24.4 

Alcohol                   

    Non-Drinker 14 50.0 9 33.33 8 30.77 17 43.59 14 33.3 

      Moderate 11 39.29 16 59.26 11 42.31 17 43.59 21 50.0 

    Hazardous 3 10.71 2 7.41 7 26.92 5 12.82 7 16.7 

Diabetes                   

    Yes 1 4.0 2 7.41 1 3.85 3 8.11 1 2.4 

      No 22 88.0 23 85.19 21 80.77 29 78.38 37 90.2 

    Unknown 2 8.0 2 7.41 4 15.38 5 13.51 3 7.3 



   141 

To investigate whether the interventions achieved what they set out to do (that is, the 

lycopene arm to increase serum lycopene, the dietary advice to increase fruit and vegetable 

and decrease dairy milk intake, and the brisk walking to increase step count), I compared 

levels of serum lycopene, self-reported fruit and vegetable and dairy milk intake, and self-

reported step count for each arm, at the 6-month follow-up (Table 6.2).  

Serum lycopene was highest in the dietary advice arm, with a mean concentration of 1.51 

µmol/L (SD=0.50), followed by the lycopene arm, with a mean concentration of 1.30 µmol/L 

(SD=0.45). There was evidence that serum lycopene levels were altered in the dietary advice 

arm (p=0.03). There was weak evidence to suggest that serum lycopene was altered in the 

lycopene supplement arm (p=0.47). 

Mean fruit and vegetable mean intake was higher in dietary advice (mean=9.89, SD=0.50) 

and lycopene (mean=8.54, SD=4.63) arms compared to controls. However, only the dietary 

arm showed strong evidence of having higher intake of fruit and vegetable compared to the 

control arm (p=0.04). Dairy milk intake was lowest in the dietary advice arm (mean=0.39, 

SD=1.03). I found strong evidence to suggest that dairy milk intake was lower in the dietary 

advice compared to the control arm (p<0.001). There was weak evidence to suggest that 

serum lycopene, fruit and vegetable, and dairy milk intake were different in the brisk 

walking arm compared to controls.  

The mean number of steps per day was comparable across the dietary arms, with weak 

evidence to suggest that it was different in the lycopene and dietary arms compared to 

controls. The mean number of steps per day was higher in the brisk walking group 

(mean=8,844, SD =3,171) compared to controls (mean=7,494, SD=2,364). There was some 

evidence to suggest that the physical activity intervention altered the mean number of steps 

per day (mean difference= 1,350, 95%CI: 41.6-2658, p=0.04). 
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Table 6.2: Effects of the interventions on lycopene serum levels, self-reported fruit and vegetable, and dairy milk intake and step count. 

SD=standard deviation 

* Obtained from linear regression of the exposure variables (serum lycopene, fruit and vegetable, and dairy milk intake, step count) against the intervention arms in each of the dietary or physical activity interventions. 
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6.4.2. Intention-to-treat analysis  

ITT analysis was used to investigate the effects of each of the interventions in relation to 

individual metabolites. The results of the ITT analysis are presented in the next sections, 

separately for each of the dietary and physical activity interventions.  

6.4.2.1. Dietary Group 

I found only weak evidence to suggest the dietary interventions altered the metabolome 

of men with PCa. Overall patterns showed a reduction in circulating serum levels of 

lipoprotein particles, cholesterol, glycerides, phospholipids, apolipoproteins, most fatty 

acids, amino acids and glycolysis related metabolites, ratio of saturated fatty acid to total 

fatty acids, albumin and glycoprotein acetyls (dietary advice only). Circulating large and 

very large HDL related measures, LDL and HDL particle size, degree of unsaturation, 

fatty acid ratios, citrate (dietary advice only), glutamine (dietary advice only), glycine 

and acetate there showed an increase associated with both interventions. Generally 

larger effects were observed in the dietary advice group compared to the lycopene 

group (Figure 6.2a). Weak evidence showed that alanine decreased in the lycopene arm. 

In the dietary advice arm small HDL concentration, lactate, pyruvate, saturated fatty 

acid to fatty acid ratio decreased and some fatty acid ratios (linoleic and omega-6 fatty 

acids to total fatty acids) increased. However, there was no strong statistical evidence of 

change in individual metabolites in either the lycopene supplementation or the dietary 

advice arms compared to the controls, with no associations reaching my pre-specified 

multiple testing significance threshold of p<0.004 (Tables C4 and C5, Appendix C). In 

the lycopene arm, the largest effect size was observed for alanine (β= -0.61; 95%CI= -

1.18, -0.046; p= 0.035, where β represents the change in SD for the metabolic trait). In the 

dietary arm, the largest effect sizes were observed for pyruvate (β= -0.68; 95%CI = -1.28, 

-0.082; p= 0.026) and acetate (β= 0.64; 95%CI=0.054; 1.22; p= 0.03). 

After adjustment for baseline metabolic trait levels in the dietary and additionally for 

smoking in the lycopene arm, most metabolites maintained their effect size and 

direction. The exceptions were some VLDL, HDL and triglyceride, as well as fatty acid 

measures (degree of unsaturation, percentage of omega-6 to totally fatty acids) which 

reversed their direction of association following adjustment (Figure 6.2b). Alanine 

showed strong evidence of association in the lycopene intervention in the adjusted 
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model (β= -0.86; 95% CI = -1.35, -0.37; p=0.001) (Table C6, Appendix C). After 

adjustment for metabolic traits in the dietary advice arm, the observed effect in the 

unadjusted analysis on acetate (β = 0.63; 95% CI = -0.02, 1.27; p = 0.06) and pyruvate (β = 

-0.60; 95% CI = -1.14, -0.056.; p=0.03) were maintained (Table C7, Appendix C).  

6.4.2.2. Physical activity Group 

Overall, there was some, but not strong evidence that the brisk walking intervention 

altered the metabolome of men with PCa. There was a reduction in VLDL, LDL and 

their associated particle sizes, and an increase in HDL and its associated particle sizes in 

the physical activity arm compared to controls (Figure 6.2c). Measures of cholesterol 

levels generally decreased, except HDL cholesterol measures which increased. 

Triglycerides and fatty acids experienced a reduction overall, with an increase in the 

degree of unsaturation. Glycolysis related metabolites decreased except glycerol which 

showed an increase. Branched-chain amino acids and glycoprotein acetyls decreased, 

and ketone bodies increased. There was some, but not strong evidence that multiple 

measures of VLDL and saturated fatty acids decreased and some fatty acid ratios 

increased. The ratio of linoleic acid to total fatty acids (β = 0.56; 95% CI = 0.12, 1.01; p = 

0.01) and cholesterol esters in extremely large VLDL (β=-0.53; 95% CI = -0.98, -0.07; p = 

0.024) showed the strongest statistical evidence of associations (Table C8, Appendix C). 

However, there was no strong evidence that the brisk walking intervention altered 

individual metabolic traits at my pre-specified multiple testing significance threshold 

(p<0.004). 

After adjustment for baseline metabolic trait levels and age, most metabolic measures 

maintained the direction and magnitude of effect observed in the unadjusted analysis, 

except for HDL measures which showed a change in direction. There was strong 

evidence that brisk walking decreased measures of triglycerides, saturated fatty acids, 

total phosphoglycerides and phosphatidylcholine (Figure 6.2d). The largest effect size 

was observed for triglycerides in large HDL (β=-0.57; 95% CI = -0.9, -0.23; p = 0.001) 

(Table C9, Appendix C). 
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Figure 6.2: Forest plots of the overall effects (Intention-to-treat) of the intervention vs control on serum metabolites, by intervention arm in the 

unadjusted and adjusted analyses 
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VLDL=Very low-density lipoprotein; LDL=low-density lipoprotein; HDL=high-density lipoprotein; C=Cholesterol; MUFA=monounsaturated fatty acids; PUFA=polyunsaturated fatty acids; n3 =omega; n6=omega 

6; SFA= saturated fatty acids 

The circles and squares represent the β coefficient of the ITT analysis (linear regression), between the metabolites and intervention arms at follow-up. The β coefficients are in units of 1 SD 

metabolite concentration. The closed symbols indicate values that reached the pre-defined statistical significance level (p<0.004). The horizonal bars are the 95% confidence intervals. (A) Overall 

effects of the dietary advice and lycopene arms vs control on individual metabolites in the unadjusted ITT analysis (B) Overall effects of the dietary advice and lycopene arms vs control on 

individual metabolites in the adjusted (baseline metabolites for the dietary advice arm and baseline metabolites and smoking for the lycopene arm) ITT analysis (C) Overall effects of the brisk 

walking arm vs control on individual metabolites in the unadjusted ITT analysis (D) Overall effects of the brisk walking arm vs control on individual metabolites in the adjusted (baseline metabolic 

traits and age) ITT analysis.   
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6.4.2.3 Correlation of ITT results across the dietary and physical 

activity interventions 

To compare how consistent the metabolic changes from each of the dietary and brisk 

walking interventions were with each other, I regressed the results from the individual 

metabolite ITT and graphed these on scatterplots (lycopene vs dietary advice, lycopene 

vs brisk walking, and brisk walking vs dietary advice). The correlation slopes (β) 

generated using linear regression, intercept and R2= are presented in Figure 6.1. There 

was some correlation between the effects of the lycopene supplementation and the 

dietary advice on metabolic measures at 6-months follow-up (β =0.60 ±0.04, R2=0.64) 

(Figure 6.3A). After adjusting for baseline metabolic measures, the correlation was 

maintained (β=0.62 ± 0.03, R2=0.67) (Figure 6.3B). There was a weak correlation between 

the effects of brisk walking advice with lycopene supplementation at the 6-month 

follow-up (β=0.19 ±0.12, R2=0.02) (Figure 6.3C). There was some correlation between the 

effects of brisk walking and dietary advice (β =0.51 ±0.08, R2= 0.21) (Figure 6.3 D) on 

metabolic measures at 6-months follow-up. 
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Figure 6.3: Comparison of the overall effects of the interventions on metabolites from the 

Intention-to-treat analysis intervention arm vs control. 

The plots present the SD difference in metabolite concentration between the intervention arm and control. Each dot on the 

scatterplot represents a different metabolite. The dotted light grey line has a slope of 1 and an intercept of zero. The dark 

grey dotted line represents the linear fit of the two models. The closer the two lines are to overlap, the more similar 

magnitudes and direction of the associations.  

(A) Comparison of the overall effects of metabolites between the lycopene arm vs controls (x-axis) and dietary advice vs 

controls (y-axis), from the unadjusted ITT analysis.          

(B) Comparison of the overall effects of metabolites between the lycopene arm vs controls (x-axis) and dietary advice vs 

controls (y-axis), from the ITT analysis, adjusted for baseline metabolic traits and smoking.                                                   

(C) Comparison of the overall effects of metabolites between the lycopene arm vs controls (x-axis) and brisk walking vs 

controls (y-axis), from the unadjusted ITT analysis. 

(D) Comparison of the overall effects of metabolites between the dietary advice arm vs controls (x-axis) and brisk walking 

vs controls (y-axis), from the unadjusted ITT analysis. 
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6.4.3. Instrumental variable analysis 

IV analysis was used, with the randomised intervention assignment as the instrument, 

to investigate the causal effect of changes in serum lycopene, fruit and vegetable and 

dairy milk intake on metabolites at 6-months of follow-up. The F-statistic and R2 from 

the unadjusted linear regression results (first step) of the exposures (serum lycopene, 

fruit and vegetable, dairy milk intake, step count measures) and intervention arms are 

presented in Table 6.3 and the p-value is presented in Table 6.2. There was weak 

evidence to suggest that the lycopene intervention modified levels of serum lycopene (β 

=0.1; 95%CI: - 0.17, 0.37; p=0.46; F-statistic=0.57). In the dietary advice arm, there was 

some evidence that the intervention modified levels of self-reported fruit and vegetable 

intake (β=2.76; 95%CI: 0.25, 5.3; p=0.03; F-statistic=4.9) and strong evidence that it 

modified self-reported dairy milk intake (β=-2.3; 95%CI: -3.12, -1.5; p<0.001; F-

statistic=32.1). There was some evidence that the physical activity intervention modified 

the self-reported mean number of steps taken per day (β (per 1,000 steps) =1,350; 95%CI: 

42-2658; p=0.04; F-statistic: 4.23) and percentage of days with more than 10,000 steps (β 

=0.16; 95%CI:0.004 - 0.23; p=0.04; F-statistic=4.25). 

The results of the unadjusted linear regression of the instrumented exposures on the 

individual metabolite levels (second step of the IV analysis) are presented in Appendix 

C, Tables C10, C11 and C12. Generally, the results of the IV were consistent with those 

from the ITT. The metabolites with the largest effect sizes from the ITT also had the 

largest effects in IV analyses. None of the associations surpassed my conservative 

significance threshold. The same patterns were seen after adjusting for baseline 

metabolites in the dietary advice arm and baseline metabolites and age in the IV to ITT 

results (Appendix C, Tables C13, C14, C15).  
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Table 6.3: Linear regression results of exposures and intervention arms (Instrumental 

variable instruments) from the first step of the Instrumental variable analysis. 

Exposure measure N F-statistic R2 

Serum lycopene (umol/l) 48 0.57 0.12 

Fruit and vegetable intake (servings per day) 44 4.9 0.11 

Mean steps (thousands of steps / day) 74 4.23 0.06 

Percentage of days with more than 10,000 steps (percentage of 

total reported days) 

74 4.25 0.06 

Dairy milk intake (100mL/day) 44 32.1 0.43 

 

6.4.4.  Mendelian Randomisation analysis 

Twenty-three metabolites were taken forward from the PrEvENT trial into the MR 

analysis with the list of metabolites and the F-statistic for the instruments presented in 

Appendix C Tables C16 and C17, respectively. The causal estimates of the metabolites on 

PCa mortality, using the inverse variance weighted method are presented in Figure 6.4 

and Table 6.4. Generally, I found evidence of a causal association between cholesterol 

esters in medium VLDL (OR=1.16; 95%CI:1.01-1.34; p=0.03) and phospholipids in 

chylomicrons and extremely large VLDL (OR=1.14; 95%CI:1.01-1.29; p=0.04) with 

increased PCa mortality. The largest causal effect sizes for the metabolites taken forward 

were observed for lactate (OR=1.49; 95%CI:0.95-2.34; p=0.09) and alanine (OR=1.24; 

95%CI:0.99-1.55; p=0.06). In the MR sensitivity analysis, the causal estimates of the 

metabolites in relation to PCa mortality had similar effect size and the same direction of 

association when using different estimation methods (MR Egger, simple mode, 

weighted median and mode) (Table C18, Appendix C).  

When selecting metabolites to be taken forward into the MR analysis from the PrEvENT 

trial based on their effect sizes (top 10% in the unadjusted ITT in each arm), rather than 

p-value (p<0.05), 32 metabolites were identified. Approximately 16 metabolites per 

intervention arm were selected for the dietary and physical activity intervention. I did 

not conduct this sensitivity analysis in the lycopene arm, due to the lack of effect the 

intervention had on what it set out to achieve (i.e., elevate serum lycopene). All 
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metabolites, except for cholesterol esters in large VLDL in the brisk walking arm, which 

were selected using p-value were also selected when applying the 10% effect size cut-off. 

The extra 6 metabolites selected using the 10% effect size cut-off were all from the 

dietary intervention arm. The list of the 6 extra metabolites selected in this sensitivity 

analysis, the F-statistic of the instruments and MR results are presented in Appendix C 

Tables C19 and C20. Generally, I found weak evidence of a causal link between the 

additional metabolites identified in this sensitivity analysis and PCa mortality, with 

small effect sizes centred around the null.  

Figure 6.4: Causal effects (odds ratio) of the altered metabolites in the Prostate Cancer 

Evidence of Exercise and Nutrition trial on Prostate Cancer mortality using data from 

the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in 

the Genome consortium. 

LA_pct=Percentage of linoleic to total fatty acid; PUFA_pct=Percentage of polyunsaturated fatty acids to total fatty acids; 

S_HDL_P=Concentration of small high-density lipoprotein particles; SFA_pct= Percentage of saturated fatty acids to total fatty 

acids; XL_VLDL_CE=Cholesterol esters in very large very low-density lipoprotein; XL_VLDL_C=Total cholesterol in very large very 

low-density lipoprotein; XL_HDL_TG=Triglycerides in very large high-density lipoprotein; XXL_VLDL_CE=Cholesterol esters in 

chylomicrons and extremely large very low-density lipoprotein; XL_VLDL_PL= Phospholipids in very large very low-density 

lipoprotein; XXL_VLDL_P=Concentration of chylomicrons and extremely large very low-density lipoprotein particles; SFA=; 

XXL_VLDL_C= Total cholesterol in chylomicrons and extremely large very low-density lipoprotein particles ; XXL_VLDL_FC= 

Free cholesterol in chylomicrons and extremely large very low-density lipoprotein particles; XXL_VLDL_L= Total lipids in 

chylomicrons and extremely large very low-density lipoprotein particles; XL_VLDL_FC= Free cholesterol in very large very low-

density lipoprotein particles ; L_VLDL_CE= Cholesterol esters in large very low-density lipoprotein particles; XXL_VLDL_PL= 

Phospholipids in chylomicrons and extremely large very low-density lipoprotein particles; M_VLDL_CE= Cholesterol esters in 

medium very low-density lipoprotein particles; Ala=Alanine 

Causal estimates were calculated using inverse variance weighted, except for pyruvate and acetate where the Wald 

method was used. Acetate has an upper 95%CI of 5.54, however for graphical aesthetics it was set to 3. 
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Table 6.4: Causal effect estimates of altered metabolites from the Prostate Cancer 

Evidence of Exercise and Nutrition trial on Prostate Cancer mortality in the Prostate 

Cancer Association Group to Investigate Cancer Associated Alterations in the Genome 

consortium, in the inverse variance weighted or Wald ratio methods. 
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ITT=Intention-to-treat; CI=Confidence interval; MR=Mendelian randomisation; PCa=Prostate Cancer; VLDL=very low-

density lipoprotein; HDL=high-density lipoprotein 

*Metabolites taken forward from the unadjusted ITT analysis (p<0.05) 

**Adjusted for baseline metabolites and smoking in the lycopene arm, baseline metabolites in the dietary advice, and 

baseline metabolites and age in the brisk walking arm. 

****Odds ratios estimates were obtained from MR of PCa survival in the PRACTICAL consortium, per 1 standard 

deviation increase in genetically instrumented levels of metabolites, using the IVW method 
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6.5. Discussion 

In this Chapter, I used the PrEvENT feasibility trial to investigate the effects of dietary 

and lifestyle interventions on the metabolite levels of men with PCa and estimate their 

causal effect on PCa mortality. In the dietary (lycopene supplementation or increasing 

fruit and vegetable consumption and decreasing dairy milk intake) interventions, 

general patterns showed a reduction of circulating serum levels of lipoprotein particles, 

cholesterol, glycerides, phospholipids, apolipoproteins, most fatty acids, amino acids 

and glycolysis related metabolites, ratio of saturated fatty acid to total fatty acids, 

albumin and glycoprotein acetyls (dietary advice only). I also only found weak evidence 

of an increase in circulating large and very large HDL related measures, LDL and HDL 

particle size, degree of unsaturation, fatty acid ratios, citrate (dietary advice only), 

glutamine (dietary advice only), glycine and acetate with both interventions for the 

dietary interventions. The strongest evidence (0.004<p<0.05) showed a reduction of 

small HDL concentration, lactate, pyruvate, saturated fatty acid to fatty acid ratio and an 

increase in some fatty acid ratios (linoleic, omega-6, saturated fatty acids to total fatty 

acids) in the dietary advice arm. In the lycopene arm, alanine showed some reduction 

(0.004<p<0.05). 

In the physical activity intervention, there was some, but not strong evidence of 

reduction of lipoproteins, VLDL and LDL cholesterol measures, fatty acids, glycolysis 

and amino acids. I also found weak evidence for an increase in HDL related molecules, 

degree of unsaturation, glycerol and ketone bodies in the physical activity arm. The 

strongest evidence (0.004<p<0.05) was for a reduction of VLDL measures, triglycerides 

in HDL and saturated fatty acids and for an increase of some ratios of fatty acids 

(linoleic, omega-6, polyunsaturated fatty acids to total fatty acids). 

The MR analysis found causal evidence, that genetically instrumented levels of 

phospholipids in chylomicrons and extremely large VLDL, cholesterol esters in medium 

VLDL, may increase the risk of PCa death. There was also some evidence that alanine 

and lactate may be causally associated with increased PCa mortality. Alanine was found 

to be decreased by the lycopene intervention, lactate decreased by the dietary 

intervention and the two VLDL measures decreased by the brisk walking intervention. 

My findings suggest that lifestyle and dietary interventions may lower some VLDL 

measures, alanine and lactate, for which there is some evidence that they are causally 
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associated with increased PCa mortality, in men with localised PCa who underwent 

prostatectomy. However, it is important to note that none of the observed associations in 

the unadjusted ITT analysis surpassed the statistical thresholds of 0.004. In addition, the 

lycopene supplementation intervention failed to raise serum lycopene levels and thus 

the findings on alanine must be interpreted with caution. 

6.5.1. Main findings 

6.5.1.1. Lycopene supplementation 

In this study, an intervention of oral lycopene supplementation did not increase serum 

lycopene. I found weak evidence that the intervention altered the metabolome of men 

with PCa. I found some evidence that randomisation to the lycopene supplementation 

lowered circulating levels of alanine in the unadjusted ITT, with the association 

becoming strong after adjusting for baseline metabolites and smoking. Alanine is a 

precursor of sarcosine, an amino acid that has been previously linked to PC progression, 

by altering the amino acid metabolism (157,191,211,212,215). The MR analysis found 

some evidence that alanine is causally linked to increased risk of PCa progression. An 

MR of PCa risk found some evidence that alanine is linked with an increase in risk of 

developing PCa (326,350). However, it is unlikely that the protective effect observed in 

the survival MR could be an artefact of collider bias alone since the present MR analysis 

was adjusted for collider bias. In addition to these limitations, the lycopene supplement 

did not increase serum lycopene in the present feasibility RCT, whilst lycopene 

supplementation has been previously associated with a 2-fold increase in serum levels in 

other studies (376). The lack of effect observed on the metabolome despite very good 

adherence for the lycopene intervention, could be due to the fact the lycopene 

supplementation failed to achieve its aim to elevate lycopene serum level. Therefore, any 

evidence from this intervention arm should be carefully interpreted as suggestive 

evidence. 

6.5.1.2. Dietary advice intervention 

I found that a dietary advice intervention to increase fruit and vegetable, and decrease 

dairy milk consumption, altered self-reported measures of fruit and vegetable and dairy 

milk intake. Changes in lipid profiles were observed in the dietary advice arm compared 

to the control arm, and are consistent with previously published evidence of the lipid 
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lowering effects of a plant-based diet (377,378). In the IV analysis, I found that, assuming 

the causal effect of the interventions on the metabolites (identified by the ITT), and 

taking into account compliance, the metabolites were generally altered by decreased 

dairy milk intake and increased portions of fruits and vegetables in the same direction as 

shown in the ITT (complier adjusted causal effect). When adjusting for smoking status 

and metabolite measures, the associations from the unadjusted analysis were generally 

maintained, with similar effect sizes and direction, the exception being some fatty acid 

ratios (linoleic acid and omega-6 to total fatty acids). 

In the ITT, I found some, but not strong evidence that increased fruit and vegetable and 

decreased dairy milk intake, lowered circulating pyruvate, lactate, concentration of 

small HDL measures and ratio of saturated fatty acids to total fatty acids. The MR 

analysis found some evidence that lactate, which was decreased by the dietary 

intervention may be causally linked to increased PCa progression. In the ITT, there was 

some evidence that the ratio of omega-6 to total fatty acids increased in the intervention 

arm, while the MR analysis found weak evidence of association of this metabolite and 

decreased PCa mortality.    

It is established that lipids play an important role in cancer metabolism, particularly in 

supporting the metabolic alterations that are required in the rapid proliferation of 

cancerous cells (379,380). The hypothesis described in Chapter 3, section 3.4.5, states that 

PCa cells, unlike most other cancer cells, use active glycolysis and oxidative 

phosphorylation to generate the required increase in energy for cell proliferation and 

only use the aerobic glycolysis in later stages of the disease (221–226). Therefore, taken 

together the observational and causal analyses provide suggestive evidence that an 

intervention of dietary advice to increase fruit and vegetable and decrease dairy milk 

intake may lower levels of lactate which may be causally linked with increased PCa 

mortality. This is supported by the current evidence, since it is hypothesized that 

glycolysis metabolites (lactate and pyruvate) are required to generate the extra energy 

required for proliferation in later stage PCa. The findings thus suggest a potential role 

for interventions of increased fruit and vegetable and reduced dairy consumption in PCa 

progression prevention.  

However, an adequately powered RCT must be conducted to establish the effect of fruit 

and vegetable and dairy milk consumption on the metabolome of men with localised 

disease. An important limitation is that glycolysis can occur as soon as the sample is 
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collected, if the sample is not kept at very low temperatures and plasma and red blood 

cells are not separated immediately (381,382). Whilst of great interest in cancer 

metabolism, the glycolysis measures I found to be altered by the dietary advice 

intervention could be in part or even completely due to sample handling, although this 

is unlikely due to the randomised design of the trial, which would expect the samples 

from the control participants to undergo the same changes.  

6.5.1.3. Physical activity intervention 

Changes in lipid profiles were observed in the brisk walking group and were consistent 

with previously published evidence of the effects of physical activity on lipids (383,384). 

In the unadjusted ITT, I found that ratios of omega-6, linoleic acid and polyunsaturated 

fatty acids to total fatty acids were increased and saturated fatty acids decreased in the 

physical activity intervention group. However, the estimates were imprecise (wide 95% 

confidence intervals). I also found 12 measures of VLDL and one measure of HDL 

cholesterol to be lowered by the physical activity intervention, again with imprecise 

estimates which did not reach my pre-specified threshold of significance (p>0.004). After 

adjusting for baseline metabolic measures and age, of the metabolites identified in the 

unadjusted ITT, only saturated fatty acids surpassed the statistical threshold, with a 

comparable effect size to that in the unadjusted ITT analysis.  

The MR analysis found evidence that two of the metabolites which were decreased by 

the intervention (phospholipids in chylomicrons and extremely large VLDL and 

cholesterol esters in medium VLDL) increased PCa mortality, by 14% and 16%, 

respectively. The MR sensitivity analyses (MR Egger, weighted median, weighted mode, 

simple mode), which used different estimation methods, found similar effect sizes in the 

same direction of association. Taken together, the findings suggest that an intervention 

of brisk walking, may lower levels of phospholipids in chylomicrons and extremely 

large VLDL and cholesterol esters in medium VLDL, which the MR analysis found to be 

causally linked to increased PCa mortality. 

Recent evidence suggests that cholesterol esterification and free cholesterol may play a 

role in cholesterol homeostasis. This is hypothesized to occur through the inhibition of 

cholesterol esterification which in turn may suppress the synthesis of androgens and cell 

migration, thus delaying PCa metastases via the ß-catenin and the mevalonate pathways 

(379,380,385). However, the mechanism through which cholesterol affects cancer 
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progression is yet to be established. Despite a large number of studies aiming to provide 

mechanistic insight in the observational association between cholesterol and PCa 

progression, it is still uncertain whether cholesterol affects PCa progression by 

increasing cell proliferation, acting on signalling molecules and cell-cycle regulators or 

synthesis of androgens within the tumours, which leads to castration-resistant PCa (62).   

Although there was weak evidence to suggest that ratios of various types of fatty acids 

to total fatty acids (saturated fatty acids, omega-6 fatty acids and linoleic acids to total 

fatty acids) causally altered PCa mortality in this MR study, it has been previously 

suggested that such measures may prevent progression. Studies that investigated the 

link between PCa cells that are hormone independent or castrate-resistant have shown 

that progression is inhibited by fatty acid and enzymes related to fatty acid synthesis 

(386–389). Hormone independent cells are seen in advanced cases, and in this MR study 

I could not differentiate between localised and advanced PCa cases. The ratio of 

different types of fatty acids to total fatty acids may affect PCa phenotypes differently 

and this may be one reason for the lack of causal evidence observed. My results suggest 

that a brisk walking intervention may alter the ratio of saturated, omega-6 and linoleic 

fatty acids to total fatty acid in men with localised PCa, but no causal link was observed 

between these measures and overall PCa mortality. However, further research is 

required to understand the effects of saturated, omega-6 and linoleic fatty acids on PCa 

phenotypes. In addition, a recent study of PCa progression in mice has shown that fatty 

acids and cholesterol in combination activate pathways that enhance development of 

prostate cancer stem cells, which have been linked to disease progression (390,391).  

6.5.2. Strengths and Limitations  

My study has several strengths. Firstly, the adherence to the lycopene intervention was 

high and most measured confounders were balanced when compared to the randomised 

control group. The adherence to the dietary advice and brisk walking interventions were 

previously reported to be lower than other diet and physical activity interventions in 

cancer patients (127). However, the definitions used in the PrEvENT trial compared to 

other studies were stricter, expecting men to follow the intervention 90% of the time vs 

70%, in other studies. Therefore, the differences in metabolic traits observed in the ITT 

and IV analyses are likely to be due to the intervention itself rather than confounders. 

Secondly, to measure the metabolic traits, I used a highly reproducible and 
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quantitatively accurate, high throughput NMR platform, covering a wide range of 

metabolic pathways. Thirdly, using a 2-sample MR approach, I leveraged the statistical 

power of this small feasibility trial by using data from the largest GWAS study of 

metabolites to date (n=115,078) and the largest PCa consortium with over 75,672 PCa 

cases and 7,914 PCa deaths (23,35,392).  

One of the main limitations is that the lycopene capsule administered in the lycopene 

arm did not elevate serum lycopene in the intervention group. The aim of the PrEvENT 

trial which was a feasibility trial was to measure adherence to the intervention and not 

the change in serum lycopene. Previous studies have generally found that oral lycopene 

supplementation with capsules increases serum lycopene levels (80,393,394). However, 

most of these studies used a soft-gel capsule containing 15 mg of lycopene (Lyc-O-

Mato®), while the PrEvENT trial used a Holland and Barrett hard supplement capsule 

containing 10 mg lycopene (80,127,330,393,394). In addition, the Lyc-O-Mato® 

supplement contains small amounts of other compounds, such as ß-carotene, which has 

been suggested to increase lycopene absorption (395). NMR analysis, conducted by the 

University of Bristol, Department of Chemistry, of the current and Lyc-O-Mato® 

supplements found that both tablets contained lycopene compounds of similar chemical 

structure (all-Elycopene.). The analysis also found that the red pigment, which is a 

measure of the amount of lycopene contained, was darker in the red Lyc-O-Mato® 

supplement compared to the Holland and Barret tablets, suggesting a smaller 

concentration was present, although no formal quantification was performed. Given the 

lack of serum lycopene elevation at follow-up post supplementation, any evidence or 

lack of, observed in the lycopene arm should be interpreted with caution, since the effect 

of a lycopene supplementation intervention cannot be generalised from the PrEvENT 

trial.  

Whilst adherence to the physical activity intervention 90% of the time was 53.8%, 

compensatory mechanisms cannot be dismissed(127). Compensatory mechanisms in 

physical activity interventions refers to the fact that participants may change their 

physical activity patterns as a result of enrolling in the study. These potential 

mechanisms could be due to fatigue, lack of time and motivation to perform additional 

physical activity, perceptions of overexertion and drive to be less active(396). In the 

PrEvENT trial for example, participants may have decreased or changes their physical 

activity patterns already existent before enrolling. This could bias the results, given that 
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even though participants in the physical activity active arm adhered to the intervention, 

the observed effects of brisk walking intervention on the metabolome may be altered by 

both the intervention, but also the change in other physical activity. Therefore, when 

comparing the physical activity group to the control group, we cannot be certain that 

compensatory mechanisms were not in action, leading to biased estimates towards the 

null. Although one of the PrEvENT trial’s exclusion criteria was participation in high 

level of regular physical activity (5 or more times a week), the results could still be 

subject to compensatory mechanisms, through other type of physical activity that did 

not fall into this category such as active commuting and strenuous exercise for less than 

5 days per week. 

Another limitation of my study is the use of an RCT with a feasibility design, which does 

not allow for a definitive inference to be made with regards to the effect of the 

intervention on metabolic traits since they do not set out to achieve this. The lower 

adherence to some of the interventions and the poor performance to raise serum 

lycopene of the supplement, raised concerns of the validity of the ITT analysis. To 

overcome this, I employed an IV analysis to look at the effects of the exposures altered 

by the intervention on the follow-up metabolic traits; however, this was not possible for 

lycopene. In addition, despite its RCT design, there was evidence of some unbalanced 

measured confounders, for which I employed sensitivity analyses. Lastly, as expected in 

an ‘omics study, I assessed a large number of metabolic traits, some of which were 

highly correlated. To overcome this I employed a previously developed principal 

component analysis technique to reduce the multiple testing burden and improve power 

for detecting true associations (244,248). However, since the power was limited, I 

evaluated patterns in the metabolites altered with the largest effect sizes, rather than 

employing a strict statistical significance threshold. This helps avoid taking an overly 

conservative approach which could lead to low power in identifying true associations, 

particularly in my small study (244,248,347).  

 

One key assumption of MR analysis is that the genetic variant should only be associated 

with the outcome (PCa mortality) through the exposure of instrument – also known as 

the no-horizontal pleiotropy or exclusion restriction assumption. There is evidence of 

non-specificity of genetic variants used to instrument some of the metabolites, where 

some correlated metabolites share common instruments. While this limits causal 
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inference of individual metabolites, it can still allow the identification of relevant classes 

of metabolites. Nonetheless, where possible I conducted sensitivity analyses by applying 

MR Egger and weighted median approach to assess the presence of horizontal 

pleiotropy.  

A specific assumption of the two-sample MR approach is that the two samples represent 

the same underlying population. While the two GWAS studies used in this analysis 

were restricted to individuals of European ancestry, there were differences in the 

average ages of the study samples, and the UKBB metabolite GWAS study included 

both males and females whereas in PRACTICAL all participants were male. 

One limitation of this analysis is that the samples included in the two-sample MR have 

some overlap, which has been shown to introduce bias into the MR analysis (303). 

However, only 10% of the total number of participants in the PRACTICAL consortium 

originated from UKBB. 

Finally, it is important to highlight that absence of metabolites related to both 

intervention and PCa survival does not mean that the intervention cannot influence PCa 

via other mechanism which I was unable to explore in this study. Well designed and 

conducted RCTs can help minimise the bias that would otherwise occur in observational 

studies assessing lifestyle and dietary factors, while MR studies can decrease 

confounding and reverse causation and help predict long-term outcomes in intervention 

studies of short durations. By integrating both these approaches in a two-step 

randomisation design, my results suggest that interventions aimed to increase serum 

lycopene, reduce dairy and increase fruit and vegetable consumption, and increase brisk 

walking may alter the metabolome of men with localised PCa, by particularly improving 

the lipid profiles, with evidence that lowering measures of cholesterol, may decrease 

PCa mortality.  

6.5.3. Implications for future research 

Future studies are required to establish definitive effects of dairy, fruit and vegetable, 

lycopene and brisk walking in the survival of men with PCa and to further understand 

mechanisms of action. Most of the studies looking at the effect of dietary and physical 

activity interventions on PCa progression did not have clinical progression outcomes, 

such as metastases. Instead, they used proxy measures, such as PSA increases, which 

could lead to classifying men as having ‘PCa progression’ that may not be clinically 
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important. A recent RCT which followed up men with localised PCa over three years, 

found no difference in progression when men were randomised to an intervention to 

increase vegetable consumption (104). However, 50% of the patients were classed as 

progressed using PSA measures, which suggests that study conclusions are not 

generalisable given that most men with PCa have a much lower rate of clinically defined 

progression (e.g. metastases, castrate resistance), particularly over the study’s follow-up 

period of three years (2,19). Generally, the RCTs conducted to assess the effects of 

physical activity on localised PCa progression had short follow-up times (up to 2 years) 

which given the indolent nature of the disease would not comprehensively capture 

progression patterns. Despite recent advances in treatment and diagnosis of PCa, 

castration resistant PCa remains a lethal disease with poor clinical outcomes and thus 

better understanding the aetiology and prediction factors of disease progression as well 

as therapeutic targets are needed (397–399). 

The findings in my study warrant further investigation to establish whether lifestyle and 

dietary interventions could alter cholesterol, fatty acid, lactate and alanine levels and 

thus act as new therapeutic targets for the prevention of PCa progression to fatal disease. 

Future diet and lifestyle studies, appropriately powered to detect changes in metabolites 

in localised PCa, along with an MR analysis performed in localised PCa phenotypes, 

could provide triangulation of evidence. This would allow more generalisable inferences 

to be drawn in the first instance, without requiring RCTs with long follow-up.  

From a practical perspective, when starting a large-scale study which aims to assess the 

effects of lycopene supplementation in PCa patients, it is advisable to investigate the 

efficacy of the supplement in increasing serum lycopene levels in a subset of the study 

population, using a pilot or a feasibility study design. This should apply even when 

using an over-the-counter supplement from a high street store, given the lack of efficacy 

at elevating serum lycopene observed in the PrEvENT trial. In addition, assumptions on 

efficacy are hard to make given other factors in the manufacturing and presentation of 

the supplement. For example, supplements can contain additional compounds, have a 

different isomer and presentation and it is uncertain what the effect of these aspects is on 

bioavailability and absorption into the bloodstream.  
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6.6. Chapter Summary 

In this Chapter, I used ITT and IV analyses of a factorial feasibility RCT to investigate 

the effects of diet and lifestyle interventions on metabolomic measures in men with 

localised PCa. I then used MR analysis to estimate the potential causal effect of the 

altered metabolites on PCa mortality. In a factorial feasibility RCT, there was some, but 

not strong evidence that an intervention of lycopene supplementation, an intervention of 

dietary advice to increase fruit and vegetable intake and decrease dairy milk 

consumption, and an intervention of brisk walking, may alter VLDL, HDL and fatty acid 

measures, acetate, lactate, pyruvate and alanine, in men with PCa who underwent 

radical prostatectomy. In turn, my causal analysis found some evidence of an effect of 

raised levels of some of these metabolites (phospholipids and cholesterol esters in 

medium VLDL, alanine and lactate) and increased risk of PCa mortality. My findings 

suggest that lifestyle interventions (increased fruit and vegetable and decreased dairy 

milk intake, brisk walking) may decrease some metabolites in men with PCa which are 

causally linked to increased PCa mortality. Further studies are required to directly 

determine the effects of diet and physical activity interventions on PCa mortality or 

intermediate biomarkers of PCa progression. 
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Chapter 7.  Evaluating the 

performance of multi-

metabolomic risk scores to 

predict PCa mortality 

7.1. Chapter overview 

In this Chapter, I aimed to explore the link between individual metabolites and Prostate 

Cancer (PCa) specific and all-cause mortality and characterise and validate a PCa-

specific mortality multi-metabolite risk score (PCa mRS) developed in a large population 

cohort (UK Biobank) (344). I assessed the predictive performance of the score compared 

to a previously developed all-cause mortality multi-metabolite risk score (all-cause mRS) 

as well as against the established prognostic Gleason scoring system (271,400).  The PCa 

mRS had been previously trained by investigators from Nightingale Health in the UK 

Biobank (UKBB) cohort of 24,895 men with PCa of whom 1,234 died of PCa. The all-

cause mortality mRS had been previously trained Deelen et. al using data from 12 

cohorts (44,168 men and 5,512 all-cause deaths). To get a detailed understanding of the 

PCa mRS clinical value, I evaluated the capacity of the three scores (PCa mRS, all-cause 

mRS, and Gleason score) to predict PCa mortality in a clinical setting of PCa men, 

diagnosed with localised and locally advanced disease, through the PSA testing 

intervention in the Prostate Testing for Cancer and Treatment (ProtecT) cohort.  

The Chapter opens with a methodological summary, detailing the models which were 

investigated, with the statistical analysis methodology being described in detail in 

Chapter 4. First, I present the associations of individual metabolites in relation to PCa 

and all-cause mortality in ProtecT (n=2,093), a case-only cohort. I then present the 

descriptive and main analyses of the evaluation of the two metabolomic risk scores in 

the case only and a case-control study design, with cases and controls from the ProtecT 

cohort. The Chapter ends with a discussion of the main findings and their implications 

for future research, and the strengths and weaknesses of the study.  



 166 

7.2. Research questions 

1) Are circulating metabolites associated with PCa specific and all-cause 

mortality in men with PSA detected PCa?  

2) Does the PCa mRS model predict PCa or all-cause mortality in men with 

PSA detected PCa?  

3) Does the all-cause mRS model predict PCa death or all-cause mortality in 

men with PSA detected PCa? 

 

7.3. Methods 

In this section I introduce the two clinical prediction models based on measures of 

circulating metabolites and briefly present the methods I used to analyse their 

performance at predicting PCa mortality. The full methodology used in this Chapter and 

details of the study population and measured variables in the ProtecT cohort are 

described in detail in Chapter 4.  

7.3.1. Study population 

In this Chapter the main analyses in the case-only study were conducted using a subset 

of participants from the ProtecT cohort (33). These included participants who were 

diagnosed with localised and locally advanced PCa as part of PSA testing to identify 

men with localised prostate cancer for the ProtecT randomised controlled trial (RCT). 

Only men with serum metabolomics data who were followed up for mortality through 

the ProtecT cohort were included in this analysis (n=2,093). There is some overlap of 

these men with those selected in Chapter 5. The main difference is that in Chapter 5, I 

selected men with localised disease who were followed-up for progression (clinical 

progression, metastases or PCa death) through the ProtecT RCT. In this Chapter, to 

maximise the number of deaths which was the outcome of interest, I selected all 

participants for which mortality data was available. Some of the men were therefore not 

followed-up through the ProtecT RCT, but rather as part of the comprehensive ProtecT 

cohort, for which only death (PCa specific or all-cause) was available as progression 
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indicator (33). In sensitivity analyses, I restricted the cohort to men with localised PCa 

(i.e., clinical stages T1 and T2). 

NMR metabolomic studies that assessed the links between metabolites and all-cause 

mortality have been previously investigated in multiple large cohorts of participants and 

found similar patterns (271,401,402). Associations between metabolites and all-cause 

mortality in PCa cases and controls should therefore show similar patterns. By 

comparing the findings, in cases and controls, to those of other studies, I examined 

whether unexpected patterns are observed between the cases and controls. This could 

indicate issues such as sample quality and prevalent PCa being unevenly distributed 

between cases and controls, which could bias the analyses proposed. Therefore, to 

address these issues, I investigated the link between all-cause mortality in both cases 

and controls in the ProtecT study. I used the same cohort for cases as described above, 

and a previously selected set of controls from the comprehensive ProtecT cohort, from 

the same stratum as the cases, matched on a 5-year age-band (age at PSA test) and GP 

practice for which I had metabolomic data (n=2,167) (33,350,403).  

7.3.2. Measures 

The variables from the ProtecT cohort which were used in this Chapter’s analysis are: 

age, centre, PSA at baseline, clinical stage, Gleason grade, and PCa- and all-cause death. 

The metabolomic risk models which were evaluated in this Chapter were the all-cause 

mRS and PCa mRS, which are described in detail in Chapter 4, section 4.3.5.4. 

7.3.2.1 Metabolomic measures 

Two hundred and twenty-seven circulating metabolites were identified and quantified 

using the Nightingale NMR platform as described in Chapter 3 (section 3.2.2.1) and 4 

(section 4.2.1.7.2). The samples were collected at the ProtecT cohort study baseline (the 

participant’s first visit) for both cases and controls.  

7.3.2.2 Outcomes 

In this analysis, the outcomes used were PCa and all-cause mortality as obtained 

through the procedures of the ProtecT cohort study. Cause of death was generated by an 

independent committee for both studies which assessed each individual death record 

(404). Details on data linkage of the participant study records with mortality and 
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committee procedures are described in Chapter 4 section 4.2.1.6. Briefly, the cause of 

death was recorded as PCa if this was definite or probable death due to PCa during the 

median 10-year follow-up, as assessed by the Independent Cause of Death committee 

blind to the death certificate recorded cause of death. 

7.3.3. Statistical analyses 

For the descriptive statistics, I computed mean and standard deviation for continuous 

variables and percentages for categorical data. To establish differences within PCa and 

all-cause death groups, I used t-test and χ2 tests for continuous and categorical variables, 

respectively.  

I used Cox proportional hazards regression to examine the association between 

metabolomic measures (both individual serum metabolite levels and metabolomic risk 

scores) and risk of PCa-specific and all-cause mortality in cases. The minimally adjusted 

model included age and centre as covariates. Additional covariates included in the fully 

adjusted model were age, centre, PSA at baseline, clinical stage and Gleason score. I used 

Cox proportional hazard regression to investigate the individual metabolomic measures 

and the metabolomic risk scores in cases, controls and the cases and controls pooled. I 

evaluated the correlation between the metabolites used in the metabolomic risk scores 

using Pearson’s correlation coefficient (405). In addition, I regressed both age and BMI 

against individual metabolite measures as a quality control check, since both factors 

have been extensively characterised in relation to metabolite levels in the literature.  

To evaluate the performance of the metabolomic risk scores at predicting PCa death and 

all-cause mortality, I used area under the receiver operating curve (AUROC) in i) all PCa 

cases, ii) localised PCa only, and iii) all cases and controls (pooled). To assess the 

discrimination ability of the models, I calculated positive and negative predictive values 

and accuracy. I also used the Cohen’s Kappa statistic to evaluate discrimination 

performance corrected for outcome class imbalances (number of cases vs controls) (261). 

I used calibration curves to assess how the predicted risk for PCa or all cause death 

matched the observed outcome proportion for each of the models (266). 



 169 

7.4. Results 

7.4.1. Baseline descriptive analyses  

The median follow-up time for the ProtecT cases was 9.31 years (interquartile range 7.98-

10.8) and 9.7 years (interquartile range: 8.28-11.25) for the controls. The baseline 

characteristics for the cases and controls, broken down by their mortality status (PCa 

specific or all-cause death) are presented in Table 7.1. On average, men diagnosed with 

PCa who subsequently died from PCa were older (mean difference= 2.0 years, 

95%CI=.33-3.69; p=0.02), had a higher baseline PSA (mean difference=1.49 ng/ml, 

95%CI:.39-2.59; p<0.001) and were more likely to have Gleason score higher than 7 

compared to PCa survivors (p<0.001). Men with PCa who died of any cause were older 

(mean difference= 2.17 years; 95%CI:1.49-2.84; p<0.001), had a higher baseline PSA 

(mean difference=0.78ng/ml, 95%CI=.34=1.23; p=0.001), were more likely to have a 

Gleason score higher than 7 (p<0.001), be current or former smokers(p<0.001) and 

hazardous drinkers (p=0.03) compared to survivors. Within men with no PCa (controls), 

men who died of any cause were older (mean difference= 2.2 years; 95%CI:1.48-2.90; 

p<0.001) and were more likely to be current or former smokers (p<0.001) and hazardous 

drinkers (p=0.07). 
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Table 7.1: Baseline characteristics for: i) men with a Prostate Cancer specific death vs. survivors in cases; and ii) all-cause deaths vs survivors in 

controls in the Prostate Testing for Cancer and Treatment cohort. 

 

PCa=Prostate Cancer; SD=standard deviation; PSA=Prostate specific antigen; BMI=Body mass index 

Body mass index was only used for the sensitivity analyses, for regressing individual metabolites on BMI as a quality control check.
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7.4.2. Individual metabolites  

7.4.2.1. Metabolite – survival associations among Prostate 

specific antigen-detected Prostate Cancer cases-only 

To establish how strongly metabolite levels were associated with survival over the 

follow-up period of ProtecT, I used Cox regression to calculate the hazard ratios (HR) for 

each metabolite in relation to all-cause and PCa-specific mortality in men detected with 

PCa. Figures 7.1 and 7.2 present the estimates of the associations (HR per 1SD increase in 

each metabolite) between individual metabolite levels and PCa-specific and all-cause 

mortality, respectively, using the minimally and fully adjusted models (Tables D1 and 

D2, Appendix D). Isoleucine (HR=1.56, 95%CI: 1.18-2.01, p=0.002) and leucine (HR=1.53, 

95%CI:1.16-0.2.03, p=0.002) were positively associated with PCa specific death 

(Supplementary Table D1, Appendix D). Generally, there was some evidence that very 

low-density (LDL) lipoprotein measures, branched-chain amino acids, ketone bodies 

and glycoprotein acetyls were associated with increased risk of PCa specific death in the 

minimally adjusted model. However, the statistical evidence supporting the associations 

was weak to modest and the p-values did not reach the pre-defined conservative 

significance threshold (p<0.003).   

For the all-cause mortality the direction and magnitude of effect with individual 

metabolites were for the most part consistent with those for PCa specific death (Figure 

7.2 and Supplementary table D2, Appendix D). The exceptions were: i) LDL particle size 

and phenylalanine which showed a positive association with all-cause mortality in 

contrast to a negative association with PCa-specific death; and ii) docosahexaenoic acid 

and omega-3 fatty acids which were inversely associated with all-cause mortality in 

contrast to a positive association with PCa-specific mortality, iii) amino acids (isoleucine, 

leucine and valine) which showed some evidence of association with increased PCa 

mortality and weak evidence of association with all-cause mortality. The estimates of the 

effect sizes for the all-cause analysis were precise, with smaller p-values and narrower 

confidence intervals compared to the PCa-specific mortality analysis (to be expected 

given the much greater number of all-cause versus PCa-specific deaths). There was 

strong evidence that degree of unsaturation, cholesterol esters in small HDL and 

multiple fatty acid ratios (omega3,omega-6, linoleic acid, polyunsaturated fatty acids to 
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total fatty acids) were inversely associated with all-cause mortality. I also found strong 

evidence of association for the ratio of saturated fatty acids and monounsaturated fatty 

acids to total fatty acids, glucose, acetoacetate, acetate, LDL particle size and 

phospholipids in small HDL particles with increased all-cause mortality. The largest 

effect sizes were observed for LDL particle size (HR=1.26; 95%CI:1.11-1.42; p=0.0004) 

and the ratio of saturated fatty acids to total fatty acids (HR=1.25; 95%CI:1.11-1.42; 

p=0.0004). The fully adjusted model found that the direction of the association and effect 

size were maintained; however, the effect estimates had wider confidence intervals.  

 

7.4.2.2 Metabolite – survival associations among Prostate specific 

antigen-detected Prostate Cancer cases vs controls  

To investigate any potential effects that prevalent PCa or sample quality could have on 

the metabolite measures in the ProtecT cohort, I compared the associations of all-cause 

mortality in cases versus controls. Generally, associations of the individual biomarkers 

with all-cause mortality in the controls are in the same direction and had attenuated 

effects compared to the PCa cases (Supplementary Table D5 and Figure D1, Appendix 

D). Some exceptions were VLDL and triglyceride measures where the effect sizes were 

larger in PCa cases compared to controls. Concentration of VLDL measures were 

negatively associated with all-cause mortality in the controls, and positively associated 

in the cases. However, the effect sizes for most of these instances were imprecise with 

confidence intervals crossing 1. Acetate, phenylalanine and some fatty acid measures 

had associations in the same direction for cases, controls and in a pooled analysis that 

combined cases and controls, with precise estimates and narrower confidence intervals. 

LDL particle size was strongly positively associated with both cases (HR=1.25, 

95%CI:1.41-1.82; p<0.0001) and controls (HR=1.26, 95%CI:1.11-1.43; p<0.0001), with the 

effect size larger in the controls. 

I investigated the links between BMI and age with metabolite levels and found that age 

and BMI were generally associated with individual metabolites in cases, controls and in 

a pooled analysis of cases and controls, with the effect sizes in the same direction and of 

similar in magnitude (Supplementary Figures D2 and D3, and Tables D7 and D8, 

Appendix D). There was evidence that the effect sizes for the associations of the 

metabolite levels with age were higher for measures of cholesterol (total, remnant, LDL, 
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esterified, and free), phosphoglycerides, phosphatidylcholine, sphongomyelins, 

alipoproteins A and B and fatty acid measures (total, linoleic acid, omega-6 fatty acids, 

polyunsaturated and mono fatty acids).  

Figure 7.1: Hazard ratios (per 1 standard deviation) and their 95% confidence intervals 

for associations between individual metabolites and Prostate Cancer specific mortality 

(2,059 survivors, 34 deaths) in minimally* and fully adjusted** Cox regression models in 

the Prostate Testing for Cancer and Treatment cohort. 
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VLDL=Very low-density lipoprotein; LDL=low-density lipoprotein; HDL=high-density lipoprotein; C=Cholesterol; FA=fatty acids; 

DHA= docosahexaenoic acid; MUFA=monounsaturated fatty acids; PUFA=polyunsaturated fatty acids; n3 =omega; n6=omega 6 

Closed symbols: p<0.003; open symbols: p>=0.003                     

*Minimally adjusted regression: adjusted for age and centre;           

**Fully adjusted regression: adjusted for age, centre, PSA at baseline, stage, Gleason   
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Figure 7.2: Hazard ratios (per 1SD) and their 95%confidence intervals for the 

associations between individual biomarkers and all-cause mortality (1,864 survivors and 

229 deaths) in minimally* and fully adjusted** Cox regression models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VLDL=Very low-density lipoprotein; LDL=low-density lipoprotein; HDL=high-density lipoprotein; C=Cholesterol; FA=fatty acids; 

DHA= docosahexaenoic acid; MUFA=monounsaturated fatty acids; PUFA=polyunsaturated fatty acids; n3 =omega; n6=omega 6 

Closed symbols: p<0.003; open symbols: p>=0.003                     

*Minimally adjusted regression: adjusted for age and centre;           

**Fully adjusted regression: adjusted for age, centre, PSA at baseline, stage, Gleason   
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7.4.3. Multi-metabolite risk scores 

In PCa cases the correlation coefficient between the PCa mRS and all-cause mRS was 

58% and the correlation between the individual metabolites included in each score 

ranged from 0 to 85% (Supplementary Table D4, Appendix D).  

7.4.3.1 Associations of multi-metabolite risk scores with Prostate 

Cancer and all-cause mortality 

I ran minimally and fully adjusted Cox regression models in PCa cases in ProtecT to 

investigate the associations between the metabolite risk scores (PCa mRS and all-cause 

mRS) and subsequent PCa-specific and all-cause mortality, respectively (Figures 7.3A 

and 7.3B). The PCa mRS showed little evidence of association with PCa specific 

mortality in the minimally adjusted model (HR = 1.16; 95% CI: 0.83 –1.61) or the fully 

adjusted model (HR=1.32; 95% CI: 0.91-1.90) (Figure 7.3 and Supplementary Table D3, 

Appendix D). The PCa mRS model was positively associated with all-cause mortality, 

and the effect size was similar to that for PCa specific death, but with smaller confidence 

intervals (HR=1.17, 95% CI:1.02-1.33). There was little evidence of an association 

between all-cause mRS and PCa mortality in the minimally adjusted model (HR= 0.95, 

95% CI: 0.67 –1.40) or the fully adjusted model (HR = 1.03, 95% CI: 0.70 – 1.51) (Figure 

7.3 and Supplementary Table D3, Appendix D). All-cause mRS was positively associated 

with all-cause mortality in the main model (HR=1.34, 95% CI:1.19-1.51) and in the 

opposite direction compared to the effect size observed for PCa mortality.  

Since prevalent PCa could affect metabolic profiles in men with PCa, I investigated the 

associations between PCa mRS and all-cause mRS and all-cause mortality, separately in 

cases and controls. In the analysis of cases and controls, the associations of the two 

biomarker scores and all-cause mortality are similar in the controls only and pooled 

cases and controls analyses (Figure 7.3C). The PCa mRS model showed a similar effect 

size to all-cause mortality in the minimally adjusted model, in the cases and controls 

analysis compared to the case only analysis (HR (pooled) =1.16, 95% CI: 1.06-1.27) (, 

Supplementary Table D6, Appendix D). The all-cause mRS model showed a slightly 

increased effect size of association with all-cause mortality in cases and controls, 

compared to the case only analysis, with an HR (pooled)=1.36 (954%CI:1.25-1.48) (Figure 

7.3C and Supplementary Table D6, Appendix D).  
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7.4.3.2 Predictive performance of metabolomic-risk scores and 

Prostate Cancer and all-cause mortality 

I investigated the performance of the risk scores (PCa and all-cause mRS) at 

discriminating PCa and all-cause mortality using positive predictive values (PPV) and 

negative predictive values (NPV), accuracy and Cohen’s Kappa metrics.  

To evaluate the ability of the PCa mRS and all-cause mRS risk scores to predict PCa and 

all-cause mortality, I used ROCs and calculated AUROCs in all men. In addition, I 

included the ROC curve generated by using Gleason score as sole predictor to compare 

the performance of the two risk scores against Gleason score (Figures 7.4A and 7.4C). 

Figures 7.4B and 7.4D present the performance of both metabolomic risk scores and 

Gleason model when the dataset was restricted to localised PCa only (stage T1/T2 or 

PSA<20 and Gleason score <8) to assess whether the risk scores better predict localised 

disease. To investigate how the models’ predicted risk matched the observed outcome 

proportion, I constructed calibration plots (Figure 7.5 A, B, C and D).  

Both metabolomic risk-scores showed modest performance at discriminating all-cause 

and PCa mortality, with similar results when restricting the data to men with localised 

disease only. All-cause mRS performed slightly better at predicting all-cause mortality 

compared to PCa mRS, while PCa mRS performed somewhat better than all-cause mRS 

at predicting PCa mortality. However, none of the metabolite risk scores performed 

substantially better, with AUROCs with overlapping confidence intervals. Calibration 

was good for both metabolomic risk scores when comparing to the observed outcomes 

(PCa and all-cause mortality). Overall, the highest PPV and accuracy were observed for 

all-cause mRS (PPV=16.6%; 95%CI:13.7-19.9%; accuracy=70.1%; 95%CI: 68.1%-72.1%) 

and the highest NPV was observed for PCa mRS (NPV=98.8%; 95%CI: 98.1%-99.3%). The 

highest AUROC was seen for all-cause mRS at discriminating all-cause mortality in men 

with localised disease (AUROC=0.61; 95%CI:0.56-0.65).  

 

7.4.3.2.1. Prostate Cancer mortality metabolomic risk score model, Prostate 
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Cancer and all-cause mortality in Prosate Cancer cases 

For PCa mortality, the PCa mRS had a PPV and NPV of 2.4% (95%CI: 1.43%-3.76%) and 

98.8% (95%CI: 98.1%-99.3%), respectively. This means that only 2.4% of men who were 

predicted to have PCa death using the PCa mRS truly experienced PCa death 

(observed). 98.8% of men who were predicted to not experience PCa death using the 

PCa mRS, did not truly experience PCa death (observed). PCa mRS had Kappa of 0.015 

(95%CI: -0.041-0.071) suggesting that there was little evidence of agreement between the 

predicted and observed categories. PCa mRS had accuracy of 64.2% (95%CI: 62.1% - 

66.3%), therefore correctly assigning PCa mortality status in 64.2% of participants (Table 

7.2). In the ROC analysis, the PCa mRS risk score showed limited ability at predicting 

PCa mortality, with an AUROC = 0.57 (95% CI: 0.47 - 0.66), but with a confidence 

interval that did not exclude chance performance (Figure 7.4). When restricting the 

analysis to participants with localised PCa only, the model performance was similar 

(AUROC=0.60%, 95% CI: 0.47 - 0.72). The calibration was good for PCa mRS when 

compared to the observed PCa death (Figure 7.6 A). 

PCa mRs performed similarly in showing limited ability to predict all-cause mortality in 

all PCa cases, with an AUROC = 0.57 (95%CI 0.53-0.61) and similar model discrimination 

statistics (Table 7.2). In the analysis of localised PCa, the performance of the model at 

predicting all-cause mortality was similar to that for the all-case analysis, with an 

AUROC = 0.56 (95%CI: 0.52-0.61). 

As a positive control, I also considered the discriminative capacity of Gleason score, 

which is expected to track closely with PCa progression. Here, I observed strong 

discriminative performance, with an AUROC = 0.82% (95% CI: 0.75 – 0.89) for PCa 

mortality and modest performance, and AUROC = 0.56% (95% CI: 0.52.2 - 0.59) for all-

cause mortality. For PCa mortality, the Gleason score had a PPV of 0.05 (95%CI:0.03 - 

0.07), NPP of 1.0 (0.99,1.00), an accuracy of 0.73 (95%CI: 0.71-0.75) and a Kappa of 0.06. 

The calibration was good for PCa mRS when compared to the observed all-cause 

mortality (Figure 7-6 B). 

7.4.3.2.2. All-cause mortality multi-metabolite risk score, Prostate Cancer 

and all-cause mortality in Prostate Cancer cases 

All-cause mRS showed a PPV of 1.23% (95%CI: 0.62% - 2.2%) and NPV of 98.1% 

(95%CI:97.1% - 98.8%), an accuracy of 56.5% (95%CI:54.3% - 58.6%) and Kappa of -0.008 
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(95%CI: -0.057 - 0.04) for PCa death (Table 7.2). In the ROC analysis, all-cause mRS 

performed worse than the PCa mRS at predicting PCa mortality, with AUROC= 0.51 

(95% CI: 0.42 – 0.61) (Figure 7.4). When restricting the analysis to localised cases only, 

the all-cause mRS still performed poorly at predicting PCa mortality with an AUROC= 

0.55 (95% CI: 0.42 - 0.67). The calibration was good for all-cause mRS compared with the 

observed PCa death (Figure 7.6 C). 

The all-cause mRS model performed similarly at predicting all-cause mortality 

compared to PCa mortality, with an AUROC = 0.60 (95%CI: 0.56-0.64) and comparable 

model discrimination statistics (Table 7.2). In the analysis of cases with localised disease 

only, the model performed similarly to the all-case analysis, with an AUROC = 0.61 

(95%CI: 0.56 - 0.65). The calibration was good for all-cause mRS compared with the 

observed all-cause mortality (Figure 7.6 D). 

 

7.4.3.2.3. Prostate Cancer mortality metabolomic risk score model and all-cause 

mortality multi-metabolite risk score in Prostate Cancer cases and controls 

The PCa mRS and all-cause mRS models performed similarly at discriminating all-cause 

mortality, in the pooled cases and controls analysis compared to the case only analysis, 

with an AUROC= 0.62 (95%CI: 0.58-0.66) for the all-cause mRS score and an 

AUROC=0.56 (95%CI0.51 - 0.60) for the PCa mRS (Figure 7.6).   
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Table 7.2: Model discrimination statistics for the Prostate Cancer mortality metabolomic 

risk score model and all-cause mortality multi-metabolite risk score for Prostate Cancer 

and all-cause mortality in the ProtecT cohort. 

 PCa mRS= Prostate Cancer mortality multi-metabolite risk score ; All-cause mRS = all-cause mortality multi-metabolite risk score; 

PCa=Prostate Cancer; PPV=Positive predictive value; NPV=Negative predictive value 

 

 

 PCa mRS All-cause mRS 

Measure 
PCa death 

All-cause 

death 
PCa death All-cause death 

PPV 
2.4% (1.43%-

3.76%) 

14.7% 

(12.4%-

17.3%) 

1.23% (0.62%-

2.2%) 

16.6% (13.7%-

19.9%) 

NPV 98.8% 

(98.1%-

99.3%) 

91.6% 

(89.9%-

93.1%) 

98.1% (97.1%-

98.8%) 

91.3% (89.8%-

92.7%) 

Accuracy 64.2% 

(62.1%-

66.3%) 

60.6% 

(58.5%-

62.7%) 

56.5% (54.3%-

58.6%) 

70.1% (68.1%-

72.1%) 

Cohen’s 

Kappa 

0.015 

(-0.041-0.071) 

0.071 

 (0.022-0.12) 

-0.008  

(-0.057-0.04) 

0.098 

(0.039-0.16) 
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Figure 7.3: Hazard ratios (per 1 standard deviation) and 95% confidence intervals for the 

association of Prostate Cancer mortality metabolomic risk score model and all-cause 

mortality multi-metabolite risk score in cases with Prostate Cancer specific (A) and all-cause 

mortality (B) in the minimally* and fully adjusted** models and in controls and pooled 

participants (C). 

PCa mRS= Prostate cancer mortality multi-metabolite risk score ; All-cause mRS = all-cause mortality multi-metabolite risk score 

Hazard ratios (per 1SD) for the association between the PCa mRS and all-cause mRS and: 

(A) PCa specific mortality (2,042 survivors, 34 deaths) in minimally* and fully adjusted** Cox regression models, in all eligible 

to be randomised participants (cases). 

(B)All-cause mortality (1,846 survivors and 229 deaths) in minimally* and fully adjusted** Cox regression models, in all eligible 

to be randomised participants (cases). 

(C) All-cause mortality in minimally* adjusted Cox regression models, in controls (1,960 survivors and 207 deaths) and pooled 

cases and controls (3,824 survivors and 436 deaths)  
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*Minimally adjusted regression: adjusted for age and centre   

**Fully adjusted regression: adjusted for age, centre, PSA at baseline, stage, Gleason score  

 

 Figure 7.4: Receiver operating curves for the Prostate Cancer mortality metabolomic 

risk score model and all-cause mortality multi-metabolite risk score  at 

discriminating PCa-specific and all-cause mortality in all eligible to be randomised 

participants and participants with localised disease only. 

ROC curves for the PCa mRS, all-cause mRS, and Gleason scores at discriminating: 

(A) PCa specific deaths (N=34) from survivors among all eligible to be randomised ProtecT participants (N=2,076).  
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(B) PCa specific deaths (N=20) from survivors among eligible to be randomised ProtecT participants with localised 

disease only (N=1,962). 

(C) All-cause mortality (N=229) from survivors among all eligible to be randomised ProtecT participants (N=2,076).  

(D) All-cause mortality (N=202) from survivors among all eligible to be randomised ProtecT participants with localised 

disease only (N=1,962). 

 

Figure 7.5: Calibration slopes for the Prostate Cancer mortality metabolomic risk score 

model and all-cause mortality multi-metabolite risk score models and Prostate Canceer and 

all-cause death. 

 

(A)  Calibration slope for the PCa mRS predicted probabilities and the observed PCa death outcomes. 
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(B) Calibration slope for the PCa mRS predicted probabilities and the observed all-cause death outcomes. 

(C) Calibration slope for the all-cause mRS predicted probabilities and the observed PCa death outcomes. 

(D) Calibration slope for the all-cause mRS predicted probabilities and the observed all-cause death outcomes. 

 

Figure 7.6: Receiver operating curves for the Prostate Cancer mortality metabolomic risk 

score model and all-cause mortality multi-metabolite risk score at discriminating all-cause 

mortality in all Prostate Testing for Cancer and Treatment controls (N=2,150) and Prostate 

Testing for Cancer and Treatment cases and controls (N=4,225). 

AUC: area under the curve 

(A) ROC Curves for the PCa mRS and all-cause mRS biomarker models, at discriminating all-cause mortality (N=205) in 

controls in the CAP study (N=2,150). 

(B) ROC Curves for the PCa mRS and all-cause mRS biomarker models, at discriminating all-cause mortality (N=434) in 

pooled participants (cases and controls) in the CAP study (N=4,225). 

7.5. Discussion 

7.5.1. Summary of findings 

In this Chapter, I investigated the predictive utility of serum NMR metabolite levels and two 

metabolite risk scores previously developed in the general population to predict PCa-

specific and all-cause mortality. The population of men used in this study originated though 

a study of population-wide PSA testing for PCa (the ProtecT cohort). I found evidence of 
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association of NMR metabolite subclasses with PCa and all-cause mortality in this cohort of 

PSA detected PCa participants. In the same cohort, I found evidence for association between 

PCa mRS and and all-cause mRS and all-cause mortality. However, I did not find robust 

evidence that the two metabolite risk scores predicted PCa or all-cause mortality. When 

comparing the associations of individual level metabolites and the two metabolite risk 

scores, in participants with and without PCa, the findings were similar. 

I found some evidence that individual metabolites levels, such as very low-density 

lipoprotein and HDL measures, branch-chain amino acids, ketone bodies and glycoprotein 

acetyls were associated with PCa mortality. However, only leucine and isoleucine were 

positively associated with PCa mortality.  

All-cause mortality showed similar patterns of association in PCa cases to those between 

metabolites and PCa mortality, with strong positive associations for LDL particle size, 

acetate, acetoacetate, glucose, ratio of monounsaturated fatty acids to total fatty acids and 

saturated fatty acids to total fatty acids, and phospholipids in small HDL particles. Negative 

associations with all-cause mortality were observed for cholesterol esters in small HDL, 

degree of unsaturation, ratios of omega-3, omega-6, linoleic acid, polyunsaturated fatty acids 

to total fatty acids. To explore the potential effect that prevalent PCa may have on individual 

metabolites, I used the control population in the ProtecT. The associations between 

metabolites and all-cause mortality in PCa-free men generally followed the same direction 

as cases, but with smaller effect sizes.  

Both multi-metabolite risk scores had a poor prediction performance, with AUROC point 

estimates (AUROCs ~0.6) having confidence intervals that included chance prediction. This 

suggests that as constituted, the scores could not accurately discriminate PCa-specific 

mortality and all-cause mortality in this cohort of participants. In contrast, Gleason score, a 

measure known to robustly track PCa aggressiveness and which had been included as a 

positive control in our analysis, showed improved prediction performance compared to the 

two multi-metabolite risk scores. The predictive performance of the Gleason score in 

localised only cases was marginally lower than in the all-cases pooled analyses, which is to 

be expected since there were fewer events in the localised only cohort. Comparing the 

performance of the multi-metabolite risk scores and the clinically validated predictor of PCa 

aggressiveness and progression (Gleason score) suggests that the multi-metabolite risk score 

is a less suitable candidate as predictor of PCa mortality.  



 186 

Possible explanations for why the PCa mRS model may not have discriminated PCa 

mortality include that this score was trained in a general population setting, as a pre-

diagnostic tool to predict PCa-specific mortality, and included all cases of PCa, while the 

current study evaluated its performance at predicting PCa specific death, in locally and 

locally advanced PCa cases, diagnosed through PSA testing. Further, the PCa mRS 

performance in ProtecT could be due to the heterogeneity of PCa aggressiveness, since the 

dataset included men with localised and locally advanced PCa only, with few events (N=34) 

whose metabolic trait patterns may substantially differ to those on which the score was 

developed, which may have contained more advanced disease. The mortality rates in the 

ProtecT trial were much lower than in the UKBB dataset on which the score was developed, 

2% vs 10%, respectively. This could indicate that the model was trained to predict more 

aggressive cancers rather than localised and locally advanced cases. Interestingly, the PCa 

mRS model performs slightly better in localised cases than the locally advanced cases who 

would have been more advanced at diagnosis, so differences in predictors of outcome may 

be expected.  

The all-cause mRS score was developed in the general population, aiming to predict all-

cause mortality rather than PCa specific death, both of which could explain the lack of 

replication I found in the current dataset. In addition, the all-cause mRS score was derived 

in 12 cohorts of both male and female participants and of a wide age range (18-109), while 

the ProtecT study only included males with ages between 50 and 71, which could constitute 

another reason for the lack of replication. The similar performance of the PCa mRS and all-

cause mRS could be due to the fact that the two scores were highly correlated. This probably 

led to the PCa mRS picking up some of the all-cause signal of the all-cause mRS, with the 

extra noise slightly dropping the performance of PCa mRS.   

7.5.2. Findings in context 

The evidence I found suggests that metabolites are associated with both PCa and all-cause 

mortality. For example, I found some amino acids and ketone bodies were associated with 

PCa and all-cause mortality, which was expected since studies that assessed the link 

between PCa aggressiveness, defined using Gleason and TNM stage, found that amino 

acids, such as sarcosine, valine, leucine were associated with PCa aggressiveness 

(19,35,36). One study found that three metabolites (cystathionine, cysteine, homocysteine) 

were associated with biochemical recurrence and each metabolite had a good AUROC (0.71-
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0.80) at predicting the event (176). However, the model was not externally validated, the 

sample size was small (n=58 participants with serum samples) and the follow-up period was 

short (2 years) (176). Although I found metabolites to be associated with all-cause and PCa 

mortality, further work was required to ascertain whether they are also predictive of these 

outcomes in men with already diagnosed PCa.  

A large number of predictive models for PCa progression have been introduced, with a 

wide range of predictors, form anthropometric to imaging factors, however many of these 

have not been externally validated and most have not been taken up in clinical practice 

(406). One model using clinical information on comorbidities which showed great 

performance at predicting 10-year life expectancy, with an AUROC=0.82 was only internally 

validated, and used all-cause mortality rather than PCa- specific death as outcome (407). 

Another model , using biopsy grade, PSA, clinical T-stage and age, which used PCa specific 

mortality was found to have a good performance power, with an AUROC =0.78, however 

this has only been internally validated and requires invasive procedures (408). This study is 

one of the first studies to use a metabolomic predictive model, developed in a large cohort of 

general population and externally validated, and test its predictive performance for use in 

clinical settings. 

Although the performance observed in the ProtecT study population was modest, the 

findings are important for the field. First, it shows that published performance even from 

external validation populations may not be reproducible in other populations if the disease 

characteristics are different to those in which the model was trained and tested. This is 

particularly important for localised PCa, which is still a poorly characterised disease when it 

comes to predicting survival and differentiating between cases that are more likely to 

advance compared to indolent cases (409,410). Second, it is important consider the settings 

in which risk stratification approaches can most appropriately be applied. For example, 

whilst I found the score had limited performance in a clinical setting of already diagnosed 

localised PCa cases, the predictive model can still be a great asset in clinical settings, by 

using it as a of pre-diagnostic predictive tool of PCa lethality. This could help identify PCa 

patients who are most at risk of developing lethal PCa, whilst avoiding the over diagnosing 

of cases that are likely to not have clinically significant disease. 

More generally, while current NMR metabolomics technology can provide a quick, highly 

reproducible, and cost-effective way of measuring proxies of metabolic footprints, in order 

to use these in prediction of PCa mortality in clinical practice, clearly defined and precise 
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study populations and must be used when aiming to translate from general population 

settings. Future studies undertaking prediction work in general populations settings should 

try and predict mortality in patients already diagnosed with PCa, in order to provide a 

useful tool for disease management in clinical settings. In addition, developing predictive 

models by subgrouping PCa cases on staging (localised vs advanced) may be beneficial to 

prediction of PCa-mortality since localised cases tend to have very different clinical 

characteristics and survival patterns to more advanced cases.    

7.5.3. Strengths and weaknesses 

This study had several strengths. First, it used data from the ProtecT cohort, a large PSA 

screening-based cohort where follow-up is very good and death outcomes are linked 

through national death registers. Second, the NMR platform which was used to identify and 

quantify the metabolite concentrations used in the predictive models is highly reproducible, 

making the models easy to replicate in other studies or in practice. Third, the predictive 

models evaluated were developed in large and generalisable datasets which have previously 

been extensively analysed, thus the findings are likely to be generalisable to many other 

populations. The main weakness of the current study was the small number of events, 

particularly PCa deaths, which lead to low power in ascertaining the ability of the models to 

robustly predict the events of interest. Also, while the metabolomic predictive models were 

developed in the general population, the current assessment was performed in a screen-

based cohort, thus potentially using two noncomparable groups. Lastly, due to the lack of 

data availability of staging and cancer aggressiveness in the UKBB, when developing the 

predictive model, the researchers were unable to distinguish between localised and 

advanced PCa cases, and so the predictive model may only be suitable for cohorts similar to 

UKBB in terms of cancer aggressiveness and staging.  

7.6. Chapter summary 

In this chapter I investigated the link between individual NMR metabolites and PCa and all-

cause mortality and evaluated the performance of two multi-metabolomic risk scores at 

predicting PCa and all-cause mortality in a screen-detected cohort of men. I found that NMR 

metabolites were associated with PCa mortality, in particular glycine and glycoprotein 

acetyls which were positively and negatively associated with PCa mortality, respectively. 
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All-cause mortality was positively associations with cholesterol in LDL, degree of 

unsaturation and fatty acid ratios, and negatively associated for glucose and acetate. There 

was evidence of association for two metabolomic risk scores trained in general population 

with increased PCa and all-cause mortality; however, the two metabolomic risk scores did 

not predict all-cause or PCa specific mortality in a clinical setting of screen detected localised 

or locally advanced PCs.  
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Chapter 8.  Discussion 

8.1. Chapter introduction 

In this Chapter, I summarise the main findings of this thesis, its strengths and 

limitations and the future work which could be undertaken. 

8.2. Summary of key findings 

This thesis aimed to use circulating metabolomic data measured using NMR to: i) better 

understand mechanisms of PCa progression to identify new potential therapeutic and 

behavioural targets for interventions; and ii) identify novel clinical prediction biomarkers 

which could, in clinical practice, distinguish indolent from lethal disease. In the 

observational analysis in Chapter 5, I found only weak evidence that some measures of 

lipoproteins, cholesterol, triglycerides, fatty acids, leucine, citrate and glycoprotein acetyls 

may be observationally associated with PCa progression (clinical progression and 

metastases or PCa death) (Table 8.1). 

The Mendelian randomisation (MR) analysis in the second part of Chapter 5 found causal 

evidence that PCa mortality was increased with higher levels of total, free and esterified 

cholesterol and some measures of lipoprotein subclasses (very low-density lipoprotein 

(VLDL), intermediate-density lipoprotein (IDL) and low-density lipoprotein (LDL)), 

sphingomyelins, apolipoprotein B, total omega-3 fatty acids, docosahexaenoic acid, and 

valine. It also found evidence of decreased PCa mortality with increasing levels of histidine, 

phospholipids to total lipids ratio in small and large HDL cholesterol, ratio of triglyceride to 

total lipids in very small VLDL and ratio of omega-6 to omega-3.  

In Chapter 6, I found weak evidence that a randomised intervention to increase fruit and 

vegetable, and decreased dairy consumption, altered the lipid and glycolysis metabolic 

profiles of men with PCa. Within the same trial, I also found that a lycopene 

supplementation intervention did not increase serum lycopene and there was only weak 

evidence of the intervention altering levels of alanine. In the physical activity intervention of 

the trial, I found weak evidence to support that a brisk walking intervention altered the lipid 

profiles of men with PCa. The MR analysis found some causal evidence to support a link 
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between the metabolites decreased by the dietary advice and brisk walking interventions 

(pyruvate and cholesterol measures, respectively) and increased PCa death. 

 In Chapter 7, I found strong evidence that acetate was positively, and glycine was 

negatively associated with PCa mortality. Also, there was strong evidence for positive 

associations of cholesterol in LDL and degree of unsaturation and fatty acid ratios, and 

negative associations for glucose and acetate, in relation to all-cause mortality. Also in 

Chapter 7, I found that two multi-metabolite risk scores developed in the general population 

to predict PCa-specific and an all-cause mortality did not produce the same level of 

performance when predicting PCa-specific and all-cause mortality in a clinical setting 

amongst screen-detected PCa cases.  

When the evidence is taken together, my findings suggest that metabolites may be involved 

in the progression of PCa. These metabolites could serve as potential interventional targets, 

whether behavioural or therapeutic.   

However, studies that are adequately powered, have a large follow-up time and precise 

progression definitions are required to further investigate the link between metabolites and 

PCa progression. My findings do not exclude the value of multi-metabolite risk scores in 

predicting PCa progression, rather they suggest that risk scores available to date which have 

been developed in general populations are not appropriate for use in clinical settings for 

screen-detected PCa. The metabolite risk scores investigated in this thesis should be further 

investigated in other general population cohorts to confirm their predictive performance in 

those settings. Multi-metabolite risk scores that are designed to be used for clinical use 

should be developed in specific and generalisable clinical settings. 
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Table 8.1: Summary of the main findings of this thesis 
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PCa=Prostate Cancer; VLDL= very low-density lipoprotein; HDL=high-density lipoprotein; LDL= low-density lipoprotein 
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8.3. Strengths and weaknesses of this research 

8.3.1.   Data sources 

One of the strengths of this thesis is the use of multiple and varied data sources such as large 

consortia (PRACTICAL), UKBB and clinical trial data (PrEvENT and ProtecT) to triangulate 

the evidence. The UKBB and PRACTICAL data sources provided large genetic data on 

which causal evidence was assessed. The UKBB is the largest GWAS of NMR metabolites 

and was conducted in a population representative of the general population. The 

PRACTICAL PCa mortality GWAS is the largest GWAS of PCa mortality and includes data 

from a wide variety of genetic studies from across the world. Having a large number of PCa 

deaths on which genomic data is generated is a key strength of this thesis, given PCa is a 

slow progressing disease with a low mortality rate. Using these large datasets, I was able to 

conduct an adequately powered two-sample MR study and assess causality between 

metabolomic data and PCa mortality.  

The ProtecT trial, the embedded trial of the CAP trial, is one of the UK’s largest RCT of PCa 

progression, with follow-up data available at 10 years. It also has progression outcomes 

which are well-defined and assessed by an independent committee. In addition, for 

participants who were not followed up through the ProtecT trial, data was available by 

linking the data to the mortality datasets from the Office of National Statistics through the 

CAP trial, thus minimising the potential of misclassification of non-progressed cases. The 

PrEvENT feasibility RCT used a factorial design with three dietary and physical activity 

interventions and had good adherence and low loss to follow up. By using the above the 

sources together, I was able to i) better characterise the metabolome of men with PCa, ii) 

assess causality between metabolites and PCa death and iii) leverage statistical power and 

provide suggestive evidence of the effects of a short interventional RCT (PrEvENT) on long 

term clinical outcomes (PCa death).  

8.3.2. Randomised controlled trial design 

Although I used the ProtecT trial as a prospective cohort study, the data used was collected 

as part of a RCT. Using a RCT design has multiple benefits. Firstly, the inclusion criteria are 

very precise and implemented though standard operating procedures, therefore leading to 
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the study having an accurately and clearly defined population. Progression outcome 

indicators were evaluated using predefined and specific definitions. This is particularly 

important as seen in Chapter 3, given the different progression definitions and proxy 

measures used in the literature. In the ProtecT RCT, participants were randomised to three 

types of treatment which were followed throughout the trial. This is an advantage over 

other non-RCT progression studies where treatment is not randomly allocated, and where 

there can be variation on the type and delivery of the treatment received. To assess effects of 

dietary and physical activity interventions on the metabolome of men with PCa I used data 

from the PrEvENT feasibility RCT using intention to treat analysis, a gold standard analysis 

in RCTs. In addition, a well-designed and implemented RCT will have confounders 

randomly distributed across the intervention arms, thus issues of confounding did not 

constitute a major issue in my analysis of the PrEvENT trial.  

8.3.3. Mendelian randomisation  

As described in Chapter 4, MR is a powerful tool to assess causality in epidemiological 

research and overcomes issues common in traditional epidemiology such as reverse 

causation. However, there are also limitations associated with conducting MR analyses. In 

this thesis, one of the main limitations in my MR analyses was that of horizontal pleiotropy, 

which has been described in detail throughout the thesis. Invalid instruments can bias the 

results through horizontal pleiotropy, where they have pleiotropic effects on pathways 

independent of the exposure being investigated (287,295). I employed sensitivity analyses 

such as MR Egger, which generally generated similar results to the main estimation method 

(inverse variance weighted).  

However, the tools to investigate pleiotropy are still limited. The field of metabolomics is 

particularly prone to this type of bias in MR studies given that metabolomics reflects a wide 

variety of metabolic processes and pathways. One other potential bias in my MR analysis is 

that of collider bias, which has been described in Chapter 4 as well as within the discussion 

sections of Chapters 5 and 6. Collider bias in the context of this thesis refers to the bias 

generated by metabolites being associated with both the risk of developing PCa and PCa 

mortality. For each of the metabolites where I found causal evidence of association with PCa 

mortality, I investigated their association with risk. I presented this as a limitation where a 

metabolite was associated with both as this could be an artefact of collider bias rather than a 

true causal link between the metabolite and PCa mortality. This issue warrants further 
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investigation and is presented later in this Chapter. The PRACTICAL consortium did not 

have PCa staging information, and thus the causal estimates for each of the metabolites in 

relation to PCa mortality were for all stages in a cumulative analysis. Since this thesis 

focused on localised or locally advanced PCa and it could be that the causal estimates 

observed for the metabolites in relation to PCa mortality do not necessarily apply in the 

localised PCa population. However, there is no genetic wide association study (GWAS) of 

localised PCa mortality to date, making the MR analysis impossible to be conducted in 

localised cases only. 

8.3.4. Interventional feasibility randomised controlled 

trial 

Using metabolomic data from the PrEvENT trial, allowed me to investigate the effect of each 

of the interventions (lycopene supplementation, dietary advice and physical activity) on the 

metabolome of men with PCa. By using a RCT design, I was able to disregard the effects that 

confounders could have on the link between the interventions and metabolite levels. This is 

an issue which would be a substantial limitation in a non-interventional study, particularly 

given the broad effects that would generally be triggered by a change in dietary and lifestyle 

patterns. However, the PrEvENT trial was a feasibility RCT and thus did not set out to 

detect changes in metabolites, therefore leading to a lack of power in my study to detect 

effects of the interventions on the metabolome. The evidence from the PrEvENT trial is 

suggestive in nature, and larger trials, adequately powered to detect the effects of 

interventions on the metabolome of men with PCa should be undertaken to provide 

definitive evidence. 

8.3.5. Triangulation of evidence 

In Chapters 5 and 6, I used MR to complement my findings from a cohort study (using 

ProtecT trial data) and a feasibility RCT (PrEvENT). The triangulation of evidence represents 

a strength of my thesis, allowing for evidence from various data sources, using multiple 

methods (survival analysis, intention-to-treat, and MR) to contribute to the inferences. 

However, each of these techniques and data sources come with their own limitations and 

biases as described above. When triangulating the evidence, one of the major limitations is 

the lack of comparable effects since each method tends to estimate different measures. For 
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example, the MR technique estimates a lifelong causal effect between the metabolites and 

PCa mortality, unlike the estimates obtained from the survival analysis of the ProtecT trial 

data which provide the effect from diagnosis. When using MR to provide evidence on the 

long-term effects on PCa mortality of the metabolites altered by the PrEvENT trial’s 

interventions had similar issue arises. The metabolites altered by the trial were for a 6-month 

period, while the MR analysis provides an estimate for a lifelong of exposure of the 

metabolites. Therefore, whilst it is informative to establish whether the interventions have a 

causal effect on PCa mortality, through the metabolites’ pathway, we cannot fully estimate 

the effect. Whilst other methods exist to try and estimate the effect, this was beyond the 

scope of this thesis.  

8.3.6. Missing data 

Missing data was generally not an issue in this thesis. The exception was the measurement 

of BMI in the ProtecT trial, which was incomplete for nearly 1/3 of participants. This was 

mainly due to the fact that weight and height were not collected at the beginning of the 

study (the pilot study). This aspect, however, did not seem to introduce substantial bias in 

my analysis.  

8.3.7. Bias and confounding 

8.3.7.1 Bias resulting from metabolomic pre-analysis handling 

There is suggestive evidence in the literature and in this thesis that glycolytic metabolites 

may play a role in PCa progression. However, a major limitation in analysing the glycolysis 

metabolites is sample handling. The glycolysis process starts immediately after the collection 

of serum samples in the vial (411). This can lead to the glycolysis metabolites being altered 

as a result of the sample handling rather than a biological reason. This could introduce 

information or measurement bias, particularly as the length of time the sample is left out 

would directly impact on the concentration of the glycolysis metabolite concentration. 

Whilst the Nightingale NMR platform has great reproducibility and low interlaboratory 

uncertainty, the samples in the ProtecT and PrEvENT study could still be affected by 

information bias, given that the samples were not consistently frozen at -80 degrees Celsius 

within three hours of collection which is the period after which measurements can be 

significantly altered (411). In the ProtecT trial, the samples were stored in a cool box after 
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collection and centrifugation until arrival at the laboratory where they were frozen, thus 

allowing enough time for glycolysis to occur. This could introduce bias, for a number of 

reasons when assessing the glycolysis metabolites. Firstly, the absolute values observed for 

the glycolytic metabolites in ProtecT may be inaccurate. Secondly, the observed patterns in 

glycolytic measures could be affected by bias of confounding by centre given there were 

multiple prostate clinic checks which may have had different processing timings and 

staffing. Whilst a standard operating procedure was in place for the samples to be processed 

and frozen as soon as possible and ideally the same day, external factors, such as staffing 

issues, distances between the prostate check clinic and availability of transport could have 

led to confounding. Since these aspects were not recorded, it is difficult to ascertain the level 

of bias that was introduced by the sample handling and shipping However, prostate check 

clinics had centrifuges and thus the samples were processed on site before shipment, stored 

in a cool box with ice and eventually stored at -80 degrees Celsius, make it unlikely for other 

measures other than glycolysis to be affected.  

To a lesser extent, the PrEvENT trial could have also had their glycolytic metabolites 

affected by sample handling. While the PrEvENT trial was based at one location only and 

the laboratory was located in the same campus as the clinic, no formal procedure was in 

place to collect information on how long the sample took until it was frozen. The PrEvENT 

trial could not blind the participants or the healthcare professional in the lifestyle and 

dietary interventions and did not use a placebo for the lycopene supplementation. This 

could have introduced performance bias, since it may be that the healthcare professionals 

may have inconsistently handled the samples, for example rushing the samples of those in 

the intervention arms compared to controls. This could have induced biased when assessing 

the associations in the intention to treat analysis of glycolytic metabolites, given that the 

changes observed could be due to pre-analytical differences.   

The stability of the other metabolomic measures, tend to be stable and thus the pre-

analytical processing techniques used in PrEvENT and ProtecT should not have affected the 

metabolite measured by much. The most common causes of inconsistencies in metabolite 

levels are a lower freezing temperature (-20 instead of -80 degrees Celsius) and the thawing 

at room temperature (412). However, none of these were concerns in the ProtecT and 

PrEvENT trials.  
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8.3.7.2 Selection bias 

The ProtecT trial, whilst representative of the UK population could still be prone to selection 

bias. Participants were invited to attend a PCa screening and only 54% responded. 

Participants who did not respond or attend the screening could systematically differ in 

disease incidence and staging, as well as in socio-economic and morbidity characteristics. 

This could make the finding from this thesis not generalisable to the UK population. In 

addition, of men who attended the ProtecT screening visit, only 67% also entered the 

associated ProMPT study which was responsible for the collection of other samples and 

questionnaires. While the samples were analysed via the ProtecT study, additional 

information which was collected via the ProMPT study, such as height, comorbidities, 

lifestyle and dietary patterns were not available for those men who did not consent to enter 

the ProMPT study. Thus, the fully adjusted analyses, which adjusted for body mass index 

(which was missing in participants with no height information), comorbidities, alcohol and 

smoking could be biased due to selection.  

8.3.7.3 Confounding 

As with any study, confounding may be an issue in this thesis. While in the PrEvENT trial 

the randomisation should have led to confounders being equally distributed across the 

intervention arms, there was some evidence of imbalances in confounders across the arms 

(age, smoking). Adjusted analyses were performed to investigate this, however in the case of 

smoking there could be some residual confounding. Smoking was measured only as a 

categorical variable (never, ever or current smoker) and thus the patterns of smoking 

(frequency or number of cigarettes smoked) may not accurately reflect the effects of smoking 

between the intervention arms.  

Although the ProtecT trial had a randomised study design, this thesis analysed it as a cohort 

study, and thus was more prone to confounding than when analysed as an RCT in an 

intention to treat framework. Whilst a wide range of potential confounders were measures 

and were accounted for in the analyses (age, disease staging, Gleason score, Prostate specific 

antigen, body mass index, morbidity) these were not exhaustive. For example, morbidity 

was self-reported and only contained specific groups of comorbidities, rather than an 

exhaustive list or hospital admission data which could have led to residual confounding 

even in the fully adjusted analyses. Lifestyle and dietary questionnaires were available in 

the ProtecT study, but not investigated in this thesis. Unmeasured confounders such as use 
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of supplements, lifestyle patterns, genetic risk scores may lead to biased estimates in the 

observational analysis, given that these were not measured in the ProtecT trial. 

8.4. Future work 

8.4.1. Prognostic biomarker development 

As seen in Chapter 7, a metabolomic prognostic biomarker risk score which performed well 

in the general population, did not replicate well in a clinical setting. A logical extension of 

the analysis performed in this thesis would be the development of a metabolomic risk score 

developed in localised PCa cases only. This would allow the risk score to identify 

metabolomic changes specific to localised PCa, given that as PCa progresses, it is likely to 

have increasingly different metabolomic profiles. In addition, it may allow for better 

replication in a clinical setting, given the more specific population definition. Also, by 

including other ‘omics in addition to the metabolomic dimension and developing a multi-

omics risk score could allow a better replication. As part of my PhD, I set-up and 

coordinated an epigenetic wide association study of PCa progression in men with localised 

PCa and Gleason grade lower than 4+3 in the ProtecT trial. In this population, genetic, 

epigenetic and metabolomic data will be available which could provide a more 

comprehensive measure and could reproduce better in multiple settings.   

8.4.2.  Metformin and Prostate Cancer progression  

Another project I took part in during my PhD, and which constituted the focus of my 

research for the first year was the development of a feasibility RCT which aimed to 

investigate the effects of metformin and physical activity in men with PCa undergoing 

prostatectomy, radiotherapy and active surveillance (Prostate cancer-Exercise and 

Metformin Trial). I helped set-up the study, contributed to the ethical application and took 

ownership of the metabolomic sample collection and processing. Working with the 

laboratory staff at the North Bristol Trust Southmead I aimed to ensure all samples collected 

as part of the trial were frozen at -80 Celsius degrees within two hours of blood collection. 

This was achieved for all samples collected in the trial. The NMR analysis of these samples 

will provide evidence on the link between glycolysis related metabolites and PCa 

progression. In addition, it will help understand the extent to which glycolytic metabolites 



 

 202 

are affected by glycolysis. In the physical activity intervention group, I lead the delivery and 

monitoring of the Garmin devices which participants were give as motivational tools. The 

analysis of the data will allow more details of the exercise performed by the men (duration, 

pace, type of activity). In addition, it will provide strengths and limitations of using Garmin 

wristbands as interventional tool.  

8.5. Concluding remarks 

This thesis highlights the potential that circulating metabolomic markers have in PCa 

progression. The results suggest that circulating metabolites, particularly lipid and amino 

acid measures, may be linked to PCa mortality, thus opening an avenue for progression 

biomarker development and therapeutic targets. I also found that lifestyle and dietary 

interventions in men with PCa may alter metabolites which may be causally linked to PCa 

death. Lastly, this thesis found that metabolomic risk scores developed in the general 

population do not replicate in clinical settings in PSA detected localised PCa. The use of 

circulating metabolomic biomarkers should be further investigated to expand the current 

understanding of PCa progression and potential therapeutic targets.  
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Chapter 9.  Appendices 

9.1. Appendix A 

  

Appendix Table A 1: Baseline assessment variable in UKBB. 

 

 

Adapted from Sudlow et al “UK Biobank: An Open Access Resource for Identifying the 

Causes of a Wide Range of Complex Diseases of Middle and Old Age”  
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Appendix Table A 2: Current and future enhanced phenotyping variables in UKBB 

 

 

 Adapted from Sudlow et al “UK Biobank: An Open Access Resource for Identifying the 

Causes of a Wide Range of Complex Diseases of Middle and Old Age”  
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Appendix Table A 3: List of metabolites investigated in UKB 

 

Metabolite 

Acetate 

Acetoacetate 

Acetone 

Ala 

Albumin 

ApoA1 

ApoB 

ApoB_by_ApoA1 

bOHbutyrate 

Cholines 

Citrate 

Clinical_LDL_C 

Creatinine 

DHA 

DHA_pct 

Gln 

Glucose 

Gly 

GlycA 

HDL_C 

HDL_CE 

HDL_FC 

HDL_L 

HDL_P 

HDL_PL 

HDL_size 

HDL_TG 

His 

IDL_C 

IDL_C_pct 

IDL_CE 

IDL_CE_pct 

IDL_FC 

IDL_FC_pct 

IDL_L 

IDL_P 

IDL_PL 

IDL_PL_pct 

IDL_TG 

IDL_TG_pct 

Ile 

L_HDL_C 

L_HDL_C_pct 

L_HDL_CE 

L_HDL_CE_pct 

L_HDL_FC 

L_HDL_FC_pct 

L_HDL_L 

L_HDL_P 

L_HDL_PL 

L_HDL_PL_pct 

L_HDL_TG 

L_HDL_TG_pct 

L_LDL_C 

L_LDL_C_pct 

L_LDL_CE 

L_LDL_CE_pct 

L_LDL_FC 

L_LDL_FC_pct 

L_LDL_L 

L_LDL_P 

L_LDL_PL 

L_LDL_PL_pct 

L_LDL_TG 

L_LDL_TG_pct 

L_VLDL_C 

L_VLDL_C_pct 

L_VLDL_CE 

L_VLDL_CE_pct 

L_VLDL_FC 

L_VLDL_FC_pct 

L_VLDL_L 

L_VLDL_P 

L_VLDL_PL 

L_VLDL_PL_pct 

L_VLDL_TG 

L_VLDL_TG_pct 

LA 

LA_pct 

Lactate 

LDL_C 

LDL_CE 

LDL_FC 

LDL_L 

LDL_P 

LDL_PL 

LDL_size 

LDL_TG 

Leu 

M_HDL_C 

M_HDL_C_pct 

M_HDL_CE 

M_HDL_CE_pct 

M_HDL_FC 

M_HDL_FC_pct 

M_HDL_L 
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M_HDL_P 

M_HDL_PL 

M_HDL_PL_pct 

M_HDL_TG 

M_HDL_TG_pct 

M_LDL_C 

M_LDL_C_pct 

M_LDL_CE 

M_LDL_CE_pct 

M_LDL_FC 

M_LDL_FC_pct 

M_LDL_L 

M_LDL_P 

M_LDL_PL 

M_LDL_PL_pct 

M_LDL_TG 

M_LDL_TG_pct 

M_VLDL_C 

M_VLDL_C_pct 

M_VLDL_CE 

M_VLDL_CE_pct 

M_VLDL_FC 

M_VLDL_FC_pct 

M_VLDL_L 

M_VLDL_P 

M_VLDL_PL 

M_VLDL_PL_pct 

M_VLDL_TG 

M_VLDL_TG_pct 

MUFA 

MUFA_pct 

non_HDL_C 

Omega_3 

Omega_3_pct 

Omega_6 

Omega_6_by_Omeg

a_3 

Omega_6_pct 

Phe 

Phosphatidylc 

Phosphoglyc 

PUFA 

PUFA_by_MUFA 

PUFA_pct 

Pyruvate 

Remnant_C 

S_HDL_C 

S_HDL_C_pct 

S_HDL_CE 

S_HDL_CE_pct 

S_HDL_FC 

S_HDL_FC_pct 

S_HDL_L 

S_HDL_P 

S_HDL_PL 

S_HDL_PL_pct 

S_HDL_TG 

S_HDL_TG_pct 

S_LDL_C 

S_LDL_C_pct 

S_LDL_CE 

S_LDL_CE_pct 

S_LDL_FC 

S_LDL_FC_pct 

S_LDL_L 

S_LDL_P 

S_LDL_PL 

S_LDL_PL_pct 

S_LDL_TG 

S_LDL_TG_pct 

S_VLDL_C 

S_VLDL_C_pct 

S_VLDL_CE 

S_VLDL_CE_pct 

S_VLDL_FC 

S_VLDL_FC_pct 

S_VLDL_L 

S_VLDL_P 

S_VLDL_PL 

S_VLDL_PL_pct 

S_VLDL_TG 

S_VLDL_TG_pct 

SFA 

SFA_pct 

Sphingomyelins 

TG_by_PG 

Total_BCAA 

Total_C 

Total_CE 

Total_FA 

Total_FC 

Total_L 

Total_P 

Total_PL 

Total_TG 

Tyr 

Unsaturation 

Val 

VLDL_C 

VLDL_CE 

VLDL_FC 

VLDL_L 

VLDL_P 

VLDL_PL 

VLDL_size 

VLDL_TG 

XL_HDL_C 

XL_HDL_C_pct 

XL_HDL_CE 

XL_HDL_CE_pct 

XL_HDL_FC 

XL_HDL_FC_pct 

XL_HDL_L 

XL_HDL_P 

XL_HDL_PL 

XL_HDL_PL_pct 

XL_HDL_TG 

XL_HDL_TG_pct 

XL_VLDL_C 

XL_VLDL_C_pct 
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XL_VLDL_CE 

XL_VLDL_CE_pct 

XL_VLDL_FC 

XL_VLDL_FC_pct 

XL_VLDL_L 

XL_VLDL_P 

XL_VLDL_PL 

XL_VLDL_PL_pct 

XL_VLDL_TG 

XL_VLDL_TG_pct 

XS_VLDL_C 

XS_VLDL_C_pct 

XS_VLDL_CE 

XS_VLDL_CE_pct 

XS_VLDL_FC 

XS_VLDL_FC_pct 

XS_VLDL_L 

XS_VLDL_P 

XS_VLDL_PL 

XS_VLDL_PL_pct 

XS_VLDL_TG 

XS_VLDL_TG_pct 

XXL_VLDL_C 

XXL_VLDL_C_pct 

XXL_VLDL_CE 

XXL_VLDL_CE_pct 

XXL_VLDL_FC 

XXL_VLDL_FC_pct 

XXL_VLDL_L 

XXL_VLDL_P 

XXL_VLDL_PL 

XXL_VLDL_PL_pct 

XXL_VLDL_TG 

XXL_VLDL_TG_pct 



 

 

Appendix Table A 4: List of studies included in the PRACTICAL consortium 

 

Study population No. PC  

No PC 

deaths Genotyping platform No. Imputed SNPs 

Inflation 

factor 

ICOGS_CAPS 354 44 Custom Illumina Infinium (iCOGS) 9786797 0.971 

ICOGS_CPCS 4505 95 Custom Illumina Infinium (iCOGS) 9750186 1.003 

ICOGS_EPIC 1170 35 Custom Illumina Infinium (iCOGS) 9799859 0.965 

ICOGS_FHCRC 752 59 Custom Illumina Infinium (iCOGS) 9778209 0.979 

ICOGS_MAYO 762 39 Custom Illumina Infinium (iCOGS) 9768079 0.961 

ICOGS_MCCS_PCFS 1568 104 Custom Illumina Infinium (iCOGS) 9788606 1.066 

ICOGS_SEARCH 1258 114 Custom Illumina Infinium (iCOGS) 9754581 1.003 

ICOGS_STHM1 2300 157 Custom Illumina Infinium (iCOGS) 9808465 0.986 

ICOGS_TAMPERE 2385 241 Custom Illumina Infinium (iCOGS) 9855776 1.021 

ICOGS_UKGPCS 156 26 Custom Illumina Infinium (iCOGS) 9763468 0.962 

ICOGS_ULM 330 31 Custom Illumina Infinium (iCOGS) 9755747 0.947 

ONCO_AARHUS 698 65 Illumina OncoArray 10001398 0.981 

ONCO_AHS 491 23 Illumina OncoArray 10009305 0.798 

ONCO_ATBC 1227 227 Illumina OncoArray 10085518 0.997 

ONCO_COSM 2112 264 Illumina OncoArray 10022517 1.000 

ONCO_EPIC 626 27 Illumina OncoArray 10051515 0.842 

ONCO_FHCRC 421 31 Illumina OncoArray 10079015 0.880 

ONCO_HPFS 1178 75 Illumina OncoArray 10093241 0.955 

ONCO_MCCS 705 80 Illumina OncoArray 10037960 0.987 

ONCO_MEC 637 29 Illumina OncoArray 10133224 0.864 

ONCO_OSLO 1455 764 Illumina OncoArray 11323855 0.972 

ONCO_PHS 640 118 Illumina OncoArray 10134011 1.008 

ONCO_PROCAP 614 213 Illumina OncoArray 10004073 1.017 

ONCO_PROGRESS 624 20 Illumina OncoArray 10213332 0.780 

ONCO_PROMPT 57 41 Illumina OncoArray 9993073 1.028 

ONCO_QLD 2992 54 Illumina OncoArray 10036463 0.935 

ONCO_SEARCH 2564 150 Illumina OncoArray 10053660 1.021 
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ONCO_SFPCS 280 50 Illumina OncoArray 10054687 0.923 

ONCO_STHM2 3116 181 Illumina OncoArray 10052592 0.976 

ONCO_TAMPERE 2108 146 Illumina OncoArray 10084392 1.028 

ONCO_UKGPCS1 6502 1476 Illumina OncoArray 10117802 1.029 

ONCO_UKGPCS2 5552 969 Illumina OncoArray 10400039 1.026 

GWAS_CAPS1 492 214 Affymetrix GeneChip 500K 10578874 1.019 

GWAS_CAPS2 1493 331 Affymetrix GeneChip 5.0K 10492976 1.019 

GWAS_BPC3_ATBC 245 133 Illumina Human610 Illumina 610K 9268134 1.036 

GWAS_BPC3_CPSII 636 79 Illumina Human610 Illumina 610K 8814571 1.031 

GWAS_BPC3_EPIC 431 159 Illumina Human610 Illumina 610K 8887241 1.029 

GWAS_BPC3_HPFS 214 37 Illumina Human610 Illumina 610K 8843698 1.071 

GWAS_BPC3_MEC 244 23 Illumina Human610 Illumina 610K 8880354 1.155 

GWAS_BPC3_PHS 298 97 Illumina Human610 Illumina 610K 8868315 1.030 

GWAS_MDC 1093 263 Illumina OmniExpress Exome BeadChip 11154114 1.017 

GWAS_PEGASUS 4643 234 Human Omni 2.5 10878513 1.001 

GWAS_UKB 7830 396 Affymetrix UK Biobank Axiom array 9857769 0.991 

Total 67758 7914 
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Appendix Table A 5: Threats to robust inference when conducting two-sample MR 

 

Threats to 

Mendelian 

randomisation  

Definition Methods to mitigate References 

Weak 

instrument bias 

Bias generated by an instrument that is not 

strongly associated with the phenotype   

Covariate adjustment 

 

Limited information 

maximum likelihood (LIML) 

 (285,293,302,413) 
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Fuller (1) methods 

 

 

Linkage 

disequilibrium  

The non-random distribution of genetic 

variants at different loci in the population, 

which can overstate precision in MR studies 

that use methodologies of summarised data 

Not applicable (302,414) 

Population 

stratification 

implications 

When in the structure of the studied 

population there is a correlation between 

the distribution of genetic variants and that 

of the exposures/outcomes 

Fixed family effects 

 

Difference estimators 

 

Negative control outcome 

analysis 

(289,415,416) 

Collider bias 

Collider bias occurs when conditioning on a 

variable that is a common effect of two 

variables. In MR collider bias results in 

violations of the instrumental variable 

assumption. This is particularly problematic 

in disease progression studies, where risk 

factors are associated both with the 

development and progression of disease 

and can lead to under or over identification 

of progression genetic risk factors  

Adjusting genetic 

associations  

 

Slope-Hunter  

 

 

 

 

 

 

(283,297,324–326,329) 

Sample overlap 

Bias generated by overlapping of samples in 

the instrument-exposure and instrument-

outcome datasets, which can lead to biased 

causal estimates between the exposure and 

outcome.   

Derive risk factor 

associations in a non-

overlapping dataset 

 

Apply equal or externally 

specified weights in the IVW 

method 

(280,285,293,302,303,417) 
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Canalisation 

Canalisation represents the process through 

which development is perturbated via the 

buffering resulting from either 

environmental or genetic forces. This means 

that genes may be expressed or supressed as 

a result of a compensatory mechanism due 

to the functional polymorphism expressed 

during the foetal development or postnatal 

growth period.  

No clear approach  (304) 

“4th ” IV 

assumption 

The 4th IV assumption refers to the fact that 

the causal effect observed represents the 

average effect within the study’s population 

which may only apply to a specific 

subgroup the patients and may incorrectly 

translate at individual level or in a different 

subgroup.   

Not applicable (286,418–420) 
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9.2. Appendix B 

 

 

Appendix B Table B 1: Cox regression results for clinical progression minimally adjusted 

model, fully adjusted model, censored minimally adjusted model 
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Appendix B Table B 2: Cox regression results for metastases or PCa death- minimally 

adjusted model, fully adjusted model, censored minimally adjusted model 
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Appendix B Table B 3: Proportional hazard assumption test in the minimally adjusted cox 

model for clinical progression, metastases or death and any progression 
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Appendix B Table B 4: F-statistic and r-square measures for the instruments of individual 

metabolites in UKBB 
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Appendix B Table B 5: Mendelian Randomisation results for Prostate Cancer survival in the PRACTICAL consortium with instruments derived 

from UKBB 

 

 

 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

Acetate MR Egger 6 0.790 1.199 0.345 4.169 

Acetate Weighted median 6 0.927 1.026 0.596 1.765 

Acetate Simple mode 6 0.711 0.841 §0.355 1.993 

Acetate Weighted mode 6 0.929 1.030 0.555 1.912 

Acetate Inverse variance weighted 6 0.807 1.056 0.683 1.634 

Acetoacetate MR Egger 4 0.641 0.632 0.121 3.295 

Acetoacetate Weighted median 4 0.606 1.201 0.599 2.405 

Acetoacetate Simple mode 4 0.649 1.254 0.520 3.027 

Acetoacetate Weighted mode 4 0.657 1.268 0.492 3.266 

Acetoacetate Inverse variance weighted 4 0.745 1.106 0.603 2.029 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

Acetone MR Egger 9 0.162 2.761 0.773 9.860 

Acetone Weighted median 9 0.296 1.351 0.769 2.374 

Acetone Simple mode 9 0.368 1.485 0.659 3.343 

Acetone Weighted mode 9 0.381 1.436 0.668 3.089 

Acetone Inverse variance weighted 9 0.270 1.417 0.763 2.629 

Ala MR Egger 22 0.053 2.036 1.034 4.010 

Ala Weighted median 22 0.339 1.165 0.852 1.594 

Ala Simple mode 22 0.662 1.121 0.677 1.854 

Ala Weighted mode 22 0.513 1.138 0.777 1.666 

Ala Inverse variance weighted 22 0.057 1.240 0.994 1.547 

Albumin MR Egger 19 0.267 0.840 0.623 1.132 

Albumin Weighted median 19 0.156 0.836 0.652 1.071 

Albumin Simple mode 19 0.449 1.223 0.734 2.039 

Albumin Weighted mode 19 0.145 0.814 0.624 1.061 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

Albumin Inverse variance weighted 19 0.250 0.892 0.734 1.084 

ApoA1 MR Egger 51 0.503 1.104 0.828 1.473 

ApoA1 Weighted median 51 0.839 1.019 0.849 1.223 

ApoA1 Simple mode 51 0.985 0.997 0.714 1.392 

ApoA1 Weighted mode 51 0.860 0.984 0.823 1.176 

ApoA1 Inverse variance weighted 51 0.821 1.019 0.866 1.200 

ApoB MR Egger 41 0.048 1.266 1.010 1.588 

ApoB Weighted median 41 0.112 1.160 0.966 1.393 

ApoB Simple mode 41 0.435 1.147 0.815 1.614 

ApoB Weighted mode 41 0.233 1.175 0.905 1.525 

ApoB Inverse variance weighted 41 0.044 1.138 1.003 1.291 

ApoB_by_ApoA1 MR Egger 55 0.327 1.150 0.872 1.515 

ApoB_by_ApoA1 Weighted median 55 0.718 1.037 0.850 1.266 

ApoB_by_ApoA1 Simple mode 55 0.898 1.025 0.705 1.490 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

ApoB_by_ApoA1 Weighted mode 55 0.645 1.060 0.828 1.359 

ApoB_by_ApoA1 Inverse variance weighted 55 0.105 1.133 0.974 1.317 

bOHbutyrate MR Egger 10 0.322 2.013 0.550 7.366 

bOHbutyrate Weighted median 10 0.195 1.330 0.864 2.049 

bOHbutyrate Simple mode 10 0.464 1.283 0.677 2.430 

bOHbutyrate Weighted mode 10 0.380 1.365 0.705 2.640 

bOHbutyrate Inverse variance weighted 10 0.144 1.426 0.885 2.296 

Cholines MR Egger 46 0.930 1.009 0.823 1.237 

Cholines Weighted median 46 0.510 1.059 0.893 1.256 

Cholines Simple mode 46 0.724 1.055 0.785 1.419 

Cholines Weighted mode 46 0.486 1.063 0.897 1.259 

Cholines Inverse variance weighted 46 0.085 1.102 0.987 1.232 

Citrate MR Egger 25 0.278 0.829 0.595 1.154 

Citrate Weighted median 25 0.677 0.949 0.742 1.214 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

Citrate Simple mode 25 0.182 0.757 0.509 1.126 

Citrate Weighted mode 25 0.588 0.928 0.712 1.211 

Citrate Inverse variance weighted 25 0.190 0.899 0.767 1.054 

Clinical_LDL_C Inverse variance weighted 31 0.007 1.209 1.053 1.388 

Clinical_LDL_C MR Egger 31 0.014 1.372 1.083 1.739 

Clinical_LDL_C Weighted median 31 0.003 1.336 1.102 1.621 

Clinical_LDL_C Simple mode 31 0.367 1.180 0.828 1.683 

Clinical_LDL_C Weighted mode 31 0.009 1.392 1.104 1.755 

Creatinine MR Egger 51 0.641 1.161 0.622 2.169 

Creatinine Weighted median 51 0.577 0.924 0.698 1.221 

Creatinine Simple mode 51 0.736 0.905 0.507 1.615 

Creatinine Weighted mode 51 0.872 0.966 0.632 1.475 

Creatinine Inverse variance weighted 51 0.463 0.929 0.763 1.131 

DHA MR Egger 29 0.225 1.088 0.952 1.243 



 

 279 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

DHA Weighted median 29 0.086 1.109 0.985 1.249 

DHA Simple mode 29 0.565 1.092 0.812 1.469 

DHA Weighted mode 29 0.083 1.107 0.991 1.236 

DHA Inverse variance weighted 29 0.038 1.107 1.006 1.219 

DHA_pct MR Egger 20 0.140 1.124 0.969 1.304 

DHA_pct Weighted median 20 0.079 1.115 0.987 1.259 

DHA_pct Simple mode 20 0.890 1.028 0.698 1.514 

DHA_pct Weighted mode 20 0.147 1.105 0.971 1.257 

DHA_pct Inverse variance weighted 20 0.274 1.064 0.952 1.189 

Gln MR Egger 30 0.572 0.926 0.712 1.205 

Gln Weighted median 30 0.639 1.038 0.887 1.215 

Gln Simple mode 30 0.873 1.024 0.767 1.368 

Gln Weighted mode 30 0.866 1.013 0.869 1.181 

Gln Inverse variance weighted 30 0.646 0.961 0.811 1.139 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

Glucose MR Egger 16 0.362 1.270 0.773 2.086 

Glucose Weighted median 16 0.731 1.054 0.781 1.422 

Glucose Simple mode 16 0.830 0.943 0.559 1.591 

Glucose Weighted mode 16 0.544 1.103 0.808 1.506 

Glucose Inverse variance weighted 16 0.849 0.978 0.780 1.226 

Gly MR Egger 29 0.551 1.023 0.951 1.100 

Gly Weighted median 29 0.457 1.026 0.960 1.096 

Gly Simple mode 29 0.476 1.113 0.833 1.487 

Gly Weighted mode 29 0.434 1.028 0.960 1.100 

Gly Inverse variance weighted 29 0.255 1.037 0.974 1.104 

GlycA MR Egger 41 0.149 1.169 0.949 1.440 

GlycA Weighted median 41 0.420 1.079 0.897 1.299 

GlycA Simple mode 41 0.562 1.111 0.781 1.582 

GlycA Weighted mode 41 0.461 1.070 0.895 1.279 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

GlycA Inverse variance weighted 41 0.833 1.013 0.896 1.146 

HDL_C MR Egger 69 0.794 1.035 0.800 1.340 

HDL_C Weighted median 69 0.870 1.014 0.855 1.203 

HDL_C Simple mode 69 0.870 0.974 0.711 1.334 

HDL_C Weighted mode 69 0.902 0.988 0.817 1.194 

HDL_C Inverse variance weighted 69 0.377 1.063 0.928 1.218 

HDL_CE MR Egger 67 0.692 1.054 0.812 1.369 

HDL_CE Weighted median 67 0.892 1.012 0.847 1.210 

HDL_CE Simple mode 67 0.704 0.939 0.681 1.296 

HDL_CE Weighted mode 67 0.957 0.994 0.809 1.222 

HDL_CE Inverse variance weighted 67 0.542 1.044 0.910 1.197 

HDL_FC MR Egger 62 0.850 1.020 0.829 1.256 

HDL_FC Weighted median 62 0.676 1.037 0.874 1.231 

HDL_FC Simple mode 62 0.643 0.931 0.690 1.257 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

HDL_FC Weighted mode 62 0.818 1.021 0.855 1.219 

HDL_FC Inverse variance weighted 62 0.181 1.083 0.964 1.217 

HDL_L MR Egger 60 0.674 1.055 0.822 1.356 

HDL_L Weighted median 60 0.849 1.017 0.856 1.208 

HDL_L Simple mode 60 0.692 0.936 0.673 1.299 

HDL_L Weighted mode 60 0.777 0.974 0.812 1.168 

HDL_L Inverse variance weighted 60 0.743 1.023 0.892 1.174 

HDL_P MR Egger 47 0.685 1.076 0.756 1.531 

HDL_P Weighted median 47 0.835 1.021 0.837 1.246 

HDL_P Simple mode 47 0.951 0.989 0.690 1.417 

HDL_P Weighted mode 47 0.994 1.001 0.749 1.339 

HDL_P Inverse variance weighted 47 0.685 1.036 0.872 1.231 

HDL_PL MR Egger 52 0.992 0.999 0.787 1.267 

HDL_PL Weighted median 52 0.857 1.016 0.853 1.211 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

HDL_PL Simple mode 52 0.902 0.980 0.710 1.353 

HDL_PL Weighted mode 52 0.919 0.990 0.822 1.193 

HDL_PL Inverse variance weighted 52 0.823 1.016 0.886 1.165 

HDL_size MR Egger 66 0.924 0.991 0.831 1.183 

HDL_size Weighted median 66 0.740 1.025 0.888 1.183 

HDL_size Simple mode 66 0.877 0.974 0.703 1.350 

HDL_size Weighted mode 66 0.957 1.004 0.875 1.152 

HDL_size Inverse variance weighted 66 0.326 1.058 0.946 1.183 

HDL_TG MR Egger 43 0.712 1.032 0.875 1.217 

HDL_TG Weighted median 43 0.595 1.042 0.896 1.212 

HDL_TG Simple mode 43 0.702 1.053 0.808 1.373 

HDL_TG Weighted mode 43 0.543 1.043 0.911 1.195 

HDL_TG Inverse variance weighted 43 0.886 1.008 0.905 1.122 

His MR Egger 9 0.523 0.761 0.344 1.685 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

His Weighted median 9 0.277 0.812 0.557 1.182 

His Simple mode 9 0.082 0.580 0.339 0.993 

His Weighted mode 9 0.230 0.764 0.509 1.147 

His Inverse variance weighted 9 0.047 0.740 0.550 0.996 

IDL_C MR Egger 51 0.003 1.399 1.133 1.726 

IDL_C Weighted median 51 0.165 1.131 0.950 1.346 

IDL_C Simple mode 51 0.784 1.051 0.738 1.498 

IDL_C Weighted mode 51 0.039 1.271 1.018 1.586 

IDL_C Inverse variance weighted 51 0.065 1.118 0.993 1.259 

IDL_C_pct MR Egger 54 0.282 1.106 0.922 1.327 

IDL_C_pct Weighted median 54 0.951 0.996 0.863 1.148 

IDL_C_pct Simple mode 54 0.858 0.975 0.739 1.286 

IDL_C_pct Weighted mode 54 0.945 1.005 0.872 1.158 

IDL_C_pct Inverse variance weighted 54 0.399 1.048 0.940 1.168 



 

 285 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

IDL_CE MR Egger 50 0.005 1.378 1.111 1.710 

IDL_CE Weighted median 50 0.151 1.141 0.953 1.366 

IDL_CE Simple mode 50 0.773 1.054 0.738 1.505 

IDL_CE Weighted mode 50 0.057 1.272 0.999 1.620 

IDL_CE Inverse variance weighted 50 0.055 1.124 0.997 1.267 

IDL_CE_pct MR Egger 41 0.362 1.127 0.874 1.455 

IDL_CE_pct Weighted median 41 0.524 1.062 0.882 1.280 

IDL_CE_pct Simple mode 41 0.641 0.920 0.650 1.302 

IDL_CE_pct Weighted mode 41 0.881 1.013 0.857 1.197 

IDL_CE_pct Inverse variance weighted 41 0.682 1.032 0.888 1.200 

IDL_FC Inverse variance weighted 49 0.023 1.145 1.018 1.288 

IDL_FC MR Egger 49 0.003 1.394 1.134 1.714 

IDL_FC Weighted median 49 0.027 1.212 1.022 1.436 

IDL_FC Simple mode 49 0.614 1.091 0.778 1.530 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

IDL_FC Weighted mode 49 0.026 1.281 1.037 1.582 

IDL_FC_pct MR Egger 29 0.239 1.258 0.866 1.827 

IDL_FC_pct Weighted median 29 0.051 1.311 0.998 1.721 

IDL_FC_pct Simple mode 29 0.638 0.889 0.546 1.446 

IDL_FC_pct Weighted mode 29 0.153 1.250 0.928 1.685 

IDL_FC_pct Inverse variance weighted 29 0.119 1.151 0.964 1.374 

IDL_L MR Egger 47 0.007 1.330 1.090 1.622 

IDL_L Weighted median 47 0.318 1.092 0.919 1.297 

IDL_L Simple mode 47 0.837 1.037 0.735 1.464 

IDL_L Weighted mode 47 0.097 1.200 0.972 1.482 

IDL_L Inverse variance weighted 47 0.078 1.111 0.988 1.249 

IDL_P MR Egger 38 0.057 1.280 1.001 1.637 

IDL_P Weighted median 38 0.029 1.221 1.021 1.461 

IDL_P Simple mode 38 0.580 1.093 0.800 1.493 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

IDL_P Weighted mode 38 0.041 1.272 1.018 1.590 

IDL_P Inverse variance weighted 38 0.044 1.154 1.004 1.325 

IDL_PL Inverse variance weighted 47 0.010 1.156 1.035 1.292 

IDL_PL MR Egger 47 0.026 1.243 1.032 1.496 

IDL_PL Weighted median 47 0.361 1.081 0.914 1.279 

IDL_PL Simple mode 47 0.196 1.242 0.899 1.716 

IDL_PL Weighted mode 47 0.072 1.194 0.989 1.443 

IDL_PL_pct MR Egger 33 0.371 0.891 0.694 1.143 

IDL_PL_pct Weighted median 33 0.732 0.971 0.819 1.151 

IDL_PL_pct Simple mode 33 0.831 1.029 0.794 1.333 

IDL_PL_pct Weighted mode 33 0.611 0.960 0.821 1.122 

IDL_PL_pct Inverse variance weighted 33 0.583 1.042 0.900 1.207 

IDL_TG MR Egger 43 0.947 0.996 0.873 1.135 

IDL_TG Weighted median 43 0.579 1.034 0.918 1.165 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

IDL_TG Simple mode 43 0.305 1.143 0.888 1.470 

IDL_TG Weighted mode 43 0.466 1.040 0.937 1.154 

IDL_TG Inverse variance weighted 43 0.453 1.034 0.947 1.130 

IDL_TG_pct MR Egger 57 0.346 0.915 0.762 1.099 

IDL_TG_pct Weighted median 57 0.954 1.004 0.865 1.166 

IDL_TG_pct Simple mode 57 0.853 1.025 0.787 1.336 

IDL_TG_pct Weighted mode 57 0.943 0.994 0.854 1.158 

IDL_TG_pct Inverse variance weighted 57 0.211 0.936 0.845 1.038 

Ile MR Egger 7 0.239 2.383 0.666 8.525 

Ile Weighted median 7 0.233 1.265 0.860 1.862 

Ile Simple mode 7 0.689 1.105 0.694 1.757 

Ile Weighted mode 7 0.318 1.250 0.836 1.869 

Ile Inverse variance weighted 7 0.108 1.397 0.930 2.099 

L_HDL_C MR Egger 73 0.752 0.973 0.821 1.153 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

L_HDL_C Weighted median 73 0.631 0.963 0.824 1.125 

L_HDL_C Simple mode 73 0.663 0.939 0.707 1.246 

L_HDL_C Weighted mode 73 0.621 0.964 0.833 1.115 

L_HDL_C Inverse variance weighted 73 0.690 1.021 0.921 1.132 

L_HDL_C_pct MR Egger 58 0.341 1.129 0.882 1.445 

L_HDL_C_pct Weighted median 58 0.844 0.979 0.790 1.212 

L_HDL_C_pct Simple mode 58 0.944 0.986 0.662 1.469 

L_HDL_C_pct Weighted mode 58 0.664 0.953 0.770 1.180 

L_HDL_C_pct Inverse variance weighted 58 0.165 1.101 0.961 1.261 

L_HDL_CE MR Egger 73 0.618 0.957 0.805 1.137 

L_HDL_CE Weighted median 73 0.883 1.012 0.862 1.188 

L_HDL_CE Simple mode 73 0.735 0.947 0.691 1.297 

L_HDL_CE Weighted mode 73 0.732 0.973 0.830 1.139 

L_HDL_CE Inverse variance weighted 73 0.622 1.026 0.926 1.138 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

L_HDL_CE_pct MR Egger 49 0.381 1.163 0.833 1.623 

L_HDL_CE_pct Weighted median 49 0.763 0.967 0.777 1.204 

L_HDL_CE_pct Simple mode 49 0.993 1.002 0.683 1.469 

L_HDL_CE_pct Weighted mode 49 0.529 0.932 0.751 1.158 

L_HDL_CE_pct Inverse variance weighted 49 0.243 1.108 0.933 1.317 

L_HDL_FC MR Egger 69 0.828 0.981 0.828 1.162 

L_HDL_FC Weighted median 69 0.596 0.961 0.831 1.112 

L_HDL_FC Simple mode 69 0.770 0.954 0.698 1.304 

L_HDL_FC Weighted mode 69 0.585 0.964 0.847 1.098 

L_HDL_FC Inverse variance weighted 69 0.640 0.974 0.874 1.086 

L_HDL_FC_pct Inverse variance weighted 53 0.039 1.124 1.006 1.257 

L_HDL_FC_pct MR Egger 53 0.390 1.079 0.909 1.282 

L_HDL_FC_pct Weighted median 53 0.993 1.001 0.863 1.160 

L_HDL_FC_pct Simple mode 53 0.798 1.036 0.794 1.351 



 

 291 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

L_HDL_FC_pct Weighted mode 53 0.822 1.016 0.887 1.164 

L_HDL_L MR Egger 76 0.687 0.967 0.820 1.140 

L_HDL_L Weighted median 76 0.691 0.971 0.837 1.125 

L_HDL_L Simple mode 76 0.828 0.966 0.709 1.317 

L_HDL_L Weighted mode 76 0.702 0.974 0.854 1.112 

L_HDL_L Inverse variance weighted 76 0.690 1.021 0.922 1.130 

L_HDL_P MR Egger 68 0.561 0.949 0.798 1.130 

L_HDL_P Weighted median 68 0.571 0.958 0.828 1.110 

L_HDL_P Simple mode 68 0.798 0.962 0.713 1.296 

L_HDL_P Weighted mode 68 0.688 0.971 0.843 1.119 

L_HDL_P Inverse variance weighted 68 0.831 1.012 0.907 1.129 

L_HDL_PL MR Egger 63 0.576 0.953 0.805 1.127 

L_HDL_PL Weighted median 63 0.617 0.963 0.829 1.118 

L_HDL_PL Simple mode 63 0.773 0.960 0.730 1.264 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

L_HDL_PL Weighted mode 63 0.664 0.968 0.838 1.119 

L_HDL_PL Inverse variance weighted 63 0.687 1.021 0.922 1.132 

L_HDL_PL_pct Inverse variance weighted 56 0.018 0.856 0.753 0.974 

L_HDL_PL_pct MR Egger 56 0.560 0.930 0.729 1.186 

L_HDL_PL_pct Weighted median 56 0.926 0.991 0.821 1.197 

L_HDL_PL_pct Simple mode 56 0.930 1.016 0.718 1.436 

L_HDL_PL_pct Weighted mode 56 0.883 1.016 0.826 1.249 

L_HDL_TG MR Egger 38 0.615 0.971 0.867 1.087 

L_HDL_TG Weighted median 38 0.740 1.018 0.914 1.134 

L_HDL_TG Simple mode 38 0.283 1.148 0.896 1.472 

L_HDL_TG Weighted mode 38 0.743 1.016 0.925 1.115 

L_HDL_TG Inverse variance weighted 38 0.637 1.020 0.939 1.109 

L_HDL_TG_pct MR Egger 57 0.469 0.915 0.720 1.162 

L_HDL_TG_pct Weighted median 57 0.627 1.046 0.872 1.255 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

L_HDL_TG_pct Simple mode 57 0.959 0.991 0.716 1.373 

L_HDL_TG_pct Weighted mode 57 0.705 1.038 0.858 1.255 

L_HDL_TG_pct Inverse variance weighted 57 0.724 0.977 0.859 1.111 

L_LDL_C Inverse variance weighted 37 0.000 1.250 1.104 1.416 

L_LDL_C MR Egger 37 0.022 1.317 1.051 1.651 

L_LDL_C Weighted median 37 0.003 1.335 1.104 1.614 

L_LDL_C Simple mode 37 0.308 1.198 0.851 1.686 

L_LDL_C Weighted mode 37 0.003 1.438 1.152 1.793 

L_LDL_C_pct Inverse variance weighted 43 0.001 1.312 1.116 1.544 

L_LDL_C_pct MR Egger 43 0.009 1.662 1.159 2.384 

L_LDL_C_pct Weighted median 43 0.254 1.137 0.912 1.417 

L_LDL_C_pct Simple mode 43 0.962 0.988 0.600 1.627 

L_LDL_C_pct Weighted mode 43 0.783 1.046 0.762 1.436 

L_LDL_CE Inverse variance weighted 35 0.001 1.235 1.085 1.406 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

L_LDL_CE MR Egger 35 0.033 1.310 1.032 1.662 

L_LDL_CE Weighted median 35 0.003 1.336 1.103 1.620 

L_LDL_CE Simple mode 35 0.404 1.170 0.813 1.683 

L_LDL_CE Weighted mode 35 0.025 1.353 1.050 1.743 

L_LDL_CE_pct Inverse variance weighted 26 0.008 1.317 1.073 1.617 

L_LDL_CE_pct MR Egger 26 0.189 1.394 0.861 2.257 

L_LDL_CE_pct Weighted median 26 0.186 1.187 0.921 1.530 

L_LDL_CE_pct Simple mode 26 0.353 1.301 0.755 2.243 

L_LDL_CE_pct Weighted mode 26 0.375 1.153 0.847 1.570 

L_LDL_FC Inverse variance weighted 43 0.005 1.196 1.055 1.355 

L_LDL_FC MR Egger 43 0.007 1.371 1.104 1.702 

L_LDL_FC Weighted median 43 0.005 1.310 1.085 1.582 

L_LDL_FC Simple mode 43 0.802 1.051 0.716 1.541 

L_LDL_FC Weighted mode 43 0.003 1.398 1.131 1.728 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

L_LDL_FC_pct MR Egger 58 0.922 0.989 0.789 1.239 

L_LDL_FC_pct Weighted median 58 0.611 0.954 0.794 1.145 

L_LDL_FC_pct Simple mode 58 0.818 0.962 0.693 1.335 

L_LDL_FC_pct Weighted mode 58 0.625 0.945 0.756 1.182 

L_LDL_FC_pct Inverse variance weighted 58 0.856 1.012 0.892 1.148 

L_LDL_L Inverse variance weighted 35 0.003 1.219 1.069 1.389 

L_LDL_L MR Egger 35 0.042 1.292 1.018 1.639 

L_LDL_L Weighted median 35 0.008 1.302 1.072 1.580 

L_LDL_L Simple mode 35 0.551 1.111 0.789 1.563 

L_LDL_L Weighted mode 35 0.009 1.383 1.099 1.741 

L_LDL_P Inverse variance weighted 42 0.009 1.175 1.041 1.327 

L_LDL_P MR Egger 42 0.011 1.326 1.078 1.631 

L_LDL_P Weighted median 42 0.003 1.303 1.091 1.555 

L_LDL_P Simple mode 42 0.391 1.155 0.834 1.601 



 

 296 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

L_LDL_P Weighted mode 42 0.012 1.326 1.074 1.638 

L_LDL_PL Inverse variance weighted 35 0.009 1.197 1.047 1.369 

L_LDL_PL MR Egger 35 0.017 1.346 1.069 1.696 

L_LDL_PL Weighted median 35 0.009 1.298 1.067 1.579 

L_LDL_PL Simple mode 35 0.406 1.163 0.818 1.654 

L_LDL_PL Weighted mode 35 0.008 1.385 1.105 1.735 

L_LDL_PL_pct MR Egger 33 0.502 1.057 0.901 1.238 

L_LDL_PL_pct Weighted median 33 0.445 1.055 0.919 1.211 

L_LDL_PL_pct Simple mode 33 0.450 0.900 0.686 1.180 

L_LDL_PL_pct Weighted mode 33 0.490 1.046 0.922 1.187 

L_LDL_PL_pct Inverse variance weighted 33 0.901 0.994 0.899 1.098 

L_LDL_TG MR Egger 48 0.605 1.038 0.901 1.197 

L_LDL_TG Weighted median 48 0.593 1.039 0.904 1.193 

L_LDL_TG Simple mode 48 0.643 1.064 0.819 1.382 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

L_LDL_TG Weighted mode 48 0.449 1.045 0.933 1.170 

L_LDL_TG Inverse variance weighted 48 0.517 1.032 0.939 1.133 

L_LDL_TG_pct MR Egger 48 0.377 0.902 0.718 1.132 

L_LDL_TG_pct Weighted median 48 0.975 1.003 0.840 1.197 

L_LDL_TG_pct Simple mode 48 0.891 1.023 0.741 1.412 

L_LDL_TG_pct Weighted mode 48 0.881 1.014 0.845 1.218 

L_LDL_TG_pct Inverse variance weighted 48 0.337 0.940 0.830 1.066 

L_VLDL_C MR Egger 39 0.461 1.107 0.848 1.444 

L_VLDL_C Weighted median 39 0.375 1.078 0.913 1.274 

L_VLDL_C Simple mode 39 0.426 1.107 0.864 1.419 

L_VLDL_C Weighted mode 39 0.287 1.096 0.928 1.296 

L_VLDL_C Inverse variance weighted 39 0.349 1.068 0.930 1.227 

L_VLDL_C_pct MR Egger 42 0.791 0.968 0.761 1.230 

L_VLDL_C_pct Weighted median 42 0.948 0.994 0.840 1.178 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

L_VLDL_C_pct Simple mode 42 0.809 0.963 0.711 1.305 

L_VLDL_C_pct Weighted mode 42 0.828 0.983 0.840 1.150 

L_VLDL_C_pct Inverse variance weighted 42 0.793 0.981 0.848 1.134 

L_VLDL_CE MR Egger 36 0.768 0.959 0.727 1.264 

L_VLDL_CE Weighted median 36 0.175 1.129 0.947 1.346 

L_VLDL_CE Simple mode 36 0.429 1.112 0.857 1.444 

L_VLDL_CE Weighted mode 36 0.346 1.091 0.912 1.306 

L_VLDL_CE Inverse variance weighted 36 0.123 1.123 0.969 1.301 

L_VLDL_CE_pct MR Egger 46 0.591 0.938 0.743 1.183 

L_VLDL_CE_pct Weighted median 46 0.711 0.968 0.818 1.147 

L_VLDL_CE_pct Simple mode 46 0.706 0.944 0.699 1.273 

L_VLDL_CE_pct Weighted mode 46 0.613 0.960 0.821 1.123 

L_VLDL_CE_pct Inverse variance weighted 46 0.921 0.993 0.863 1.143 

L_VLDL_FC MR Egger 40 0.269 1.168 0.891 1.530 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

L_VLDL_FC Weighted median 40 0.247 1.110 0.930 1.325 

L_VLDL_FC Simple mode 40 0.399 1.124 0.859 1.470 

L_VLDL_FC Weighted mode 40 0.277 1.114 0.919 1.350 

L_VLDL_FC Inverse variance weighted 40 0.367 1.070 0.924 1.240 

L_VLDL_FC_pct MR Egger 37 0.954 1.010 0.732 1.392 

L_VLDL_FC_pct Weighted median 37 0.860 1.018 0.836 1.239 

L_VLDL_FC_pct Simple mode 37 0.799 1.045 0.748 1.458 

L_VLDL_FC_pct Weighted mode 37 0.921 1.011 0.811 1.262 

L_VLDL_FC_pct Inverse variance weighted 37 0.545 1.051 0.895 1.234 

L_VLDL_L MR Egger 41 0.275 1.133 0.909 1.413 

L_VLDL_L Weighted median 41 0.298 1.100 0.919 1.316 

L_VLDL_L Simple mode 41 0.553 1.102 0.802 1.514 

L_VLDL_L Weighted mode 41 0.396 1.102 0.883 1.375 

L_VLDL_L Inverse variance weighted 41 0.180 1.089 0.961 1.234 



 

 300 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

L_VLDL_P MR Egger 41 0.401 1.106 0.877 1.394 

L_VLDL_P Weighted median 41 0.306 1.097 0.919 1.309 

L_VLDL_P Simple mode 41 0.483 1.117 0.823 1.515 

L_VLDL_P Weighted mode 41 0.318 1.107 0.909 1.349 

L_VLDL_P Inverse variance weighted 41 0.237 1.080 0.951 1.228 

L_VLDL_PL MR Egger 39 0.276 1.151 0.897 1.479 

L_VLDL_PL Weighted median 39 0.299 1.095 0.923 1.299 

L_VLDL_PL Simple mode 39 0.556 1.090 0.821 1.448 

L_VLDL_PL Weighted mode 39 0.326 1.108 0.906 1.355 

L_VLDL_PL Inverse variance weighted 39 0.399 1.059 0.927 1.211 

L_VLDL_PL_pct MR Egger 45 0.337 0.878 0.674 1.142 

L_VLDL_PL_pct Weighted median 45 0.854 1.018 0.838 1.238 

L_VLDL_PL_pct Simple mode 45 0.679 1.077 0.760 1.527 

L_VLDL_PL_pct Weighted mode 45 0.757 1.032 0.848 1.255 



 

 301 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

L_VLDL_PL_pct Inverse variance weighted 45 0.600 0.962 0.834 1.110 

L_VLDL_TG MR Egger 43 0.288 1.139 0.899 1.444 

L_VLDL_TG Weighted median 43 0.324 1.099 0.911 1.326 

L_VLDL_TG Simple mode 43 0.659 1.066 0.805 1.412 

L_VLDL_TG Weighted mode 43 0.276 1.122 0.915 1.376 

L_VLDL_TG Inverse variance weighted 43 0.397 1.063 0.923 1.224 

L_VLDL_TG_pct MR Egger 42 0.582 1.049 0.887 1.240 

L_VLDL_TG_pct Weighted median 42 0.411 0.941 0.815 1.087 

L_VLDL_TG_pct Simple mode 42 0.577 0.916 0.675 1.244 

L_VLDL_TG_pct Weighted mode 42 0.510 0.957 0.840 1.090 

L_VLDL_TG_pct Inverse variance weighted 42 0.218 0.932 0.833 1.042 

LA MR Egger 36 0.661 0.920 0.634 1.334 

LA Weighted median 36 0.731 1.033 0.860 1.240 

LA Simple mode 36 0.898 1.019 0.766 1.355 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

LA Weighted mode 36 0.991 1.001 0.807 1.242 

LA Inverse variance weighted 36 0.529 0.949 0.806 1.117 

LA_pct MR Egger 24 0.996 0.999 0.610 1.635 

LA_pct Weighted median 24 0.503 0.893 0.641 1.243 

LA_pct Simple mode 24 0.442 0.799 0.455 1.402 

LA_pct Weighted mode 24 0.492 0.875 0.602 1.272 

LA_pct Inverse variance weighted 24 0.133 0.846 0.680 1.053 

Lactate Inverse variance weighted 6 0.086 1.488 0.945 2.343 

Lactate MR Egger 6 0.794 1.375 0.147 12.850 

Lactate Weighted median 6 0.132 1.520 0.881 2.624 

Lactate Simple mode 6 0.341 1.504 0.704 3.214 

Lactate Weighted mode 6 0.237 1.629 0.799 3.320 

LDL_C Inverse variance weighted 36 0.007 1.209 1.054 1.387 

LDL_C MR Egger 36 0.024 1.335 1.051 1.695 



 

 303 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

LDL_C Weighted median 36 0.003 1.335 1.103 1.615 

LDL_C Simple mode 36 0.198 1.256 0.894 1.765 

LDL_C Weighted mode 36 0.010 1.400 1.099 1.783 

LDL_CE Inverse variance weighted 33 0.008 1.214 1.052 1.401 

LDL_CE MR Egger 33 0.042 1.324 1.021 1.717 

LDL_CE Weighted median 33 0.006 1.320 1.084 1.608 

LDL_CE Simple mode 33 0.293 1.215 0.850 1.738 

LDL_CE Weighted mode 33 0.017 1.359 1.069 1.727 

LDL_FC Inverse variance weighted 39 0.004 1.203 1.062 1.362 

LDL_FC MR Egger 39 0.003 1.408 1.140 1.740 

LDL_FC Weighted median 39 0.004 1.326 1.095 1.607 

LDL_FC Simple mode 39 0.795 1.053 0.716 1.548 

LDL_FC Weighted mode 39 0.003 1.401 1.133 1.733 

LDL_L Inverse variance weighted 35 0.004 1.216 1.064 1.390 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

LDL_L MR Egger 35 0.034 1.309 1.031 1.663 

LDL_L Weighted median 35 0.009 1.302 1.070 1.585 

LDL_L Simple mode 35 0.315 1.203 0.844 1.714 

LDL_L Weighted mode 35 0.010 1.371 1.094 1.718 

LDL_P Inverse variance weighted 40 0.026 1.157 1.018 1.315 

LDL_P MR Egger 40 0.067 1.248 0.991 1.570 

LDL_P Weighted median 40 0.068 1.192 0.987 1.439 

LDL_P Simple mode 40 0.329 1.205 0.833 1.742 

LDL_P Weighted mode 40 0.119 1.214 0.956 1.541 

LDL_PL Inverse variance weighted 36 0.011 1.188 1.040 1.357 

LDL_PL MR Egger 36 0.027 1.306 1.041 1.638 

LDL_PL Weighted median 36 0.011 1.274 1.056 1.536 

LDL_PL Simple mode 36 0.631 1.098 0.752 1.605 

LDL_PL Weighted mode 36 0.011 1.324 1.078 1.628 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

LDL_size MR Egger 27 0.295 1.204 0.857 1.690 

LDL_size Weighted median 27 0.400 1.113 0.867 1.429 

LDL_size Simple mode 27 0.865 0.959 0.594 1.549 

LDL_size Weighted mode 27 0.444 1.111 0.852 1.450 

LDL_size Inverse variance weighted 27 0.498 1.070 0.881 1.299 

LDL_TG MR Egger 53 0.359 1.074 0.923 1.250 

LDL_TG Weighted median 53 0.507 1.046 0.916 1.193 

LDL_TG Simple mode 53 0.532 1.081 0.849 1.376 

LDL_TG Weighted mode 53 0.455 1.047 0.929 1.179 

LDL_TG Inverse variance weighted 53 0.716 1.018 0.926 1.118 

Leu MR Egger 11 0.231 1.885 0.717 4.956 

Leu Weighted median 11 0.200 1.251 0.888 1.762 

Leu Simple mode 11 0.463 1.292 0.669 2.494 

Leu Weighted mode 11 0.218 1.267 0.890 1.801 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

Leu Inverse variance weighted 11 0.292 1.259 0.820 1.931 

M_HDL_C MR Egger 65 0.919 1.015 0.764 1.348 

M_HDL_C Weighted median 65 0.908 0.990 0.829 1.182 

M_HDL_C Simple mode 65 0.803 0.958 0.685 1.340 

M_HDL_C Weighted mode 65 0.822 0.970 0.745 1.264 

M_HDL_C Inverse variance weighted 65 0.848 1.014 0.879 1.170 

M_HDL_C_pct MR Egger 58 0.639 1.076 0.793 1.461 

M_HDL_C_pct Weighted median 58 0.800 0.973 0.790 1.200 

M_HDL_C_pct Simple mode 58 0.927 0.982 0.668 1.443 

M_HDL_C_pct Weighted mode 58 0.634 0.938 0.723 1.218 

M_HDL_C_pct Inverse variance weighted 58 0.214 1.097 0.948 1.270 

M_HDL_CE MR Egger 66 0.846 0.971 0.726 1.300 

M_HDL_CE Weighted median 66 0.864 0.985 0.829 1.171 

M_HDL_CE Simple mode 66 0.659 0.928 0.666 1.292 



 

 307 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

M_HDL_CE Weighted mode 66 0.770 0.962 0.744 1.245 

M_HDL_CE Inverse variance weighted 66 0.797 0.981 0.846 1.137 

M_HDL_CE_pct MR Egger 50 0.619 0.936 0.722 1.213 

M_HDL_CE_pct Weighted median 50 0.452 0.930 0.771 1.123 

M_HDL_CE_pct Simple mode 50 0.842 0.968 0.708 1.325 

M_HDL_CE_pct Weighted mode 50 0.519 0.936 0.765 1.144 

M_HDL_CE_pct Inverse variance weighted 50 0.539 1.044 0.911 1.195 

M_HDL_FC MR Egger 58 0.585 1.078 0.824 1.412 

M_HDL_FC Weighted median 58 0.849 1.018 0.845 1.227 

M_HDL_FC Simple mode 58 0.904 0.981 0.715 1.345 

M_HDL_FC Weighted mode 58 0.853 0.981 0.797 1.206 

M_HDL_FC Inverse variance weighted 58 0.821 1.017 0.877 1.179 

M_HDL_FC_pct Inverse variance weighted 61 0.034 1.128 1.009 1.262 

M_HDL_FC_pct MR Egger 61 0.213 1.136 0.931 1.386 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

M_HDL_FC_pct Weighted median 61 0.546 1.054 0.889 1.249 

M_HDL_FC_pct Simple mode 61 0.589 0.925 0.700 1.224 

M_HDL_FC_pct Weighted mode 61 0.686 1.035 0.877 1.221 

M_HDL_L MR Egger 49 0.699 1.064 0.779 1.452 

M_HDL_L Weighted median 49 0.813 1.023 0.847 1.236 

M_HDL_L Simple mode 49 0.850 0.967 0.680 1.374 

M_HDL_L Weighted mode 49 0.834 0.979 0.801 1.196 

M_HDL_L Inverse variance weighted 49 0.949 1.005 0.854 1.184 

M_HDL_P MR Egger 51 0.775 1.046 0.769 1.424 

M_HDL_P Weighted median 51 0.821 1.022 0.845 1.237 

M_HDL_P Simple mode 51 0.986 0.997 0.720 1.380 

M_HDL_P Weighted mode 51 0.886 0.985 0.798 1.215 

M_HDL_P Inverse variance weighted 51 0.860 1.015 0.861 1.196 

M_HDL_PL MR Egger 47 0.655 0.938 0.711 1.238 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

M_HDL_PL Weighted median 47 0.832 1.020 0.852 1.221 

M_HDL_PL Simple mode 47 0.922 0.984 0.713 1.357 

M_HDL_PL Weighted mode 47 0.877 0.984 0.802 1.208 

M_HDL_PL Inverse variance weighted 47 0.866 0.988 0.856 1.139 

M_HDL_PL_pct MR Egger 55 0.229 0.783 0.528 1.161 

M_HDL_PL_pct Weighted median 55 0.883 0.985 0.805 1.206 

M_HDL_PL_pct Simple mode 55 0.982 0.995 0.649 1.525 

M_HDL_PL_pct Weighted mode 55 0.723 1.068 0.745 1.530 

M_HDL_PL_pct Inverse variance weighted 55 0.229 0.897 0.753 1.070 

M_HDL_TG MR Egger 40 0.817 1.024 0.839 1.249 

M_HDL_TG Weighted median 40 0.537 1.052 0.896 1.236 

M_HDL_TG Simple mode 40 0.463 1.120 0.830 1.510 

M_HDL_TG Weighted mode 40 0.456 1.058 0.914 1.223 

M_HDL_TG Inverse variance weighted 40 0.783 1.017 0.902 1.147 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

M_HDL_TG_pct MR Egger 49 0.599 0.935 0.730 1.198 

M_HDL_TG_pct Weighted median 49 0.404 1.074 0.908 1.272 

M_HDL_TG_pct Simple mode 49 0.807 1.037 0.777 1.383 

M_HDL_TG_pct Weighted mode 49 0.524 1.063 0.881 1.283 

M_HDL_TG_pct Inverse variance weighted 49 0.598 0.965 0.847 1.100 

M_LDL_C Inverse variance weighted 35 0.034 1.160 1.012 1.330 

M_LDL_C MR Egger 35 0.104 1.246 0.963 1.613 

M_LDL_C Weighted median 35 0.141 1.158 0.952 1.407 

M_LDL_C Simple mode 35 0.841 1.038 0.725 1.485 

M_LDL_C Weighted mode 35 0.849 1.031 0.758 1.402 

M_LDL_C_pct Inverse variance weighted 28 0.012 1.209 1.043 1.402 

M_LDL_C_pct MR Egger 28 0.481 1.114 0.828 1.499 

M_LDL_C_pct Weighted median 28 0.190 1.147 0.934 1.408 

M_LDL_C_pct Simple mode 28 0.723 1.063 0.760 1.487 



 

 311 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

M_LDL_C_pct Weighted mode 28 0.348 1.109 0.896 1.373 

M_LDL_CE Inverse variance weighted 37 0.084 1.138 0.983 1.317 

M_LDL_CE MR Egger 37 0.258 1.178 0.891 1.556 

M_LDL_CE Weighted median 37 0.344 1.102 0.901 1.348 

M_LDL_CE Simple mode 37 0.730 1.065 0.747 1.519 

M_LDL_CE Weighted mode 37 0.744 1.050 0.785 1.404 

M_LDL_CE_pct MR Egger 32 0.967 0.995 0.783 1.265 

M_LDL_CE_pct Weighted median 32 0.886 1.014 0.842 1.221 

M_LDL_CE_pct Simple mode 32 0.303 1.176 0.868 1.593 

M_LDL_CE_pct Weighted mode 32 0.999 1.000 0.818 1.223 

M_LDL_CE_pct Inverse variance weighted 32 0.471 1.050 0.919 1.200 

M_LDL_FC Inverse variance weighted 38 0.006 1.193 1.052 1.353 

M_LDL_FC MR Egger 38 0.006 1.373 1.110 1.699 

M_LDL_FC Weighted median 38 0.007 1.300 1.075 1.573 



 

 312 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

M_LDL_FC Simple mode 38 0.456 1.153 0.796 1.671 

M_LDL_FC Weighted mode 38 0.005 1.389 1.121 1.722 

M_LDL_FC_pct MR Egger 58 0.387 0.918 0.756 1.113 

M_LDL_FC_pct Weighted median 58 0.458 0.939 0.794 1.109 

M_LDL_FC_pct Simple mode 58 0.818 0.965 0.710 1.310 

M_LDL_FC_pct Weighted mode 58 0.479 0.934 0.773 1.128 

M_LDL_FC_pct Inverse variance weighted 58 0.885 0.992 0.887 1.109 

M_LDL_L Inverse variance weighted 34 0.040 1.156 1.007 1.327 

M_LDL_L MR Egger 34 0.145 1.221 0.940 1.586 

M_LDL_L Weighted median 34 0.152 1.153 0.949 1.401 

M_LDL_L Simple mode 34 0.892 1.027 0.701 1.505 

M_LDL_L Weighted mode 34 0.825 1.034 0.770 1.388 

M_LDL_P Inverse variance weighted 35 0.021 1.186 1.026 1.371 

M_LDL_P MR Egger 35 0.158 1.229 0.929 1.626 



 

 313 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

M_LDL_P Weighted median 35 0.066 1.204 0.988 1.468 

M_LDL_P Simple mode 35 0.676 1.092 0.726 1.641 

M_LDL_P Weighted mode 35 0.437 1.124 0.839 1.506 

M_LDL_PL Inverse variance weighted 34 0.033 1.176 1.013 1.366 

M_LDL_PL MR Egger 34 0.188 1.204 0.919 1.579 

M_LDL_PL Weighted median 34 0.030 1.240 1.021 1.504 

M_LDL_PL Simple mode 34 0.569 1.112 0.775 1.595 

M_LDL_PL Weighted mode 34 0.068 1.259 0.992 1.598 

M_LDL_PL_pct MR Egger 30 0.628 1.049 0.866 1.272 

M_LDL_PL_pct Weighted median 30 0.892 0.990 0.851 1.151 

M_LDL_PL_pct Simple mode 30 0.554 0.920 0.700 1.209 

M_LDL_PL_pct Weighted mode 30 0.822 1.017 0.878 1.178 

M_LDL_PL_pct Inverse variance weighted 30 0.545 0.962 0.848 1.091 

M_LDL_TG MR Egger 51 0.714 1.032 0.872 1.222 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

M_LDL_TG Weighted median 51 0.473 1.056 0.911 1.224 

M_LDL_TG Simple mode 51 0.489 1.083 0.866 1.355 

M_LDL_TG Weighted mode 51 0.442 1.061 0.914 1.231 

M_LDL_TG Inverse variance weighted 51 0.329 1.050 0.952 1.160 

M_LDL_TG_pct MR Egger 49 0.230 0.894 0.745 1.071 

M_LDL_TG_pct Weighted median 49 0.439 0.948 0.829 1.084 

M_LDL_TG_pct Simple mode 49 0.907 1.017 0.773 1.337 

M_LDL_TG_pct Weighted mode 49 0.659 0.971 0.851 1.107 

M_LDL_TG_pct Inverse variance weighted 49 0.445 0.956 0.853 1.072 

M_VLDL_C Inverse variance weighted 38 0.039 1.156 1.007 1.328 

M_VLDL_C MR Egger 38 0.058 1.276 1.000 1.629 

M_VLDL_C Weighted median 38 0.075 1.190 0.983 1.442 

M_VLDL_C Simple mode 38 0.340 1.222 0.814 1.836 

M_VLDL_C Weighted mode 38 0.102 1.213 0.968 1.519 



 

 315 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

M_VLDL_C_pct MR Egger 56 0.344 1.133 0.877 1.463 

M_VLDL_C_pct Weighted median 56 0.690 1.039 0.863 1.251 

M_VLDL_C_pct Simple mode 56 0.885 1.030 0.694 1.527 

M_VLDL_C_pct Weighted mode 56 0.981 0.996 0.743 1.337 

M_VLDL_C_pct Inverse variance weighted 56 0.251 1.082 0.946 1.238 

M_VLDL_CE Inverse variance weighted 38 0.033 1.163 1.013 1.336 

M_VLDL_CE MR Egger 38 0.035 1.305 1.028 1.657 

M_VLDL_CE Weighted median 38 0.059 1.208 0.993 1.471 

M_VLDL_CE Simple mode 38 0.128 1.379 0.920 2.065 

M_VLDL_CE Weighted mode 38 0.023 1.344 1.052 1.717 

M_VLDL_CE_pct MR Egger 54 0.210 1.191 0.909 1.560 

M_VLDL_CE_pct Weighted median 54 0.998 1.000 0.827 1.210 

M_VLDL_CE_pct Simple mode 54 0.871 0.968 0.651 1.439 

M_VLDL_CE_pct Weighted mode 54 0.893 0.979 0.714 1.341 



 

 316 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

M_VLDL_CE_pct Inverse variance weighted 54 0.547 1.045 0.906 1.206 

M_VLDL_FC Inverse variance weighted 41 0.013 1.192 1.038 1.368 

M_VLDL_FC MR Egger 41 0.161 1.203 0.933 1.552 

M_VLDL_FC Weighted median 41 0.076 1.186 0.982 1.433 

M_VLDL_FC Simple mode 41 0.574 1.103 0.786 1.548 

M_VLDL_FC Weighted mode 41 0.451 1.103 0.857 1.420 

M_VLDL_FC_pct MR Egger 45 0.283 1.166 0.884 1.538 

M_VLDL_FC_pct Weighted median 45 0.638 1.044 0.872 1.251 

M_VLDL_FC_pct Simple mode 45 0.898 1.026 0.698 1.507 

M_VLDL_FC_pct Weighted mode 45 0.913 1.016 0.759 1.362 

M_VLDL_FC_pct Inverse variance weighted 45 0.433 1.060 0.916 1.227 

M_VLDL_L Inverse variance weighted 36 0.219 1.120 0.935 1.342 

M_VLDL_L MR Egger 36 0.984 1.004 0.703 1.433 

M_VLDL_L Weighted median 36 0.381 1.086 0.903 1.305 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

M_VLDL_L Simple mode 36 0.362 1.136 0.866 1.491 

M_VLDL_L Weighted mode 36 0.379 1.094 0.898 1.333 

M_VLDL_P MR Egger 43 0.607 1.099 0.770 1.569 

M_VLDL_P Weighted median 43 0.511 1.063 0.887 1.273 

M_VLDL_P Simple mode 43 0.484 1.101 0.843 1.438 

M_VLDL_P Weighted mode 43 0.484 1.079 0.874 1.330 

M_VLDL_P Inverse variance weighted 43 0.279 1.107 0.921 1.329 

M_VLDL_PL Inverse variance weighted 45 0.134 1.134 0.962 1.337 

M_VLDL_PL MR Egger 45 0.601 1.085 0.800 1.473 

M_VLDL_PL Weighted median 45 0.291 1.102 0.920 1.319 

M_VLDL_PL Simple mode 45 0.544 1.096 0.817 1.471 

M_VLDL_PL Weighted mode 45 0.516 1.073 0.868 1.327 

M_VLDL_PL_pct MR Egger 50 0.145 1.190 0.946 1.497 

M_VLDL_PL_pct Weighted median 50 0.642 1.042 0.875 1.242 



 

 318 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

M_VLDL_PL_pct Simple mode 50 0.984 0.997 0.722 1.375 

M_VLDL_PL_pct Weighted mode 50 0.802 1.033 0.802 1.331 

M_VLDL_PL_pct Inverse variance weighted 50 0.273 1.075 0.944 1.225 

M_VLDL_TG Inverse variance weighted 46 0.217 1.076 0.958 1.209 

M_VLDL_TG MR Egger 46 0.380 1.096 0.895 1.342 

M_VLDL_TG Weighted median 46 0.447 1.067 0.903 1.262 

M_VLDL_TG Simple mode 46 0.580 1.078 0.829 1.401 

M_VLDL_TG Weighted mode 46 0.418 1.078 0.901 1.290 

M_VLDL_TG_pct MR Egger 49 0.369 0.877 0.661 1.164 

M_VLDL_TG_pct Weighted median 49 0.753 0.969 0.795 1.180 

M_VLDL_TG_pct Simple mode 49 0.962 0.990 0.659 1.487 

M_VLDL_TG_pct Weighted mode 49 0.995 1.001 0.733 1.367 

M_VLDL_TG_pct Inverse variance weighted 49 0.416 0.938 0.805 1.094 

MUFA Inverse variance weighted 46 0.130 1.100 0.972 1.244 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

MUFA MR Egger 46 0.968 0.995 0.798 1.241 

MUFA Weighted median 46 0.367 1.088 0.906 1.308 

MUFA Simple mode 46 0.270 1.190 0.877 1.614 

MUFA Weighted mode 46 0.264 1.113 0.925 1.340 

MUFA_pct MR Egger 43 0.371 0.925 0.780 1.096 

MUFA_pct Weighted median 43 0.136 0.886 0.756 1.039 

MUFA_pct Simple mode 43 0.721 1.059 0.774 1.449 

MUFA_pct Weighted mode 43 0.295 0.918 0.784 1.075 

MUFA_pct Inverse variance weighted 43 0.646 0.975 0.873 1.088 

non_HDL_C Inverse variance weighted 35 0.012 1.200 1.041 1.384 

non_HDL_C MR Egger 35 0.039 1.319 1.024 1.699 

non_HDL_C Weighted median 35 0.015 1.275 1.049 1.550 

non_HDL_C Simple mode 35 0.405 1.164 0.818 1.656 

non_HDL_C Weighted mode 35 0.020 1.318 1.056 1.646 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

Omega_3 Inverse variance weighted 37 0.031 1.091 1.008 1.180 

Omega_3 MR Egger 37 0.103 1.096 0.984 1.220 

Omega_3 Weighted median 37 0.077 1.095 0.990 1.211 

Omega_3 Simple mode 37 0.587 1.062 0.857 1.315 

Omega_3 Weighted mode 37 0.088 1.091 0.990 1.202 

Omega_3_pct Inverse variance weighted 26 0.073 1.075 0.993 1.164 

Omega_3_pct MR Egger 26 0.095 1.091 0.989 1.203 

Omega_3_pct Weighted median 26 0.064 1.082 0.995 1.176 

Omega_3_pct Simple mode 26 0.755 1.053 0.766 1.447 

Omega_3_pct Weighted mode 26 0.103 1.080 0.988 1.182 

Omega_6 MR Egger 42 0.426 1.137 0.831 1.555 

Omega_6 Weighted median 42 0.407 1.075 0.906 1.277 

Omega_6 Simple mode 42 0.467 1.114 0.835 1.486 

Omega_6 Weighted mode 42 0.476 1.076 0.881 1.314 



 

 321 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

Omega_6 Inverse variance weighted 42 0.631 1.038 0.893 1.206 

Omega_6_by_Omega_3 Inverse variance weighted 27 0.044 0.920 0.849 0.998 

Omega_6_by_Omega_3 MR Egger 27 0.136 0.922 0.831 1.023 

Omega_6_by_Omega_3 Weighted median 27 0.070 0.921 0.842 1.007 

Omega_6_by_Omega_3 Simple mode 27 0.567 0.922 0.700 1.214 

Omega_6_by_Omega_3 Weighted mode 27 0.089 0.922 0.842 1.009 

Omega_6_pct Inverse variance weighted 36 0.183 0.898 0.768 1.052 

Omega_6_pct MR Egger 36 0.246 0.842 0.633 1.120 

Omega_6_pct Weighted median 36 0.461 0.916 0.725 1.157 

Omega_6_pct Simple mode 36 0.386 0.864 0.624 1.197 

Omega_6_pct Weighted mode 36 0.427 0.907 0.716 1.150 

Phe MR Egger 5 0.317 1.381 0.815 2.342 

Phe Weighted median 5 0.359 1.135 0.866 1.487 

Phe Simple mode 5 0.880 1.034 0.687 1.557 



 

 322 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

Phe Weighted mode 5 0.387 1.150 0.868 1.523 

Phe Inverse variance weighted 5 0.410 1.110 0.866 1.421 

Phosphatidylc MR Egger 43 0.949 1.006 0.840 1.205 

Phosphatidylc Weighted median 43 0.537 1.052 0.895 1.236 

Phosphatidylc Simple mode 43 0.590 1.071 0.836 1.371 

Phosphatidylc Weighted mode 43 0.611 1.040 0.895 1.208 

Phosphatidylc Inverse variance weighted 43 0.424 1.045 0.939 1.162 

Phosphoglyc Inverse variance weighted 43 0.202 1.073 0.963 1.196 

Phosphoglyc MR Egger 43 0.687 1.041 0.858 1.262 

Phosphoglyc Weighted median 43 0.517 1.055 0.896 1.243 

Phosphoglyc Simple mode 43 0.667 1.056 0.826 1.350 

Phosphoglyc Weighted mode 43 0.535 1.056 0.891 1.252 

PUFA Inverse variance weighted 44 0.114 1.094 0.979 1.222 

PUFA MR Egger 44 0.131 1.197 0.952 1.505 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

PUFA Weighted median 44 0.306 1.081 0.931 1.255 

PUFA Simple mode 44 0.257 1.151 0.905 1.465 

PUFA Weighted mode 44 0.204 1.112 0.946 1.306 

PUFA_by_MUFA MR Egger 38 0.391 1.089 0.898 1.321 

PUFA_by_MUFA Weighted median 38 0.631 1.042 0.880 1.234 

PUFA_by_MUFA Simple mode 38 0.530 0.900 0.649 1.247 

PUFA_by_MUFA Weighted mode 38 0.474 1.063 0.900 1.257 

PUFA_by_MUFA Inverse variance weighted 38 0.909 1.007 0.893 1.135 

PUFA_pct MR Egger 35 0.562 1.078 0.838 1.387 

PUFA_pct Weighted median 35 0.730 0.962 0.774 1.197 

PUFA_pct Simple mode 35 0.945 0.987 0.675 1.442 

PUFA_pct Weighted mode 35 0.699 1.046 0.833 1.314 

PUFA_pct Inverse variance weighted 35 0.649 0.967 0.839 1.115 

Pyruvate MR Egger 15 0.470 1.212 0.730 2.013 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

Pyruvate Weighted median 15 0.477 1.107 0.837 1.464 

Pyruvate Simple mode 15 0.465 1.217 0.729 2.030 

Pyruvate Weighted mode 15 0.312 1.154 0.883 1.509 

Pyruvate Inverse variance weighted 15 0.695 0.948 0.728 1.236 

Remnant_C Inverse variance weighted 40 0.081 1.131 0.985 1.300 

Remnant_C MR Egger 40 0.066 1.279 0.992 1.650 

Remnant_C Weighted median 40 0.205 1.129 0.936 1.363 

Remnant_C Simple mode 40 0.290 1.214 0.852 1.730 

Remnant_C Weighted mode 40 0.211 1.166 0.921 1.476 

S_HDL_C MR Egger 36 0.959 1.007 0.778 1.304 

S_HDL_C Weighted median 36 0.729 1.033 0.860 1.241 

S_HDL_C Simple mode 36 0.706 1.051 0.812 1.362 

S_HDL_C Weighted mode 36 0.565 1.051 0.888 1.245 

S_HDL_C Inverse variance weighted 36 0.548 1.043 0.910 1.196 



 

 325 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

S_HDL_C_pct MR Egger 42 0.674 1.052 0.831 1.332 

S_HDL_C_pct Weighted median 42 0.568 0.951 0.799 1.131 

S_HDL_C_pct Simple mode 42 0.604 0.922 0.680 1.251 

S_HDL_C_pct Weighted mode 42 0.553 0.949 0.800 1.126 

S_HDL_C_pct Inverse variance weighted 42 0.688 1.029 0.895 1.183 

S_HDL_CE MR Egger 34 0.957 0.994 0.800 1.235 

S_HDL_CE Weighted median 34 0.821 1.019 0.868 1.195 

S_HDL_CE Simple mode 34 0.671 1.053 0.831 1.336 

S_HDL_CE Weighted mode 34 0.563 1.045 0.902 1.210 

S_HDL_CE Inverse variance weighted 34 0.791 1.016 0.901 1.146 

S_HDL_CE_pct MR Egger 43 0.796 1.021 0.873 1.194 

S_HDL_CE_pct Weighted median 43 0.582 0.962 0.838 1.104 

S_HDL_CE_pct Simple mode 43 0.318 0.859 0.641 1.153 

S_HDL_CE_pct Weighted mode 43 0.592 0.967 0.856 1.092 



 

 326 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

S_HDL_CE_pct Inverse variance weighted 43 0.459 0.960 0.860 1.070 

S_HDL_FC MR Egger 37 0.819 1.034 0.776 1.379 

S_HDL_FC Weighted median 37 0.440 1.075 0.895 1.290 

S_HDL_FC Simple mode 37 0.604 1.070 0.830 1.380 

S_HDL_FC Weighted mode 37 0.496 1.070 0.882 1.299 

S_HDL_FC Inverse variance weighted 37 0.453 1.057 0.915 1.220 

S_HDL_FC_pct Inverse variance weighted 55 0.152 1.073 0.975 1.180 

S_HDL_FC_pct MR Egger 55 0.926 0.993 0.864 1.142 

S_HDL_FC_pct Weighted median 55 0.386 0.946 0.834 1.073 

S_HDL_FC_pct Simple mode 55 0.551 1.098 0.809 1.490 

S_HDL_FC_pct Weighted mode 55 0.540 0.962 0.852 1.087 

S_HDL_L MR Egger 37 0.986 1.002 0.791 1.270 

S_HDL_L Weighted median 37 0.501 1.059 0.896 1.251 

S_HDL_L Simple mode 37 0.482 1.100 0.846 1.431 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

S_HDL_L Weighted mode 37 0.461 1.063 0.905 1.250 

S_HDL_L Inverse variance weighted 37 0.675 1.028 0.903 1.170 

S_HDL_P MR Egger 31 0.556 1.075 0.848 1.362 

S_HDL_P Weighted median 31 0.770 1.026 0.863 1.221 

S_HDL_P Simple mode 31 0.730 1.049 0.800 1.377 

S_HDL_P Weighted mode 31 0.522 1.058 0.893 1.253 

S_HDL_P Inverse variance weighted 31 0.869 0.989 0.866 1.129 

S_HDL_PL MR Egger 43 0.536 1.088 0.835 1.417 

S_HDL_PL Weighted median 43 0.559 1.051 0.889 1.244 

S_HDL_PL Simple mode 43 0.821 1.033 0.780 1.369 

S_HDL_PL Weighted mode 43 0.501 1.054 0.905 1.228 

S_HDL_PL Inverse variance weighted 43 0.996 1.000 0.865 1.157 

S_HDL_PL_pct Inverse variance weighted 44 0.035 0.857 0.742 0.989 

S_HDL_PL_pct MR Egger 44 0.228 0.862 0.679 1.094 



 

 328 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

S_HDL_PL_pct Weighted median 44 0.339 0.918 0.771 1.094 

S_HDL_PL_pct Simple mode 44 0.841 0.968 0.702 1.333 

S_HDL_PL_pct Weighted mode 44 0.657 0.958 0.792 1.157 

S_HDL_TG MR Egger 47 0.510 1.085 0.853 1.381 

S_HDL_TG Weighted median 47 0.559 1.053 0.886 1.252 

S_HDL_TG Simple mode 47 0.715 1.053 0.799 1.389 

S_HDL_TG Weighted mode 47 0.442 1.072 0.899 1.277 

S_HDL_TG Inverse variance weighted 47 0.527 0.959 0.841 1.093 

S_HDL_TG_pct MR Egger 60 0.719 1.045 0.824 1.324 

S_HDL_TG_pct Weighted median 60 0.433 1.066 0.909 1.250 

S_HDL_TG_pct Simple mode 60 0.943 1.009 0.780 1.307 

S_HDL_TG_pct Weighted mode 60 0.560 1.057 0.879 1.270 

S_HDL_TG_pct Inverse variance weighted 60 0.843 0.987 0.871 1.120 

S_LDL_C Inverse variance weighted 38 0.070 1.133 0.990 1.296 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

S_LDL_C MR Egger 38 0.041 1.287 1.019 1.626 

S_LDL_C Weighted median 38 0.129 1.164 0.957 1.415 

S_LDL_C Simple mode 38 0.745 1.061 0.744 1.514 

S_LDL_C Weighted mode 38 0.272 1.152 0.898 1.477 

S_LDL_C_pct Inverse variance weighted 27 0.234 1.101 0.940 1.289 

S_LDL_C_pct MR Egger 27 0.386 1.161 0.834 1.616 

S_LDL_C_pct Weighted median 27 0.214 1.147 0.924 1.423 

S_LDL_C_pct Simple mode 27 0.942 0.988 0.718 1.360 

S_LDL_C_pct Weighted mode 27 0.469 1.089 0.867 1.369 

S_LDL_CE Inverse variance weighted 36 0.116 1.120 0.973 1.290 

S_LDL_CE MR Egger 36 0.062 1.282 0.996 1.648 

S_LDL_CE Weighted median 36 0.410 1.089 0.888 1.336 

S_LDL_CE Simple mode 36 0.780 1.054 0.730 1.523 

S_LDL_CE Weighted mode 36 0.473 1.109 0.838 1.467 



 

 330 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

S_LDL_CE_pct MR Egger 34 0.141 1.229 0.940 1.606 

S_LDL_CE_pct Weighted median 34 0.562 1.054 0.883 1.257 

S_LDL_CE_pct Simple mode 34 0.651 1.064 0.815 1.390 

S_LDL_CE_pct Weighted mode 34 0.316 1.088 0.925 1.281 

S_LDL_CE_pct Inverse variance weighted 34 0.974 1.002 0.866 1.160 

S_LDL_FC Inverse variance weighted 41 0.007 1.189 1.048 1.349 

S_LDL_FC MR Egger 41 0.005 1.360 1.108 1.669 

S_LDL_FC Weighted median 41 0.002 1.327 1.110 1.587 

S_LDL_FC Simple mode 41 0.163 1.282 0.910 1.805 

S_LDL_FC Weighted mode 41 0.002 1.370 1.133 1.657 

S_LDL_FC_pct MR Egger 53 0.502 0.930 0.752 1.149 

S_LDL_FC_pct Weighted median 53 0.372 0.927 0.785 1.095 

S_LDL_FC_pct Simple mode 53 0.485 0.902 0.678 1.202 

S_LDL_FC_pct Weighted mode 53 0.405 0.927 0.776 1.107 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

S_LDL_FC_pct Inverse variance weighted 53 0.958 0.997 0.881 1.128 

S_LDL_L Inverse variance weighted 37 0.086 1.131 0.983 1.302 

S_LDL_L MR Egger 37 0.142 1.211 0.944 1.556 

S_LDL_L Weighted median 37 0.095 1.167 0.973 1.398 

S_LDL_L Simple mode 37 0.781 1.054 0.729 1.525 

S_LDL_L Weighted mode 37 0.298 1.139 0.894 1.451 

S_LDL_P Inverse variance weighted 40 0.034 1.156 1.011 1.323 

S_LDL_P MR Egger 40 0.103 1.232 0.965 1.573 

S_LDL_P Weighted median 40 0.118 1.168 0.962 1.418 

S_LDL_P Simple mode 40 0.413 1.166 0.810 1.679 

S_LDL_P Weighted mode 40 0.260 1.166 0.896 1.518 

S_LDL_PL Inverse variance weighted 36 0.020 1.175 1.026 1.346 

S_LDL_PL MR Egger 36 0.038 1.284 1.024 1.609 

S_LDL_PL Weighted median 36 0.006 1.280 1.074 1.526 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

S_LDL_PL Simple mode 36 0.316 1.161 0.870 1.550 

S_LDL_PL Weighted mode 36 0.003 1.322 1.115 1.568 

S_LDL_PL_pct MR Egger 35 0.134 0.830 0.654 1.053 

S_LDL_PL_pct Weighted median 35 0.637 0.959 0.805 1.141 

S_LDL_PL_pct Simple mode 35 0.846 0.971 0.726 1.300 

S_LDL_PL_pct Weighted mode 35 0.443 0.929 0.770 1.120 

S_LDL_PL_pct Inverse variance weighted 35 0.646 0.971 0.856 1.101 

S_LDL_TG Inverse variance weighted 47 0.312 1.061 0.946 1.189 

S_LDL_TG MR Egger 47 0.426 1.088 0.886 1.335 

S_LDL_TG Weighted median 47 0.370 1.076 0.917 1.262 

S_LDL_TG Simple mode 47 0.532 1.080 0.849 1.374 

S_LDL_TG Weighted mode 47 0.363 1.080 0.916 1.274 

S_LDL_TG_pct MR Egger 51 0.876 0.985 0.817 1.188 

S_LDL_TG_pct Weighted median 51 0.799 1.021 0.868 1.202 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

S_LDL_TG_pct Simple mode 51 0.923 1.015 0.756 1.361 

S_LDL_TG_pct Weighted mode 51 0.945 0.994 0.839 1.178 

S_LDL_TG_pct Inverse variance weighted 51 0.695 0.979 0.879 1.090 

S_VLDL_C Inverse variance weighted 45 0.045 1.138 1.003 1.291 

S_VLDL_C MR Egger 45 0.347 1.121 0.886 1.420 

S_VLDL_C Weighted median 45 0.177 1.126 0.948 1.337 

S_VLDL_C Simple mode 45 0.464 1.109 0.843 1.458 

S_VLDL_C Weighted mode 45 0.439 1.077 0.894 1.299 

S_VLDL_C_pct Inverse variance weighted 41 0.235 1.084 0.949 1.238 

S_VLDL_C_pct MR Egger 41 0.358 1.118 0.884 1.413 

S_VLDL_C_pct Weighted median 41 0.489 1.068 0.886 1.287 

S_VLDL_C_pct Simple mode 41 0.998 0.999 0.687 1.455 

S_VLDL_C_pct Weighted mode 41 0.748 1.040 0.819 1.323 

S_VLDL_CE Inverse variance weighted 49 0.122 1.103 0.974 1.249 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

S_VLDL_CE MR Egger 49 0.373 1.109 0.886 1.389 

S_VLDL_CE Weighted median 49 0.215 1.107 0.943 1.299 

S_VLDL_CE Simple mode 49 0.453 1.116 0.840 1.483 

S_VLDL_CE Weighted mode 49 0.473 1.064 0.899 1.259 

S_VLDL_CE_pct Inverse variance weighted 47 0.412 1.054 0.929 1.195 

S_VLDL_CE_pct MR Egger 47 0.561 1.062 0.868 1.300 

S_VLDL_CE_pct Weighted median 47 0.411 1.075 0.905 1.276 

S_VLDL_CE_pct Simple mode 47 0.925 1.018 0.706 1.467 

S_VLDL_CE_pct Weighted mode 47 0.485 1.058 0.904 1.239 

S_VLDL_FC Inverse variance weighted 40 0.034 1.157 1.011 1.326 

S_VLDL_FC MR Egger 40 0.212 1.177 0.915 1.513 

S_VLDL_FC Weighted median 40 0.184 1.133 0.942 1.362 

S_VLDL_FC Simple mode 40 0.837 1.038 0.731 1.473 

S_VLDL_FC Weighted mode 40 0.402 1.098 0.885 1.363 



 

 335 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

S_VLDL_FC_pct Inverse variance weighted 52 0.082 1.109 0.987 1.246 

S_VLDL_FC_pct MR Egger 52 0.144 1.195 0.944 1.512 

S_VLDL_FC_pct Weighted median 52 0.868 1.015 0.848 1.217 

S_VLDL_FC_pct Simple mode 52 0.896 0.976 0.682 1.397 

S_VLDL_FC_pct Weighted mode 52 0.908 0.983 0.739 1.307 

S_VLDL_L Inverse variance weighted 49 0.306 1.062 0.947 1.191 

S_VLDL_L MR Egger 49 0.876 0.982 0.788 1.225 

S_VLDL_L Weighted median 49 0.389 1.069 0.918 1.245 

S_VLDL_L Simple mode 49 0.425 1.101 0.870 1.394 

S_VLDL_L Weighted mode 49 0.462 1.069 0.896 1.276 

S_VLDL_P Inverse variance weighted 48 0.374 1.052 0.941 1.176 

S_VLDL_P MR Egger 48 0.617 0.947 0.766 1.171 

S_VLDL_P Weighted median 48 0.508 1.049 0.911 1.207 

S_VLDL_P Simple mode 48 0.445 1.098 0.865 1.394 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

S_VLDL_P Weighted mode 48 0.598 1.045 0.887 1.231 

S_VLDL_PL Inverse variance weighted 51 0.112 1.120 0.974 1.287 

S_VLDL_PL MR Egger 51 0.659 1.062 0.813 1.388 

S_VLDL_PL Weighted median 51 0.271 1.100 0.929 1.302 

S_VLDL_PL Simple mode 51 0.652 1.072 0.794 1.448 

S_VLDL_PL Weighted mode 51 0.613 1.052 0.866 1.277 

S_VLDL_PL_pct Inverse variance weighted 51 0.100 1.106 0.981 1.247 

S_VLDL_PL_pct MR Egger 51 0.092 1.233 0.971 1.566 

S_VLDL_PL_pct Weighted median 51 0.719 1.034 0.863 1.239 

S_VLDL_PL_pct Simple mode 51 0.917 0.981 0.689 1.397 

S_VLDL_PL_pct Weighted mode 51 0.938 0.989 0.744 1.314 

S_VLDL_TG Inverse variance weighted 57 0.497 1.038 0.932 1.155 

S_VLDL_TG MR Egger 57 0.194 1.133 0.940 1.366 

S_VLDL_TG Weighted median 57 0.419 1.067 0.912 1.247 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

S_VLDL_TG Simple mode 57 0.741 1.045 0.805 1.357 

S_VLDL_TG Weighted mode 57 0.355 1.083 0.916 1.282 

S_VLDL_TG_pct Inverse variance weighted 44 0.171 0.905 0.785 1.044 

S_VLDL_TG_pct MR Egger 44 0.197 0.841 0.649 1.089 

S_VLDL_TG_pct Weighted median 44 0.476 0.934 0.775 1.126 

S_VLDL_TG_pct Simple mode 44 0.916 0.980 0.673 1.427 

S_VLDL_TG_pct Weighted mode 44 0.532 0.917 0.699 1.202 

SFA Inverse variance weighted 40 0.156 1.105 0.962 1.270 

SFA MR Egger 40 0.618 1.066 0.830 1.369 

SFA Weighted median 40 0.366 1.087 0.907 1.303 

SFA Simple mode 40 0.348 1.155 0.858 1.553 

SFA Weighted mode 40 0.351 1.094 0.908 1.318 

SFA_pct MR Egger 20 0.728 0.852 0.351 2.067 

SFA_pct Weighted median 20 0.840 1.034 0.748 1.429 



 

 338 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

SFA_pct Simple mode 20 0.717 0.916 0.573 1.464 

SFA_pct Weighted mode 20 0.880 0.968 0.637 1.470 

SFA_pct Inverse variance weighted 20 0.796 1.038 0.780 1.382 

Sphingomyelins Inverse variance weighted 47 0.011 1.170 1.037 1.321 

Sphingomyelins MR Egger 47 0.003 1.431 1.144 1.791 

Sphingomyelins Weighted median 47 0.323 1.092 0.917 1.302 

Sphingomyelins Simple mode 47 0.831 1.037 0.745 1.444 

Sphingomyelins Weighted mode 47 0.203 1.145 0.932 1.405 

TG_by_PG MR Egger 60 0.357 1.099 0.900 1.343 

TG_by_PG Weighted median 60 0.467 1.064 0.900 1.258 

TG_by_PG Simple mode 60 0.690 1.061 0.795 1.415 

TG_by_PG Weighted mode 60 0.553 1.061 0.874 1.288 

TG_by_PG Inverse variance weighted 60 0.757 1.018 0.909 1.140 

Total_BCAA Inverse variance weighted 11 0.050 1.378 1.000 1.900 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

Total_BCAA MR Egger 11 0.038 2.055 1.149 3.676 

Total_BCAA Weighted median 11 0.165 1.236 0.916 1.668 

Total_BCAA Simple mode 11 0.502 1.210 0.708 2.069 

Total_BCAA Weighted mode 11 0.234 1.230 0.893 1.694 

Total_C Inverse variance weighted 45 0.022 1.160 1.021 1.317 

Total_C MR Egger 45 0.005 1.435 1.130 1.821 

Total_C Weighted median 45 0.226 1.120 0.932 1.345 

Total_C Simple mode 45 0.711 1.071 0.748 1.533 

Total_C Weighted mode 45 0.209 1.170 0.919 1.489 

Total_CE Inverse variance weighted 47 0.036 1.149 1.009 1.308 

Total_CE MR Egger 47 0.001 1.543 1.215 1.958 

Total_CE Weighted median 47 0.132 1.144 0.960 1.363 

Total_CE Simple mode 47 0.455 1.138 0.813 1.593 

Total_CE Weighted mode 47 0.135 1.215 0.945 1.561 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

Total_FA Inverse variance weighted 41 0.066 1.125 0.992 1.276 

Total_FA MR Egger 41 0.957 1.006 0.803 1.261 

Total_FA Weighted median 41 0.322 1.087 0.922 1.282 

Total_FA Simple mode 41 0.279 1.163 0.888 1.525 

Total_FA Weighted mode 41 0.284 1.098 0.928 1.300 

Total_FC Inverse variance weighted 41 0.025 1.162 1.019 1.325 

Total_FC MR Egger 41 0.019 1.356 1.063 1.731 

Total_FC Weighted median 41 0.139 1.144 0.957 1.369 

Total_FC Simple mode 41 0.500 1.123 0.804 1.568 

Total_FC Weighted mode 41 0.210 1.163 0.922 1.467 

Total_L Inverse variance weighted 47 0.161 1.112 0.959 1.290 

Total_L MR Egger 47 0.514 1.113 0.810 1.529 

Total_L Weighted median 47 0.301 1.093 0.924 1.293 

Total_L Simple mode 47 0.393 1.117 0.869 1.435 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

Total_L Weighted mode 47 0.355 1.095 0.905 1.325 

Total_P Inverse variance weighted 46 0.330 1.084 0.922 1.274 

Total_P MR Egger 46 0.362 1.169 0.838 1.630 

Total_P Weighted median 46 0.609 1.052 0.867 1.276 

Total_P Simple mode 46 0.832 1.039 0.733 1.472 

Total_P Weighted mode 46 0.637 1.065 0.822 1.379 

Total_PL Inverse variance weighted 46 0.134 1.095 0.973 1.232 

Total_PL MR Egger 46 0.670 1.052 0.833 1.330 

Total_PL Weighted median 46 0.489 1.063 0.894 1.265 

Total_PL Simple mode 46 0.709 1.053 0.803 1.382 

Total_PL Weighted mode 46 0.585 1.053 0.875 1.269 

Total_TG Inverse variance weighted 46 0.350 1.063 0.936 1.207 

Total_TG MR Egger 46 0.299 1.125 0.903 1.402 

Total_TG Weighted median 46 0.345 1.091 0.911 1.306 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

Total_TG Simple mode 46 0.600 1.089 0.794 1.493 

Total_TG Weighted mode 46 0.293 1.119 0.910 1.377 

Tyr Inverse variance weighted 23 0.135 0.869 0.723 1.045 

Tyr MR Egger 23 0.573 0.917 0.682 1.234 

Tyr Weighted median 23 0.492 0.918 0.721 1.171 

Tyr Simple mode 23 0.392 0.790 0.465 1.342 

Tyr Weighted mode 23 0.365 0.895 0.708 1.132 

Unsaturation Inverse variance weighted 32 0.132 1.074 0.979 1.178 

Unsaturation MR Egger 32 0.163 1.091 0.968 1.228 

Unsaturation Weighted median 32 0.091 1.091 0.986 1.206 

Unsaturation Simple mode 32 0.608 0.920 0.670 1.262 

Unsaturation Weighted mode 32 0.140 1.079 0.978 1.190 

Val Inverse variance weighted 13 0.012 1.368 1.072 1.745 

Val MR Egger 13 0.012 1.864 1.240 2.801 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

Val Weighted median 13 0.160 1.224 0.923 1.622 

Val Simple mode 13 0.441 1.228 0.741 2.033 

Val Weighted mode 13 0.203 1.220 0.914 1.628 

VLDL_C Inverse variance weighted 42 0.232 1.093 0.945 1.265 

VLDL_C MR Egger 42 0.658 1.068 0.799 1.428 

VLDL_C Weighted median 42 0.192 1.118 0.945 1.323 

VLDL_C Simple mode 42 0.470 1.102 0.849 1.429 

VLDL_C Weighted mode 42 0.412 1.081 0.899 1.300 

VLDL_CE Inverse variance weighted 39 0.167 1.119 0.954 1.312 

VLDL_CE MR Egger 39 0.477 1.116 0.828 1.503 

VLDL_CE Weighted median 39 0.213 1.119 0.938 1.335 

VLDL_CE Simple mode 39 0.637 1.071 0.807 1.421 

VLDL_CE Weighted mode 39 0.367 1.094 0.902 1.327 

VLDL_FC Inverse variance weighted 45 0.061 1.130 0.995 1.283 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

VLDL_FC MR Egger 45 0.945 0.991 0.766 1.282 

VLDL_FC Weighted median 45 0.466 1.060 0.906 1.241 

VLDL_FC Simple mode 45 0.426 1.108 0.862 1.424 

VLDL_FC Weighted mode 45 0.461 1.070 0.896 1.278 

VLDL_L Inverse variance weighted 38 0.150 1.105 0.965 1.266 

VLDL_L MR Egger 38 0.375 1.121 0.874 1.438 

VLDL_L Weighted median 38 0.252 1.106 0.931 1.313 

VLDL_L Simple mode 38 0.343 1.154 0.861 1.547 

VLDL_L Weighted mode 38 0.376 1.092 0.901 1.324 

VLDL_P Inverse variance weighted 45 0.125 1.094 0.975 1.227 

VLDL_P MR Egger 45 0.912 0.987 0.785 1.241 

VLDL_P Weighted median 45 0.362 1.076 0.919 1.259 

VLDL_P Simple mode 45 0.571 1.069 0.850 1.344 

VLDL_P Weighted mode 45 0.570 1.051 0.886 1.248 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

VLDL_PL Inverse variance weighted 44 0.115 1.107 0.975 1.257 

VLDL_PL MR Egger 44 0.842 0.974 0.753 1.261 

VLDL_PL Weighted median 44 0.511 1.056 0.898 1.242 

VLDL_PL Simple mode 44 0.468 1.094 0.860 1.392 

VLDL_PL Weighted mode 44 0.511 1.056 0.898 1.242 

VLDL_size Inverse variance weighted 53 0.146 1.083 0.973 1.205 

VLDL_size MR Egger 53 0.256 1.109 0.929 1.324 

VLDL_size Weighted median 53 0.395 1.067 0.919 1.240 

VLDL_size Simple mode 53 0.548 1.079 0.843 1.380 

VLDL_size Weighted mode 53 0.346 1.079 0.923 1.261 

VLDL_TG Inverse variance weighted 43 0.253 1.076 0.949 1.219 

VLDL_TG MR Egger 43 0.205 1.146 0.931 1.412 

VLDL_TG Weighted median 43 0.333 1.095 0.911 1.316 

VLDL_TG Simple mode 43 0.383 1.141 0.851 1.528 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

VLDL_TG Weighted mode 43 0.298 1.111 0.913 1.352 

XL_HDL_C MR Egger 61 0.510 1.063 0.887 1.274 

XL_HDL_C Weighted median 61 0.830 0.984 0.849 1.140 

XL_HDL_C Simple mode 61 0.973 0.994 0.723 1.367 

XL_HDL_C Weighted mode 61 0.677 0.974 0.860 1.103 

XL_HDL_C Inverse variance weighted 61 0.788 1.016 0.903 1.144 

XL_HDL_C_pct MR Egger 37 0.728 1.027 0.883 1.195 

XL_HDL_C_pct Weighted median 37 0.623 0.969 0.853 1.100 

XL_HDL_C_pct Simple mode 37 0.830 0.970 0.739 1.274 

XL_HDL_C_pct Weighted mode 37 0.811 0.987 0.888 1.097 

XL_HDL_C_pct Inverse variance weighted 37 0.928 0.995 0.893 1.109 

XL_HDL_CE MR Egger 65 0.496 1.064 0.890 1.272 

XL_HDL_CE Weighted median 65 0.828 0.984 0.847 1.142 

XL_HDL_CE Simple mode 65 0.909 0.982 0.718 1.342 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XL_HDL_CE Weighted mode 65 0.544 0.962 0.850 1.089 

XL_HDL_CE Inverse variance weighted 65 0.776 1.017 0.905 1.142 

XL_HDL_CE_pct Inverse variance weighted 29 0.332 1.065 0.938 1.208 

XL_HDL_CE_pct MR Egger 29 0.801 1.029 0.825 1.283 

XL_HDL_CE_pct Weighted median 29 0.947 1.006 0.836 1.211 

XL_HDL_CE_pct Simple mode 29 0.798 0.962 0.719 1.287 

XL_HDL_CE_pct Weighted mode 29 0.908 0.990 0.834 1.175 

XL_HDL_FC MR Egger 53 0.651 1.037 0.886 1.215 

XL_HDL_FC Weighted median 53 0.829 0.985 0.857 1.132 

XL_HDL_FC Simple mode 53 0.754 0.956 0.721 1.266 

XL_HDL_FC Weighted mode 53 0.582 0.965 0.849 1.096 

XL_HDL_FC Inverse variance weighted 53 0.731 1.018 0.918 1.130 

XL_HDL_FC_pct Inverse variance weighted 52 0.624 0.969 0.852 1.101 

XL_HDL_FC_pct MR Egger 52 0.563 1.061 0.868 1.297 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XL_HDL_FC_pct Weighted median 52 0.764 0.975 0.828 1.148 

XL_HDL_FC_pct Simple mode 52 0.696 1.070 0.762 1.503 

XL_HDL_FC_pct Weighted mode 52 0.879 0.988 0.852 1.147 

XL_HDL_L MR Egger 55 0.665 1.040 0.873 1.238 

XL_HDL_L Weighted median 55 0.677 1.030 0.895 1.185 

XL_HDL_L Simple mode 55 0.959 1.008 0.740 1.373 

XL_HDL_L Weighted mode 55 0.892 1.008 0.896 1.134 

XL_HDL_L Inverse variance weighted 55 0.792 1.016 0.904 1.142 

XL_HDL_P Inverse variance weighted 67 0.456 1.040 0.938 1.152 

XL_HDL_P MR Egger 67 0.151 1.120 0.961 1.306 

XL_HDL_P Weighted median 67 0.592 1.039 0.902 1.197 

XL_HDL_P Simple mode 67 0.754 1.053 0.763 1.454 

XL_HDL_P Weighted mode 67 0.460 1.044 0.932 1.168 

XL_HDL_PL MR Egger 53 0.771 1.026 0.862 1.221 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XL_HDL_PL Weighted median 53 0.614 1.037 0.901 1.192 

XL_HDL_PL Simple mode 53 0.955 1.009 0.750 1.357 

XL_HDL_PL Weighted mode 53 0.890 1.009 0.893 1.139 

XL_HDL_PL Inverse variance weighted 53 0.894 1.008 0.898 1.132 

XL_HDL_PL_pct MR Egger 41 0.845 0.982 0.816 1.180 

XL_HDL_PL_pct Weighted median 41 0.792 1.019 0.883 1.176 

XL_HDL_PL_pct Simple mode 41 0.843 1.034 0.745 1.434 

XL_HDL_PL_pct Weighted mode 41 0.871 1.012 0.876 1.169 

XL_HDL_PL_pct Inverse variance weighted 41 0.875 1.009 0.898 1.135 

XL_HDL_TG Inverse variance weighted 46 0.110 1.081 0.983 1.189 

XL_HDL_TG MR Egger 46 0.873 0.989 0.860 1.136 

XL_HDL_TG Weighted median 46 0.573 1.034 0.920 1.164 

XL_HDL_TG Simple mode 46 0.128 1.212 0.950 1.545 

XL_HDL_TG Weighted mode 46 0.515 1.036 0.932 1.151 
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Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XL_HDL_TG_pct MR Egger 51 0.552 1.065 0.866 1.311 

XL_HDL_TG_pct Weighted median 51 0.667 1.035 0.884 1.213 

XL_HDL_TG_pct Simple mode 51 0.660 1.058 0.823 1.361 

XL_HDL_TG_pct Weighted mode 51 0.590 1.050 0.880 1.253 

XL_HDL_TG_pct Inverse variance weighted 51 0.785 0.984 0.877 1.104 

XL_VLDL_C Inverse variance weighted 37 0.372 1.073 0.920 1.251 

XL_VLDL_C MR Egger 37 0.222 1.195 0.902 1.584 

XL_VLDL_C Weighted median 37 0.148 1.136 0.956 1.351 

XL_VLDL_C Simple mode 37 0.248 1.168 0.901 1.514 

XL_VLDL_C Weighted mode 37 0.218 1.130 0.933 1.369 

XL_VLDL_C_pct Inverse variance weighted 51 0.723 1.028 0.881 1.199 

XL_VLDL_C_pct MR Egger 51 0.960 0.993 0.756 1.304 

XL_VLDL_C_pct Weighted median 51 0.740 0.966 0.788 1.184 

XL_VLDL_C_pct Simple mode 51 0.942 0.986 0.679 1.431 



 

 351 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XL_VLDL_C_pct Weighted mode 51 0.664 0.952 0.765 1.186 

XL_VLDL_CE Inverse variance weighted 42 0.369 1.067 0.926 1.229 

XL_VLDL_CE MR Egger 42 0.767 1.043 0.793 1.371 

XL_VLDL_CE Weighted median 42 0.311 1.094 0.920 1.301 

XL_VLDL_CE Simple mode 42 0.506 1.098 0.836 1.440 

XL_VLDL_CE Weighted mode 42 0.389 1.087 0.901 1.311 

XL_VLDL_CE_pct MR Egger 54 0.994 1.001 0.778 1.287 

XL_VLDL_CE_pct Weighted median 54 0.796 0.975 0.805 1.180 

XL_VLDL_CE_pct Simple mode 54 0.919 0.982 0.692 1.393 

XL_VLDL_CE_pct Weighted mode 54 0.543 0.939 0.767 1.150 

XL_VLDL_CE_pct Inverse variance weighted 54 0.915 0.992 0.856 1.150 

XL_VLDL_FC Inverse variance weighted 34 0.079 1.121 0.987 1.273 

XL_VLDL_FC MR Egger 34 0.155 1.182 0.944 1.480 

XL_VLDL_FC Weighted median 34 0.254 1.114 0.925 1.343 



 

 352 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XL_VLDL_FC Simple mode 34 0.383 1.131 0.861 1.486 

XL_VLDL_FC Weighted mode 34 0.349 1.104 0.900 1.355 

XL_VLDL_FC_pct MR Egger 44 0.637 0.931 0.695 1.249 

XL_VLDL_FC_pct Weighted median 44 0.693 0.964 0.806 1.154 

XL_VLDL_FC_pct Simple mode 44 0.989 0.998 0.733 1.359 

XL_VLDL_FC_pct Weighted mode 44 0.639 0.951 0.770 1.173 

XL_VLDL_FC_pct Inverse variance weighted 44 0.802 1.019 0.877 1.184 

XL_VLDL_L Inverse variance weighted 41 0.221 1.080 0.955 1.221 

XL_VLDL_L MR Egger 41 0.165 1.165 0.943 1.439 

XL_VLDL_L Weighted median 41 0.298 1.099 0.920 1.313 

XL_VLDL_L Simple mode 41 0.476 1.121 0.822 1.528 

XL_VLDL_L Weighted mode 41 0.294 1.111 0.915 1.348 

XL_VLDL_P Inverse variance weighted 43 0.219 1.076 0.957 1.209 

XL_VLDL_P MR Egger 43 0.164 1.161 0.944 1.428 



 

 353 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XL_VLDL_P Weighted median 43 0.312 1.090 0.922 1.287 

XL_VLDL_P Simple mode 43 0.466 1.104 0.848 1.438 

XL_VLDL_P Weighted mode 43 0.303 1.104 0.916 1.331 

XL_VLDL_PL Inverse variance weighted 39 0.159 1.093 0.966 1.236 

XL_VLDL_PL MR Egger 39 0.213 1.154 0.925 1.439 

XL_VLDL_PL Weighted median 39 0.260 1.105 0.929 1.314 

XL_VLDL_PL Simple mode 39 0.506 1.107 0.823 1.490 

XL_VLDL_PL Weighted mode 39 0.315 1.107 0.910 1.346 

XL_VLDL_PL_pct Inverse variance weighted 36 0.344 1.112 0.893 1.385 

XL_VLDL_PL_pct MR Egger 36 0.969 0.991 0.646 1.522 

XL_VLDL_PL_pct Weighted median 36 0.631 1.059 0.837 1.340 

XL_VLDL_PL_pct Simple mode 36 0.747 1.083 0.669 1.755 

XL_VLDL_PL_pct Weighted mode 36 0.459 1.113 0.841 1.472 

XL_VLDL_TG Inverse variance weighted 48 0.361 1.063 0.932 1.213 



 

 354 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XL_VLDL_TG MR Egger 48 0.230 1.147 0.920 1.429 

XL_VLDL_TG Weighted median 48 0.305 1.098 0.918 1.315 

XL_VLDL_TG Simple mode 48 0.344 1.161 0.855 1.577 

XL_VLDL_TG Weighted mode 48 0.296 1.113 0.913 1.356 

XL_VLDL_TG_pct MR Egger 42 0.754 0.958 0.733 1.252 

XL_VLDL_TG_pct Weighted median 42 0.825 1.022 0.844 1.237 

XL_VLDL_TG_pct Simple mode 42 0.924 1.016 0.741 1.393 

XL_VLDL_TG_pct Weighted mode 42 0.959 1.006 0.812 1.245 

XL_VLDL_TG_pct Inverse variance weighted 42 0.933 1.006 0.867 1.169 

XS_VLDL_C Inverse variance weighted 44 0.108 1.112 0.977 1.266 

XS_VLDL_C MR Egger 44 0.146 1.173 0.949 1.450 

XS_VLDL_C Weighted median 44 0.538 1.050 0.899 1.226 

XS_VLDL_C Simple mode 44 0.089 1.304 0.967 1.758 

XS_VLDL_C Weighted mode 44 0.096 1.128 0.982 1.296 



 

 355 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XS_VLDL_C_pct Inverse variance weighted 51 0.114 1.111 0.975 1.266 

XS_VLDL_C_pct MR Egger 51 0.712 1.050 0.811 1.360 

XS_VLDL_C_pct Weighted median 51 0.754 0.971 0.808 1.167 

XS_VLDL_C_pct Simple mode 51 0.824 0.961 0.681 1.357 

XS_VLDL_C_pct Weighted mode 51 0.738 0.961 0.764 1.209 

XS_VLDL_CE Inverse variance weighted 44 0.062 1.119 0.995 1.259 

XS_VLDL_CE MR Egger 44 0.037 1.235 1.019 1.496 

XS_VLDL_CE Weighted median 44 0.526 1.053 0.898 1.234 

XS_VLDL_CE Simple mode 44 0.495 1.102 0.837 1.450 

XS_VLDL_CE Weighted mode 44 0.208 1.112 0.945 1.307 

XS_VLDL_CE_pct Inverse variance weighted 53 0.192 1.091 0.957 1.244 

XS_VLDL_CE_pct MR Egger 53 0.840 0.974 0.752 1.260 

XS_VLDL_CE_pct Weighted median 53 0.738 0.970 0.812 1.159 

XS_VLDL_CE_pct Simple mode 53 0.881 0.974 0.695 1.366 



 

 356 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XS_VLDL_CE_pct Weighted mode 53 0.779 0.966 0.760 1.228 

XS_VLDL_FC Inverse variance weighted 45 0.267 1.072 0.948 1.213 

XS_VLDL_FC MR Egger 45 0.556 1.062 0.870 1.296 

XS_VLDL_FC Weighted median 45 0.588 1.039 0.905 1.193 

XS_VLDL_FC Simple mode 45 0.822 1.033 0.781 1.365 

XS_VLDL_FC Weighted mode 45 0.500 1.044 0.922 1.184 

XS_VLDL_FC_pct Inverse variance weighted 36 0.003 1.209 1.069 1.368 

XS_VLDL_FC_pct MR Egger 36 0.013 1.367 1.081 1.729 

XS_VLDL_FC_pct Weighted median 36 0.024 1.236 1.029 1.485 

XS_VLDL_FC_pct Simple mode 36 0.878 1.027 0.735 1.434 

XS_VLDL_FC_pct Weighted mode 36 0.171 1.202 0.929 1.557 

XS_VLDL_L Inverse variance weighted 50 0.245 1.078 0.950 1.224 

XS_VLDL_L MR Egger 50 0.703 1.040 0.852 1.270 

XS_VLDL_L Weighted median 50 0.578 1.039 0.908 1.189 



 

 357 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XS_VLDL_L Simple mode 50 0.159 1.236 0.924 1.654 

XS_VLDL_L Weighted mode 50 0.542 1.036 0.925 1.162 

XS_VLDL_P Inverse variance weighted 46 0.148 1.103 0.966 1.260 

XS_VLDL_P MR Egger 46 0.756 1.036 0.832 1.289 

XS_VLDL_P Weighted median 46 0.576 1.042 0.902 1.204 

XS_VLDL_P Simple mode 46 0.029 1.411 1.047 1.901 

XS_VLDL_P Weighted mode 46 0.351 1.063 0.936 1.207 

XS_VLDL_PL Inverse variance weighted 51 0.423 1.050 0.932 1.183 

XS_VLDL_PL MR Egger 51 0.602 1.050 0.874 1.262 

XS_VLDL_PL Weighted median 51 0.574 1.039 0.910 1.186 

XS_VLDL_PL Simple mode 51 0.406 1.112 0.867 1.427 

XS_VLDL_PL Weighted mode 51 0.840 1.012 0.898 1.142 

XS_VLDL_PL_pct Inverse variance weighted 47 0.717 0.974 0.844 1.124 

XS_VLDL_PL_pct MR Egger 47 0.412 0.872 0.630 1.207 



 

 358 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XS_VLDL_PL_pct Weighted median 47 0.830 0.978 0.796 1.200 

XS_VLDL_PL_pct Simple mode 47 0.991 1.002 0.681 1.476 

XS_VLDL_PL_pct Weighted mode 47 0.928 0.986 0.720 1.349 

XS_VLDL_TG Inverse variance weighted 57 0.684 1.020 0.927 1.122 

XS_VLDL_TG MR Egger 57 0.569 1.043 0.902 1.206 

XS_VLDL_TG Weighted median 57 0.577 1.039 0.907 1.191 

XS_VLDL_TG Simple mode 57 0.781 1.033 0.820 1.302 

XS_VLDL_TG Weighted mode 57 0.508 1.043 0.922 1.181 

XS_VLDL_TG_pct Inverse variance weighted 53 0.049 0.890 0.792 1.000 

XS_VLDL_TG_pct MR Egger 53 0.333 0.890 0.705 1.124 

XS_VLDL_TG_pct Weighted median 53 0.755 0.972 0.811 1.164 

XS_VLDL_TG_pct Simple mode 53 0.966 1.007 0.727 1.396 

XS_VLDL_TG_pct Weighted mode 53 0.996 0.999 0.787 1.269 

XXL_VLDL_C Inverse variance weighted 43 0.089 1.108 0.984 1.247 



 

 359 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XXL_VLDL_C MR Egger 43 0.183 1.141 0.942 1.382 

XXL_VLDL_C Weighted median 43 0.390 1.075 0.911 1.270 

XXL_VLDL_C Simple mode 43 0.277 1.170 0.885 1.548 

XXL_VLDL_C Weighted mode 43 0.275 1.109 0.923 1.334 

XXL_VLDL_C_pct Inverse variance weighted 19 0.656 0.955 0.779 1.170 

XXL_VLDL_C_pct MR Egger 19 0.166 0.814 0.615 1.076 

XXL_VLDL_C_pct Weighted median 19 0.579 0.945 0.773 1.155 

XXL_VLDL_C_pct Simple mode 19 0.641 1.094 0.755 1.585 

XXL_VLDL_C_pct Weighted mode 19 0.627 0.955 0.796 1.146 

XXL_VLDL_CE Inverse variance weighted 43 0.164 1.085 0.967 1.217 

XXL_VLDL_CE MR Egger 43 0.351 1.094 0.907 1.320 

XXL_VLDL_CE Weighted median 43 0.404 1.073 0.909 1.266 

XXL_VLDL_CE Simple mode 43 0.333 1.154 0.866 1.538 

XXL_VLDL_CE Weighted mode 43 0.437 1.081 0.890 1.313 



 

 360 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XXL_VLDL_CE_pct Inverse variance weighted 17 0.813 1.028 0.816 1.296 

XXL_VLDL_CE_pct MR Egger 17 0.393 0.857 0.608 1.208 

XXL_VLDL_CE_pct Weighted median 17 0.839 1.023 0.820 1.276 

XXL_VLDL_CE_pct Simple mode 17 0.390 1.206 0.796 1.827 

XXL_VLDL_CE_pct Weighted mode 17 0.776 1.033 0.828 1.289 

XXL_VLDL_FC Inverse variance weighted 44 0.090 1.109 0.984 1.251 

XXL_VLDL_FC MR Egger 44 0.105 1.174 0.971 1.418 

XXL_VLDL_FC Weighted median 44 0.393 1.085 0.900 1.307 

XXL_VLDL_FC Simple mode 44 0.227 1.226 0.885 1.699 

XXL_VLDL_FC Weighted mode 44 0.260 1.116 0.924 1.347 

XXL_VLDL_FC_pct Inverse variance weighted 20 0.362 0.922 0.773 1.099 

XXL_VLDL_FC_pct MR Egger 20 0.066 0.793 0.629 1.000 

XXL_VLDL_FC_pct Weighted median 20 0.703 0.961 0.783 1.180 

XXL_VLDL_FC_pct Simple mode 20 0.608 0.910 0.640 1.296 



 

 361 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XXL_VLDL_FC_pct Weighted mode 20 0.397 0.919 0.759 1.113 

XXL_VLDL_L Inverse variance weighted 45 0.080 1.111 0.987 1.251 

XXL_VLDL_L MR Egger 45 0.089 1.176 0.980 1.410 

XXL_VLDL_L Weighted median 45 0.491 1.070 0.883 1.297 

XXL_VLDL_L Simple mode 45 0.474 1.123 0.820 1.538 

XXL_VLDL_L Weighted mode 45 0.412 1.089 0.890 1.334 

XXL_VLDL_P Inverse variance weighted 42 0.139 1.096 0.970 1.238 

XXL_VLDL_P MR Egger 42 0.077 1.193 0.986 1.443 

XXL_VLDL_P Weighted median 42 0.451 1.075 0.891 1.297 

XXL_VLDL_P Simple mode 42 0.211 1.220 0.898 1.659 

XXL_VLDL_P Weighted mode 42 0.342 1.103 0.903 1.349 

XXL_VLDL_PL Inverse variance weighted 45 0.040 1.139 1.006 1.290 

XXL_VLDL_PL MR Egger 45 0.209 1.138 0.933 1.389 

XXL_VLDL_PL Weighted median 45 0.285 1.104 0.921 1.325 



 

 362 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XXL_VLDL_PL Simple mode 45 0.266 1.205 0.871 1.666 

XXL_VLDL_PL Weighted mode 45 0.297 1.118 0.908 1.377 

XXL_VLDL_PL_pct Inverse variance weighted 29 0.391 0.942 0.821 1.080 

XXL_VLDL_PL_pct MR Egger 29 0.362 0.908 0.740 1.113 

XXL_VLDL_PL_pct Weighted median 29 0.428 0.937 0.797 1.101 

XXL_VLDL_PL_pct Simple mode 29 0.191 1.226 0.910 1.653 

XXL_VLDL_PL_pct Weighted mode 29 0.624 0.962 0.827 1.120 

XXL_VLDL_TG Inverse variance weighted 42 0.176 1.083 0.965 1.217 

XXL_VLDL_TG MR Egger 42 0.047 1.199 1.008 1.426 

XXL_VLDL_TG Weighted median 42 0.800 1.024 0.853 1.230 

XXL_VLDL_TG Simple mode 42 0.581 1.092 0.801 1.488 

XXL_VLDL_TG Weighted mode 42 0.375 1.092 0.901 1.323 

XXL_VLDL_TG_pct Inverse variance weighted 13 0.439 1.084 0.884 1.329 

XXL_VLDL_TG_pct MR Egger 13 0.106 1.311 0.970 1.773 



 

 363 

Exposure (metabolic 

trait) 
Method 

Number of 

SNPs 
p-value Odds ratio 

Odds ratio 

lower 95% CI 

Odds ratio 

upper 95% CI 

XXL_VLDL_TG_pct Weighted median 13 0.508 1.066 0.882 1.287 

XXL_VLDL_TG_pct Simple mode 13 0.850 0.973 0.735 1.288 

XXL_VLDL_TG_pct Weighted mode 13 0.631 1.050 0.865 1.275 

 

 



 

 

Appendix B Table B 6:Odds ratios for metastses and PCa death, in the minimally adjusted 

model, in the ProtecT trial and PCa death in the MR analysis, in the PRACTICAL 

consortium. 

 

Metabolite p-value Odds ratio 
Odds ratio lower 

95%CI  

Odds ratio upper 

95%CI 
model 

acace 0.745 1.106 0.603 2.029 UKBB 

acace 0.019 1.345 1.049 1.724 ProtecT 

ace 0.927 1.012 0.779 1.315 ProtecT 

ace 0.807 1.056 0.683 1.634 UKBB 

ala 0.057 1.240 0.994 1.547 UKBB 

ala 0.372 0.890 0.689 1.150 ProtecT 

alb 0.250 0.892 0.734 1.084 UKBB 

alb 0.686 1.055 0.813 1.369 ProtecT 

apoa1 0.412 0.899 0.697 1.160 ProtecT 

apoa1 0.821 1.019 0.866 1.200 UKBB 

apob 0.044 1.138 1.003 1.291 UKBB 

apob 0.767 1.040 0.802 1.348 ProtecT 

apob_apoa1 0.105 1.133 0.974 1.317 UKBB 

apob_apoa1 0.520 1.089 0.840 1.411 ProtecT 

bohbut 0.293 1.151 0.885 1.498 ProtecT 

bohbut 0.144 1.426 0.885 2.296 UKBB 

cit 0.422 0.899 0.693 1.166 ProtecT 

cit 0.190 0.899 0.767 1.054 UKBB 

crea 0.463 0.929 0.763 1.131 UKBB 

crea 1.000 1.000 0.775 1.291 ProtecT 



 

 365 

Metabolite p-value Odds ratio 
Odds ratio lower 

95%CI  

Odds ratio upper 

95%CI 
model 

dha 0.919 1.013 0.783 1.312 ProtecT 

dha 0.038 1.107 1.006 1.219 UKBB 

dha_fa 0.274 1.064 0.952 1.189 UKBB 

dha_fa 0.642 0.941 0.727 1.217 ProtecT 

estc 0.036 1.149 1.009 1.308 UKBB 

estc 0.352 0.884 0.682 1.146 ProtecT 

faw3 0.609 1.070 0.827 1.384 ProtecT 

faw3 0.031 1.091 1.008 1.180 UKBB 

faw3_fa 0.073 1.075 0.993 1.164 UKBB 

faw3_fa 0.900 0.984 0.760 1.273 ProtecT 

faw6 0.942 1.010 0.779 1.309 ProtecT 

faw6_fa 0.183 0.898 0.768 1.052 UKBB 

faw6_fa 0.327 0.881 0.683 1.135 ProtecT 

freec 0.431 0.901 0.695 1.168 ProtecT 

freec 0.025 1.162 1.019 1.325 UKBB 

glc 0.849 0.978 0.780 1.226 UKBB 

glc 0.735 1.045 0.811 1.347 ProtecT 

gln 0.612 0.935 0.722 1.212 ProtecT 

gln 0.646 0.961 0.811 1.139 UKBB 

glol 0.707 1.151 0.552 2.400 ProtecT 

gly 0.523 0.919 0.711 1.190 ProtecT 

gly 0.255 1.037 0.974 1.104 UKBB 



 

 366 

Metabolite p-value Odds ratio 
Odds ratio lower 

95%CI  

Odds ratio upper 

95%CI 
model 

gp 0.833 1.013 0.896 1.146 UKBB 

gp 0.031 1.329 1.026 1.720 ProtecT 

hdl2_c 0.154 0.830 0.642 1.072 ProtecT 

hdl3_c 0.134 0.823 0.637 1.062 ProtecT 

hdl_c 0.377 1.063 0.928 1.218 UKBB 

hdl_c 0.152 0.829 0.642 1.071 ProtecT 

hdl_d 0.441 0.904 0.699 1.169 ProtecT 

hdl_d 0.326 1.058 0.946 1.183 UKBB 

hdl_tg 0.352 1.128 0.875 1.455 ProtecT 

hdl_tg 0.886 1.008 0.905 1.122 UKBB 

his 0.047 0.740 0.550 0.996 UKBB 

his 0.580 1.076 0.830 1.394 ProtecT 

idl_c 0.435 0.902 0.696 1.169 ProtecT 

idl_c 0.065 1.118 0.993 1.259 UKBB 

idl_ce 0.055 1.124 0.997 1.267 UKBB 

idl_ce 0.615 0.936 0.722 1.213 ProtecT 

idl_fc 0.023 1.145 1.018 1.288 UKBB 

idl_fc 0.170 0.835 0.645 1.080 ProtecT 

idl_l 0.078 1.111 0.988 1.249 UKBB 

idl_l 0.420 0.898 0.692 1.166 ProtecT 

idl_p 0.044 1.154 1.004 1.325 UKBB 

idl_p 0.466 0.908 0.699 1.178 ProtecT 



 

 367 

Metabolite p-value Odds ratio 
Odds ratio lower 

95%CI  

Odds ratio upper 

95%CI 
model 

idl_pl 0.243 0.857 0.661 1.111 ProtecT 

idl_pl 0.010 1.156 1.035 1.292 UKBB 

idl_tg 0.691 1.054 0.813 1.367 ProtecT 

idl_tg 0.453 1.034 0.947 1.130 UKBB 

ile 0.108 1.397 0.930 2.099 UKBB 

ile 0.279 1.151 0.892 1.486 ProtecT 

l_hdl_c 0.265 0.864 0.668 1.118 ProtecT 

l_hdl_c 0.690 1.021 0.921 1.132 UKBB 

l_hdl_ce 0.316 0.877 0.678 1.134 ProtecT 

l_hdl_ce 0.622 1.026 0.926 1.138 UKBB 

l_hdl_fc 0.640 0.974 0.874 1.086 UKBB 

l_hdl_fc 0.170 0.835 0.645 1.080 ProtecT 

l_hdl_l 0.272 0.866 0.669 1.120 ProtecT 

l_hdl_l 0.690 1.021 0.922 1.130 UKBB 

l_hdl_p 0.831 1.012 0.907 1.129 UKBB 

l_hdl_p 0.290 0.870 0.673 1.126 ProtecT 

l_hdl_pl 0.687 1.021 0.922 1.132 UKBB 

l_hdl_pl 0.214 0.850 0.657 1.099 ProtecT 

l_hdl_tg 0.637 1.020 0.939 1.109 UKBB 

l_hdl_tg 0.989 1.002 0.778 1.291 ProtecT 

l_ldl_c 0.000 1.250 1.104 1.416 UKBB 

l_ldl_c 0.266 0.863 0.665 1.119 ProtecT 



 

 368 

Metabolite p-value Odds ratio 
Odds ratio lower 

95%CI  

Odds ratio upper 

95%CI 
model 

l_ldl_ce 0.309 0.873 0.673 1.133 ProtecT 

l_ldl_ce 0.001 1.235 1.085 1.406 UKBB 

l_ldl_fc 0.168 0.834 0.645 1.079 ProtecT 

l_ldl_fc 0.005 1.196 1.055 1.355 UKBB 

l_ldl_l 0.302 0.872 0.672 1.131 ProtecT 

l_ldl_l 0.003 1.219 1.069 1.389 UKBB 

l_ldl_p 0.334 0.879 0.678 1.141 ProtecT 

l_ldl_p 0.009 1.175 1.041 1.327 UKBB 

l_ldl_pl 0.009 1.197 1.047 1.369 UKBB 

l_ldl_pl 0.308 0.873 0.673 1.133 ProtecT 

l_ldl_tg 0.517 1.032 0.939 1.133 UKBB 

l_ldl_tg 0.923 1.013 0.780 1.315 ProtecT 

l_vldl_c 0.425 1.110 0.859 1.435 ProtecT 

l_vldl_c 0.349 1.068 0.930 1.227 UKBB 

l_vldl_ce 0.123 1.123 0.969 1.301 UKBB 

l_vldl_ce 0.446 1.105 0.855 1.430 ProtecT 

l_vldl_fc 0.406 1.115 0.863 1.440 ProtecT 

l_vldl_fc 0.367 1.070 0.924 1.240 UKBB 

l_vldl_l 0.180 1.089 0.961 1.234 UKBB 

l_vldl_l 0.461 1.101 0.852 1.423 ProtecT 

l_vldl_p 0.237 1.080 0.951 1.228 UKBB 

l_vldl_p 0.458 1.102 0.853 1.424 ProtecT 
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Metabolite p-value Odds ratio 
Odds ratio lower 

95%CI  

Odds ratio upper 

95%CI 
model 

l_vldl_pl 0.399 1.059 0.927 1.211 UKBB 

l_vldl_pl 0.459 1.102 0.853 1.423 ProtecT 

l_vldl_tg 0.397 1.063 0.923 1.224 UKBB 

l_vldl_tg 0.460 1.101 0.853 1.423 ProtecT 

la 0.529 0.949 0.806 1.117 UKBB 

la 0.859 1.024 0.790 1.327 ProtecT 

la_fa 0.133 0.846 0.680 1.053 UKBB 

la_fa 0.512 0.918 0.711 1.185 ProtecT 

lac 0.522 1.090 0.837 1.419 ProtecT 

ldl_c 0.188 0.840 0.648 1.089 ProtecT 

ldl_c 0.007 1.209 1.054 1.387 UKBB 

ldl_d 0.056 1.276 0.993 1.640 ProtecT 

ldl_d 0.498 1.070 0.881 1.299 UKBB 

ldl_tg 0.716 1.018 0.926 1.118 UKBB 

ldl_tg 0.922 1.013 0.781 1.314 ProtecT 

leu 0.182 1.190 0.922 1.537 ProtecT 

leu 0.292 1.259 0.820 1.931 UKBB 

m_hdl_c 0.362 0.887 0.686 1.148 ProtecT 

m_hdl_c 0.848 1.014 0.879 1.170 UKBB 

m_hdl_ce 0.797 0.981 0.846 1.137 UKBB 

m_hdl_ce 0.383 0.892 0.689 1.154 ProtecT 

m_hdl_fc 0.247 0.859 0.665 1.111 ProtecT 
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Metabolite p-value Odds ratio 
Odds ratio lower 

95%CI  

Odds ratio upper 

95%CI 
model 

m_hdl_fc 0.821 1.017 0.877 1.179 UKBB 

m_hdl_l 0.949 1.005 0.854 1.184 UKBB 

m_hdl_l 0.501 0.916 0.709 1.183 ProtecT 

m_hdl_p 0.567 0.928 0.719 1.198 ProtecT 

m_hdl_p 0.860 1.015 0.861 1.196 UKBB 

m_hdl_pl 0.542 0.924 0.716 1.192 ProtecT 

m_hdl_pl 0.866 0.988 0.856 1.139 UKBB 

m_hdl_tg 0.783 1.017 0.902 1.147 UKBB 

m_hdl_tg 0.284 1.147 0.892 1.476 ProtecT 

m_ldl_c 0.034 1.160 1.012 1.330 UKBB 

m_ldl_c 0.145 0.825 0.636 1.069 ProtecT 

m_ldl_ce 0.084 1.138 0.983 1.317 UKBB 

m_ldl_ce 0.133 0.820 0.632 1.062 ProtecT 

m_ldl_fc 0.196 0.843 0.652 1.092 ProtecT 

m_ldl_fc 0.006 1.193 1.052 1.353 UKBB 

m_ldl_l 0.199 0.843 0.650 1.094 ProtecT 

m_ldl_l 0.040 1.156 1.007 1.327 UKBB 

m_ldl_p 0.208 0.846 0.652 1.098 ProtecT 

m_ldl_p 0.021 1.186 1.026 1.371 UKBB 

m_ldl_pl 0.033 1.176 1.013 1.366 UKBB 

m_ldl_pl 0.398 0.894 0.690 1.159 ProtecT 

m_ldl_tg 0.329 1.050 0.952 1.160 UKBB 
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Metabolite p-value Odds ratio 
Odds ratio lower 

95%CI  

Odds ratio upper 

95%CI 
model 

m_ldl_tg 0.601 0.933 0.720 1.210 ProtecT 

m_vldl_c 0.282 1.150 0.892 1.482 ProtecT 

m_vldl_c 0.039 1.156 1.007 1.328 UKBB 

m_vldl_ce 0.033 1.163 1.013 1.336 UKBB 

m_vldl_ce 0.335 1.134 0.878 1.465 ProtecT 

m_vldl_fc 0.013 1.192 1.038 1.368 UKBB 

m_vldl_fc 0.504 1.091 0.845 1.409 ProtecT 

m_vldl_l 0.219 1.120 0.935 1.342 UKBB 

m_vldl_l 0.505 1.091 0.844 1.410 ProtecT 

m_vldl_p 0.510 1.090 0.844 1.408 ProtecT 

m_vldl_p 0.279 1.107 0.921 1.329 UKBB 

m_vldl_pl 0.300 1.143 0.888 1.472 ProtecT 

m_vldl_pl 0.134 1.134 0.962 1.337 UKBB 

m_vldl_tg 0.217 1.076 0.958 1.209 UKBB 

m_vldl_tg 0.553 1.080 0.836 1.396 ProtecT 

mufa 0.414 1.112 0.862 1.434 ProtecT 

mufa 0.130 1.100 0.972 1.244 UKBB 

mufa_fa 0.583 1.074 0.833 1.384 ProtecT 

mufa_fa 0.646 0.975 0.873 1.088 UKBB 

pc 0.424 1.045 0.939 1.162 UKBB 

pc 0.916 1.014 0.786 1.308 ProtecT 

phe 0.680 1.055 0.819 1.359 ProtecT 
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Metabolite p-value Odds ratio 
Odds ratio lower 

95%CI  

Odds ratio upper 

95%CI 
model 

phe 0.410 1.110 0.866 1.421 UKBB 

pufa 0.114 1.094 0.979 1.222 UKBB 

pufa 0.868 1.022 0.788 1.325 ProtecT 

pufa_fa 0.649 0.967 0.839 1.115 UKBB 

pufa_fa 0.350 0.886 0.686 1.143 ProtecT 

pyr 0.312 0.878 0.683 1.130 ProtecT 

pyr 0.695 0.948 0.728 1.236 UKBB 

remnant_c 0.631 1.066 0.821 1.383 ProtecT 

remnant_c 0.081 1.131 0.985 1.300 UKBB 

s_hdl_c 0.548 1.043 0.910 1.196 UKBB 

s_hdl_c 0.066 0.781 0.600 1.017 ProtecT 

s_hdl_ce 0.791 1.016 0.901 1.146 UKBB 

s_hdl_ce 0.073 0.786 0.605 1.023 ProtecT 

s_hdl_fc 0.453 1.057 0.915 1.220 UKBB 

s_hdl_fc 0.956 0.993 0.770 1.280 ProtecT 

s_hdl_l 0.285 0.869 0.671 1.124 ProtecT 

s_hdl_l 0.675 1.028 0.903 1.170 UKBB 

s_hdl_p 0.365 0.888 0.686 1.149 ProtecT 

s_hdl_p 0.869 0.989 0.866 1.129 UKBB 

s_hdl_pl 0.996 1.000 0.865 1.157 UKBB 

s_hdl_pl 0.558 1.078 0.838 1.387 ProtecT 

s_hdl_tg 0.295 1.145 0.888 1.477 ProtecT 
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Metabolite p-value Odds ratio 
Odds ratio lower 

95%CI  

Odds ratio upper 

95%CI 
model 

s_hdl_tg 0.527 0.959 0.841 1.093 UKBB 

s_ldl_c 0.070 1.133 0.990 1.296 UKBB 

s_ldl_c 0.119 0.814 0.628 1.054 ProtecT 

s_ldl_ce 0.116 1.120 0.973 1.290 UKBB 

s_ldl_ce 0.113 0.811 0.626 1.051 ProtecT 

s_ldl_fc 0.151 0.828 0.640 1.071 ProtecT 

s_ldl_fc 0.007 1.189 1.048 1.349 UKBB 

s_ldl_l 0.086 1.131 0.983 1.302 UKBB 

s_ldl_l 0.181 0.838 0.646 1.086 ProtecT 

s_ldl_p 0.034 1.156 1.011 1.323 UKBB 

s_ldl_p 0.194 0.842 0.649 1.092 ProtecT 

s_ldl_pl 0.367 0.888 0.686 1.149 ProtecT 

s_ldl_pl 0.020 1.175 1.026 1.346 UKBB 

s_ldl_tg 0.312 1.061 0.946 1.189 UKBB 

s_ldl_tg 0.920 0.987 0.764 1.275 ProtecT 

s_vldl_c 0.045 1.138 1.003 1.291 UKBB 

s_vldl_c 0.586 1.075 0.829 1.395 ProtecT 

s_vldl_ce 0.122 1.103 0.974 1.249 UKBB 

s_vldl_ce 0.726 1.048 0.807 1.361 ProtecT 

s_vldl_fc 0.034 1.157 1.011 1.326 UKBB 

s_vldl_fc 0.438 1.107 0.857 1.429 ProtecT 

s_vldl_l 0.306 1.062 0.947 1.191 UKBB 
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Metabolite p-value Odds ratio 
Odds ratio lower 

95%CI  

Odds ratio upper 

95%CI 
model 

s_vldl_l 0.414 1.112 0.862 1.435 ProtecT 

s_vldl_p 0.402 1.115 0.864 1.437 ProtecT 

s_vldl_p 0.374 1.052 0.941 1.176 UKBB 

s_vldl_pl 0.112 1.120 0.974 1.287 UKBB 

s_vldl_pl 0.399 1.116 0.865 1.440 ProtecT 

s_vldl_tg 0.497 1.038 0.932 1.155 UKBB 

s_vldl_tg 0.381 1.119 0.870 1.441 ProtecT 

serum_c 0.383 0.891 0.687 1.155 ProtecT 

serum_tg 0.350 1.063 0.936 1.207 UKBB 

serum_tg 0.325 1.136 0.881 1.463 ProtecT 

sfa 0.156 1.105 0.962 1.270 UKBB 

sfa 0.331 1.135 0.879 1.464 ProtecT 

sfa_fa 0.233 1.174 0.902 1.527 ProtecT 

sfa_fa 0.796 1.038 0.780 1.382 UKBB 

sm 0.011 1.170 1.037 1.321 UKBB 

sm 0.915 0.986 0.762 1.275 ProtecT 

tg_pg 0.757 1.018 0.909 1.140 UKBB 

tg_pg 0.235 1.167 0.905 1.504 ProtecT 

totcho 0.022 1.160 1.021 1.317 UKBB 

totcho 0.948 1.008 0.781 1.303 ProtecT 

totfa 0.066 1.125 0.992 1.276 UKBB 

totfa 0.414 1.112 0.862 1.436 ProtecT 
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Metabolite p-value Odds ratio 
Odds ratio lower 

95%CI  

Odds ratio upper 

95%CI 
model 

totpg 0.786 1.036 0.803 1.336 ProtecT 

totpg 0.202 1.073 0.963 1.196 UKBB 

tyr 0.135 0.869 0.723 1.045 UKBB 

tyr 0.601 0.933 0.721 1.209 ProtecT 

unsat 0.212 0.848 0.655 1.098 ProtecT 

unsat 0.132 1.074 0.979 1.178 UKBB 

val 0.797 1.034 0.801 1.335 ProtecT 

val 0.012 1.368 1.072 1.745 UKBB 

vldl_c 0.275 1.154 0.892 1.493 ProtecT 

vldl_c 0.232 1.093 0.945 1.265 UKBB 

vldl_d 0.352 1.128 0.875 1.453 ProtecT 

vldl_d 0.146 1.083 0.973 1.205 UKBB 

vldl_tg 0.333 1.133 0.880 1.459 ProtecT 

vldl_tg 0.253 1.076 0.949 1.219 UKBB 

xl_hdl_c 0.788 1.016 0.903 1.144 UKBB 

xl_hdl_c 0.964 1.006 0.781 1.296 ProtecT 

xl_hdl_ce 0.976 1.004 0.779 1.293 ProtecT 

xl_hdl_ce 0.776 1.017 0.905 1.142 UKBB 

xl_hdl_fc 0.985 1.002 0.778 1.292 ProtecT 

xl_hdl_fc 0.731 1.018 0.918 1.130 UKBB 

xl_hdl_l 0.749 0.959 0.743 1.238 ProtecT 

xl_hdl_l 0.792 1.016 0.904 1.142 UKBB 
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Metabolite p-value Odds ratio 
Odds ratio lower 

95%CI  

Odds ratio upper 

95%CI 
model 

xl_hdl_p 0.456 1.040 0.938 1.152 UKBB 

xl_hdl_p 0.735 0.957 0.741 1.235 ProtecT 

xl_hdl_pl 0.412 0.898 0.695 1.161 ProtecT 

xl_hdl_pl 0.894 1.008 0.898 1.132 UKBB 

xl_hdl_tg 0.110 1.081 0.983 1.189 UKBB 

xl_hdl_tg 0.356 1.128 0.873 1.459 ProtecT 

xl_vldl_c 0.373 1.124 0.869 1.453 ProtecT 

xl_vldl_c 0.372 1.073 0.920 1.251 UKBB 

xl_vldl_ce 0.393 1.119 0.865 1.447 ProtecT 

xl_vldl_ce 0.369 1.067 0.926 1.229 UKBB 

xl_vldl_fc 0.299 1.146 0.886 1.481 ProtecT 

xl_vldl_fc 0.079 1.121 0.987 1.273 UKBB 

xl_vldl_l 0.353 1.129 0.874 1.459 ProtecT 

xl_vldl_l 0.221 1.080 0.955 1.221 UKBB 

xl_vldl_p 0.219 1.076 0.957 1.209 UKBB 

xl_vldl_p 0.373 1.124 0.870 1.452 ProtecT 

xl_vldl_pl 0.313 1.141 0.883 1.474 ProtecT 

xl_vldl_pl 0.159 1.093 0.966 1.236 UKBB 

xl_vldl_tg 0.361 1.063 0.932 1.213 UKBB 

xl_vldl_tg 0.360 1.127 0.873 1.455 ProtecT 

xs_vldl_c 0.911 1.015 0.782 1.318 ProtecT 

xs_vldl_c 0.108 1.112 0.977 1.266 UKBB 
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Metabolite p-value Odds ratio 
Odds ratio lower 

95%CI  

Odds ratio upper 

95%CI 
model 

xs_vldl_ce 0.668 1.059 0.816 1.375 ProtecT 

xs_vldl_ce 0.062 1.119 0.995 1.259 UKBB 

xs_vldl_fc 0.267 1.072 0.948 1.213 UKBB 

xs_vldl_fc 0.541 0.922 0.710 1.197 ProtecT 

xs_vldl_l 0.956 1.007 0.775 1.309 ProtecT 

xs_vldl_l 0.245 1.078 0.950 1.224 UKBB 

xs_vldl_p 0.148 1.103 0.966 1.260 UKBB 

xs_vldl_p 0.873 1.022 0.786 1.328 ProtecT 

xs_vldl_pl 0.423 1.050 0.932 1.183 UKBB 

xs_vldl_pl 0.388 0.891 0.686 1.157 ProtecT 

xs_vldl_tg 0.684 1.020 0.927 1.122 UKBB 

xs_vldl_tg 0.536 1.084 0.840 1.399 ProtecT 

xxl_vldl_c 0.089 1.108 0.984 1.247 UKBB 

xxl_vldl_c 0.276 1.153 0.892 1.490 ProtecT 

xxl_vldl_ce 0.318 1.140 0.881 1.476 ProtecT 

xxl_vldl_ce 0.164 1.085 0.967 1.217 UKBB 

xxl_vldl_fc 0.090 1.109 0.984 1.251 UKBB 

xxl_vldl_fc 0.232 1.169 0.905 1.509 ProtecT 

xxl_vldl_l 0.080 1.111 0.987 1.251 UKBB 

xxl_vldl_l 0.415 1.114 0.860 1.443 ProtecT 

xxl_vldl_p 0.140 1.209 0.939 1.558 ProtecT 

xxl_vldl_p 0.139 1.096 0.970 1.238 UKBB 
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Metabolite p-value Odds ratio 
Odds ratio lower 

95%CI  

Odds ratio upper 

95%CI 
model 

xxl_vldl_pl 0.040 1.139 1.006 1.290 UKBB 

xxl_vldl_pl 0.382 1.122 0.867 1.452 ProtecT 

xxl_vldl_tg 0.176 1.083 0.965 1.217 UKBB 

xxl_vldl_tg 0.394 1.119 0.864 1.450 ProtecT 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B Figure B  1: Forest plot of hazard ratios for clinical progression and metastases 

or death, in the fully adjusted Cox models. 
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Appendix B Figure B  2: Forest plot of hazard ratios for clinical progression, in the minimally and fully 

adjusted Cox models. 
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Appendix B Figure B  3: Forest plot of hazard ratios for metastases or PCa death, in the 

minimally and fully adjusted Cox models. 
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Appendix B Figure B  4:  Forest plot of hazard ratios for clinical progression and metastases 

or death, in the minimally adjusted Cox models, censored at 10 years of follow-up. 
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Appendix B Figure B  5: Forest plot of hazard ratios for clinical progression, in the minimally 

and fully adjusted Cox models, censored at 10 years of follow-up. 
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Appendix B Figure B  6: Forest plot of hazard ratios for metastases or PCa death, in the 

minimally and fully adjusted Cox models, censored at 10 years of follow-up. 
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9.3. Appendix C 

Appendix C Table C 1 Linear regression results of baseline metabolic trait levels in the 

plant-based diet arm, compared to control. 

 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

mufa_fa 80 -1.386 -2.874 0.102 0.067 

vldl_d 80 -0.917 -1.607 -0.227 0.01 

totfa 80 -0.383 -1.624 0.858 0.541 

serum_tg 80 -0.349 -0.673 -0.024 0.036 

sfa_fa 80 -0.336 -1.248 0.576 0.466 

glc 80 -0.316 -1.238 0.605 0.496 

vldl_tg 80 -0.312 -0.603 -0.021 0.036 

mufa 80 -0.271 -0.709 0.167 0.222 

m_vldl_l 80 -0.2 -0.392 -0.007 0.042 

sfa 80 -0.182 -0.652 0.289 0.444 

l_vldl_l 80 -0.141 -0.274 -0.009 0.037 

vldl_c 80 -0.118 -0.264 0.028 0.112 

tg_pg 80 -0.115 -0.251 0.022 0.098 

m_vldl_tg 80 -0.113 -0.221 -0.005 0.04 

s_vldl_l 80 -0.112 -0.223 -0.001 0.049 

remnant_c 80 -0.089 -0.319 0.141 0.445 

l_vldl_tg 80 -0.083 -0.162 -0.005 0.037 

lac 80 -0.065 -0.247 0.117 0.478 

s_vldl_tg 80 -0.062 -0.118 -0.006 0.031 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

apob_apoa1 80 -0.052 -0.129 0.025 0.181 

m_vldl_c 80 -0.049 -0.098 0 0.051 

apob 80 -0.047 -0.164 0.071 0.432 

gp 80 -0.042 -0.147 0.063 0.429 

xl_vldl_l 80 -0.04 -0.079 -0.002 0.042 

m_vldl_pl 80 -0.038 -0.075 -0.001 0.043 

l_vldl_c 80 -0.033 -0.063 -0.002 0.036 

ala 80 -0.031 -0.064 0.002 0.061 

xl_vldl_tg 80 -0.026 -0.05 -0.001 0.042 

s_vldl_c 80 -0.026 -0.065 0.012 0.176 

l_vldl_pl 80 -0.025 -0.049 -0.001 0.038 

m_vldl_fc 80 -0.025 -0.048 -0.001 0.044 

s_hdl_pl 80 -0.025 -0.059 0.009 0.151 

s_vldl_pl 80 -0.024 -0.046 -0.002 0.034 

m_vldl_ce 80 -0.024 -0.05 0.001 0.064 

s_hdl_l 80 -0.021 -0.077 0.035 0.457 

hdl_tg 80 -0.018 -0.033 -0.003 0.018 

l_vldl_ce 80 -0.017 -0.032 -0.002 0.031 

xs_vldl_tg 80 -0.017 -0.033 -0.001 0.038 

gln 80 -0.017 -0.042 0.008 0.178 

l_vldl_fc 80 -0.016 -0.032 -0.001 0.041 

xs_vldl_l 80 -0.016 -0.08 0.049 0.631 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

xxl_vldl_l 80 -0.014 -0.029 0 0.047 

s_vldl_fc 80 -0.014 -0.029 0 0.057 

s_vldl_ce 80 -0.012 -0.038 0.013 0.343 

xxl_vldl_tg 80 -0.01 -0.02 0 0.047 

ldl_tg 80 -0.01 -0.03 0.009 0.301 

m_hdl_tg 80 -0.009 -0.015 -0.003 0.006 

s_hdl_tg 80 -0.009 -0.016 -0.002 0.011 

xl_vldl_c 80 -0.008 -0.016 0 0.04 

idl_tg 80 -0.008 -0.02 0.003 0.158 

xl_vldl_pl 80 -0.007 -0.013 0 0.046 

xl_vldl_ce 80 -0.005 -0.009 0 0.038 

glol 80 -0.005 -0.015 0.004 0.268 

ile 80 -0.005 -0.015 0.005 0.298 

leu 80 -0.005 -0.014 0.005 0.317 

cit 80 -0.005 -0.015 0.006 0.355 

l_ldl_tg 80 -0.005 -0.015 0.006 0.384 

xl_vldl_fc 80 -0.004 -0.007 0 0.044 

phe 80 -0.004 -0.009 0 0.073 

s_ldl_tg 80 -0.004 -0.008 0.001 0.116 

gly 80 -0.004 -0.02 0.011 0.59 

xxl_vldl_c 80 -0.003 -0.005 0 0.044 

tyr 80 -0.003 -0.008 0.003 0.372 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

s_hdl_fc 80 -0.003 -0.009 0.003 0.382 

xxl_vldl_ce 80 -0.002 -0.003 0 0.045 

xxl_vldl_pl 80 -0.002 -0.004 0 0.05 

m_ldl_tg 80 -0.002 -0.007 0.003 0.405 

his 80 -0.002 -0.007 0.003 0.455 

val 80 -0.002 -0.017 0.014 0.833 

pyr 80 -0.002 -0.019 0.015 0.84 

xxl_vldl_fc 80 -0.001 -0.002 0 0.049 

bohbut 80 -0.001 -0.021 0.018 0.893 

l_vldl_p 80 0 0 0 0.037 

m_vldl_p 80 0 0 0 0.041 

xl_vldl_p 80 0 0 0 0.042 

s_vldl_p 80 0 0 0 0.044 

xxl_vldl_p 80 0 0 0 0.046 

xl_hdl_p 80 0 0 0 0.092 

l_hdl_p 80 0 0 0 0.107 

s_hdl_p 80 0 0 0 0.364 

xs_vldl_p 80 0 0 0 0.51 

l_ldl_p 80 0 0 0 0.661 

m_ldl_p 80 0 0 0 0.676 

s_ldl_p 80 0 0 0 0.694 

idl_p 80 0 0 0 0.742 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

xl_hdl_tg 80 0 -0.004 0.003 0.783 

m_hdl_p 80 0 0 0 0.85 

s_ldl_pl 80 0 -0.016 0.017 0.956 

crea 80 0 -0.006 0.006 0.968 

xs_vldl_ce 80 0 -0.023 0.023 0.983 

xs_vldl_pl 80 0 -0.022 0.022 0.986 

m_ldl_pl 80 0 -0.024 0.024 0.991 

alb 80 0.001 -0.002 0.004 0.561 

xs_vldl_fc 80 0.001 -0.01 0.011 0.877 

dha 80 0.001 -0.018 0.02 0.927 

xs_vldl_c 80 0.001 -0.032 0.034 0.949 

faw3 80 0.001 -0.052 0.053 0.982 

l_hdl_tg 80 0.002 -0.003 0.007 0.363 

m_hdl_pl 80 0.002 -0.035 0.039 0.919 

s_ldl_fc 80 0.003 -0.008 0.014 0.562 

m_hdl_fc 80 0.004 -0.007 0.014 0.499 

m_ldl_fc 80 0.005 -0.012 0.022 0.549 

xl_hdl_fc 80 0.008 -0.002 0.018 0.123 

l_ldl_pl 80 0.009 -0.031 0.05 0.652 

ldl_d 80 0.009 -0.065 0.083 0.812 

pc 80 0.009 -0.183 0.201 0.928 

ace 80 0.01 0.001 0.018 0.024 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

idl_pl 80 0.012 -0.028 0.051 0.559 

hdl3_c 80 0.013 -0.003 0.029 0.103 

s_hdl_c 80 0.013 -0.022 0.048 0.462 

m_hdl_l 80 0.013 -0.073 0.098 0.766 

idl_fc 80 0.014 -0.016 0.044 0.354 

totpg 80 0.014 -0.156 0.184 0.871 

idl_ce 80 0.015 -0.063 0.093 0.7 

s_hdl_ce 80 0.016 -0.017 0.048 0.343 

l_ldl_fc 80 0.016 -0.019 0.05 0.363 

m_hdl_ce 80 0.016 -0.022 0.054 0.405 

l_hdl_fc 80 0.017 -0.003 0.036 0.088 

s_ldl_ce 80 0.017 -0.028 0.062 0.452 

s_ldl_l 80 0.017 -0.058 0.092 0.649 

sm 80 0.02 -0.02 0.061 0.314 

m_hdl_c 80 0.02 -0.029 0.068 0.423 

s_ldl_c 80 0.02 -0.035 0.076 0.471 

xl_hdl_ce 80 0.022 -0.003 0.047 0.087 

m_ldl_ce 80 0.025 -0.049 0.098 0.506 

m_ldl_l 80 0.027 -0.091 0.145 0.645 

l_ldl_ce 80 0.028 -0.081 0.137 0.613 

freec 80 0.028 -0.124 0.179 0.719 

idl_c 80 0.029 -0.078 0.137 0.589 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

xl_hdl_c 80 0.03 -0.005 0.065 0.093 

m_ldl_c 80 0.03 -0.06 0.12 0.514 

idl_l 80 0.033 -0.123 0.188 0.677 

la 80 0.038 -0.289 0.366 0.816 

unsat 80 0.039 0.009 0.068 0.011 

xl_hdl_pl 80 0.043 -0.006 0.092 0.087 

l_ldl_c 80 0.044 -0.099 0.187 0.544 

totcho 80 0.047 -0.16 0.254 0.653 

l_ldl_l 80 0.049 -0.144 0.241 0.617 

l_hdl_ce 80 0.051 -0.009 0.11 0.096 

apoa1 80 0.051 -0.048 0.15 0.306 

l_hdl_pl 80 0.057 -0.014 0.129 0.114 

dha_fa 80 0.057 -0.096 0.211 0.462 

l_hdl_c 80 0.067 -0.012 0.146 0.094 

faw6 80 0.068 -0.303 0.44 0.714 

pufa 80 0.069 -0.341 0.479 0.738 

xl_hdl_l 80 0.071 -0.012 0.154 0.091 

ldl_c 80 0.094 -0.195 0.382 0.52 

estc 80 0.107 -0.286 0.5 0.589 

faw3_fa 80 0.108 -0.255 0.47 0.555 

hdl_d 80 0.115 -0.008 0.237 0.066 

hdl2_c 80 0.117 -0.035 0.268 0.129 



 

 392 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

l_hdl_l 80 0.125 -0.026 0.276 0.104 

hdl_c 80 0.13 -0.035 0.294 0.12 

serum_c 80 0.134 -0.409 0.678 0.624 

la_fa 80 1.168 -0.083 2.418 0.067 

faw6_fa 80 1.613 0.385 2.841 0.011 

pufa_fa 80 1.719 0.337 3.101 0.015 
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Appendix C Table C 2: Linear regression results of baseline metabolic trait levels in the 

lycopene arm, compared to control. 

 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

mufa_fa 80 -0.97 -2.388 0.449 0.177 

sfa_fa 80 -0.788 -1.634 0.059 0.068 

vldl_d 80 -0.718 -1.357 -0.079 0.028 

totfa 80 -0.353 -1.742 1.037 0.615 

serum_tg 80 -0.287 -0.616 0.043 0.087 

vldl_tg 80 -0.256 -0.544 0.033 0.081 

sfa 80 -0.221 -0.747 0.305 0.405 

mufa 80 -0.209 -0.683 0.264 0.382 

glc 80 -0.17 -1.104 0.764 0.718 

m_vldl_l 80 -0.168 -0.36 0.024 0.086 

l_vldl_l 80 -0.119 -0.251 0.012 0.075 

vldl_c 80 -0.108 -0.263 0.047 0.168 

remnant_c 80 -0.104 -0.356 0.147 0.41 

m_vldl_tg 80 -0.093 -0.199 0.013 0.083 

tg_pg 80 -0.09 -0.216 0.036 0.161 

s_vldl_l 80 -0.086 -0.199 0.028 0.136 

l_vldl_tg 80 -0.07 -0.147 0.007 0.075 

gp 80 -0.055 -0.162 0.052 0.308 

apob_apoa1 80 -0.053 -0.13 0.024 0.177 

apob 80 -0.05 -0.178 0.077 0.434 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

s_vldl_tg 80 -0.048 -0.103 0.007 0.089 

m_vldl_c 80 -0.043 -0.093 0.008 0.096 

xl_vldl_l 80 -0.035 -0.074 0.004 0.079 

m_vldl_pl 80 -0.032 -0.068 0.005 0.091 

l_vldl_c 80 -0.028 -0.059 0.002 0.071 

ldl_d 80 -0.024 -0.069 0.022 0.304 

xl_vldl_tg 80 -0.022 -0.046 0.003 0.081 

m_vldl_ce 80 -0.022 -0.049 0.005 0.107 

l_vldl_pl 80 -0.021 -0.045 0.002 0.078 

s_vldl_c 80 -0.021 -0.061 0.02 0.317 

m_vldl_fc 80 -0.02 -0.044 0.003 0.093 

xs_vldl_l 80 -0.02 -0.091 0.051 0.577 

s_vldl_pl 80 -0.017 -0.039 0.005 0.127 

hdl_tg 80 -0.015 -0.032 0.001 0.069 

l_vldl_ce 80 -0.014 -0.03 0.001 0.061 

l_vldl_fc 80 -0.014 -0.029 0.002 0.084 

bohbut 80 -0.013 -0.027 0.001 0.07 

xxl_vldl_l 80 -0.013 -0.028 0.001 0.072 

s_hdl_pl 80 -0.013 -0.046 0.019 0.417 

xs_vldl_tg 80 -0.012 -0.029 0.005 0.159 

s_vldl_fc 80 -0.011 -0.026 0.005 0.166 

gln 80 -0.011 -0.037 0.015 0.41 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

s_vldl_ce 80 -0.01 -0.037 0.017 0.461 

xxl_vldl_tg 80 -0.009 -0.019 0.001 0.073 

ldl_tg 80 -0.009 -0.032 0.014 0.454 

s_hdl_tg 80 -0.007 -0.014 0 0.051 

xl_vldl_c 80 -0.007 -0.015 0.001 0.068 

glol 80 -0.007 -0.016 0.002 0.103 

idl_tg 80 -0.007 -0.021 0.007 0.316 

xs_vldl_ce 80 -0.007 -0.032 0.018 0.595 

s_hdl_l 80 -0.007 -0.056 0.043 0.788 

m_hdl_tg 80 -0.006 -0.012 0 0.045 

xl_vldl_pl 80 -0.006 -0.012 0.001 0.09 

xs_vldl_c 80 -0.006 -0.042 0.029 0.722 

freec 80 -0.006 -0.173 0.161 0.944 

crea 80 -0.005 -0.01 0.001 0.104 

xl_vldl_ce 80 -0.004 -0.009 0 0.06 

l_ldl_tg 80 -0.004 -0.017 0.008 0.481 

idl_ce 80 -0.004 -0.088 0.081 0.931 

xxl_vldl_c 80 -0.003 -0.005 0 0.064 

xl_vldl_fc 80 -0.003 -0.007 0 0.077 

s_ldl_tg 80 -0.003 -0.008 0.002 0.295 

cit 80 -0.003 -0.013 0.007 0.541 

m_ldl_pl 80 -0.003 -0.029 0.023 0.811 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

xxl_vldl_ce 80 -0.002 -0.003 0 0.055 

xxl_vldl_pl 80 -0.002 -0.003 0 0.088 

tyr 80 -0.002 -0.008 0.003 0.381 

m_ldl_tg 80 -0.002 -0.008 0.004 0.577 

s_ldl_pl 80 -0.002 -0.019 0.016 0.846 

xxl_vldl_fc 80 -0.001 -0.002 0 0.088 

xl_hdl_tg 80 -0.001 -0.005 0.003 0.695 

s_hdl_fc 80 -0.001 -0.007 0.005 0.79 

xs_vldl_pl 80 -0.001 -0.025 0.022 0.908 

xxl_vldl_p 80 0 0 0 0.071 

l_vldl_p 80 0 0 0 0.074 

xl_vldl_p 80 0 0 0 0.079 

m_vldl_p 80 0 0 0 0.085 

s_vldl_p 80 0 0 0 0.124 

l_hdl_p 80 0 0 0 0.198 

xl_hdl_p 80 0 0 0 0.317 

xs_vldl_p 80 0 0 0 0.507 

s_hdl_p 80 0 0 0 0.681 

m_hdl_p 80 0 0 0 0.707 

m_ldl_p 80 0 0 0 0.858 

s_ldl_p 80 0 0 0 0.873 

l_ldl_p 80 0 0 0 0.892 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

pyr 80 0 -0.015 0.014 0.954 

idl_p 80 0 0 0 0.965 

xs_vldl_fc 80 0 -0.011 0.011 0.966 

alb 80 0.001 -0.001 0.003 0.452 

l_hdl_tg 80 0.001 -0.003 0.006 0.61 

his 80 0.001 -0.004 0.006 0.647 

phe 80 0.001 -0.005 0.007 0.725 

leu 80 0.001 -0.007 0.009 0.778 

s_ldl_fc 80 0.001 -0.01 0.012 0.822 

ile 80 0.001 -0.008 0.009 0.891 

m_ldl_fc 80 0.002 -0.016 0.02 0.813 

idl_l 80 0.002 -0.167 0.17 0.986 

l_ldl_pl 80 0.003 -0.04 0.046 0.894 

totpg 80 0.003 -0.182 0.188 0.972 

xl_hdl_fc 80 0.004 -0.005 0.012 0.387 

m_hdl_fc 80 0.004 -0.005 0.013 0.408 

idl_c 80 0.004 -0.112 0.12 0.949 

m_hdl_pl 80 0.005 -0.03 0.04 0.791 

idl_pl 80 0.005 -0.037 0.047 0.824 

ace 80 0.006 -0.001 0.013 0.083 

pc 80 0.006 -0.209 0.222 0.953 

idl_fc 80 0.007 -0.025 0.039 0.644 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

s_ldl_l 80 0.008 -0.07 0.086 0.839 

hdl3_c 80 0.009 -0.005 0.023 0.199 

l_ldl_fc 80 0.009 -0.028 0.045 0.632 

sm 80 0.009 -0.034 0.052 0.674 

s_ldl_ce 80 0.011 -0.035 0.057 0.636 

l_ldl_ce 80 0.011 -0.105 0.127 0.846 

val 80 0.012 -0.001 0.024 0.071 

l_hdl_fc 80 0.012 -0.005 0.029 0.173 

dha 80 0.012 -0.009 0.033 0.266 

xl_hdl_ce 80 0.012 -0.012 0.035 0.335 

s_ldl_c 80 0.012 -0.045 0.07 0.67 

ala 80 0.013 -0.021 0.047 0.457 

m_ldl_l 80 0.013 -0.111 0.137 0.836 

s_hdl_ce 80 0.014 -0.013 0.042 0.306 

s_hdl_c 80 0.014 -0.016 0.043 0.356 

xl_hdl_c 80 0.015 -0.017 0.048 0.343 

totcho 80 0.015 -0.21 0.241 0.893 

m_hdl_ce 80 0.016 -0.018 0.05 0.345 

m_ldl_ce 80 0.016 -0.061 0.092 0.685 

gly 80 0.018 0.001 0.035 0.039 

m_ldl_c 80 0.018 -0.076 0.112 0.708 

m_hdl_l 80 0.019 -0.06 0.097 0.639 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

l_ldl_l 80 0.019 -0.187 0.224 0.856 

m_hdl_c 80 0.02 -0.023 0.064 0.357 

l_ldl_c 80 0.02 -0.132 0.172 0.793 

xl_hdl_pl 80 0.023 -0.021 0.067 0.297 

la 80 0.025 -0.341 0.39 0.894 

faw3 80 0.028 -0.027 0.082 0.32 

apoa1 80 0.032 -0.061 0.126 0.489 

l_hdl_ce 80 0.033 -0.019 0.086 0.206 

xl_hdl_l 80 0.038 -0.037 0.112 0.316 

serum_c 80 0.04 -0.537 0.617 0.89 

l_hdl_pl 80 0.045 -0.018 0.109 0.161 

l_hdl_c 80 0.045 -0.024 0.115 0.197 

estc 80 0.046 -0.365 0.458 0.824 

unsat 80 0.049 0.019 0.079 0.002 

ldl_c 80 0.05 -0.253 0.354 0.742 

faw6 80 0.05 -0.361 0.461 0.809 

lac 80 0.057 -0.139 0.254 0.563 

hdl_d 80 0.078 -0.029 0.185 0.15 

pufa 80 0.078 -0.374 0.529 0.733 

hdl2_c 80 0.085 -0.05 0.22 0.212 

l_hdl_l 80 0.088 -0.046 0.222 0.194 

hdl_c 80 0.094 -0.052 0.241 0.204 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

dha_fa 80 0.16 -0.006 0.327 0.059 

faw3_fa 80 0.371 -0.001 0.744 0.051 

la_fa 80 0.977 -0.333 2.286 0.142 

faw6_fa 80 1.387 0.143 2.632 0.029 

pufa_fa 80 1.757 0.384 3.13 0.013 
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Appendix C Table C 3: Linear regression results of baseline metabolic trait levels in the brisk 

walking arm, compared to control. 

 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 

P-

value 

hdl_d 80 -0.461 -0.9 -0.022 0.04 

l_hdl_tg 80 -0.442 -0.882 -0.002 0.049 

xl_hdl_pl 80 -0.426 -0.866 0.014 0.058 

la_fa 80 -0.424 -0.86 0.012 0.056 

l_hdl_ce 80 -0.42 -0.861 0.022 0.062 

l_hdl_p 80 -0.418 -0.859 0.023 0.063 

l_hdl_l 80 -0.416 -0.857 0.025 0.064 

l_hdl_c 80 -0.415 -0.856 0.027 0.065 

l_hdl_pl 80 -0.405 -0.846 0.037 0.072 

l_hdl_fc 80 -0.399 -0.841 0.044 0.077 

xl_hdl_p 80 -0.387 -0.829 0.056 0.086 

xl_hdl_l 80 -0.384 -0.827 0.059 0.088 

xl_hdl_fc 80 -0.382 -0.825 0.062 0.091 

hdl2_c 80 -0.359 -0.803 0.086 0.112 

hdl_c 80 -0.353 -0.797 0.092 0.118 

faw6_fa 80 -0.33 -0.771 0.11 0.14 

xl_hdl_c 80 -0.307 -0.754 0.14 0.176 

ldl_d 80 -0.297 -0.731 0.137 0.177 

m_hdl_fc 80 -0.292 -0.736 0.152 0.194 

m_hdl_pl 80 -0.292 -0.736 0.152 0.194 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 

P-

value 

glol 80 -0.281 -0.719 0.158 0.206 

m_hdl_l 80 -0.28 -0.724 0.164 0.213 

m_hdl_p 80 -0.278 -0.721 0.166 0.216 

apoa1 80 -0.274 -0.72 0.172 0.225 

xl_hdl_ce 80 -0.274 -0.723 0.174 0.227 

m_hdl_c 80 -0.27 -0.714 0.175 0.231 

m_hdl_ce 80 -0.263 -0.708 0.183 0.244 

hdl3_c 80 -0.232 -0.679 0.214 0.303 

gln 80 -0.222 -0.67 0.226 0.326 

crea 80 -0.201 -0.643 0.241 0.368 

pufa_fa 80 -0.19 -0.636 0.257 0.4 

la 80 -0.183 -0.633 0.268 0.422 

totpg 80 -0.152 -0.604 0.3 0.506 

tyr 80 -0.143 -0.586 0.3 0.523 

faw6 80 -0.13 -0.581 0.322 0.57 

pc 80 -0.126 -0.579 0.327 0.581 

freec 80 -0.111 -0.563 0.341 0.626 

m_ldl_tg 80 -0.109 -0.566 0.349 0.638 

totcho 80 -0.107 -0.559 0.346 0.641 

idl_fc 80 -0.1 -0.55 0.35 0.661 

his 80 -0.088 -0.527 0.352 0.693 

serum_c 80 -0.086 -0.537 0.364 0.704 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 

P-

value 

pufa 80 -0.084 -0.537 0.368 0.711 

xl_hdl_tg 80 -0.082 -0.538 0.373 0.72 

l_ldl_fc 80 -0.08 -0.53 0.37 0.723 

idl_pl 80 -0.08 -0.53 0.371 0.727 

estc 80 -0.076 -0.526 0.374 0.737 

l_ldl_tg 80 -0.073 -0.531 0.385 0.752 

ldl_tg 80 -0.067 -0.525 0.391 0.771 

sm 80 -0.063 -0.514 0.388 0.781 

hdl_tg 80 -0.062 -0.519 0.395 0.787 

idl_l 80 -0.059 -0.511 0.393 0.795 

idl_c 80 -0.057 -0.508 0.394 0.802 

idl_p 80 -0.055 -0.507 0.397 0.809 

l_ldl_pl 80 -0.053 -0.504 0.398 0.815 

s_hdl_pl 80 -0.049 -0.498 0.399 0.827 

l_ldl_l 80 -0.048 -0.499 0.403 0.832 

l_ldl_p 80 -0.047 -0.498 0.405 0.837 

l_ldl_c 80 -0.044 -0.495 0.406 0.845 

idl_ce 80 -0.04 -0.492 0.411 0.86 

alb 80 -0.037 -0.481 0.407 0.869 

l_ldl_ce 80 -0.033 -0.484 0.418 0.885 

s_hdl_fc 80 -0.03 -0.477 0.418 0.895 

ldl_c 80 -0.028 -0.478 0.422 0.902 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 

P-

value 

xs_vldl_pl 80 -0.018 -0.47 0.435 0.939 

m_ldl_p 80 -0.017 -0.468 0.434 0.941 

s_ldl_ce 80 -0.016 -0.466 0.433 0.942 

m_ldl_l 80 -0.015 -0.465 0.436 0.948 

m_ldl_ce 80 -0.013 -0.463 0.437 0.953 

m_ldl_c 80 -0.012 -0.462 0.438 0.958 

s_ldl_c 80 -0.01 -0.46 0.439 0.963 

s_ldl_p 80 -0.007 -0.457 0.443 0.975 

m_ldl_fc 80 -0.007 -0.456 0.443 0.977 

s_ldl_l 80 -0.006 -0.456 0.444 0.978 

s_hdl_l 80 -0.005 -0.451 0.441 0.981 

m_ldl_pl 80 -0.002 -0.454 0.449 0.991 

idl_tg 80 0.001 -0.458 0.46 0.998 

s_hdl_c 80 0.004 -0.439 0.447 0.987 

unsat 80 0.005 -0.446 0.456 0.982 

m_hdl_tg 80 0.006 -0.449 0.462 0.978 

s_ldl_pl 80 0.007 -0.444 0.457 0.976 

s_hdl_ce 80 0.01 -0.433 0.453 0.965 

xs_vldl_fc 80 0.011 -0.441 0.463 0.963 

totfa 80 0.012 -0.443 0.468 0.958 

sfa 80 0.012 -0.444 0.468 0.958 

s_ldl_fc 80 0.014 -0.435 0.464 0.949 



 

 405 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 

P-

value 

xs_vldl_c 80 0.014 -0.438 0.467 0.95 

xs_vldl_ce 80 0.016 -0.437 0.468 0.945 

sfa_fa 80 0.019 -0.433 0.47 0.935 

bohbut 80 0.032 -0.412 0.475 0.887 

xs_vldl_l 80 0.033 -0.422 0.487 0.886 

xs_vldl_p 80 0.041 -0.414 0.496 0.857 

ace 80 0.043 -0.411 0.497 0.851 

vldl_d 80 0.052 -0.399 0.504 0.818 

remnant_c 80 0.059 -0.395 0.514 0.795 

apob 80 0.075 -0.379 0.528 0.744 

cit 80 0.089 -0.359 0.538 0.692 

gp 80 0.091 -0.361 0.544 0.689 

xxl_vldl_pl 80 0.101 -0.351 0.554 0.657 

s_vldl_ce 80 0.102 -0.351 0.556 0.655 

mufa 80 0.102 -0.353 0.557 0.656 

xxl_vldl_tg 80 0.108 -0.344 0.561 0.635 

ala 80 0.111 -0.339 0.561 0.625 

xxl_vldl_p 80 0.111 -0.341 0.564 0.626 

xxl_vldl_l 80 0.114 -0.338 0.567 0.616 

xxl_vldl_fc 80 0.116 -0.336 0.568 0.611 

s_vldl_c 80 0.125 -0.329 0.579 0.585 

xs_vldl_tg 80 0.126 -0.33 0.581 0.585 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 

P-

value 

vldl_c 80 0.136 -0.318 0.591 0.552 

xl_vldl_pl 80 0.141 -0.311 0.593 0.537 

xl_vldl_fc 80 0.142 -0.31 0.595 0.532 

xxl_vldl_c 80 0.144 -0.309 0.597 0.529 

gly 80 0.147 -0.304 0.597 0.519 

serum_tg 80 0.15 -0.304 0.603 0.514 

xl_vldl_tg 80 0.151 -0.301 0.603 0.509 

xl_vldl_p 80 0.151 -0.301 0.603 0.509 

xl_vldl_l 80 0.151 -0.301 0.603 0.509 

s_vldl_fc 80 0.152 -0.303 0.606 0.508 

l_vldl_fc 80 0.156 -0.297 0.608 0.495 

m_vldl_ce 80 0.159 -0.295 0.614 0.488 

xl_vldl_c 80 0.16 -0.292 0.612 0.483 

s_hdl_tg 80 0.161 -0.292 0.614 0.482 

xxl_vldl_ce 80 0.162 -0.292 0.615 0.481 

m_vldl_c 80 0.164 -0.29 0.618 0.473 

m_vldl_fc 80 0.165 -0.288 0.618 0.47 

s_vldl_pl 80 0.165 -0.289 0.618 0.472 

s_vldl_l 80 0.171 -0.283 0.624 0.457 

l_vldl_pl 80 0.172 -0.28 0.625 0.451 

m_vldl_pl 80 0.172 -0.281 0.626 0.451 

xl_vldl_ce 80 0.173 -0.279 0.626 0.449 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 

P-

value 

l_vldl_c 80 0.173 -0.28 0.625 0.45 

s_vldl_p 80 0.175 -0.279 0.629 0.445 

mufa_fa 80 0.177 -0.272 0.626 0.435 

vldl_tg 80 0.178 -0.275 0.63 0.436 

l_vldl_l 80 0.179 -0.273 0.632 0.432 

m_vldl_l 80 0.181 -0.271 0.634 0.428 

l_vldl_p 80 0.181 -0.271 0.633 0.428 

l_vldl_tg 80 0.183 -0.269 0.635 0.423 

m_vldl_p 80 0.184 -0.269 0.636 0.422 

s_vldl_tg 80 0.189 -0.263 0.642 0.408 

l_vldl_ce 80 0.19 -0.263 0.642 0.407 

m_vldl_tg 80 0.191 -0.262 0.643 0.404 

leu 80 0.194 -0.253 0.641 0.39 

pyr 80 0.201 -0.249 0.651 0.377 

glc 80 0.216 -0.243 0.676 0.352 

ile 80 0.224 -0.223 0.67 0.322 

apob_apoa1 80 0.228 -0.223 0.679 0.318 

tg_pg 80 0.234 -0.217 0.685 0.304 

val 80 0.25 -0.196 0.696 0.267 

faw3 80 0.257 -0.19 0.703 0.256 

phe 80 0.371 -0.077 0.818 0.103 

dha 80 0.385 -0.057 0.826 0.087 



 

 408 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 

P-

value 

faw3_fa 80 0.394 -0.047 0.835 0.079 

dha_fa 80 0.457 0.019 0.895 0.041 

lac 80 0.497 0.059 0.934 0.027 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C Table C 4:Linear regression results of metabolic traits in the lycopene arm 

compared to control (ITT). 

 



 

 409 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

ala 74 -0.614 -1.183 -0.046 0.035 

pyr 74 -0.514 -1.168 0.14 0.122 

s_hdl_l 74 -0.504 -1.147 0.138 0.122 

s_hdl_p 74 -0.5 -1.136 0.135 0.121 

s_hdl_c 74 -0.44 -1.047 0.167 0.152 

s_hdl_ce 74 -0.393 -0.979 0.193 0.186 

alb 74 -0.39 -1.022 0.242 0.222 

glc 74 -0.387 -1.093 0.32 0.279 

sfa_fa 74 -0.369 -0.878 0.141 0.153 

ldl_d 74 0.369 -0.224 0.962 0.218 

la_fa 74 0.345 -0.222 0.913 0.229 

lac 74 -0.334 -0.924 0.257 0.263 

faw6_fa 74 0.311 -0.231 0.853 0.257 

xl_hdl_fc 74 0.305 -0.199 0.809 0.231 

gln 74 -0.299 -0.799 0.202 0.238 

s_hdl_pl 74 -0.294 -0.893 0.305 0.331 

l_hdl_tg 74 0.286 -0.281 0.852 0.318 

hdl_d 74 0.285 -0.241 0.811 0.283 

s_hdl_fc 74 -0.282 -0.896 0.332 0.363 

pufa_fa 74 0.269 -0.266 0.804 0.32 

ace 74 0.265 -0.134 0.663 0.189 

xl_hdl_c 74 0.26 -0.267 0.788 0.328 



 

 410 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

s_ldl_pl 74 -0.258 -0.894 0.377 0.421 

xl_hdl_l 74 0.256 -0.265 0.776 0.331 

xl_hdl_p 74 0.254 -0.269 0.776 0.336 

s_vldl_ce 74 -0.244 -0.847 0.36 0.424 

m_hdl_p 74 -0.244 -0.885 0.398 0.451 

cit 74 -0.239 -0.672 0.194 0.275 

xl_hdl_ce 74 0.239 -0.299 0.777 0.378 

m_hdl_l 74 -0.237 -0.881 0.406 0.465 

s_ldl_fc 74 -0.236 -0.869 0.396 0.459 

s_ldl_l 74 -0.234 -0.863 0.394 0.459 

s_ldl_p 74 -0.233 -0.862 0.395 0.461 

m_ldl_pl 74 -0.232 -0.864 0.4 0.467 

s_ldl_c 74 -0.229 -0.85 0.392 0.464 

m_hdl_pl 74 -0.229 -0.863 0.405 0.474 

xs_vldl_pl 74 -0.228 -0.844 0.387 0.462 

s_ldl_ce 74 -0.227 -0.844 0.391 0.467 

xl_hdl_pl 74 0.226 -0.301 0.753 0.395 

m_ldl_ce 74 -0.225 -0.844 0.394 0.471 

m_ldl_c 74 -0.224 -0.845 0.397 0.474 

m_ldl_l 74 -0.221 -0.846 0.404 0.484 

xs_vldl_fc 74 -0.218 -0.832 0.395 0.48 

m_ldl_p 74 -0.218 -0.842 0.406 0.488 



 

 411 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

m_ldl_fc 74 -0.218 -0.847 0.411 0.492 

s_vldl_c 74 -0.217 -0.813 0.379 0.47 

ldl_c 74 -0.213 -0.835 0.41 0.498 

l_ldl_pl 74 -0.211 -0.837 0.415 0.504 

m_hdl_fc 74 -0.211 -0.858 0.436 0.518 

estc 74 -0.209 -0.841 0.422 0.511 

l_hdl_ce 74 0.208 -0.325 0.741 0.44 

m_hdl_c 74 -0.207 -0.856 0.442 0.527 

m_hdl_ce 74 -0.205 -0.854 0.444 0.531 

l_ldl_ce 74 -0.204 -0.83 0.422 0.518 

l_hdl_c 74 0.202 -0.333 0.737 0.454 

l_ldl_c 74 -0.198 -0.822 0.426 0.529 

m_hdl_tg 74 -0.196 -0.728 0.337 0.466 

serum_c 74 -0.196 -0.826 0.435 0.538 

apob 74 -0.195 -0.81 0.42 0.529 

apob_apoa1 74 -0.192 -0.783 0.4 0.52 

l_ldl_l 74 -0.192 -0.817 0.433 0.543 

l_ldl_p 74 -0.19 -0.815 0.436 0.548 

l_hdl_fc 74 0.185 -0.355 0.724 0.497 

idl_pl 74 -0.185 -0.805 0.435 0.553 

idl_ce 74 -0.176 -0.808 0.457 0.582 

unsat 74 0.175 -0.346 0.697 0.505 



 

 412 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

l_ldl_fc 74 -0.175 -0.791 0.441 0.573 

idl_c 74 -0.174 -0.804 0.456 0.584 

s_vldl_pl 74 -0.171 -0.739 0.397 0.55 

xs_vldl_l 74 -0.169 -0.785 0.447 0.587 

remnant_c 74 -0.167 -0.784 0.449 0.59 

idl_l 74 -0.167 -0.794 0.46 0.598 

xl_hdl_tg 74 0.166 -0.427 0.759 0.579 

idl_p 74 -0.163 -0.79 0.465 0.607 

l_hdl_l 74 0.161 -0.382 0.703 0.557 

xs_vldl_p 74 -0.161 -0.775 0.453 0.603 

idl_fc 74 -0.161 -0.778 0.455 0.603 

xs_vldl_c 74 -0.16 -0.782 0.462 0.61 

freec 74 -0.16 -0.786 0.467 0.612 

l_hdl_p 74 0.158 -0.385 0.701 0.563 

faw3 74 -0.156 -0.84 0.527 0.65 

phe 74 0.154 -0.466 0.774 0.622 

s_vldl_fc 74 -0.153 -0.731 0.424 0.598 

sfa 74 -0.153 -0.749 0.442 0.609 

sm 74 -0.148 -0.792 0.497 0.649 

s_vldl_l 74 -0.146 -0.722 0.429 0.613 

pc 74 -0.141 -0.742 0.461 0.642 

m_vldl_ce 74 -0.138 -0.721 0.444 0.637 



 

 413 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

vldl_c 74 -0.138 -0.728 0.453 0.643 

s_vldl_p 74 -0.136 -0.71 0.437 0.637 

tyr 74 -0.135 -0.766 0.496 0.671 

xs_vldl_ce 74 -0.131 -0.757 0.496 0.679 

gly 74 0.128 -0.32 0.577 0.57 

apoa1 74 -0.113 -0.71 0.483 0.706 

xxl_vldl_ce 74 -0.106 -0.673 0.461 0.71 

his 74 -0.106 -0.685 0.473 0.716 

totcho 74 -0.106 -0.72 0.508 0.731 

m_vldl_c 74 -0.102 -0.674 0.471 0.725 

la 74 0.102 -0.495 0.698 0.735 

l_hdl_pl 74 0.094 -0.463 0.652 0.737 

dha_fa 74 0.094 -0.501 0.69 0.753 

bohbut 74 -0.094 -0.765 0.578 0.782 

dha 74 -0.092 -0.769 0.585 0.787 

glol 73 -0.09 -0.719 0.539 0.776 

crea 74 -0.088 -0.553 0.378 0.708 

s_ldl_tg 74 -0.088 -0.674 0.497 0.765 

m_vldl_pl 74 -0.085 -0.651 0.48 0.764 

hdl3_c 74 -0.085 -0.678 0.508 0.776 

m_vldl_l 74 -0.083 -0.648 0.482 0.771 

m_vldl_p 74 -0.082 -0.647 0.482 0.773 



 

 414 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

l_vldl_ce 74 -0.08 -0.641 0.481 0.776 

s_vldl_tg 74 -0.08 -0.645 0.485 0.778 

m_vldl_tg 74 -0.073 -0.635 0.489 0.797 

val 74 0.072 -0.526 0.67 0.811 

gp 74 0.07 -0.485 0.625 0.802 

l_vldl_pl 74 -0.07 -0.629 0.489 0.804 

l_vldl_tg 74 -0.069 -0.626 0.488 0.806 

vldl_tg 74 -0.069 -0.631 0.493 0.808 

l_vldl_p 74 -0.068 -0.626 0.489 0.807 

xs_vldl_tg 74 -0.068 -0.646 0.51 0.815 

totfa 74 -0.068 -0.67 0.534 0.822 

l_vldl_l 74 -0.067 -0.625 0.491 0.811 

serum_tg 74 -0.063 -0.628 0.502 0.825 

m_vldl_fc 74 -0.062 -0.627 0.503 0.827 

vldl_d 74 -0.061 -0.618 0.497 0.829 

l_vldl_c 74 -0.061 -0.621 0.499 0.829 

xxl_vldl_c 74 -0.059 -0.623 0.505 0.836 

xl_vldl_ce 74 -0.058 -0.619 0.503 0.837 

faw6 74 0.055 -0.555 0.666 0.858 

s_hdl_tg 74 -0.053 -0.605 0.499 0.849 

mufa 74 -0.045 -0.629 0.539 0.879 

xl_vldl_c 74 -0.044 -0.606 0.517 0.875 



 

 415 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

m_ldl_tg 74 -0.044 -0.64 0.552 0.883 

xl_vldl_tg 74 -0.043 -0.602 0.515 0.878 

xl_vldl_p 74 -0.043 -0.602 0.517 0.879 

xl_vldl_l 74 -0.042 -0.602 0.517 0.88 

l_vldl_fc 74 -0.042 -0.602 0.518 0.882 

ldl_tg 74 -0.042 -0.64 0.555 0.888 

xxl_vldl_p 74 -0.041 -0.602 0.52 0.885 

faw3_fa 74 -0.041 -0.647 0.566 0.894 

xxl_vldl_l 74 -0.039 -0.6 0.523 0.891 

mufa_fa 74 -0.038 -0.597 0.522 0.893 

xl_vldl_pl 74 -0.037 -0.599 0.526 0.897 

xxl_vldl_tg 74 -0.036 -0.597 0.525 0.898 

xl_vldl_fc 74 -0.029 -0.592 0.533 0.917 

pufa 74 0.027 -0.592 0.647 0.93 

totpg 74 -0.027 -0.638 0.585 0.931 

xxl_vldl_pl 74 -0.024 -0.586 0.538 0.932 

l_ldl_tg 74 -0.022 -0.623 0.58 0.943 

ile 74 0.021 -0.568 0.61 0.944 

hdl_tg 74 0.019 -0.542 0.58 0.947 

idl_tg 74 -0.018 -0.615 0.579 0.952 

hdl2_c 74 0.015 -0.552 0.582 0.958 

tg_pg 74 -0.007 -0.575 0.561 0.98 



 

 416 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

hdl_c 74 0.006 -0.562 0.574 0.983 

leu 74 0.004 -0.579 0.587 0.988 

xxl_vldl_fc 74 0 -0.562 0.562 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C Table C 5:Linear regression results of metabolic traits in the plant-based diet 

arm compared to control (ITT).  
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

la_fa 74 0.584 0.087 1.081 0.022 

pyr 74 -0.68 -1.277 -0.082 0.026 

sfa_fa 74 -0.604 -1.149 -0.059 0.03 

ace 74 0.635 0.054 1.217 0.033 

faw6_fa 74 0.56 0.043 1.078 0.034 

lac 74 -0.583 -1.124 -0.042 0.035 

s_hdl_p 74 -0.594 -1.18 -0.007 0.047 

s_hdl_l 74 -0.581 -1.168 0.006 0.052 

pufa_fa 74 0.537 -0.01 1.084 0.054 

glc 74 -0.629 -1.303 0.045 0.067 

s_hdl_pl 74 -0.439 -1.013 0.134 0.131 

Ala 74 -0.448 -1.044 0.149 0.139 

sfa 74 -0.386 -0.938 0.165 0.167 

m_hdl_tg 74 -0.392 -0.96 0.175 0.173 

s_hdl_fc 74 -0.39 -0.969 0.188 0.183 

s_hdl_c 74 -0.355 -0.888 0.177 0.188 

gln 74 0.307 -0.196 0.81 0.228 

s_vldl_ce 74 -0.357 -0.953 0.239 0.236 

s_ldl_pl 74 -0.342 -0.914 0.23 0.237 

s_vldl_c 74 -0.354 -0.95 0.242 0.24 

xs_vldl_fc 74 -0.33 -0.888 0.228 0.243 

xs_vldl_p 74 -0.339 -0.914 0.237 0.244 



 

 418 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

xs_vldl_l 74 -0.338 -0.912 0.236 0.244 

xs_vldl_pl 74 -0.335 -0.908 0.238 0.248 

cit 74 0.353 -0.272 0.979 0.264 

xs_vldl_c 74 -0.314 -0.879 0.25 0.271 

tyr 74 -0.314 -0.889 0.261 0.271 

s_hdl_ce 74 -0.286 -0.801 0.23 0.273 

m_ldl_pl 74 -0.316 -0.893 0.26 0.277 

s_vldl_pl 74 -0.32 -0.906 0.265 0.279 

xl_hdl_fc 74 0.304 -0.251 0.859 0.279 

apob 74 -0.321 -0.911 0.268 0.281 

s_vldl_fc 74 -0.314 -0.896 0.267 0.285 

pc 74 -0.285 -0.815 0.244 0.287 

unsat 74 0.327 -0.284 0.938 0.289 

xs_vldl_ce 74 -0.303 -0.87 0.265 0.291 

s_ldl_tg 74 -0.284 -0.817 0.25 0.292 

remnant_c 74 -0.309 -0.895 0.276 0.295 

ldl_tg 74 -0.265 -0.767 0.237 0.296 

phe 74 -0.279 -0.811 0.252 0.298 

leu 74 -0.271 -0.786 0.244 0.298 

l_ldl_tg 74 -0.259 -0.753 0.235 0.299 

hdl_d 74 0.296 -0.269 0.861 0.3 

idl_tg 74 -0.269 -0.782 0.244 0.3 



 

 419 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

xl_hdl_c 74 0.28 -0.257 0.817 0.302 

glol 73 -0.307 -0.898 0.283 0.303 

xl_hdl_l 74 0.279 -0.271 0.829 0.316 

totcho 74 -0.265 -0.793 0.262 0.319 

xl_hdl_p 74 0.276 -0.273 0.825 0.32 

xl_hdl_ce 74 0.267 -0.264 0.798 0.32 

m_ldl_tg 74 -0.247 -0.739 0.245 0.32 

m_hdl_p 74 -0.32 -0.959 0.318 0.321 

s_ldl_fc 74 -0.279 -0.835 0.277 0.321 

m_hdl_pl 74 -0.32 -0.961 0.321 0.323 

idl_ce 74 -0.283 -0.85 0.285 0.324 

idl_p 74 -0.278 -0.837 0.281 0.325 

xs_vldl_tg 74 -0.277 -0.834 0.28 0.325 

s_vldl_l 74 -0.293 -0.884 0.298 0.326 

vldl_c 74 -0.29 -0.877 0.297 0.328 

s_ldl_p 74 -0.278 -0.841 0.285 0.328 

estc 74 -0.278 -0.844 0.288 0.331 

idl_l 74 -0.271 -0.83 0.287 0.336 

s_ldl_l 74 -0.273 -0.834 0.289 0.337 

s_vldl_p 74 -0.282 -0.871 0.308 0.344 

m_hdl_l 74 -0.305 -0.945 0.335 0.346 

l_ldl_pl 74 -0.267 -0.831 0.297 0.349 



 

 420 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

xl_hdl_pl 74 0.266 -0.297 0.83 0.349 

totpg 74 -0.25 -0.779 0.279 0.349 

idl_c 74 -0.265 -0.825 0.296 0.35 

totfa 74 -0.259 -0.81 0.291 0.351 

serum_c 74 -0.263 -0.825 0.299 0.354 

m_ldl_l 74 -0.26 -0.822 0.301 0.359 

m_ldl_p 74 -0.259 -0.821 0.304 0.362 

l_ldl_p 74 -0.257 -0.817 0.304 0.364 

m_ldl_fc 74 -0.256 -0.813 0.302 0.364 

idl_pl 74 -0.25 -0.804 0.304 0.371 

m_vldl_ce 74 -0.263 -0.851 0.325 0.376 

l_ldl_l 74 -0.25 -0.809 0.309 0.376 

apob_apoa1 74 -0.273 -0.883 0.338 0.377 

s_hdl_tg 74 -0.245 -0.796 0.305 0.377 

gly 74 0.262 -0.327 0.852 0.378 

l_ldl_ce 74 -0.248 -0.81 0.315 0.383 

mufa 74 -0.234 -0.775 0.307 0.392 

alb 74 -0.291 -0.972 0.39 0.397 

m_ldl_c 74 -0.237 -0.794 0.32 0.399 

ldl_c 74 -0.237 -0.794 0.32 0.399 

l_ldl_c 74 -0.237 -0.795 0.321 0.4 

s_ldl_c 74 -0.234 -0.789 0.32 0.402 



 

 421 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

l_hdl_ce 74 0.256 -0.357 0.868 0.408 

l_hdl_c 74 0.255 -0.358 0.868 0.409 

m_ldl_ce 74 -0.232 -0.788 0.325 0.409 

l_hdl_fc 74 0.254 -0.36 0.868 0.412 

l_hdl_tg 74 0.18 -0.254 0.614 0.412 

m_vldl_c 74 -0.237 -0.814 0.34 0.415 

freec 74 -0.225 -0.774 0.325 0.418 

s_ldl_ce 74 -0.223 -0.777 0.331 0.425 

xxl_vldl_ce 74 -0.224 -0.786 0.339 0.43 

gp 74 -0.204 -0.725 0.316 0.437 

m_hdl_fc 74 -0.251 -0.897 0.395 0.441 

serum_tg 74 -0.219 -0.785 0.347 0.443 

m_vldl_pl 74 -0.221 -0.794 0.352 0.445 

val 74 -0.206 -0.741 0.33 0.446 

s_vldl_tg 74 -0.22 -0.799 0.358 0.45 

idl_fc 74 -0.206 -0.749 0.337 0.452 

m_vldl_l 74 -0.215 -0.789 0.359 0.458 

m_vldl_p 74 -0.213 -0.787 0.361 0.462 

l_vldl_pl 74 -0.208 -0.774 0.357 0.465 

l_vldl_ce 74 -0.208 -0.774 0.357 0.465 

m_vldl_fc 74 -0.206 -0.771 0.359 0.47 

l_ldl_fc 74 -0.197 -0.743 0.348 0.473 



 

 422 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

vldl_tg 74 -0.206 -0.775 0.364 0.474 

l_vldl_p 74 -0.203 -0.767 0.362 0.477 

hdl_tg 74 -0.181 -0.686 0.324 0.477 

l_vldl_tg 74 -0.202 -0.767 0.364 0.479 

l_vldl_l 74 -0.201 -0.766 0.363 0.479 

m_hdl_c 74 -0.224 -0.861 0.412 0.485 

m_vldl_tg 74 -0.201 -0.773 0.371 0.486 

l_vldl_c 74 -0.196 -0.755 0.364 0.488 

m_hdl_ce 74 -0.216 -0.849 0.416 0.497 

l_hdl_l 74 0.209 -0.403 0.822 0.498 

xxl_vldl_c 74 -0.188 -0.739 0.364 0.499 

dha 74 -0.218 -0.867 0.431 0.506 

faw3 74 -0.213 -0.852 0.425 0.508 

l_hdl_p 74 0.204 -0.407 0.816 0.508 

l_vldl_fc 74 -0.183 -0.736 0.371 0.512 

vldl_d 74 -0.19 -0.767 0.388 0.515 

xl_vldl_ce 74 -0.179 -0.731 0.372 0.518 

xl_vldl_c 74 -0.172 -0.72 0.376 0.534 

sm 74 -0.179 -0.752 0.395 0.536 

xxl_vldl_p 74 -0.17 -0.716 0.376 0.536 

xxl_vldl_l 74 -0.168 -0.714 0.378 0.54 

xl_vldl_l 74 -0.17 -0.722 0.382 0.541 



 

 423 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

xl_vldl_p 74 -0.17 -0.722 0.382 0.541 

xl_vldl_pl 74 -0.17 -0.722 0.382 0.541 

xl_vldl_tg 74 -0.169 -0.721 0.384 0.544 

xxl_vldl_tg 74 -0.165 -0.71 0.38 0.548 

xl_vldl_fc 74 -0.164 -0.708 0.381 0.551 

mufa_fa 74 -0.173 -0.75 0.405 0.553 

xxl_vldl_pl 74 -0.16 -0.702 0.382 0.558 

his 74 0.153 -0.37 0.676 0.561 

ile 74 -0.153 -0.694 0.388 0.574 

crea 74 0.177 -0.449 0.802 0.575 

hdl3_c 74 -0.159 -0.733 0.414 0.582 

xxl_vldl_fc 74 -0.141 -0.678 0.396 0.602 

faw3_fa 74 0.168 -0.489 0.824 0.612 

l_hdl_pl 74 0.147 -0.47 0.765 0.636 

apoa1 74 -0.13 -0.748 0.488 0.676 

tg_pg 74 -0.114 -0.664 0.435 0.679 

dha_fa 74 0.12 -0.483 0.723 0.693 

bohbut 74 -0.141 -0.86 0.579 0.698 

ldl_d 74 0.077 -0.382 0.537 0.739 

pufa 74 -0.078 -0.622 0.466 0.776 

hdl2_c 74 0.078 -0.557 0.714 0.806 

faw6 74 -0.054 -0.585 0.477 0.84 



 

 424 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

hdl_c 74 0.058 -0.575 0.692 0.855 

la 74 0.023 -0.498 0.543 0.931 

xl_hdl_tg 74 -0.004 -0.503 0.495 0.987 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C Table C 6:Linear regression results of metabolic traits in the lycopene arm 

compared to control, adjusted for baseline metabolic trait levels and smoking status (ITT). 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

ala 70 -0.86 -1.345 -0.374 0.001 

pyr 70 -0.549 -1.153 0.055 0.074 

lac 70 -0.5 -1.111 0.111 0.107 

faw3_fa 70 -0.493 -0.922 -0.064 0.025 

faw3 70 -0.432 -0.892 0.028 0.065 

unsat 70 -0.432 -0.953 0.089 0.102 

s_ldl_ce 70 -0.391 -0.82 0.038 0.073 

s_hdl_c 70 -0.389 -0.892 0.113 0.127 

s_ldl_c 70 -0.387 -0.822 0.048 0.08 

s_hdl_ce 70 -0.381 -0.863 0.102 0.12 

m_ldl_ce 70 -0.379 -0.808 0.05 0.083 

alb 70 -0.378 -0.87 0.114 0.13 

m_ldl_c 70 -0.374 -0.807 0.059 0.089 

s_ldl_fc 70 -0.364 -0.824 0.096 0.119 

ldl_c 70 -0.359 -0.795 0.077 0.105 

cit 70 -0.359 -0.824 0.106 0.128 

sm 70 -0.354 -0.847 0.14 0.158 

l_ldl_fc 70 -0.352 -0.783 0.08 0.108 

m_ldl_fc 70 -0.352 -0.801 0.098 0.123 

s_ldl_l 70 -0.347 -0.791 0.096 0.123 

hdl3_c 70 -0.34 -0.786 0.106 0.133 

l_ldl_c 70 -0.337 -0.776 0.102 0.13 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

idl_fc 70 -0.336 -0.77 0.099 0.128 

m_ldl_l 70 -0.336 -0.773 0.102 0.13 

s_ldl_p 70 -0.336 -0.78 0.107 0.135 

estc 70 -0.334 -0.793 0.124 0.15 

l_ldl_ce 70 -0.33 -0.771 0.11 0.139 

dha 70 -0.33 -0.827 0.168 0.191 

m_ldl_p 70 -0.326 -0.763 0.11 0.141 

val 70 -0.317 -0.873 0.239 0.259 

l_ldl_pl 70 -0.313 -0.759 0.134 0.167 

l_ldl_l 70 -0.31 -0.751 0.131 0.165 

serum_c 70 -0.305 -0.768 0.157 0.192 

idl_pl 70 -0.3 -0.741 0.141 0.179 

l_ldl_p 70 -0.297 -0.74 0.145 0.184 

idl_c 70 -0.29 -0.752 0.172 0.214 

s_ldl_pl 70 -0.289 -0.757 0.18 0.223 

s_hdl_l 70 -0.285 -0.801 0.231 0.274 

leu 70 -0.283 -0.756 0.19 0.236 

apoa1 70 -0.274 -0.711 0.163 0.216 

xs_vldl_fc 70 -0.271 -0.714 0.171 0.225 

idl_ce 70 -0.269 -0.738 0.201 0.257 

s_hdl_p 70 -0.263 -0.768 0.242 0.302 

idl_l 70 -0.261 -0.719 0.197 0.26 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

m_ldl_pl 70 -0.257 -0.715 0.202 0.268 

dha_fa 70 -0.247 -0.687 0.193 0.266 

hdl_c 70 -0.244 -0.593 0.105 0.168 

idl_p 70 -0.242 -0.702 0.218 0.297 

sfa_fa 70 -0.24 -0.779 0.298 0.375 

pufa_fa 70 -0.234 -0.631 0.163 0.243 

freec 70 -0.228 -0.701 0.245 0.339 

hdl2_c 70 -0.226 -0.567 0.115 0.19 

xs_vldl_pl 70 -0.225 -0.672 0.221 0.317 

m_hdl_ce 70 -0.22 -0.721 0.282 0.385 

gly 70 -0.217 -0.552 0.118 0.2 

m_hdl_c 70 -0.216 -0.711 0.279 0.386 

totcho 70 -0.215 -0.715 0.284 0.393 

his 70 -0.215 -0.758 0.327 0.431 

l_hdl_pl 70 -0.213 -0.526 0.1 0.179 

pc 70 -0.207 -0.68 0.266 0.386 

m_hdl_fc 70 -0.201 -0.669 0.268 0.396 

xs_vldl_c 70 -0.186 -0.659 0.286 0.434 

tyr 70 -0.184 -0.839 0.471 0.577 

ile 70 -0.175 -0.672 0.322 0.485 

gln 70 -0.174 -0.629 0.282 0.449 

m_hdl_l 70 -0.169 -0.649 0.311 0.484 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

l_hdl_l 70 -0.167 -0.465 0.132 0.269 

l_hdl_p 70 -0.167 -0.466 0.133 0.271 

l_hdl_fc 70 -0.163 -0.453 0.128 0.268 

m_hdl_p 70 -0.161 -0.639 0.318 0.505 

xs_vldl_ce 70 -0.148 -0.633 0.337 0.545 

l_hdl_c 70 -0.143 -0.438 0.153 0.338 

glc 70 -0.137 -0.532 0.258 0.492 

l_hdl_ce 70 -0.136 -0.433 0.162 0.366 

hdl_d 70 -0.134 -0.448 0.18 0.398 

xl_hdl_ce 70 -0.134 -0.52 0.253 0.492 

s_vldl_ce 70 -0.125 -0.576 0.327 0.583 

s_hdl_fc 70 -0.125 -0.62 0.37 0.614 

m_hdl_pl 70 -0.124 -0.578 0.329 0.586 

pufa 70 -0.124 -0.602 0.353 0.605 

bohbut 70 -0.114 -0.7 0.472 0.7 

xs_vldl_l 70 -0.109 -0.575 0.357 0.641 

totpg 70 -0.109 -0.606 0.388 0.662 

faw6_fa 70 -0.103 -0.507 0.301 0.613 

apob 70 -0.1 -0.558 0.358 0.665 

xl_hdl_c 70 -0.099 -0.481 0.283 0.605 

xl_hdl_p 70 -0.087 -0.425 0.251 0.609 

xl_hdl_l 70 -0.086 -0.425 0.253 0.615 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

remnant_c 70 -0.08 -0.543 0.383 0.731 

xl_hdl_pl 70 -0.079 -0.373 0.215 0.594 

xs_vldl_p 70 -0.074 -0.54 0.393 0.754 

faw6 70 -0.074 -0.553 0.406 0.76 

sfa 70 -0.057 -0.53 0.416 0.811 

totfa 70 -0.033 -0.51 0.443 0.889 

s_vldl_c 70 -0.025 -0.471 0.422 0.913 

s_hdl_pl 70 -0.022 -0.488 0.443 0.925 

phe 70 0.02 -0.571 0.612 0.945 

l_hdl_tg 70 0.024 -0.494 0.542 0.926 

xl_hdl_tg 70 0.045 -0.492 0.583 0.866 

apob_apoa1 70 0.062 -0.345 0.468 0.763 

m_ldl_tg 70 0.066 -0.435 0.568 0.792 

mufa 70 0.081 -0.385 0.546 0.73 

crea 70 0.091 -0.173 0.355 0.494 

la_fa 70 0.091 -0.311 0.493 0.652 

vldl_c 70 0.092 -0.349 0.534 0.678 

ldl_tg 70 0.094 -0.416 0.604 0.715 

l_ldl_tg 70 0.095 -0.422 0.611 0.715 

s_ldl_tg 70 0.111 -0.374 0.596 0.649 

s_vldl_fc 70 0.145 -0.28 0.57 0.499 

m_vldl_ce 70 0.149 -0.3 0.598 0.51 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

gp 70 0.155 -0.264 0.573 0.463 

xxl_vldl_ce 70 0.158 -0.289 0.606 0.482 

idl_tg 70 0.166 -0.343 0.675 0.517 

s_vldl_l 70 0.174 -0.238 0.587 0.401 

xxl_vldl_pl 70 0.175 -0.221 0.571 0.38 

xxl_vldl_p 70 0.175 -0.225 0.574 0.385 

xxl_vldl_tg 70 0.176 -0.219 0.571 0.377 

xxl_vldl_l 70 0.177 -0.223 0.577 0.381 

xxl_vldl_c 70 0.179 -0.245 0.603 0.403 

m_vldl_c 70 0.191 -0.232 0.613 0.37 

s_vldl_p 70 0.194 -0.213 0.602 0.345 

xl_vldl_fc 70 0.195 -0.209 0.598 0.339 

s_vldl_pl 70 0.195 -0.217 0.606 0.348 

xxl_vldl_fc 70 0.196 -0.203 0.594 0.331 

glol 69 0.199 -0.252 0.65 0.381 

xl_vldl_pl 70 0.2 -0.198 0.598 0.319 

xl_vldl_c 70 0.204 -0.207 0.614 0.326 

xl_vldl_ce 70 0.211 -0.206 0.627 0.317 

xl_vldl_l 70 0.215 -0.182 0.612 0.282 

xl_vldl_p 70 0.217 -0.179 0.613 0.277 

mufa_fa 70 0.219 -0.2 0.638 0.3 

m_vldl_pl 70 0.221 -0.173 0.615 0.267 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

xl_vldl_tg 70 0.222 -0.17 0.615 0.262 

l_vldl_fc 70 0.222 -0.172 0.616 0.264 

m_vldl_fc 70 0.227 -0.169 0.623 0.257 

m_vldl_l 70 0.229 -0.164 0.623 0.248 

l_vldl_c 70 0.23 -0.173 0.632 0.258 

m_vldl_p 70 0.233 -0.159 0.624 0.239 

xs_vldl_tg 70 0.233 -0.214 0.68 0.303 

l_vldl_pl 70 0.235 -0.156 0.626 0.235 

l_vldl_ce 70 0.236 -0.176 0.647 0.258 

l_vldl_l 70 0.24 -0.149 0.63 0.222 

l_vldl_p 70 0.242 -0.147 0.63 0.218 

l_vldl_tg 70 0.246 -0.139 0.63 0.206 

m_vldl_tg 70 0.248 -0.135 0.63 0.2 

vldl_tg 70 0.252 -0.136 0.641 0.199 

serum_tg 70 0.253 -0.155 0.66 0.22 

ace 70 0.256 -0.21 0.722 0.276 

tg_pg 70 0.265 -0.13 0.66 0.185 

s_vldl_tg 70 0.273 -0.117 0.663 0.167 

hdl_tg 70 0.287 -0.253 0.827 0.293 

m_hdl_tg 70 0.293 -0.17 0.756 0.211 

s_hdl_tg 70 0.366 -0.07 0.801 0.099 

vldl_d 70 0.381 -0.02 0.782 0.062 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

ldl_d 70 0.382 -0.201 0.965 0.196 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C Table C 7:Linear regression results of metabolic traits in the plant-based diet 

arm compared to control, adjusted for baseline metabolic trait levels (ITT). 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

idl_fc 74 -0.479 -0.834 -0.124 0.009 

l_ldl_fc 74 -0.461 -0.822 -0.099 0.013 

idl_pl 74 -0.433 -0.777 -0.089 0.014 

vldl_d 74 0.539 0.114 0.964 0.014 

hdl3_c 74 -0.534 -0.961 -0.108 0.015 

s_hdl_tg 74 0.484 0.084 0.884 0.019 

idl_c 74 -0.429 -0.79 -0.069 0.02 

idl_l 74 -0.406 -0.753 -0.059 0.023 

s_ldl_ce 74 -0.428 -0.8 -0.056 0.025 

l_ldl_c 74 -0.413 -0.772 -0.053 0.025 

s_ldl_c 74 -0.427 -0.802 -0.053 0.026 

estc 74 -0.423 -0.795 -0.052 0.026 

ldl_c 74 -0.418 -0.783 -0.052 0.026 

xs_vldl_fc 74 -0.394 -0.739 -0.049 0.026 

m_ldl_ce 74 -0.416 -0.783 -0.049 0.027 

l_ldl_l 74 -0.398 -0.751 -0.046 0.027 

idl_p 74 -0.39 -0.733 -0.046 0.027 

m_ldl_c 74 -0.416 -0.785 -0.047 0.028 

glc 74 -0.383 -0.723 -0.042 0.028 

l_ldl_pl 74 -0.401 -0.759 -0.043 0.029 

hdl_c 74 -0.384 -0.729 -0.04 0.029 

idl_ce 74 -0.405 -0.77 -0.041 0.03 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

l_ldl_p 74 -0.388 -0.738 -0.039 0.03 

xs_vldl_c 74 -0.381 -0.724 -0.038 0.03 

pyr 74 -0.602 -1.148 -0.056 0.031 

sm 74 -0.448 -0.852 -0.043 0.031 

m_ldl_fc 74 -0.413 -0.788 -0.037 0.032 

l_ldl_ce 74 -0.395 -0.754 -0.036 0.032 

l_hdl_pl 74 -0.365 -0.699 -0.032 0.032 

xs_vldl_pl 74 -0.366 -0.703 -0.03 0.033 

l_hdl_p 74 -0.337 -0.647 -0.028 0.033 

l_hdl_l 74 -0.336 -0.645 -0.027 0.033 

s_ldl_fc 74 -0.418 -0.804 -0.033 0.034 

serum_c 74 -0.395 -0.76 -0.03 0.035 

m_ldl_l 74 -0.389 -0.749 -0.028 0.035 

hdl2_c 74 -0.359 -0.695 -0.023 0.036 

s_ldl_l 74 -0.391 -0.76 -0.023 0.038 

xs_vldl_ce 74 -0.369 -0.718 -0.021 0.038 

m_ldl_p 74 -0.377 -0.735 -0.02 0.039 

xl_hdl_pl 74 -0.328 -0.639 -0.017 0.039 

gln 74 0.468 0.019 0.916 0.041 

s_ldl_p 74 -0.38 -0.746 -0.015 0.042 

hdl_d 74 -0.316 -0.62 -0.012 0.042 

l_hdl_fc 74 -0.314 -0.618 -0.011 0.043 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

l_hdl_c 74 -0.31 -0.612 -0.009 0.044 

l_hdl_ce 74 -0.309 -0.61 -0.007 0.045 

lac 74 -0.563 -1.116 -0.011 0.046 

totcho 74 -0.369 -0.738 0.001 0.05 

s_vldl_tg 74 0.407 -0.003 0.818 0.052 

s_hdl_ce 74 -0.447 -0.901 0.006 0.053 

s_hdl_c 74 -0.453 -0.915 0.009 0.054 

sfa_fa 74 -0.535 -1.084 0.014 0.056 

ace 74 0.628 -0.022 1.277 0.058 

apoa1 74 -0.361 -0.741 0.018 0.061 

vldl_tg 74 0.387 -0.034 0.808 0.071 

s_ldl_pl 74 -0.345 -0.722 0.033 0.073 

m_vldl_tg 74 0.387 -0.038 0.813 0.074 

freec 74 -0.32 -0.674 0.034 0.076 

l_vldl_tg 74 0.384 -0.049 0.818 0.081 

xl_hdl_p 74 -0.283 -0.603 0.036 0.082 

serum_tg 74 0.355 -0.049 0.76 0.084 

l_vldl_l 74 0.377 -0.052 0.807 0.084 

l_vldl_p 74 0.379 -0.052 0.809 0.084 

m_ldl_pl 74 -0.317 -0.678 0.045 0.085 

xl_vldl_tg 74 0.381 -0.053 0.816 0.085 

tg_pg 74 0.387 -0.056 0.83 0.086 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

xl_hdl_l 74 -0.278 -0.598 0.041 0.087 

l_vldl_c 74 0.367 -0.056 0.79 0.088 

l_vldl_ce 74 0.364 -0.057 0.786 0.089 

xl_vldl_p 74 0.372 -0.059 0.804 0.089 

l_vldl_fc 74 0.366 -0.059 0.791 0.09 

m_vldl_p 74 0.358 -0.059 0.776 0.091 

l_vldl_pl 74 0.364 -0.06 0.788 0.091 

xl_vldl_l 74 0.37 -0.06 0.8 0.091 

m_vldl_l 74 0.352 -0.063 0.768 0.095 

m_vldl_fc 74 0.349 -0.064 0.762 0.096 

xl_vldl_pl 74 0.352 -0.071 0.774 0.101 

gly 74 0.388 -0.078 0.853 0.101 

m_vldl_pl 74 0.34 -0.071 0.75 0.103 

xxl_vldl_fc 74 0.351 -0.072 0.775 0.103 

pc 74 -0.303 -0.669 0.063 0.104 

xl_vldl_c 74 0.348 -0.076 0.772 0.106 

xl_vldl_fc 74 0.346 -0.077 0.769 0.107 

m_hdl_tg 74 0.328 -0.074 0.73 0.108 

xl_vldl_ce 74 0.347 -0.078 0.772 0.108 

s_hdl_l 74 -0.391 -0.889 0.107 0.121 

s_vldl_pl 74 0.291 -0.079 0.661 0.121 

m_hdl_fc 74 -0.339 -0.777 0.099 0.128 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

xs_vldl_tg 74 0.27 -0.08 0.62 0.128 

xs_vldl_l 74 -0.253 -0.582 0.076 0.129 

m_hdl_c 74 -0.33 -0.76 0.099 0.13 

m_hdl_ce 74 -0.327 -0.755 0.101 0.132 

xxl_vldl_pl 74 0.324 -0.1 0.747 0.132 

totpg 74 -0.281 -0.651 0.089 0.134 

s_vldl_p 74 0.287 -0.092 0.665 0.135 

xxl_vldl_tg 74 0.324 -0.105 0.753 0.136 

xxl_vldl_l 74 0.32 -0.107 0.746 0.14 

xxl_vldl_p 74 0.318 -0.109 0.745 0.142 

s_hdl_p 74 -0.367 -0.862 0.128 0.143 

hdl_tg 74 0.294 -0.102 0.69 0.143 

cit 74 0.442 -0.178 1.062 0.159 

xxl_vldl_c 74 0.295 -0.124 0.715 0.165 

m_vldl_c 74 0.278 -0.123 0.679 0.171 

m_hdl_l 74 -0.304 -0.744 0.136 0.172 

xl_hdl_ce 74 -0.236 -0.577 0.105 0.172 

s_vldl_l 74 0.257 -0.116 0.63 0.173 

m_hdl_p 74 -0.296 -0.738 0.145 0.185 

mufa_fa 74 0.287 -0.152 0.725 0.196 

xl_hdl_c 74 -0.219 -0.553 0.116 0.197 

xs_vldl_p 74 -0.208 -0.535 0.119 0.21 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

m_hdl_pl 74 -0.278 -0.722 0.167 0.217 

s_vldl_fc 74 0.212 -0.151 0.575 0.247 

xxl_vldl_ce 74 0.24 -0.181 0.66 0.26 

sfa 74 -0.208 -0.592 0.176 0.283 

m_vldl_ce 74 0.204 -0.191 0.599 0.307 

xl_hdl_fc 74 -0.161 -0.482 0.16 0.321 

la_fa 74 0.184 -0.202 0.569 0.345 

alb 74 -0.312 -0.975 0.352 0.352 

dha 74 -0.219 -0.687 0.249 0.354 

tyr 74 -0.233 -0.763 0.297 0.384 

s_vldl_ce 74 -0.15 -0.502 0.203 0.4 

unsat 74 -0.211 -0.715 0.294 0.407 

his 74 0.203 -0.298 0.704 0.422 

remnant_c 74 -0.136 -0.489 0.216 0.443 

faw3 74 -0.174 -0.629 0.282 0.45 

apob 74 -0.129 -0.49 0.231 0.477 

pufa 74 -0.139 -0.539 0.261 0.49 

val 74 -0.171 -0.665 0.323 0.492 

crea 74 0.131 -0.256 0.519 0.501 

faw6 74 -0.126 -0.517 0.265 0.521 

s_hdl_fc 74 -0.152 -0.633 0.329 0.531 

l_ldl_tg 74 -0.091 -0.38 0.198 0.533 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

l_hdl_tg 74 -0.094 -0.408 0.22 0.551 

vldl_c 74 0.109 -0.258 0.476 0.556 

totfa 74 -0.107 -0.488 0.274 0.576 

s_ldl_tg 74 0.093 -0.251 0.437 0.593 

m_ldl_tg 74 -0.078 -0.371 0.215 0.599 

phe 74 -0.133 -0.673 0.407 0.624 

glol 73 -0.098 -0.544 0.348 0.662 

ala 74 -0.112 -0.627 0.404 0.667 

apob_apoa1 74 0.072 -0.264 0.408 0.67 

ile 74 0.101 -0.374 0.576 0.672 

bohbut 74 -0.142 -0.814 0.53 0.675 

pufa_fa 74 -0.078 -0.452 0.296 0.678 

faw6_fa 74 -0.074 -0.466 0.317 0.706 

mufa 74 0.069 -0.312 0.45 0.718 

leu 74 -0.081 -0.547 0.385 0.731 

faw3_fa 74 0.069 -0.349 0.488 0.742 

ldl_tg 74 -0.049 -0.348 0.25 0.745 

s_hdl_pl 74 -0.049 -0.476 0.379 0.821 

gp 74 -0.033 -0.394 0.328 0.855 

idl_tg 74 0.026 -0.277 0.33 0.863 

s_vldl_c 74 -0.021 -0.372 0.331 0.906 

dha_fa 74 -0.023 -0.422 0.376 0.909 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

la 74 -0.013 -0.406 0.379 0.946 

ldl_d 74 0.009 -0.378 0.397 0.961 

xl_hdl_tg 74 0.01 -0.426 0.445 0.965 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C Table C 8:Linear regression results of metabolic traits in the brisk walking arm 

compared to control (ITT). 
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Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

la_fa 74 0.564 0.117 1.011 0.014 

faw6_fa 74 0.542 0.093 0.991 0.019 

xxl_vldl_ce 74 -0.529 -0.984 -0.073 0.024 

xl_hdl_tg 74 -0.517 -0.974 -0.06 0.027 

xxl_vldl_c 74 -0.507 -0.964 -0.05 0.03 

sfa 74 -0.5 -0.957 -0.044 0.032 

xl_vldl_ce 74 -0.493 -0.951 -0.035 0.035 

pufa_fa 74 0.487 0.034 0.939 0.035 

xl_vldl_c 74 -0.487 -0.945 -0.029 0.037 

xl_vldl_fc 74 -0.48 -0.939 -0.022 0.04 

xxl_vldl_fc 74 -0.471 -0.93 -0.012 0.045 

xxl_vldl_l 74 -0.47 -0.929 -0.011 0.045 

m_vldl_ce 74 -0.468 -0.926 -0.009 0.046 

xxl_vldl_pl 74 -0.467 -0.927 -0.008 0.046 

xxl_vldl_p 74 -0.466 -0.925 -0.006 0.047 

xl_vldl_pl 74 -0.464 -0.924 -0.005 0.047 

l_vldl_ce 74 -0.462 -0.921 -0.003 0.049 

xxl_vldl_tg 74 -0.46 -0.92 0 0.05 

vldl_c 74 -0.457 -0.916 0.002 0.051 

m_vldl_c 74 -0.455 -0.915 0.004 0.052 

l_vldl_c 74 -0.455 -0.914 0.005 0.052 

xl_vldl_l 74 -0.455 -0.914 0.005 0.052 



 

 442 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

hdl_tg 74 -0.454 -0.914 0.006 0.053 

idl_tg 74 -0.454 -0.915 0.007 0.054 

xl_vldl_p 74 -0.451 -0.911 0.008 0.054 

xs_vldl_tg 74 -0.447 -0.907 0.014 0.057 

l_vldl_fc 74 -0.446 -0.906 0.013 0.057 

xl_vldl_tg 74 -0.44 -0.901 0.02 0.06 

sfa_fa 74 -0.431 -0.884 0.022 0.062 

serum_tg 74 -0.437 -0.897 0.024 0.063 

ile 74 -0.433 -0.89 0.024 0.063 

m_vldl_fc 74 -0.433 -0.894 0.027 0.065 

l_vldl_pl 74 -0.432 -0.893 0.028 0.065 

s_ldl_tg 74 -0.433 -0.895 0.029 0.066 

l_vldl_l 74 -0.428 -0.888 0.033 0.068 

m_vldl_pl 74 -0.428 -0.888 0.033 0.068 

s_hdl_tg 74 -0.426 -0.887 0.035 0.07 

m_vldl_l 74 -0.426 -0.886 0.035 0.07 

mufa 74 -0.426 -0.887 0.036 0.07 

l_vldl_p 74 -0.425 -0.885 0.036 0.07 

m_vldl_p 74 -0.422 -0.883 0.038 0.072 

leu 74 -0.418 -0.876 0.04 0.073 

vldl_tg 74 -0.417 -0.878 0.044 0.075 

totfa 74 -0.416 -0.878 0.046 0.077 



 

 443 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

l_vldl_tg 74 -0.415 -0.876 0.047 0.077 

l_ldl_tg 74 -0.413 -0.876 0.051 0.08 

m_vldl_tg 74 -0.408 -0.87 0.053 0.082 

s_vldl_fc 74 -0.407 -0.869 0.055 0.083 

ldl_tg 74 -0.407 -0.871 0.056 0.084 

remnant_c 74 -0.405 -0.867 0.056 0.084 

s_vldl_l 74 -0.403 -0.865 0.059 0.086 

s_vldl_p 74 -0.403 -0.865 0.059 0.086 

s_vldl_tg 74 -0.397 -0.859 0.065 0.091 

apob_apoa1 74 -0.392 -0.854 0.069 0.094 

apob 74 -0.386 -0.848 0.076 0.1 

s_vldl_pl 74 -0.383 -0.846 0.08 0.103 

s_vldl_c 74 -0.374 -0.837 0.089 0.111 

xs_vldl_p 74 -0.372 -0.834 0.091 0.114 

s_hdl_ce 74 0.367 -0.094 0.827 0.117 

faw3 74 -0.365 -0.827 0.096 0.119 

unsat 74 0.356 -0.102 0.813 0.126 

s_hdl_c 74 0.356 -0.105 0.817 0.129 

xs_vldl_l 74 -0.354 -0.817 0.109 0.132 

m_ldl_tg 74 -0.354 -0.82 0.112 0.134 

gp 74 -0.347 -0.808 0.114 0.137 

tg_pg 74 -0.348 -0.811 0.115 0.139 



 

 444 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

bohbut 74 0.338 -0.114 0.789 0.141 

totcho 74 -0.344 -0.808 0.12 0.144 

xs_vldl_ce 74 -0.336 -0.799 0.127 0.152 

totpg 74 -0.334 -0.798 0.131 0.157 

s_vldl_ce 74 -0.331 -0.795 0.133 0.16 

pc 74 -0.324 -0.789 0.141 0.169 

xs_vldl_c 74 -0.316 -0.78 0.148 0.178 

m_hdl_tg 74 -0.317 -0.781 0.148 0.179 

m_hdl_c 74 0.277 -0.187 0.74 0.238 

m_hdl_ce 74 0.277 -0.187 0.74 0.238 

m_hdl_fc 74 0.272 -0.191 0.735 0.246 

ace 74 0.265 -0.193 0.724 0.252 

xs_vldl_fc 74 -0.265 -0.731 0.2 0.26 

l_hdl_pl 74 0.263 -0.202 0.728 0.264 

idl_ce 74 -0.259 -0.725 0.206 0.27 

s_ldl_pl 74 -0.259 -0.725 0.207 0.272 

hdl2_c 74 0.256 -0.208 0.721 0.275 

vldl_d 74 -0.256 -0.72 0.209 0.276 

freec 74 -0.256 -0.723 0.21 0.277 

idl_p 74 -0.256 -0.721 0.21 0.278 

l_hdl_tg 74 -0.255 -0.724 0.214 0.282 

dha 74 -0.252 -0.717 0.212 0.283 



 

 445 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

m_ldl_pl 74 -0.248 -0.714 0.218 0.292 

hdl_c 74 0.243 -0.222 0.708 0.301 

mufa_fa 74 -0.242 -0.706 0.223 0.303 

idl_l 74 -0.237 -0.703 0.229 0.315 

crea 74 0.231 -0.226 0.688 0.317 

l_hdl_fc 74 0.23 -0.237 0.697 0.329 

xs_vldl_pl 74 -0.226 -0.692 0.241 0.338 

idl_c 74 -0.22 -0.686 0.246 0.35 

pufa 74 -0.22 -0.687 0.247 0.351 

l_hdl_l 74 0.22 -0.247 0.686 0.351 

l_hdl_p 74 0.217 -0.25 0.683 0.358 

sm 74 -0.214 -0.681 0.252 0.363 

m_hdl_l 74 0.211 -0.254 0.675 0.369 

s_ldl_fc 74 -0.206 -0.673 0.261 0.382 

l_hdl_c 74 0.206 -0.262 0.673 0.383 

serum_c 74 -0.204 -0.671 0.264 0.388 

val 74 -0.2 -0.662 0.261 0.39 

cit 74 -0.2 -0.671 0.27 0.399 

phe 74 -0.198 -0.663 0.268 0.4 

l_hdl_ce 74 0.198 -0.27 0.665 0.402 

m_hdl_p 74 0.194 -0.271 0.659 0.408 

l_ldl_p 74 -0.194 -0.661 0.273 0.41 



 

 446 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

glol 73 0.191 -0.274 0.656 0.416 

faw6 74 -0.189 -0.657 0.278 0.422 

s_ldl_p 74 -0.188 -0.655 0.279 0.425 

m_hdl_pl 74 0.184 -0.28 0.648 0.432 

m_ldl_fc 74 -0.18 -0.647 0.287 0.445 

estc 74 -0.18 -0.647 0.287 0.445 

l_ldl_l 74 -0.179 -0.646 0.288 0.447 

s_ldl_l 74 -0.178 -0.645 0.29 0.451 

pyr 74 -0.175 -0.636 0.286 0.452 

xl_hdl_ce 74 -0.176 -0.647 0.294 0.457 

l_ldl_ce 74 -0.174 -0.641 0.293 0.46 

m_ldl_p 74 -0.174 -0.641 0.293 0.46 

xl_hdl_pl 74 0.174 -0.295 0.643 0.462 

m_ldl_l 74 -0.17 -0.637 0.297 0.471 

alb 74 -0.17 -0.64 0.3 0.472 

l_ldl_pl 74 -0.164 -0.631 0.303 0.486 

s_hdl_l 74 0.159 -0.308 0.626 0.5 

l_ldl_c 74 -0.154 -0.622 0.313 0.513 

idl_pl 74 -0.154 -0.622 0.313 0.513 

xl_hdl_c 74 -0.152 -0.623 0.319 0.522 

ldl_c 74 -0.139 -0.606 0.329 0.556 

hdl_d 74 0.138 -0.331 0.607 0.559 



 

 447 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

s_hdl_p 74 0.13 -0.337 0.598 0.58 

m_ldl_c 74 -0.128 -0.595 0.34 0.587 

la 74 -0.127 -0.595 0.341 0.591 

ldl_d 74 -0.121 -0.585 0.344 0.606 

m_ldl_ce 74 -0.116 -0.583 0.352 0.623 

s_ldl_c 74 -0.116 -0.583 0.352 0.624 

dha_fa 74 0.114 -0.35 0.578 0.626 

tyr 74 0.113 -0.353 0.578 0.631 

idl_fc 74 -0.11 -0.578 0.358 0.642 

glc 74 -0.108 -0.578 0.362 0.648 

s_ldl_ce 74 -0.093 -0.561 0.374 0.692 

l_ldl_fc 74 -0.088 -0.556 0.38 0.708 

xl_hdl_fc 74 -0.084 -0.555 0.387 0.723 

gly 74 0.079 -0.383 0.541 0.734 

gln 74 0.062 -0.408 0.531 0.794 

hdl3_c 74 0.054 -0.416 0.525 0.818 

ala 74 0.045 -0.419 0.508 0.848 

his 74 -0.04 -0.505 0.425 0.865 

s_hdl_fc 74 -0.032 -0.5 0.436 0.891 

faw3_fa 74 0.018 -0.445 0.482 0.937 

apoa1 74 -0.018 -0.486 0.45 0.939 

xl_hdl_p 74 0.009 -0.462 0.48 0.97 



 

 448 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
P-value 

lac 74 -0.006 -0.467 0.455 0.979 

s_hdl_pl 74 -0.005 -0.473 0.463 0.984 

xl_hdl_l 74 0.004 -0.467 0.475 0.987 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C Table C 9:Linear regression results of metabolic traits in the brisk walking arm 

compared to control, adjusted for metabolic trait levels and age (ITT). 

 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

ace 74 0.347 -0.147 0.84 0.166 



 

 449 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

ala 74 0.06 -0.38 0.499 0.787 

alb 74 -0.238 -0.715 0.239 0.324 

apoa1 74 -0.318 -0.652 0.016 0.062 

apob 74 -0.326 -0.608 -0.044 0.024 

apob_apoa1 74 -0.153 -0.41 0.104 0.24 

bohbut 74 0.303 -0.103 0.708 0.142 

cit 74 -0.245 -0.722 0.232 0.309 

crea 74 0.056 -0.233 0.344 0.702 

dha 74 -0.087 -0.458 0.285 0.643 

dha_fa 74 0.405 0.047 0.763 0.027 

estc 74 -0.263 -0.565 0.038 0.086 

faw3 74 -0.259 -0.604 0.085 0.138 

faw3_fa 74 0.268 -0.093 0.628 0.144 

faw6 74 -0.319 -0.667 0.028 0.071 

faw6_fa 74 0.278 -0.058 0.615 0.103 

freec 74 -0.387 -0.677 -0.098 0.01 

glc 74 0.027 -0.315 0.368 0.876 

gln 74 -0.099 -0.541 0.343 0.656 

glol 73 -0.026 -0.521 0.468 0.916 

gly 74 0.199 -0.194 0.592 0.315 

gp 74 -0.252 -0.62 0.116 0.176 

hdl_c 74 -0.158 -0.444 0.127 0.273 



 

 450 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

hdl_d 74 -0.283 -0.534 -0.032 0.028 

hdl_tg 74 -0.506 -0.827 -0.184 0.003 

hdl2_c 74 -0.149 -0.427 0.128 0.287 

hdl3_c 74 -0.227 -0.603 0.148 0.232 

his 74 -0.1 -0.588 0.388 0.684 

idl_c 74 -0.261 -0.548 0.027 0.075 

idl_ce 74 -0.283 -0.571 0.005 0.054 

idl_fc 74 -0.192 -0.481 0.097 0.189 

idl_l 74 -0.282 -0.562 -0.002 0.048 

idl_p 74 -0.298 -0.575 -0.02 0.036 

idl_pl 74 -0.217 -0.497 0.064 0.128 

idl_tg 74 -0.463 -0.729 -0.197 0.001 

ile 74 -0.325 -0.687 0.037 0.077 

l_hdl_c 74 -0.23 -0.451 -0.01 0.041 

l_hdl_ce 74 -0.241 -0.463 -0.02 0.033 

l_hdl_fc 74 -0.196 -0.413 0.021 0.076 

l_hdl_l 74 -0.229 -0.454 -0.003 0.047 

l_hdl_p 74 -0.234 -0.461 -0.008 0.043 

l_hdl_pl 74 -0.181 -0.423 0.06 0.138 

l_hdl_tg 74 -0.565 -0.904 -0.225 0.001 

l_ldl_c 74 -0.199 -0.491 0.092 0.177 

l_ldl_ce 74 -0.21 -0.501 0.081 0.154 



 

 451 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

l_ldl_fc 74 -0.161 -0.455 0.133 0.278 

l_ldl_l 74 -0.23 -0.516 0.057 0.114 

l_ldl_p 74 -0.244 -0.529 0.04 0.091 

l_ldl_pl 74 -0.219 -0.508 0.07 0.135 

l_ldl_tg 74 -0.496 -0.771 -0.22 0.001 

l_vldl_c 74 -0.32 -0.624 -0.015 0.04 

l_vldl_ce 74 -0.309 -0.616 -0.003 0.048 

l_vldl_fc 74 -0.329 -0.632 -0.025 0.034 

l_vldl_l 74 -0.294 -0.6 0.011 0.059 

l_vldl_p 74 -0.291 -0.597 0.015 0.062 

l_vldl_pl 74 -0.303 -0.607 0.001 0.051 

l_vldl_tg 74 -0.281 -0.588 0.025 0.071 

la 74 -0.292 -0.651 0.067 0.109 

la_fa 74 0.232 -0.124 0.589 0.198 

lac 74 0.101 -0.381 0.583 0.677 

ldl_c 74 -0.177 -0.475 0.122 0.241 

ldl_d 74 -0.178 -0.639 0.284 0.445 

ldl_tg 74 -0.496 -0.773 -0.219 0.001 

leu 74 -0.323 -0.693 0.047 0.087 

m_hdl_c 74 0.004 -0.416 0.423 0.986 

m_hdl_ce 74 0.017 -0.406 0.44 0.937 

m_hdl_fc 74 -0.049 -0.45 0.352 0.808 



 

 452 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

m_hdl_l 74 -0.1 -0.504 0.304 0.624 

m_hdl_p 74 -0.118 -0.52 0.283 0.559 

m_hdl_pl 74 -0.162 -0.55 0.226 0.407 

m_hdl_tg 74 -0.354 -0.669 -0.039 0.028 

m_ldl_c 74 -0.157 -0.46 0.146 0.306 

m_ldl_ce 74 -0.144 -0.446 0.158 0.346 

m_ldl_fc 74 -0.212 -0.522 0.097 0.176 

m_ldl_l 74 -0.204 -0.5 0.091 0.172 

m_ldl_p 74 -0.211 -0.504 0.083 0.157 

m_ldl_pl 74 -0.275 -0.566 0.017 0.064 

m_ldl_tg 74 -0.485 -0.771 -0.2 0.001 

m_vldl_c 74 -0.319 -0.617 -0.021 0.036 

m_vldl_ce 74 -0.324 -0.625 -0.023 0.035 

m_vldl_fc 74 -0.308 -0.603 -0.014 0.04 

m_vldl_l 74 -0.284 -0.581 0.013 0.061 

m_vldl_p 74 -0.279 -0.577 0.018 0.065 

m_vldl_pl 74 -0.293 -0.588 0.001 0.051 

m_vldl_tg 74 -0.263 -0.56 0.034 0.082 

mufa 74 -0.354 -0.647 -0.06 0.019 

mufa_fa 74 -0.108 -0.41 0.195 0.481 

pc 74 -0.472 -0.782 -0.161 0.003 

phe 74 -0.037 -0.474 0.399 0.865 



 

 453 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

pufa 74 -0.323 -0.667 0.02 0.065 

pufa_fa 74 0.307 -0.01 0.624 0.057 

pyr 74 -0.137 -0.591 0.317 0.549 

remnant_c 74 -0.341 -0.617 -0.066 0.016 

s_hdl_c 74 0.253 -0.144 0.649 0.208 

s_hdl_ce 74 0.285 -0.096 0.666 0.14 

s_hdl_fc 74 -0.208 -0.615 0.199 0.312 

s_hdl_l 74 -0.001 -0.42 0.417 0.996 

s_hdl_p 74 -0.032 -0.445 0.381 0.878 

s_hdl_pl 74 -0.2 -0.561 0.161 0.272 

s_hdl_tg 74 -0.331 -0.616 -0.046 0.023 

s_ldl_c 74 -0.149 -0.458 0.16 0.34 

s_ldl_ce 74 -0.128 -0.434 0.178 0.408 

s_ldl_fc 74 -0.234 -0.557 0.09 0.154 

s_ldl_l 74 -0.215 -0.519 0.09 0.164 

s_ldl_p 74 -0.226 -0.528 0.075 0.139 

s_ldl_pl 74 -0.298 -0.61 0.014 0.061 

s_ldl_tg 74 -0.476 -0.759 -0.193 0.001 

s_vldl_c 74 -0.265 -0.541 0.012 0.06 

s_vldl_ce 74 -0.224 -0.506 0.058 0.118 

s_vldl_fc 74 -0.305 -0.579 -0.032 0.029 

s_vldl_l 74 -0.272 -0.55 0.006 0.055 



 

 454 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

s_vldl_p 74 -0.269 -0.548 0.01 0.059 

s_vldl_pl 74 -0.275 -0.551 0.001 0.051 

s_vldl_tg 74 -0.258 -0.544 0.029 0.077 

serum_c 74 -0.301 -0.599 -0.004 0.047 

serum_tg 74 -0.328 -0.621 -0.035 0.029 

sfa 74 -0.512 -0.814 -0.211 0.001 

sfa_fa 74 -0.359 -0.813 0.094 0.118 

sm 74 -0.296 -0.618 0.025 0.07 

tg_pg 74 -0.168 -0.445 0.109 0.231 

totcho 74 -0.453 -0.769 -0.136 0.006 

totfa 74 -0.429 -0.733 -0.125 0.006 

totpg 74 -0.481 -0.797 -0.166 0.003 

tyr 74 0.069 -0.399 0.537 0.77 

unsat 74 0.3 -0.079 0.679 0.119 

val 74 -0.093 -0.533 0.348 0.676 

vldl_c 74 -0.33 -0.612 -0.048 0.023 

vldl_d 74 -0.25 -0.555 0.054 0.105 

vldl_tg 74 -0.284 -0.58 0.012 0.06 

xl_hdl_c 74 -0.395 -0.669 -0.121 0.005 

xl_hdl_ce 74 -0.385 -0.656 -0.114 0.006 

xl_hdl_fc 74 -0.411 -0.69 -0.132 0.005 

xl_hdl_l 74 -0.328 -0.589 -0.067 0.015 



 

 455 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

xl_hdl_p 74 -0.325 -0.586 -0.064 0.015 

xl_hdl_pl 74 -0.217 -0.455 0.02 0.073 

xl_hdl_tg 74 -0.523 -0.845 -0.202 0.002 

xl_vldl_c 74 -0.352 -0.664 -0.041 0.027 

xl_vldl_ce 74 -0.345 -0.658 -0.031 0.032 

xl_vldl_fc 74 -0.362 -0.672 -0.053 0.023 

xl_vldl_l 74 -0.335 -0.643 -0.026 0.034 

xl_vldl_p 74 -0.332 -0.64 -0.024 0.035 

xl_vldl_pl 74 -0.351 -0.658 -0.043 0.026 

xl_vldl_tg 74 -0.323 -0.631 -0.016 0.04 

xs_vldl_c 74 -0.268 -0.551 0.015 0.063 

xs_vldl_ce 74 -0.272 -0.562 0.017 0.065 

xs_vldl_fc 74 -0.256 -0.542 0.03 0.078 

xs_vldl_l 74 -0.309 -0.578 -0.041 0.025 

xs_vldl_p 74 -0.321 -0.588 -0.055 0.019 

xs_vldl_pl 74 -0.232 -0.508 0.043 0.097 

xs_vldl_tg 74 -0.359 -0.623 -0.095 0.008 

xxl_vldl_c 74 -0.378 -0.696 -0.06 0.02 

xxl_vldl_ce 74 -0.38 -0.707 -0.054 0.023 

xxl_vldl_fc 74 -0.374 -0.682 -0.065 0.018 

xxl_vldl_l 74 -0.37 -0.684 -0.056 0.022 

xxl_vldl_p 74 -0.368 -0.682 -0.054 0.022 



 

 456 

Metabolite N Beta 
Lower Limit 

95%CI 

Upper Limit 

95%CI 
p-value 

xxl_vldl_pl 74 -0.381 -0.692 -0.07 0.017 

xxl_vldl_tg 74 -0.365 -0.679 -0.052 0.023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C Table C 10: Linear regression results of the instrumented exposure (dairy milk 

intake) on metabolic traits in the plant-based diet arm compared to control (IV). 

 

Metabolite N Beta 
Standard 

error 
p-value R2 F-statistic 

ace 44 -0.299 0.137 0.029 0.4331945 32.0995 



 

 457 

ala 44 0.178 0.14 0.201 0.4331945 32.0995 

alb 44 0.172 0.159 0.278 0.4331945 32.0995 

apoa1 44 0.11 0.146 0.452 0.4331945 32.0995 

apob 44 0.158 0.135 0.241 0.4331945 32.0995 

apob_apoa1 44 0.117 0.137 0.394 0.4331945 32.0995 

bohbut 44 0.084 0.16 0.599 0.4331945 32.0995 

cit 44 -0.172 0.145 0.235 0.4331945 32.0995 

crea 44 -0.077 0.151 0.609 0.4331945 32.0995 

dha 44 0.116 0.145 0.423 0.4331945 32.0995 

dha_fa 44 -0.058 0.137 0.671 0.4331945 32.0995 

estc 44 0.146 0.133 0.273 0.4331945 32.0995 

faw3 44 0.115 0.142 0.418 0.4331945 32.0995 

faw3_fa 44 -0.08 0.149 0.588 0.4331945 32.0995 

faw6 44 0.052 0.121 0.665 0.4331945 32.0995 

faw6_fa 44 -0.245 0.119 0.04 0.4331945 32.0995 

freec 44 0.125 0.129 0.33 0.4331945 32.0995 

glc 44 0.303 0.156 0.052 0.4331945 32.0995 

gln 44 -0.157 0.116 0.177 0.4331945 32.0995 

glol 43 0.15 0.126 0.237 0.471923 36.64019 

gly 44 -0.138 0.14 0.324 0.4331945 32.0995 

gp 44 0.108 0.121 0.374 0.4331945 32.0995 

hdl_c 44 0.013 0.144 0.925 0.4331945 32.0995 

hdl_d 44 -0.105 0.124 0.397 0.4331945 32.0995 

hdl_tg 44 0.098 0.119 0.412 0.4331945 32.0995 



 

 458 

hdl2_c 44 0.004 0.144 0.98 0.4331945 32.0995 

hdl3_c 44 0.112 0.138 0.415 0.4331945 32.0995 

his 44 -0.113 0.116 0.333 0.4331945 32.0995 

idl_c 44 0.129 0.131 0.322 0.4331945 32.0995 

idl_ce 44 0.138 0.132 0.295 0.4331945 32.0995 

idl_fc 44 0.101 0.127 0.427 0.4331945 32.0995 

idl_l 44 0.132 0.13 0.31 0.4331945 32.0995 

idl_p 44 0.136 0.131 0.299 0.4331945 32.0995 

idl_pl 44 0.121 0.13 0.35 0.4331945 32.0995 

idl_tg 44 0.133 0.12 0.269 0.4331945 32.0995 

ile 44 0.082 0.122 0.5 0.4331945 32.0995 

l_hdl_c 44 -0.087 0.136 0.524 0.4331945 32.0995 

l_hdl_ce 44 -0.087 0.136 0.524 0.4331945 32.0995 

l_hdl_fc 44 -0.087 0.136 0.522 0.4331945 32.0995 

l_hdl_l 44 -0.065 0.136 0.635 0.4331945 32.0995 

l_hdl_p 44 -0.062 0.136 0.648 0.4331945 32.0995 

l_hdl_pl 44 -0.036 0.138 0.796 0.4331945 32.0995 

l_hdl_tg 44 -0.062 0.097 0.523 0.4331945 32.0995 

l_ldl_c 44 0.117 0.129 0.366 0.4331945 32.0995 

l_ldl_ce 44 0.122 0.13 0.347 0.4331945 32.0995 

l_ldl_fc 44 0.098 0.127 0.442 0.4331945 32.0995 

l_ldl_l 44 0.124 0.13 0.34 0.4331945 32.0995 

l_ldl_p 44 0.128 0.13 0.328 0.4331945 32.0995 

l_ldl_pl 44 0.133 0.132 0.312 0.4331945 32.0995 
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l_ldl_tg 44 0.134 0.118 0.257 0.4331945 32.0995 

l_vldl_c 44 0.102 0.128 0.425 0.4331945 32.0995 

l_vldl_ce 44 0.106 0.129 0.412 0.4331945 32.0995 

l_vldl_fc 44 0.098 0.127 0.44 0.4331945 32.0995 

l_vldl_l 44 0.105 0.129 0.415 0.4331945 32.0995 

l_vldl_p 44 0.106 0.129 0.413 0.4331945 32.0995 

l_vldl_pl 44 0.109 0.13 0.402 0.4331945 32.0995 

l_vldl_tg 44 0.106 0.13 0.414 0.4331945 32.0995 

la 44 0.017 0.118 0.884 0.4331945 32.0995 

la_fa 44 -0.254 0.111 0.023 0.4331945 32.0995 

lac 44 0.24 0.125 0.055 0.4331945 32.0995 

ldl_c 44 0.117 0.129 0.363 0.4331945 32.0995 

ldl_d 44 -0.07 0.1 0.483 0.4331945 32.0995 

ldl_tg 44 0.139 0.12 0.248 0.4331945 32.0995 

leu 44 0.133 0.117 0.254 0.4331945 32.0995 

m_hdl_c 44 0.14 0.149 0.346 0.4331945 32.0995 

m_hdl_ce 44 0.136 0.148 0.357 0.4331945 32.0995 

m_hdl_fc 44 0.156 0.153 0.308 0.4331945 32.0995 

m_hdl_l 44 0.182 0.154 0.237 0.4331945 32.0995 

m_hdl_p 44 0.189 0.154 0.219 0.4331945 32.0995 

m_hdl_pl 44 0.191 0.155 0.219 0.4331945 32.0995 

m_hdl_tg 44 0.19 0.136 0.161 0.4331945 32.0995 

m_ldl_c 44 0.117 0.129 0.364 0.4331945 32.0995 

m_ldl_ce 44 0.113 0.129 0.378 0.4331945 32.0995 
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m_ldl_fc 44 0.131 0.129 0.311 0.4331945 32.0995 

m_ldl_l 44 0.13 0.13 0.318 0.4331945 32.0995 

m_ldl_p 44 0.13 0.131 0.32 0.4331945 32.0995 

m_ldl_pl 44 0.161 0.134 0.229 0.4331945 32.0995 

m_ldl_tg 44 0.132 0.118 0.266 0.4331945 32.0995 

m_vldl_c 44 0.119 0.132 0.364 0.4331945 32.0995 

m_vldl_ce 44 0.129 0.134 0.333 0.4331945 32.0995 

m_vldl_fc 44 0.107 0.129 0.408 0.4331945 32.0995 

m_vldl_l 44 0.11 0.131 0.402 0.4331945 32.0995 

m_vldl_p 44 0.109 0.131 0.406 0.4331945 32.0995 

m_vldl_pl 44 0.113 0.131 0.388 0.4331945 32.0995 

m_vldl_tg 44 0.103 0.13 0.428 0.4331945 32.0995 

mufa 44 0.127 0.126 0.314 0.4331945 32.0995 

mufa_fa 44 0.088 0.132 0.503 0.4331945 32.0995 

pc 44 0.159 0.13 0.224 0.4331945 32.0995 

phe 44 0.115 0.121 0.345 0.4331945 32.0995 

pufa 44 0.063 0.123 0.611 0.4331945 32.0995 

pufa_fa 44 -0.236 0.127 0.063 0.4331945 32.0995 

pyr 44 0.321 0.138 0.02 0.4331945 32.0995 

remnant_c 44 0.15 0.134 0.263 0.4331945 32.0995 

s_hdl_c 44 0.176 0.129 0.174 0.4331945 32.0995 

s_hdl_ce 44 0.138 0.124 0.266 0.4331945 32.0995 

s_hdl_fc 44 0.21 0.137 0.126 0.4331945 32.0995 

s_hdl_l 44 0.291 0.144 0.044 0.4331945 32.0995 
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s_hdl_p 44 0.297 0.145 0.04 0.4331945 32.0995 

s_hdl_pl 44 0.223 0.137 0.104 0.4331945 32.0995 

s_hdl_tg 44 0.119 0.127 0.347 0.4331945 32.0995 

s_ldl_c 44 0.118 0.128 0.36 0.4331945 32.0995 

s_ldl_ce 44 0.11 0.128 0.389 0.4331945 32.0995 

s_ldl_fc 44 0.145 0.129 0.26 0.4331945 32.0995 

s_ldl_l 44 0.139 0.13 0.287 0.4331945 32.0995 

s_ldl_p 44 0.142 0.131 0.278 0.4331945 32.0995 

s_ldl_pl 44 0.179 0.134 0.181 0.4331945 32.0995 

s_ldl_tg 44 0.15 0.126 0.234 0.4331945 32.0995 

s_vldl_c 44 0.163 0.136 0.232 0.4331945 32.0995 

s_vldl_ce 44 0.159 0.136 0.244 0.4331945 32.0995 

s_vldl_fc 44 0.153 0.133 0.25 0.4331945 32.0995 

s_vldl_l 44 0.142 0.134 0.292 0.4331945 32.0995 

s_vldl_p 44 0.137 0.134 0.307 0.4331945 32.0995 

s_vldl_pl 44 0.157 0.134 0.242 0.4331945 32.0995 

s_vldl_tg 44 0.111 0.131 0.398 0.4331945 32.0995 

serum_c 44 0.141 0.132 0.287 0.4331945 32.0995 

serum_tg 44 0.113 0.13 0.383 0.4331945 32.0995 

sfa 44 0.192 0.132 0.146 0.4331945 32.0995 

sfa_fa 44 0.248 0.132 0.06 0.4331945 32.0995 

sm 44 0.104 0.132 0.429 0.4331945 32.0995 

tg_pg 44 0.062 0.125 0.617 0.4331945 32.0995 

totcho 44 0.144 0.129 0.264 0.4331945 32.0995 
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totfa 44 0.14 0.129 0.277 0.4331945 32.0995 

totpg 44 0.138 0.129 0.282 0.4331945 32.0995 

tyr 44 0.138 0.13 0.289 0.4331945 32.0995 

unsat 44 -0.136 0.142 0.337 0.4331945 32.0995 

val 44 0.075 0.121 0.534 0.4331945 32.0995 

vldl_c 44 0.14 0.134 0.295 0.4331945 32.0995 

vldl_d 44 0.096 0.131 0.464 0.4331945 32.0995 

vldl_tg 44 0.106 0.13 0.414 0.4331945 32.0995 

xl_hdl_c 44 -0.09 0.12 0.453 0.4331945 32.0995 

xl_hdl_ce 44 -0.087 0.119 0.465 0.4331945 32.0995 

xl_hdl_fc 44 -0.096 0.124 0.439 0.4331945 32.0995 

xl_hdl_l 44 -0.094 0.123 0.442 0.4331945 32.0995 

xl_hdl_p 44 -0.094 0.122 0.445 0.4331945 32.0995 

xl_hdl_pl 44 -0.095 0.125 0.446 0.4331945 32.0995 

xl_hdl_tg 44 0.016 0.114 0.885 0.4331945 32.0995 

xl_vldl_c 44 0.092 0.126 0.463 0.4331945 32.0995 

xl_vldl_ce 44 0.094 0.126 0.455 0.4331945 32.0995 

xl_vldl_fc 44 0.09 0.125 0.471 0.4331945 32.0995 

xl_vldl_l 44 0.093 0.126 0.464 0.4331945 32.0995 

xl_vldl_p 44 0.093 0.127 0.464 0.4331945 32.0995 

xl_vldl_pl 44 0.093 0.126 0.461 0.4331945 32.0995 

xl_vldl_tg 44 0.092 0.127 0.466 0.4331945 32.0995 

xs_vldl_c 44 0.139 0.13 0.284 0.4331945 32.0995 

xs_vldl_ce 44 0.132 0.13 0.307 0.4331945 32.0995 
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xs_vldl_fc 44 0.15 0.131 0.25 0.4331945 32.0995 

xs_vldl_l 44 0.156 0.133 0.24 0.4331945 32.0995 

xs_vldl_p 44 0.157 0.133 0.237 0.4331945 32.0995 

xs_vldl_pl 44 0.157 0.135 0.243 0.4331945 32.0995 

xs_vldl_tg 44 0.134 0.128 0.294 0.4331945 32.0995 

xxl_vldl_c 44 0.099 0.126 0.436 0.4331945 32.0995 

xxl_vldl_ce 44 0.113 0.129 0.381 0.4331945 32.0995 

xxl_vldl_fc 44 0.08 0.123 0.518 0.4331945 32.0995 

xxl_vldl_l 44 0.092 0.125 0.465 0.4331945 32.0995 

xxl_vldl_p 44 0.092 0.125 0.461 0.4331945 32.0995 

xxl_vldl_pl 44 0.089 0.124 0.475 0.4331945 32.0995 

xxl_vldl_tg 44 0.09 0.125 0.471 0.4331945 32.0995 

 

 

 

 

 

 

 

 

 

 

 

 



 

 464 

 

 

 

 

 

 

 

 

 

 

 

Appendix C Table C 11:Linear regression results of the instrumented exposure (dairy milk) 

on metabolic traits in the plant-based diet arm compared to control, adjusted for baseline 

metabolic traits (IV). 

 

Metabolite N Beta 
Standard 

error 

p-

value 
R2 F-statistic 

hdl3_c 44 0.277 0.139 0.047 0.3953819 26.8114 

pyr 44 0.274 0.125 0.029 0.4466715 33.09703 

idl_fc 44 0.234 0.097 0.016 0.4122619 28.75897 

lac 44 0.234 0.123 0.057 0.4455559 32.94794 

sm 44 0.229 0.108 0.034 0.4144611 29.02097 

l_ldl_fc 44 0.226 0.097 0.019 0.4132081 28.87145 

sfa_fa 44 0.225 0.13 0.084 0.4257499 30.39746 

s_hdl_c 44 0.223 0.119 0.062 0.4268661 30.53652 

s_hdl_ce 44 0.213 0.117 0.067 0.4178801 29.43223 
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Metabolite N Beta 
Standard 

error 

p-

value 
R2 F-statistic 

s_ldl_ce 44 0.211 0.094 0.025 0.4206975 29.77477 

s_ldl_c 44 0.211 0.094 0.026 0.4224861 29.99396 

idl_pl 44 0.21 0.089 0.019 0.4260794 30.43845 

idl_c 44 0.21 0.092 0.022 0.4275242 30.61875 

estc 44 0.21 0.096 0.028 0.4348331 31.54494 

s_ldl_fc 44 0.209 0.095 0.029 0.4298179 30.90685 

hdl_c 44 0.207 0.107 0.054 0.4062469 28.05227 

ldl_c 44 0.206 0.092 0.026 0.4245986 30.2546 

m_ldl_ce 44 0.205 0.092 0.026 0.4233517 30.10053 

m_ldl_c 44 0.205 0.093 0.027 0.4241426 30.19818 

m_ldl_fc 44 0.205 0.094 0.028 0.4275805 30.62579 

l_ldl_c 44 0.203 0.091 0.026 0.4258222 30.40645 

apoa1 44 0.202 0.112 0.072 0.4391585 32.10443 

idl_l 44 0.197 0.088 0.024 0.4319519 31.17699 

idl_ce 44 0.197 0.09 0.029 0.4321744 31.20527 

l_ldl_l 44 0.196 0.089 0.027 0.4300038 30.9303 

l_ldl_pl 44 0.196 0.09 0.029 0.4321541 31.20268 

serum_c 44 0.196 0.093 0.035 0.4377052 31.91549 

l_ldl_ce 44 0.194 0.089 0.03 0.4292319 30.83302 

s_ldl_l 44 0.194 0.091 0.032 0.432736 31.27676 

hdl2_c 44 0.193 0.102 0.06 0.4081798 28.2778 

m_ldl_l 44 0.192 0.089 0.031 0.4312154 31.08353 



 

 466 

Metabolite N Beta 
Standard 

error 

p-

value 
R2 F-statistic 

l_ldl_p 44 0.191 0.087 0.029 0.4322277 31.21205 

idl_p 44 0.189 0.086 0.027 0.4346905 31.52665 

s_ldl_p 44 0.189 0.089 0.035 0.4347679 31.53658 

m_ldl_p 44 0.186 0.088 0.034 0.432613 31.26109 

unsat 44 0.186 0.13 0.151 0.3486218 21.94346 

xs_vldl_fc 44 0.185 0.084 0.028 0.4361833 31.71867 

s_hdl_l 44 0.185 0.115 0.107 0.4421414 32.49532 

totcho 44 0.183 0.098 0.062 0.452145 33.83733 

alb 44 0.181 0.16 0.256 0.4343546 31.48357 

xs_vldl_c 44 0.18 0.081 0.026 0.4331618 31.33104 

glc 44 0.179 0.083 0.031 0.4307023 31.01856 

l_hdl_pl 44 0.179 0.098 0.066 0.398338 27.14458 

m_hdl_ce 44 0.177 0.107 0.098 0.4432268 32.6386 

m_hdl_c 44 0.177 0.108 0.101 0.4449431 32.8663 

xs_vldl_ce 44 0.176 0.081 0.03 0.4321235 31.19879 

m_hdl_fc 44 0.176 0.111 0.113 0.4514681 33.74496 

s_hdl_p 44 0.173 0.114 0.127 0.4392973 32.12253 

s_ldl_pl 44 0.171 0.09 0.056 0.4455881 32.95224 

xs_vldl_pl 44 0.17 0.081 0.036 0.4405584 32.28736 

l_hdl_p 44 0.166 0.089 0.064 0.3956916 26.84616 

l_hdl_l 44 0.165 0.089 0.063 0.3951126 26.78121 

freec 44 0.158 0.087 0.07 0.4450737 32.88368 
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Metabolite N Beta 
Standard 

error 

p-

value 
R2 F-statistic 

m_ldl_pl 44 0.155 0.085 0.069 0.4437824 32.71215 

l_hdl_fc 44 0.155 0.085 0.07 0.3912421 26.35026 

l_hdl_c 44 0.154 0.085 0.072 0.3918176 26.41398 

l_hdl_ce 44 0.153 0.085 0.073 0.3920242 26.4369 

m_hdl_l 44 0.148 0.105 0.159 0.463427 35.41085 

pc 44 0.146 0.09 0.107 0.4732842 36.84084 

hdl_d 44 0.143 0.09 0.11 0.3791396 25.03739 

m_hdl_p 44 0.142 0.104 0.175 0.4665844 35.86315 

totpg 44 0.141 0.092 0.124 0.4679519 36.0607 

xl_hdl_pl 44 0.136 0.086 0.111 0.3859295 25.76758 

m_hdl_pl 44 0.131 0.105 0.21 0.469613 36.30204 

xl_hdl_p 44 0.121 0.083 0.147 0.3890944 26.11348 

xl_hdl_l 44 0.12 0.083 0.151 0.389439 26.15136 

dha 44 0.117 0.103 0.253 0.4493037 33.45121 

xs_vldl_l 44 0.111 0.074 0.131 0.4432969 32.64787 

tyr 44 0.109 0.119 0.356 0.4343787 31.48666 

xl_hdl_ce 44 0.104 0.084 0.219 0.3916964 26.40056 

xl_hdl_c 44 0.098 0.083 0.237 0.3943909 26.70043 

faw3 44 0.093 0.1 0.354 0.4484496 33.33591 

sfa 44 0.09 0.087 0.298 0.4580914 34.65852 

xs_vldl_p 44 0.087 0.072 0.228 0.4438465 32.72065 

bohbut 44 0.079 0.152 0.604 0.4346111 31.51645 
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Metabolite N Beta 
Standard 

error 

p-

value 
R2 F-statistic 

xl_hdl_fc 44 0.078 0.081 0.335 0.4034889 27.73301 

pufa 44 0.078 0.092 0.401 0.4477955 33.24786 

phe 44 0.074 0.118 0.533 0.4312194 31.08403 

faw6 44 0.071 0.091 0.436 0.4462429 33.03968 

s_hdl_fc 44 0.068 0.104 0.517 0.4349411 31.55881 

val 44 0.068 0.11 0.537 0.4358146 31.67114 

s_vldl_ce 44 0.058 0.078 0.452 0.437852 31.93453 

remnant_c 44 0.058 0.079 0.463 0.4434764 32.67163 

apob 44 0.057 0.081 0.479 0.4435565 32.68223 

totfa 44 0.055 0.085 0.517 0.4575347 34.58088 

leu 44 0.055 0.106 0.605 0.4173559 29.36886 

pufa_fa 44 0.045 0.096 0.635 0.36082 23.14468 

l_hdl_tg 44 0.037 0.079 0.64 0.4119703 28.72437 

dha_fa 44 0.035 0.094 0.709 0.4243197 30.22008 

l_ldl_tg 44 0.032 0.063 0.612 0.4648437 35.61313 

m_ldl_tg 44 0.03 0.064 0.638 0.4714417 36.5695 

ala 44 0.026 0.116 0.82 0.4362438 31.72647 

faw6_fa 44 0.024 0.1 0.814 0.3502074 22.09706 

glol 43 0.017 0.096 0.856 0.4631954 34.515 

la 44 0.016 0.089 0.857 0.4516055 33.7637 

ldl_tg 44 0.013 0.065 0.84 0.4662082 35.80898 

s_hdl_pl 44 0.011 0.098 0.91 0.418107 29.45969 
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Metabolite N Beta 
Standard 

error 

p-

value 
R2 F-statistic 

gp 44 0.003 0.081 0.966 0.4317115 31.14646 

s_vldl_c 44 -0.003 0.079 0.965 0.4314 31.10693 

faw3_fa 44 -0.012 0.095 0.902 0.4297984 30.9044 

mufa 44 -0.014 0.085 0.87 0.4412372 32.37639 

xl_hdl_tg 44 -0.018 0.095 0.851 0.4468295 33.1182 

ile 44 -0.026 0.11 0.814 0.4114884 28.66728 

idl_tg 44 -0.029 0.064 0.651 0.4477247 33.23834 

apob_apoa1 44 -0.043 0.079 0.583 0.4194369 29.62109 

ldl_d 44 -0.045 0.083 0.586 0.4334977 31.37393 

s_ldl_tg 44 -0.049 0.076 0.523 0.4501267 33.56263 

vldl_c 44 -0.059 0.087 0.499 0.4225596 30.00299 

crea 44 -0.073 0.095 0.442 0.4349163 31.55562 

m_vldl_ce 44 -0.099 0.097 0.308 0.4119112 28.71737 

s_vldl_fc 44 -0.104 0.088 0.238 0.4090511 28.37994 

xxl_vldl_ce 44 -0.104 0.107 0.329 0.4052045 27.93126 

mufa_fa 44 -0.107 0.107 0.316 0.3950436 26.77348 

la_fa 44 -0.117 0.092 0.204 0.3933505 26.58433 

s_vldl_l 44 -0.125 0.093 0.177 0.4023617 27.60337 

m_vldl_c 44 -0.125 0.1 0.211 0.4026999 27.64221 

xxl_vldl_c 44 -0.127 0.107 0.234 0.3994423 27.26988 

his 44 -0.128 0.113 0.256 0.4309428 31.04899 

xs_vldl_tg 44 -0.134 0.084 0.111 0.4051423 27.92405 
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Metabolite N Beta 
Standard 

error 

p-

value 
R2 F-statistic 

hdl_tg 44 -0.135 0.092 0.144 0.4249783 30.30166 

s_vldl_p 44 -0.137 0.095 0.149 0.398603 27.1746 

xxl_vldl_p 44 -0.138 0.099 0.164 0.3933277 26.58179 

xxl_vldl_l 44 -0.138 0.107 0.199 0.3938036 26.63484 

xxl_vldl_pl 44 -0.14 0.106 0.186 0.3957091 26.84812 

xxl_vldl_tg 44 -0.14 0.108 0.193 0.3919923 26.43335 

s_vldl_pl 44 -0.143 0.093 0.125 0.3954683 26.82109 

m_vldl_pl 44 -0.147 0.103 0.151 0.3932114 26.56884 

xl_vldl_fc 44 -0.147 0.106 0.167 0.3930947 26.55585 

xl_vldl_c 44 -0.147 0.108 0.171 0.3906596 26.28587 

xl_vldl_ce 44 -0.147 0.109 0.177 0.3887039 26.07061 

xl_vldl_pl 44 -0.148 0.105 0.159 0.3942265 26.68206 

m_vldl_fc 44 -0.149 0.102 0.146 0.3935158 26.60275 

xxl_vldl_fc 44 -0.15 0.105 0.153 0.3931969 26.56723 

m_vldl_l 44 -0.152 0.104 0.146 0.3915355 26.38273 

l_vldl_fc 44 -0.153 0.105 0.145 0.3908449 26.30634 

m_vldl_p 44 -0.154 0.105 0.142 0.3905273 26.27127 

l_vldl_pl 44 -0.154 0.106 0.146 0.3897569 26.18633 

xl_vldl_p 44 -0.155 0.107 0.148 0.3883365 26.03032 

xl_vldl_l 44 -0.155 0.107 0.15 0.3887317 26.07366 

l_vldl_c 44 -0.156 0.107 0.145 0.3881364 26.00839 

serum_tg 44 -0.157 0.101 0.12 0.3934363 26.59389 
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Metabolite N Beta 
Standard 

error 

p-

value 
R2 F-statistic 

l_vldl_p 44 -0.158 0.107 0.14 0.3870689 25.89169 

l_vldl_l 44 -0.158 0.107 0.14 0.3873281 25.91999 

xl_vldl_tg 44 -0.158 0.108 0.141 0.3869252 25.87601 

l_vldl_ce 44 -0.158 0.109 0.148 0.3858475 25.75866 

l_vldl_tg 44 -0.16 0.107 0.137 0.3863369 25.81191 

tg_pg 44 -0.162 0.101 0.106 0.3849002 25.65585 

m_vldl_tg 44 -0.164 0.106 0.124 0.3864093 25.81979 

vldl_tg 44 -0.166 0.106 0.116 0.3864867 25.82822 

m_hdl_tg 44 -0.174 0.106 0.102 0.3835804 25.51313 

gly 44 -0.175 0.108 0.103 0.4372215 31.85282 

s_vldl_tg 44 -0.181 0.104 0.083 0.3833653 25.48993 

cit 44 -0.205 0.134 0.126 0.4295515 30.87327 

gln 44 -0.221 0.102 0.03 0.4435737 32.68451 

s_hdl_tg 44 -0.233 0.108 0.031 0.3547233 22.53863 

vldl_d 44 -0.266 0.127 0.035 0.3371741 20.85636 

` 44 -0.34 0.151 0.024 0.389095 26.11354 
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Appendix C Table C 12: Linear regression results of the instrumented exposure (daily fruit 

and veg portions) on metabolic traits in the plant-based diet arm compared to control (IV) 

 

Metabolite N Beta 
Standard 

error 
p-value R2 F-statistic 

pyr 44 -0.263 0.15 0.08 0.1045089 4.90164 

ace 44 0.245 0.144 0.088 0.1045089 4.90164 

s_hdl_p 44 -0.243 0.153 0.113 0.1045089 4.90164 

s_hdl_l 44 -0.238 0.151 0.114 0.1045089 4.90164 

lac 44 -0.196 0.125 0.115 0.1045089 4.90164 

sfa_fa 44 -0.203 0.129 0.116 0.1045089 4.90164 

glc 44 -0.248 0.158 0.116 0.1045089 4.90164 

la_fa 44 0.208 0.136 0.127 0.1045089 4.90164 

faw6_fa 44 0.2 0.136 0.14 0.1045089 4.90164 

pufa_fa 44 0.193 0.14 0.167 0.1045089 4.90164 

s_hdl_c 44 -0.144 0.111 0.193 0.1045089 4.90164 

s_hdl_pl 44 -0.182 0.141 0.196 0.1045089 4.90164 

sfa 44 -0.157 0.123 0.2 0.1045089 4.90164 
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Metabolite N Beta 
Standard 

error 
p-value R2 F-statistic 

s_hdl_fc 44 -0.172 0.135 0.203 0.1045089 4.90164 

s_ldl_pl 44 -0.147 0.116 0.208 0.1045089 4.90164 

m_hdl_tg 44 -0.156 0.133 0.244 0.1045089 4.90164 

m_ldl_pl 44 -0.132 0.115 0.252 0.1045089 4.90164 

ala 44 -0.146 0.128 0.253 0.1045089 4.90164 

pc 44 -0.13 0.114 0.255 0.1045089 4.90164 

xs_vldl_pl 44 -0.128 0.115 0.265 0.1045089 4.90164 

s_ldl_fc 44 -0.119 0.107 0.266 0.1045089 4.90164 

m_hdl_pl 44 -0.156 0.141 0.267 0.1045089 4.90164 

gln 44 0.128 0.116 0.267 0.1045089 4.90164 

xs_vldl_fc 44 -0.123 0.111 0.268 0.1045089 4.90164 

m_hdl_p 44 -0.155 0.14 0.269 0.1045089 4.90164 

s_hdl_ce 44 -0.113 0.102 0.269 0.1045089 4.90164 

xs_vldl_p 44 -0.129 0.117 0.271 0.1045089 4.90164 

xs_vldl_l 44 -0.127 0.116 0.272 0.1045089 4.90164 

s_ldl_tg 44 -0.122 0.112 0.276 0.1045089 4.90164 

ldl_tg 44 -0.113 0.104 0.276 0.1045089 4.90164 

s_vldl_c 44 -0.133 0.123 0.278 0.1045089 4.90164 

s_vldl_ce 44 -0.13 0.12 0.281 0.1045089 4.90164 

apob 44 -0.13 0.12 0.281 0.1045089 4.90164 

l_ldl_tg 44 -0.109 0.102 0.282 0.1045089 4.90164 

estc 44 -0.12 0.111 0.282 0.1045089 4.90164 
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Metabolite N Beta 
Standard 

error 
p-value R2 F-statistic 

glol 43 -0.122 0.114 0.282 0.1127513 5.210268 

m_hdl_l 44 -0.149 0.139 0.283 0.1045089 4.90164 

cit 44 0.141 0.131 0.283 0.1045089 4.90164 

m_ldl_tg 44 -0.108 0.101 0.285 0.1045089 4.90164 

s_ldl_p 44 -0.116 0.109 0.287 0.1045089 4.90164 

totcho 44 -0.118 0.111 0.288 0.1045089 4.90164 

s_ldl_l 44 -0.114 0.108 0.293 0.1045089 4.90164 

serum_c 44 -0.115 0.11 0.296 0.1045089 4.90164 

remnant_c 44 -0.123 0.118 0.299 0.1045089 4.90164 

s_vldl_pl 44 -0.128 0.124 0.301 0.1045089 4.90164 

leu 44 -0.109 0.106 0.302 0.1045089 4.90164 

xs_vldl_c 44 -0.114 0.111 0.303 0.1045089 4.90164 

idl_tg 44 -0.109 0.106 0.303 0.1045089 4.90164 

s_vldl_fc 44 -0.125 0.122 0.304 0.1045089 4.90164 

idl_ce 44 -0.113 0.111 0.309 0.1045089 4.90164 

tyr 44 -0.113 0.111 0.309 0.1045089 4.90164 

idl_p 44 -0.111 0.109 0.31 0.1045089 4.90164 

totpg 44 -0.113 0.112 0.311 0.1045089 4.90164 

alb 44 -0.141 0.139 0.312 0.1045089 4.90164 

m_ldl_fc 44 -0.107 0.106 0.313 0.1045089 4.90164 

totfa 44 -0.114 0.114 0.314 0.1045089 4.90164 

idl_l 44 -0.108 0.109 0.319 0.1045089 4.90164 
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Metabolite N Beta 
Standard 

error 
p-value R2 F-statistic 

l_ldl_pl 44 -0.109 0.109 0.32 0.1045089 4.90164 

m_ldl_l 44 -0.106 0.108 0.323 0.1045089 4.90164 

m_ldl_p 44 -0.106 0.108 0.325 0.1045089 4.90164 

xs_vldl_ce 44 -0.108 0.11 0.326 0.1045089 4.90164 

idl_c 44 -0.106 0.109 0.329 0.1045089 4.90164 

l_ldl_p 44 -0.104 0.108 0.333 0.1045089 4.90164 

m_hdl_fc 44 -0.127 0.133 0.338 0.1045089 4.90164 

freec 44 -0.103 0.107 0.338 0.1045089 4.90164 

vldl_c 44 -0.114 0.12 0.34 0.1045089 4.90164 

xs_vldl_tg 44 -0.11 0.115 0.341 0.1045089 4.90164 

s_vldl_l 44 -0.116 0.122 0.342 0.1045089 4.90164 

his 44 0.092 0.097 0.343 0.1045089 4.90164 

l_ldl_l 44 -0.102 0.107 0.344 0.1045089 4.90164 

gly 44 0.113 0.12 0.345 0.1045089 4.90164 

l_ldl_ce 44 -0.1 0.107 0.351 0.1045089 4.90164 

idl_pl 44 -0.099 0.106 0.352 0.1045089 4.90164 

s_vldl_p 44 -0.112 0.121 0.356 0.1045089 4.90164 

s_ldl_c 44 -0.096 0.105 0.357 0.1045089 4.90164 

mufa 44 -0.104 0.113 0.361 0.1045089 4.90164 

m_ldl_c 44 -0.096 0.105 0.363 0.1045089 4.90164 

ldl_c 44 -0.096 0.106 0.363 0.1045089 4.90164 

l_ldl_c 44 -0.096 0.106 0.367 0.1045089 4.90164 
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Metabolite N Beta 
Standard 

error 
p-value R2 F-statistic 

m_hdl_c 44 -0.115 0.129 0.374 0.1045089 4.90164 

m_vldl_ce 44 -0.106 0.12 0.376 0.1045089 4.90164 

m_ldl_ce 44 -0.093 0.105 0.377 0.1045089 4.90164 

s_ldl_ce 44 -0.09 0.104 0.385 0.1045089 4.90164 

m_hdl_ce 44 -0.111 0.128 0.385 0.1045089 4.90164 

unsat 44 0.111 0.128 0.386 0.1045089 4.90164 

phe 44 -0.094 0.109 0.389 0.1045089 4.90164 

s_hdl_tg 44 -0.097 0.114 0.394 0.1045089 4.90164 

hdl3_c 44 -0.092 0.108 0.395 0.1045089 4.90164 

m_vldl_c 44 -0.098 0.117 0.406 0.1045089 4.90164 

xxl_vldl_ce 44 -0.092 0.114 0.419 0.1045089 4.90164 

faw3 44 -0.094 0.117 0.42 0.1045089 4.90164 

idl_fc 44 -0.083 0.102 0.421 0.1045089 4.90164 

serum_tg 44 -0.093 0.116 0.423 0.1045089 4.90164 

apob_apoa1 44 -0.095 0.119 0.423 0.1045089 4.90164 

gp 44 -0.088 0.11 0.423 0.1045089 4.90164 

sm 44 -0.085 0.107 0.427 0.1045089 4.90164 

m_vldl_pl 44 -0.092 0.117 0.428 0.1045089 4.90164 

dha 44 -0.095 0.121 0.432 0.1045089 4.90164 

l_ldl_fc 44 -0.08 0.102 0.435 0.1045089 4.90164 

s_vldl_tg 44 -0.091 0.117 0.438 0.1045089 4.90164 

m_vldl_l 44 -0.09 0.116 0.441 0.1045089 4.90164 
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Metabolite N Beta 
Standard 

error 
p-value R2 F-statistic 

l_vldl_pl 44 -0.089 0.116 0.442 0.1045089 4.90164 

hdl_tg 44 -0.08 0.104 0.442 0.1045089 4.90164 

m_vldl_p 44 -0.089 0.116 0.445 0.1045089 4.90164 

m_vldl_fc 44 -0.087 0.114 0.446 0.1045089 4.90164 

hdl_d 44 0.086 0.113 0.446 0.1045089 4.90164 

l_vldl_ce 44 -0.087 0.115 0.449 0.1045089 4.90164 

l_vldl_p 44 -0.087 0.115 0.452 0.1045089 4.90164 

vldl_tg 44 -0.087 0.115 0.452 0.1045089 4.90164 

apoa1 44 -0.09 0.12 0.452 0.1045089 4.90164 

l_vldl_l 44 -0.086 0.115 0.453 0.1045089 4.90164 

l_vldl_tg 44 -0.087 0.115 0.453 0.1045089 4.90164 

l_vldl_c 44 -0.084 0.113 0.461 0.1045089 4.90164 

m_vldl_tg 44 -0.085 0.116 0.465 0.1045089 4.90164 

xxl_vldl_c 44 -0.081 0.111 0.468 0.1045089 4.90164 

l_vldl_fc 44 -0.08 0.112 0.474 0.1045089 4.90164 

xl_hdl_fc 44 0.078 0.11 0.478 0.1045089 4.90164 

ldl_d 44 0.057 0.081 0.48 0.1045089 4.90164 

xl_hdl_l 44 0.077 0.11 0.483 0.1045089 4.90164 

xl_hdl_pl 44 0.078 0.112 0.484 0.1045089 4.90164 

xl_hdl_p 44 0.077 0.11 0.485 0.1045089 4.90164 

xl_vldl_ce 44 -0.077 0.111 0.486 0.1045089 4.90164 

xxl_vldl_p 44 -0.076 0.11 0.491 0.1045089 4.90164 
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Metabolite N Beta 
Standard 

error 
p-value R2 F-statistic 

xl_vldl_pl 44 -0.076 0.111 0.492 0.1045089 4.90164 

xl_hdl_c 44 0.074 0.107 0.492 0.1045089 4.90164 

xl_vldl_c 44 -0.075 0.11 0.493 0.1045089 4.90164 

xxl_vldl_l 44 -0.075 0.109 0.494 0.1045089 4.90164 

xl_vldl_p 44 -0.076 0.111 0.495 0.1045089 4.90164 

xl_vldl_l 44 -0.076 0.111 0.495 0.1045089 4.90164 

xl_vldl_tg 44 -0.076 0.111 0.498 0.1045089 4.90164 

xxl_vldl_tg 44 -0.074 0.109 0.499 0.1045089 4.90164 

vldl_d 44 -0.078 0.116 0.499 0.1045089 4.90164 

xl_vldl_fc 44 -0.074 0.109 0.501 0.1045089 4.90164 

xxl_vldl_pl 44 -0.073 0.108 0.503 0.1045089 4.90164 

xl_hdl_ce 44 0.071 0.106 0.503 0.1045089 4.90164 

ile 44 -0.067 0.105 0.523 0.1045089 4.90164 

xxl_vldl_fc 44 -0.065 0.107 0.541 0.1045089 4.90164 

mufa_fa 44 -0.072 0.119 0.542 0.1045089 4.90164 

l_hdl_ce 44 0.071 0.118 0.549 0.1045089 4.90164 

l_hdl_fc 44 0.071 0.119 0.549 0.1045089 4.90164 

l_hdl_c 44 0.071 0.118 0.55 0.1045089 4.90164 

l_hdl_tg 44 0.051 0.085 0.55 0.1045089 4.90164 

val 44 -0.062 0.105 0.555 0.1045089 4.90164 

bohbut 44 -0.069 0.132 0.601 0.1045089 4.90164 

faw3_fa 44 0.066 0.128 0.608 0.1045089 4.90164 
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Metabolite N Beta 
Standard 

error 
p-value R2 F-statistic 

pufa 44 -0.051 0.101 0.61 0.1045089 4.90164 

crea 44 0.063 0.126 0.617 0.1045089 4.90164 

tg_pg 44 -0.051 0.107 0.632 0.1045089 4.90164 

l_hdl_l 44 0.053 0.117 0.65 0.1045089 4.90164 

l_hdl_p 44 0.051 0.116 0.661 0.1045089 4.90164 

faw6 44 -0.043 0.098 0.664 0.1045089 4.90164 

dha_fa 44 0.048 0.115 0.68 0.1045089 4.90164 

l_hdl_pl 44 0.029 0.116 0.8 0.1045089 4.90164 

la 44 -0.014 0.096 0.883 0.1045089 4.90164 

xl_hdl_tg 44 -0.013 0.093 0.885 0.1045089 4.90164 

hdl_c 44 -0.011 0.117 0.925 0.1045089 4.90164 

hdl2_c 44 -0.003 0.118 0.98 0.1045089 4.90164 
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Appendix C Table C 13: Linear regression results of the instrumented exposure (daily fruit 

and veg portions) on metabolic traits in the plant-based diet arm compared to control (IV), 

adjusted for baseline metabolic traits. 

 

Metabolite N Beta 
Standard 

error 
P-value R2 F-statistic 

idl_fc 44 -0.17 0.09 0.07 0.11 5.17 

pyr 44 -0.21 0.12 0.07 0.12 5.83 

l_ldl_fc 44 -0.17 0.09 0.07 0.11 5.22 

idl_pl 44 -0.16 0.09 0.07 0.11 4.97 

s_ldl_c 44 -0.16 0.09 0.08 0.11 5.08 

s_ldl_fc 44 -0.16 0.09 0.08 0.11 4.92 

s_ldl_ce 44 -0.16 0.09 0.08 0.11 5.13 

idl_c 44 -0.16 0.09 0.08 0.11 4.86 

estc 44 -0.17 0.10 0.08 0.10 4.75 

hdl3_c 44 -0.20 0.11 0.08 0.11 5.03 

ldl_c 44 -0.16 0.09 0.08 0.11 5.00 

m_ldl_fc 44 -0.16 0.09 0.08 0.11 4.98 

m_ldl_c 44 -0.16 0.09 0.08 0.11 5.03 

m_ldl_ce 44 -0.16 0.09 0.08 0.11 5.05 

l_ldl_c 44 -0.16 0.09 0.08 0.11 4.95 
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idl_l 44 -0.16 0.09 0.08 0.11 4.85 

l_ldl_l 44 -0.15 0.09 0.08 0.11 4.90 

glc 44 -0.15 0.08 0.08 0.10 4.76 

sm 44 -0.18 0.10 0.08 0.10 4.52 

s_ldl_l 44 -0.15 0.09 0.08 0.11 4.89 

idl_p 44 -0.15 0.09 0.09 0.11 4.83 

l_ldl_pl 44 -0.16 0.09 0.09 0.11 4.87 

l_ldl_ce 44 -0.15 0.09 0.09 0.11 4.89 

l_ldl_p 44 -0.15 0.09 0.09 0.11 4.88 

m_ldl_l 44 -0.15 0.09 0.09 0.11 4.92 

idl_ce 44 -0.16 0.09 0.09 0.10 4.80 

serum_c 44 -0.16 0.09 0.09 0.10 4.75 

s_ldl_p 44 -0.15 0.09 0.09 0.11 4.86 

vldl_d 44 0.13 0.08 0.09 0.19 9.78 

xs_vldl_fc 44 -0.15 0.09 0.09 0.11 4.88 

m_ldl_p 44 -0.15 0.09 0.09 0.11 4.90 

xs_vldl_c 44 -0.14 0.09 0.09 0.11 4.89 

s_hdl_tg 44 0.14 0.08 0.09 0.14 6.74 

xs_vldl_pl 44 -0.14 0.08 0.10 0.10 4.81 

xs_vldl_ce 44 -0.14 0.09 0.10 0.11 4.89 

ace 44 0.28 0.17 0.10 0.09 3.87 

s_ldl_pl 44 -0.14 0.09 0.11 0.10 4.79 

s_hdl_ce 44 -0.15 0.09 0.11 0.14 6.44 

s_hdl_c 44 -0.17 0.11 0.11 0.12 5.75 
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totcho 44 -0.15 0.09 0.11 0.10 4.62 

hdl_c 44 -0.16 0.10 0.12 0.10 4.54 

m_ldl_pl 44 -0.13 0.08 0.12 0.10 4.78 

apoa1 44 -0.16 0.11 0.12 0.10 4.46 

freec 44 -0.13 0.08 0.12 0.10 4.75 

lac 44 -0.20 0.13 0.12 0.10 4.57 

l_hdl_l 44 -0.13 0.08 0.13 0.09 4.24 

l_hdl_p 44 -0.13 0.08 0.13 0.09 4.23 

hdl2_c 44 -0.15 0.10 0.13 0.10 4.51 

gln 44 0.20 0.13 0.13 0.09 4.13 

l_hdl_pl 44 -0.14 0.09 0.13 0.10 4.42 

l_hdl_fc 44 -0.12 0.08 0.13 0.09 4.27 

l_hdl_c 44 -0.12 0.08 0.13 0.09 4.17 

l_hdl_ce 44 -0.12 0.08 0.13 0.09 4.14 

sfa_fa 44 -0.19 0.13 0.14 0.10 4.52 

gly 44 0.14 0.10 0.14 0.10 4.75 

s_vldl_tg 44 0.11 0.08 0.15 0.16 7.54 

hdl_d 44 -0.11 0.08 0.15 0.09 3.93 

pc 44 -0.12 0.08 0.15 0.11 4.91 

m_hdl_tg 44 0.10 0.07 0.16 0.18 8.72 

totpg 44 -0.12 0.08 0.16 0.11 4.96 

xl_hdl_pl 44 -0.10 0.08 0.17 0.09 4.19 

tg_pg 44 0.11 0.08 0.17 0.14 6.47 

m_hdl_ce 44 -0.14 0.11 0.18 0.10 4.69 
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m_hdl_c 44 -0.14 0.11 0.18 0.10 4.71 

vldl_tg 44 0.10 0.07 0.18 0.16 8.00 

cit 44 0.17 0.13 0.18 0.10 4.51 

xs_vldl_l 44 -0.09 0.07 0.18 0.10 4.77 

m_hdl_fc 44 -0.14 0.11 0.18 0.10 4.76 

m_vldl_tg 44 0.10 0.07 0.19 0.16 7.95 

xl_hdl_p 44 -0.09 0.07 0.19 0.09 4.07 

serum_tg 44 0.10 0.07 0.19 0.16 7.86 

s_hdl_l 44 -0.16 0.12 0.19 0.10 4.44 

xl_hdl_l 44 -0.09 0.07 0.19 0.09 4.07 

xs_vldl_tg 44 0.09 0.07 0.19 0.13 6.27 

l_vldl_tg 44 0.09 0.07 0.20 0.17 8.44 

xl_vldl_tg 44 0.09 0.07 0.20 0.18 8.72 

l_vldl_p 44 0.09 0.07 0.20 0.17 8.38 

l_vldl_l 44 0.09 0.07 0.20 0.17 8.37 

s_vldl_pl 44 0.10 0.07 0.20 0.14 6.46 

xl_vldl_p 44 0.09 0.07 0.20 0.17 8.64 

l_vldl_fc 44 0.09 0.07 0.20 0.17 8.40 

m_vldl_p 44 0.09 0.07 0.20 0.16 7.80 

l_vldl_c 44 0.09 0.07 0.20 0.17 8.21 

s_hdl_p 44 -0.15 0.12 0.20 0.10 4.48 

hdl_tg 44 0.08 0.07 0.20 0.18 9.20 

xl_vldl_l 44 0.09 0.07 0.21 0.17 8.61 

l_vldl_pl 44 0.09 0.07 0.21 0.17 8.28 
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l_vldl_ce 44 0.09 0.08 0.21 0.16 7.98 

m_vldl_l 44 0.09 0.07 0.21 0.16 7.77 

m_vldl_fc 44 0.09 0.07 0.21 0.16 7.85 

xxl_vldl_fc 44 0.09 0.07 0.21 0.17 8.64 

m_vldl_pl 44 0.09 0.07 0.21 0.16 7.69 

xl_vldl_pl 44 0.09 0.07 0.21 0.17 8.50 

unsat 44 -0.12 0.09 0.22 0.12 5.85 

s_vldl_p 44 0.09 0.07 0.22 0.14 6.67 

m_hdl_l 44 -0.12 0.10 0.22 0.11 4.95 

xl_vldl_fc 44 0.09 0.07 0.22 0.17 8.41 

xxl_vldl_p 44 0.08 0.07 0.22 0.17 8.54 

xl_vldl_c 44 0.09 0.07 0.22 0.17 8.32 

xl_vldl_ce 44 0.09 0.07 0.23 0.17 8.22 

m_hdl_p 44 -0.12 0.10 0.23 0.11 5.03 

xxl_vldl_pl 44 0.08 0.07 0.24 0.17 8.59 

xl_hdl_ce 44 -0.08 0.07 0.24 0.09 4.17 

la_fa 44 0.08 0.07 0.25 0.13 6.27 

xxl_vldl_tg 44 0.08 0.07 0.25 0.17 8.61 

s_vldl_l 44 0.08 0.07 0.25 0.14 6.49 

xxl_vldl_l 44 0.08 0.07 0.25 0.17 8.51 

xl_hdl_c 44 -0.08 0.07 0.26 0.09 4.10 

m_hdl_pl 44 -0.11 0.10 0.26 0.11 5.05 

xs_vldl_p 44 -0.07 0.06 0.26 0.10 4.80 

m_vldl_c 44 0.08 0.07 0.27 0.15 7.34 
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his 44 0.10 0.09 0.28 0.11 5.01 

xxl_vldl_c 44 0.08 0.07 0.28 0.16 8.04 

dha 44 -0.10 0.09 0.29 0.10 4.78 

sfa 44 -0.07 0.07 0.29 0.13 5.92 

alb 44 -0.14 0.14 0.29 0.12 5.33 

s_vldl_fc 44 0.07 0.07 0.30 0.13 6.25 

mufa_fa 44 0.07 0.07 0.33 0.14 6.78 

xl_hdl_fc 44 -0.06 0.07 0.34 0.09 4.03 

m_vldl_ce 44 0.07 0.07 0.36 0.14 6.80 

faw3 44 -0.08 0.08 0.36 0.11 4.84 

xxl_vldl_ce 44 0.07 0.07 0.37 0.15 7.49 

tyr 44 -0.09 0.10 0.37 0.10 4.76 

pufa 44 -0.06 0.08 0.40 0.10 4.76 

faw6 44 -0.06 0.08 0.44 0.10 4.73 

s_vldl_ce 44 -0.05 0.06 0.46 0.11 4.85 

remnant_c 44 -0.05 0.06 0.46 0.11 5.09 

apob 44 -0.05 0.06 0.48 0.11 5.18 

crea 44 0.06 0.09 0.49 0.11 4.83 

totfa 44 -0.04 0.07 0.51 0.12 5.78 

vldl_c 44 0.04 0.07 0.53 0.13 6.02 

s_hdl_fc 44 -0.05 0.08 0.53 0.12 5.52 

phe 44 -0.06 0.10 0.55 0.12 5.36 

s_ldl_tg 44 0.04 0.06 0.55 0.13 6.16 

val 44 -0.06 0.09 0.55 0.11 5.08 
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ldl_d 44 0.04 0.07 0.58 0.10 4.70 

apob_apoa1 44 0.03 0.06 0.60 0.11 5.02 

leu 44 -0.04 0.08 0.60 0.13 6.21 

bohbut 44 -0.07 0.13 0.61 0.10 4.78 

l_ldl_tg 44 -0.03 0.05 0.61 0.11 4.84 

l_hdl_tg 44 -0.03 0.06 0.63 0.09 4.03 

m_ldl_tg 44 -0.03 0.06 0.64 0.10 4.77 

pufa_fa 44 -0.03 0.06 0.64 0.14 6.92 

idl_tg 44 0.02 0.05 0.66 0.11 5.14 

dha_fa 44 -0.03 0.07 0.72 0.12 5.59 

faw6_fa 44 -0.01 0.06 0.82 0.14 6.61 

ile 44 0.02 0.08 0.82 0.14 6.94 

ala 44 -0.02 0.10 0.82 0.10 4.30 

ldl_tg 44 -0.01 0.05 0.84 0.11 4.99 

xl_hdl_tg 44 0.01 0.08 0.85 0.12 5.38 

la 44 -0.01 0.07 0.86 0.11 4.84 

glol 43 -0.01 0.08 0.86 0.12 5.23 

mufa 44 0.01 0.06 0.87 0.14 6.76 

faw3_fa 44 0.01 0.07 0.90 0.12 5.34 

s_hdl_pl 44 -0.01 0.07 0.91 0.13 6.14 

s_vldl_c 44 0.00 0.06 0.97 0.11 5.18 

gp 44 0.00 0.06 0.97 0.13 6.12 

 

 

  



 

 487 

Appendix C Table C 14: Linear regression results of the instrumented exposure (percentage 

of days with 12,500 steps or more) on metabolic traits in the brisk walking arm compared to 

control (IV).  

 

Metabolite N Beta 
Standard 

error 

p-

value 
R2 F-statistic 

la_fa 73 6.27 3.27 0.06 0.08 5.76 

faw6_fa 73 5.81 3.04 0.06 0.08 5.76 

pufa_fa 73 5.07 2.90 0.08 0.08 5.76 

xxl_vldl_ce 73 -5.58 3.20 0.08 0.08 5.76 

ile 73 -5.18 2.97 0.08 0.08 5.76 

xxl_vldl_c 73 -5.33 3.11 0.09 0.08 5.76 

xl_hdl_tg 73 -5.51 3.26 0.09 0.08 5.76 

xl_vldl_ce 73 -5.18 3.07 0.09 0.08 5.76 

leu 73 -4.93 2.94 0.09 0.08 5.76 

xl_vldl_c 73 -5.11 3.05 0.09 0.08 5.76 

xl_vldl_fc 73 -5.02 3.02 0.10 0.08 5.76 

sfa 73 -5.26 3.18 0.10 0.08 5.76 

xxl_vldl_fc 73 -4.92 3.00 0.10 0.08 5.76 

xxl_vldl_l 73 -4.92 3.01 0.10 0.08 5.76 

xl_vldl_pl 73 -4.84 2.97 0.10 0.08 5.76 

xxl_vldl_pl 73 -4.88 3.00 0.10 0.08 5.76 

l_vldl_ce 73 -4.84 2.98 0.10 0.08 5.76 

xxl_vldl_p 73 -4.87 3.00 0.10 0.08 5.76 

l_vldl_c 73 -4.75 2.94 0.11 0.08 5.76 

xxl_vldl_tg 73 -4.81 2.98 0.11 0.08 5.76 
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Metabolite N Beta 
Standard 

error 

p-

value 
R2 F-statistic 

xl_vldl_l 73 -4.74 2.94 0.11 0.08 5.76 

xl_vldl_p 73 -4.70 2.93 0.11 0.08 5.76 

xs_vldl_tg 73 -4.67 2.92 0.11 0.08 5.76 

l_vldl_fc 73 -4.65 2.91 0.11 0.08 5.76 

m_vldl_c 73 -4.76 2.98 0.11 0.08 5.76 

m_vldl_ce  73 -4.91 3.07 0.11 0.08 5.76 

s_hdl_tg 73 -4.44 2.80 0.11 0.08 5.76 

vldl_c 73 -4.81 3.04 0.11 0.08 5.76 

xl_vldl_tg 73 -4.58 2.90 0.11 0.08 5.76 

serum_tg 73 -4.54 2.88 0.12 0.08 5.76 

idl_tg 73 -4.77 3.03 0.12 0.08 5.76 

m_vldl_fc  73 -4.52 2.88 0.12 0.08 5.76 

l_vldl_pl 73 -4.49 2.87 0.12 0.08 5.76 

sfa_fa 73 -4.54 2.91 0.12 0.08 5.76 

l_vldl_l 73 -4.45 2.86 0.12 0.08 5.76 

m_vldl_pl 73 -4.46 2.87 0.12 0.08 5.76 

m_vldl_l 73 -4.44 2.86 0.12 0.08 5.76 

l_vldl_p 73 -4.41 2.85 0.12 0.08 5.76 

hdl_tg 73 -4.67 3.02 0.12 0.08 5.76 

m_vldl_p  73 -4.40 2.85 0.12 0.08 5.76 

vldl_tg 73 -4.34 2.83 0.13 0.08 5.76 

l_vldl_tg 73 -4.30 2.82 0.13 0.08 5.76 
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Metabolite N Beta 
Standard 

error 

p-

value 
R2 F-statistic 

m_vldl_tg 73 -4.25 2.81 0.13 0.08 5.76 

s_ldl_tg 73 -4.50 2.99 0.13 0.08 5.76 

mufa 73 -4.46 2.98 0.14 0.08 5.76 

apob_apoa1 73 -4.23 2.83 0.14 0.08 5.76 

s_vldl_tg 73 -4.13 2.78 0.14 0.08 5.76 

s_vldl_fc 73 -4.24 2.86 0.14 0.08 5.76 

s_vldl_p 73 -4.20 2.84 0.14 0.08 5.76 

s_vldl_l  73 -4.20 2.85 0.14 0.08 5.76 

totfa 73 -4.36 3.03 0.15 0.08 5.76 

l_ldl_tg 73 -4.34 3.01 0.15 0.08 5.76 

ldl_tg 73 -4.26 2.99 0.15 0.08 5.76 

remnant_c  73 -4.30 3.02 0.16 0.08 5.76 

s_vldl_pl 73 -3.96 2.81 0.16 0.08 5.76 

s_hdl_ce 73 3.89 2.81 0.17 0.08 5.76 

faw3 73 -4.23 3.05 0.17 0.08 5.76 

apob 73 -4.08 2.96 0.17 0.08 5.76 

s_hdl_c  73 3.83 2.80 0.17 0.08 5.76 

unsat 73 3.57 2.61 0.17 0.08 5.76 

s_vldl_c  73 -3.95 2.91 0.17 0.08 5.76 

tg_pg  73 -3.64 2.70 0.18 0.08 5.76 

xs_vldl_p  73 -3.95 2.96 0.18 0.08 5.76 

m_hdl_c  73 3.32 2.54 0.19 0.08 5.76 
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Metabolite N Beta 
Standard 

error 

p-

value 
R2 F-statistic 

m_hdl_ce  73 3.31 2.55 0.19 0.08 5.76 

m_hdl_fc  73 3.28 2.53 0.20 0.08 5.76 

gp  73 -3.54 2.75 0.20 0.08 5.76 

xs_vldl_l 73 -3.78 2.94 0.20 0.08 5.76 

m_ldl_tg  73 -3.69 2.91 0.20 0.08 5.76 

xs_vldl_ce 73 -3.64 2.94 0.22 0.08 5.76 

s_vldl_ce 73 -3.52 2.89 0.22 0.08 5.76 

l_hdl_pl  73 2.97 2.49 0.23 0.08 5.76 

bohbut 73 3.77 3.17 0.24 0.08 5.76 

hdl2_c 73 2.92 2.48 0.24 0.08 5.76 

xs_vldl_c  73 -3.43 2.91 0.24 0.08 5.76 

totcho  73 -3.58 3.06 0.24 0.08 5.76 

ace 73 3.15 2.71 0.25 0.08 5.76 

totpg  73 -3.42 2.97 0.25 0.08 5.76 

m_hdl_tg  73 -3.08 2.75 0.26 0.08 5.76 

hdl_c 73 2.77 2.48 0.26 0.08 5.76 

dha 73 -3.09 2.79 0.27 0.08 5.76 

pc  73 -3.27 2.97 0.27 0.08 5.76 

m_hdl_l 73 2.68 2.48 0.28 0.08 5.76 

val 73 -2.75 2.60 0.29 0.08 5.76 

l_hdl_fc  73 2.55 2.49 0.30 0.08 5.76 

xs_vldl_fc 73 -2.89 2.84 0.31 0.08 5.76 
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Metabolite N Beta 
Standard 

error 

p-

value 
R2 F-statistic 

m_hdl_p  73 2.51 2.47 0.31 0.08 5.76 

l_hdl_l 73 2.48 2.47 0.32 0.08 5.76 

vldl_d  73 -2.55 2.56 0.32 0.08 5.76 

l_hdl_p  73 2.46 2.47 0.32 0.08 5.76 

idl_ce 73 -2.79 2.83 0.32 0.08 5.76 

s_ldl_pl  73 -2.76 2.80 0.33 0.08 5.76 

idl_p  73 -2.75 2.82 0.33 0.08 5.76 

m_hdl_pl  73 2.40 2.47 0.33 0.08 5.76 

mufa_fa 73 -2.48 2.60 0.34 0.08 5.76 

m_ldl_pl 73 -2.65 2.77 0.34 0.08 5.76 

freec 73 -2.71 2.85 0.34 0.08 5.76 

l_hdl_c  73 2.31 2.47 0.35 0.08 5.76 

l_hdl_tg  73 -2.61 2.84 0.36 0.08 5.76 

idl_l  73 -2.55 2.80 0.36 0.08 5.76 

phe 73 -2.34 2.56 0.36 0.08 5.76 

l_hdl_ce 73 2.23 2.47 0.37 0.08 5.76 

xs_vldl_pl 73 -2.41 2.78 0.39 0.08 5.76 

idl_c 73 -2.39 2.78 0.39 0.08 5.76 

s_ldl_fc 73 -2.29 2.74 0.40 0.08 5.76 

pufa 73 -2.30 2.76 0.40 0.08 5.76 

sm 73 -2.38 2.86 0.41 0.08 5.76 

serum_c 73 -2.16 2.76 0.44 0.08 5.76 
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Metabolite N Beta 
Standard 

error 

p-

value 
R2 F-statistic 

xl_hdl_pl  73 1.93 2.48 0.44 0.08 5.76 

l_ldl_p  73 -2.11 2.72 0.44 0.08 5.76 

s_ldl_p  73 -2.07 2.71 0.45 0.08 5.76 

s_hdl_l  73 1.98 2.60 0.45 0.08 5.76 

m_ldl_fc  73 -2.01 2.70 0.46 0.08 5.76 

glol 73 2.07 2.79 0.46 0.08 5.76 

s_ldl_l 73 -1.96 2.69 0.47 0.08 5.76 

l_ldl_l 73 -1.96 2.70 0.47 0.08 5.76 

cit 73 -1.91 2.66 0.47 0.08 5.76 

m_ldl_p  73 -1.92 2.69 0.48 0.08 5.76 

xl_hdl_ce 73 -1.96 2.75 0.48 0.08 5.76 

l_ldl_ce 73 -1.92 2.70 0.48 0.08 5.76 

faw6 73 -1.92 2.70 0.48 0.08 5.76 

pyr 73 -1.73 2.44 0.48 0.08 5.76 

m_ldl_l 73 -1.88 2.68 0.48 0.08 5.76 

estc 73 -1.91 2.72 0.48 0.08 5.76 

crea 73 1.80 2.65 0.50 0.08 5.76 

l_ldl_pl 73 -1.77 2.69 0.51 0.08 5.76 

s_hdl_p 73 1.69 2.58 0.51 0.08 5.76 

l_ldl_c 73 -1.71 2.67 0.52 0.08 5.76 

hdl_d 73 1.56 2.45 0.52 0.08 5.76 

idl_pl 73 -1.68 2.69 0.53 0.08 5.76 
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Metabolite N Beta 
Standard 

error 

p-

value 
R2 F-statistic 

alb 73 -1.58 2.57 0.54 0.08 5.76 

xl_hdl_c 73 -1.66 2.71 0.54 0.08 5.76 

ldl_c 73 -1.57 2.65 0.56 0.08 5.76 

m_ldl_c 73 -1.46 2.64 0.58 0.08 5.76 

s_ldl_c 73 -1.34 2.63 0.61 0.08 5.76 

m_ldl_ce 73 -1.34 2.62 0.61 0.08 5.76 

gly 73 1.28 2.64 0.63 0.08 5.76 

idl_fc 73 -1.24 2.64 0.64 0.08 5.76 

la 73 -1.16 2.60 0.66 0.08 5.76 

s_ldl_ce 73 -1.11 2.60 0.67 0.08 5.76 

ldl_d 73 -1.10 2.61 0.67 0.08 5.76 

l_ldl_fc 73 -1.02 2.61 0.70 0.08 5.76 

glc 73 -0.94 2.47 0.70 0.08 5.76 

gln 73 0.96 2.56 0.71 0.08 5.76 

tyr 73 0.92 2.60 0.72 0.08 5.76 

xl_hdl_f 73 -0.84 2.61 0.75 0.08 5.76 

his 73 -0.77 2.51 0.76 0.08 5.76 

ala 73 0.74 2.58 0.77 0.08 5.76 

dha_fa 73 0.61 2.46 0.80 0.08 5.76 

hdl3_c 73 0.55 2.52 0.83 0.08 5.76 

faw3_fa 73 -0.47 2.45 0.85 0.08 5.76 

s_hdl_pl  73 0.29 2.51 0.91 0.08 5.76 
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Metabolite N Beta 
Standard 

error 

p-

value 
R2 F-statistic 

lac 73 0.22 2.53 0.93 0.08 5.76 

xl_hdl_p 73 0.13 2.53 0.96 0.08 5.76 

xl_hdl_l 73 0.07 2.53 0.98 0.08 5.76 

s_hdl_fc 73 -0.06 2.52 0.98 0.08 5.76 

apoa1 73 0.04 2.52 0.99 0.08 5.76 
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Appendix C Table C 15: Linear regression results of the instrumented exposure (percentage 

of days with 12,500 steps or more) on metabolic traits in the brisk walking arm compared to 

control (IV), adjusted for baseline metabolic traits and age 

 

Metabolite N Beta 
Standard 

error 
P-value R2 F-statistic 

sfa 73 -4.25 1.77 0.02 0.12 9.56 

s_ldl_tg 73 -3.98 1.67 0.02 0.12 9.57 

ldl_tg 73 -4.15 1.75 0.02 0.12 9.51 

xl_hdl_tg 73 -4.31 1.84 0.02 0.13 10.15 

l_ldl_tg 73 -4.15 1.77 0.02 0.12 9.52 

m_ldl_tg 73 -4.09 1.76 0.02 0.12 9.38 

idl_tg 73 -3.87 1.67 0.02 0.12 9.57 

hdl_tg 73 -4.17 1.81 0.02 0.12 9.52 

totfa 73 -3.62 1.68 0.03 0.12 9.58 

l_hdl_tg 73 -5.66 2.66 0.03 0.09 6.81 

xl_hdl_fc 73 -3.75 1.77 0.03 0.10 7.53 

xl_hdl_c 73 -3.52 1.67 0.04 0.11 8.36 

totpg 73 -4.15 1.98 0.04 0.11 8.90 

xs_vldl_tg 73 -3.07 1.47 0.04 0.12 9.35 

xl_hdl_ce 73 -3.40 1.63 0.04 0.11 8.70 

pc 73 -4.02 1.94 0.04 0.12 9.10 

totcho 73 -3.89 1.95 0.05 0.12 9.18 

xxl_vldl_pl 73 -3.15 1.60 0.05 0.12 9.57 

xl_hdl_l 73 -3.02 1.54 0.05 0.10 7.57 

xl_hdl_p 73 -3.00 1.54 0.05 0.10 7.54 
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Metabolite N Beta 
Standard 

error 
P-value R2 F-statistic 

xxl_vldl_fc 73 -3.09 1.59 0.05 0.12 9.54 

xxl_vldl_c 73 -3.14 1.62 0.05 0.12 9.51 

xxl_vldl_ce 73 -3.16 1.64 0.06 0.12 9.51 

mufa 73 -2.98 1.56 0.06 0.12 9.59 

xxl_vldl_l 73 -3.06 1.60 0.06 0.12 9.54 

xxl_vldl_p 73 -3.05 1.60 0.06 0.12 9.54 

s_hdl_tg 73 -2.79 1.47 0.06 0.12 9.28 

freec 73 -3.32 1.75 0.06 0.12 9.35 

xl_vldl_fc 73 -3.01 1.59 0.06 0.12 9.50 

remnant_c 73 -2.90 1.53 0.06 0.12 9.54 

xxl_vldl_tg 73 -3.02 1.60 0.06 0.12 9.54 

vldl_c 73 -2.81 1.49 0.06 0.12 9.37 

xl_vldl_pl 73 -2.91 1.55 0.06 0.12 9.48 

m_hdl_tg 73 -2.85 1.52 0.06 0.12 9.54 

serum_tg 73 -2.76 1.48 0.06 0.12 9.35 

s_vldl_fc 73 -2.63 1.42 0.06 0.12 9.32 

ile 73 -3.05 1.64 0.06 0.12 9.73 

xl_vldl_c 73 -2.93 1.59 0.07 0.12 9.45 

apob 73 -2.78 1.52 0.07 0.12 9.52 

pufa_fa 73 2.48 1.37 0.07 0.12 9.10 

l_vldl_fc 73 -2.75 1.52 0.07 0.12 9.41 

xs_vldl_p 73 -2.75 1.52 0.07 0.12 9.52 
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Metabolite N Beta 
Standard 

error 
P-value R2 F-statistic 

xl_vldl_ce 73 -2.87 1.59 0.07 0.12 9.40 

xl_vldl_l 73 -2.78 1.54 0.07 0.12 9.43 

xl_vldl_p 73 -2.76 1.54 0.07 0.12 9.43 

dha_fa 73 2.87 1.60 0.07 0.11 8.68 

m_vldl_c 73 -2.69 1.51 0.07 0.12 9.33 

m_vldl_ce 73 -2.73 1.53 0.08 0.12 9.39 

m_vldl_fc 73 -2.61 1.48 0.08 0.12 9.31 

xl_vldl_tg 73 -2.69 1.52 0.08 0.12 9.42 

l_vldl_c 73 -2.68 1.52 0.08 0.12 9.35 

xs_vldl_l 73 -2.65 1.52 0.08 0.12 9.54 

l_vldl_pl 73 -2.55 1.49 0.09 0.12 9.32 

s_vldl_pl 73 -2.36 1.38 0.09 0.12 9.31 

m_vldl_pl 73 -2.49 1.46 0.09 0.12 9.26 

l_vldl_ce 73 -2.60 1.53 0.09 0.12 9.29 

s_vldl_l 73 -2.36 1.39 0.09 0.12 9.22 

hdl_d 73 -2.75 1.63 0.09 0.09 6.50 

l_hdl_ce 73 -2.34 1.39 0.09 0.09 6.42 

leu 73 -2.89 1.73 0.09 0.12 9.73 

s_vldl_p 73 -2.33 1.39 0.10 0.12 9.19 

l_vldl_l 73 -2.48 1.49 0.10 0.12 9.29 

pufa 73 -2.84 1.71 0.10 0.12 9.38 

vldl_tg 73 -2.41 1.45 0.10 0.12 9.24 
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Metabolite N Beta 
Standard 

error 
P-value R2 F-statistic 

m_vldl_l 73 -2.42 1.46 0.10 0.12 9.22 

l_vldl_p 73 -2.45 1.48 0.10 0.12 9.28 

idl_p 73 -2.56 1.56 0.10 0.12 9.57 

s_vldl_c 73 -2.31 1.41 0.10 0.12 9.38 

l_hdl_c 73 -2.22 1.36 0.10 0.09 6.48 

m_vldl_p 73 -2.38 1.46 0.10 0.12 9.21 

faw6_fa 73 2.38 1.46 0.10 0.11 8.57 

s_ldl_pl 73 -2.56 1.59 0.11 0.12 9.57 

serum_c 73 -2.60 1.61 0.11 0.12 9.42 

l_vldl_tg 73 -2.37 1.47 0.11 0.12 9.27 

faw6 73 -2.77 1.73 0.11 0.12 9.25 

faw3 73 -2.40 1.51 0.11 0.13 10.09 

l_hdl_p 73 -2.30 1.46 0.11 0.08 6.27 

s_vldl_tg 73 -2.22 1.41 0.11 0.12 9.13 

idl_l 73 -2.43 1.55 0.12 0.12 9.57 

m_ldl_pl 73 -2.37 1.52 0.12 0.12 9.58 

l_hdl_l 73 -2.24 1.43 0.12 0.08 6.31 

m_vldl_tg 73 -2.25 1.44 0.12 0.12 9.17 

idl_ce 73 -2.43 1.56 0.12 0.12 9.58 

vldl_d 73 -2.12 1.38 0.13 0.12 9.56 

unsat 73 2.26 1.48 0.13 0.12 9.63 

sm 73 -2.66 1.74 0.13 0.12 9.40 
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Metabolite N Beta 
Standard 

error 
P-value R2 F-statistic 

xl_hdl_pl 73 -1.99 1.32 0.13 0.09 7.09 

xs_vldl_fc 73 -2.25 1.51 0.14 0.12 9.60 

xs_vldl_c 73 -2.32 1.56 0.14 0.12 9.54 

ace 73 3.08 2.10 0.14 0.13 10.25 

xs_vldl_ce 73 -2.33 1.59 0.14 0.12 9.49 

idl_c 73 -2.26 1.55 0.15 0.12 9.57 

estc 73 -2.28 1.57 0.15 0.12 9.45 

l_hdl_fc 73 -1.85 1.27 0.15 0.09 6.65 

sfa_fa 73 -2.72 1.88 0.15 0.12 9.70 

la 73 -2.51 1.73 0.15 0.12 9.11 

apoa1 73 -2.94 2.04 0.15 0.10 7.32 

l_ldl_p 73 -2.14 1.50 0.15 0.12 9.57 

s_vldl_ce 73 -1.97 1.42 0.16 0.12 9.45 

xs_vldl_pl 73 -2.01 1.46 0.17 0.12 9.60 

l_ldl_l 73 -2.02 1.49 0.17 0.12 9.57 

s_ldl_p 73 -2.01 1.49 0.18 0.12 9.58 

s_ldl_fc 73 -2.09 1.56 0.18 0.12 9.58 

la_fa 73 2.08 1.55 0.18 0.11 8.28 

s_hdl_ce 73 2.24 1.72 0.19 0.12 9.63 

l_ldl_pl 73 -1.92 1.48 0.20 0.12 9.56 

s_ldl_l 73 -1.92 1.49 0.20 0.12 9.58 

m_ldl_p 73 -1.88 1.46 0.20 0.12 9.58 
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Metabolite N Beta 
Standard 

error 
P-value R2 F-statistic 

l_ldl_ce 73 -1.87 1.47 0.20 0.12 9.58 

idl_pl 73 -1.90 1.49 0.20 0.12 9.54 

m_ldl_fc 73 -1.90 1.51 0.21 0.12 9.58 

bohbut 73 2.67 2.12 0.21 0.13 10.07 

gp 73 -2.12 1.69 0.21 0.12 9.31 

m_ldl_l 73 -1.84 1.46 0.21 0.12 9.58 

l_ldl_c 73 -1.78 1.47 0.22 0.12 9.57 

faw3_fa 73 1.64 1.35 0.22 0.12 9.65 

l_hdl_pl 73 -1.75 1.49 0.24 0.08 6.27 

idl_fc 73 -1.71 1.50 0.25 0.12 9.50 

s_hdl_c 73 2.01 1.77 0.26 0.12 9.54 

gly 73 1.98 1.75 0.26 0.12 9.04 

apob_apoa1 73 -1.48 1.31 0.26 0.11 8.43 

hdl3_c 73 -2.13 1.89 0.26 0.10 8.07 

ldl_c 73 -1.61 1.45 0.27 0.12 9.58 

tg_pg 73 -1.50 1.39 0.28 0.11 8.91 

m_ldl_c 73 -1.46 1.44 0.31 0.12 9.58 

l_ldl_fc 73 -1.47 1.46 0.31 0.12 9.54 

s_ldl_c 73 -1.40 1.44 0.33 0.12 9.58 

m_ldl_ce 73 -1.36 1.43 0.34 0.12 9.58 

s_hdl_pl 73 -1.58 1.70 0.35 0.11 8.47 

hdl_c 73 -1.46 1.61 0.36 0.09 6.64 
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Metabolite N Beta 
Standard 

error 
P-value R2 F-statistic 

s_hdl_fc 73 -1.67 1.85 0.37 0.11 8.48 

hdl2_c 73 -1.36 1.56 0.38 0.09 6.57 

cit 73 -1.80 2.06 0.38 0.12 9.27 

s_ldl_ce 73 -1.23 1.42 0.39 0.12 9.58 

alb 73 -1.75 2.06 0.40 0.12 9.41 

val 73 -1.28 1.69 0.45 0.12 9.65 

dha 73 -1.09 1.48 0.46 0.12 9.60 

ldl_d 73 -1.28 1.90 0.50 0.12 9.15 

mufa_fa 73 -0.96 1.48 0.52 0.12 9.14 

m_hdl_pl 73 -1.35 2.12 0.53 0.08 6.10 

his 73 -1.10 1.90 0.56 0.13 10.36 

lac 73 1.10 2.13 0.61 0.11 8.79 

pyr 73 -0.95 1.89 0.62 0.12 9.46 

glc 73 0.66 1.33 0.62 0.12 9.29 

m_hdl_p 73 -0.88 2.12 0.68 0.08 6.19 

gln 73 -0.60 1.78 0.74 0.12 9.42 

m_hdl_l 73 -0.70 2.11 0.74 0.08 6.18 

ala 73 0.55 1.83 0.76 0.12 9.76 

phe 73 -0.52 2.03 0.80 0.10 7.98 

tyr 73 0.43 1.88 0.82 0.12 9.54 

m_hdl_ce 73 0.43 2.07 0.84 0.09 6.49 

crea 73 -0.15 1.00 0.88 0.13 10.53 
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Metabolite N Beta 
Standard 

error 
P-value R2 F-statistic 

m_hdl_c 73 0.30 2.07 0.88 0.09 6.41 

glol 73 -0.19 1.56 0.90 0.16 12.94 

m_hdl_fc 73 -0.24 2.06 0.91 0.08 6.21 

s_hdl_p 73 -0.16 1.76 0.93 0.12 9.03 

s_hdl_l 73 0.10 1.78 0.96 0.12 8.99 
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Appendix C Table C 16: List of metabolic traits taken forward to MR stage and instrument 

availability which had a p-value <0.05 in the unadjusted ITT 

 

Metabolite Intervention arm 

Acetate Dietary advice 

Alanine Lycopene 

Ratio of omega-6 fatty acids to total fatty acids Dietary advice, Brisk walking 

Cholesteryl esters in large VLDL Brisk Walking 

Ratio of linoleic acid to total fatty acids Brisk Walking 

Lactate Dietary advice 

Cholesteryl esters in medium VLDL Brisk Walking 

Ratio of polyunsaturated fatty acids to total fatty acids Brisk Walking 

Pyruvate Dietary advice 

Concentration of small HDL particles Dietary advice 

Saturated fatty acids Brisk Walking 

Ratio of saturated fatty acids to total fatty acids Dietary advice 

Triglycerides in very large HDL Brisk Walking 

Cholesterol in very large VLDL Brisk Walking 

Cholesteryl esters in very large VLDL Brisk Walking 

Free cholesterol in very large VLDL Brisk Walking 

Phospholipids in very large VLDL Brisk Walking 

Cholesterol in chylomicrons and extremely large VLDL Brisk Walking 

Cholesteryl esters in chylomicrons and extremely large VLDL Brisk Walking 

Free cholesterol in chylomicrons and extremely large VLDL Brisk Walking 

Total lipids in chylomicrons and extremely large VLDL Brisk Walking 
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Concentration of chylomicrons and extremely large VLDL particles Brisk Walking 

Phospholipids in chylomicrons and extremely large VLDL Brisk Walking 

 

 



 

 

Appendix C Table C 17: F-statistic and r-square measures for instruments of individual metabolites (metabolites with p-value <0.05 in the 

unadjusted ITT) 

 

Metabolite Total r2 Number of SNPs 
Sample 

Size 
F statistic 

Acetate 0.004 6 115,046 68.2 

Alanine 0.012 22 115,074 65.0 

Ratio of omega-6 fatty acids to total fatty acids 0.028 36 114,999 91.8 

Cholesteryl esters in large VLDL 0.039 36 115,078 129.1 

Ratio of linoleic acid to total fatty acids 0.013 24 114,999 63.8 

Lactate 0.003 6 114,802 51.9 

Cholesteryl esters in medium VLDL 0.039 38 115,078 124.2 

Ratio of polyunsaturated fatty acids to total fatty acids 0.031 35 114,999 103.9 

Pyruvate 0.014 15 114,748 109.0 

Concentration of small HDL particles 0.036 31 115,078 138.3 

Saturated fatty acids 0.038 40 114,999 114.7 

Ratio of saturated fatty acids to total fatty acids 0.013 20 114,999 77.2 
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Triglycerides in very large HDL 0.079 46 115,078 214.8 

Cholesterol in very large VLDL 0.040 37 115,078 128.8 

Cholesteryl esters in very large VLDL 0.042 42 115,078 119.6 

Free cholesterol in very large VLDL 0.039 34 115,078 136.7 

Phospholipids in very large VLDL 0.042 39 115,078 128.9 

Cholesterol in chylomicrons and extremely large VLDL 0.047 44 115,078 128.5 

Cholesteryl esters in chylomicrons and extremely large VLDL 0.049 44 115,078 136.0 

Free cholesterol in chylomicrons and extremely large VLDL 0.045 45 115,078 119.4 

Total lipids in chylomicrons and extremely large VLDL 0.046 45 115,078 122.7 

Concentration of chylomicrons and extremely large VLDL particles 0.043 42 115,078 123.2 

Phospholipids in chylomicrons and extremely large VLDL 0.045 45 115,078 121.4 
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Appendix C Table C 18: Mendelian Randomisation results for Prostate Cancer survival in the PRACTICAL consortium, using altered 

metabolites in the PrEvENT trial (p<0.05)  

 

Exposure 

(metabolic trait) Method 

Number 

of snps p-val 

Odds 

ratio 

Odds ratio lower 

95% CI 

Odds ratio 

upper 95% CI Intervention 

Acetate MR Egger 6 0.790 1.199 0.345 4.169 Dietary advice 

Acetate Simple mode 6 0.711 0.841 0.355 1.993 Dietary advice 

Acetate Weighted median 6 0.927 1.026 0.596 1.765 Dietary advice 

Acetate Weighted mode 6 0.929 1.030 0.555 1.912 Dietary advice 

LA_pct Inverse variance weighted 24 0.133 0.846 0.680 1.053 Brisk Walking 
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Exposure 

(metabolic trait) Method 

Number 

of snps p-val 

Odds 

ratio 

Odds ratio lower 

95% CI 

Odds ratio 

upper 95% CI Intervention 

Ala MR Egger 22 0.053 2.036 1.034 4.010 Dietary advice 

Ala Simple mode 22 0.662 1.121 0.677 1.854 Dietary advice 

Ala Weighted mode 22 0.513 1.138 0.777 1.666 Dietary advice 

Ala Weighted median 22 0.339 1.165 0.852 1.594 Dietary advice 

Omega_6_pct Inverse variance weighted 36 0.183 0.898 0.768 1.052 Dietary advice, brisk walking 

Pyruvate Inverse variance weighted 15 0.695 0.948 0.728 1.236 Dietary advice 

L_VLDL_CE MR Egger 36 0.768 0.959 0.727 1.264 Brisk Walking 

L_VLDL_CE Weighted mode 36 0.346 1.091 0.912 1.306 Brisk Walking 

L_VLDL_CE Simple mode 36 0.429 1.112 0.857 1.444 Brisk Walking 

L_VLDL_CE Weighted median 36 0.175 1.129 0.947 1.346 Brisk Walking 

PUFA_pct Inverse variance weighted 35 0.649 0.967 0.839 1.115 Brisk Walking 

LA_pct Simple mode 24 0.442 0.799 0.455 1.402 Brisk Walking 

LA_pct Weighted mode 24 0.492 0.875 0.602 1.272 Brisk Walking 

LA_pct Weighted median 24 0.503 0.893 0.641 1.243 Brisk Walking 
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Exposure 

(metabolic trait) Method 

Number 

of snps p-val 

Odds 

ratio 

Odds ratio lower 

95% CI 

Odds ratio 

upper 95% CI Intervention 

LA_pct MR Egger 24 0.996 0.999 0.610 1.635 Brisk Walking 

S_HDL_P Inverse variance weighted 31 0.869 0.989 0.866 1.129 Dietary advice 

Lactate MR Egger 6 0.794 1.375 0.147 12.850 Dietary advice 

Lactate Simple mode 6 0.341 1.504 0.704 3.214 Dietary advice 

Lactate Weighted median 6 0.132 1.520 0.881 2.624 Dietary advice 

Lactate Weighted mode 6 0.237 1.629 0.799 3.320 Dietary advice 

M_VLDL_CE MR Egger 38 0.035 1.305 1.028 1.657 Dietary advice 

SFA_pct Inverse variance weighted 20 0.796 1.038 0.780 1.382 Brisk Walking 

M_VLDL_CE Weighted median 38 0.059 1.208 0.993 1.471 Brisk Walking 

M_VLDL_CE Weighted mode 38 0.023 1.344 1.052 1.717 Brisk Walking 

M_VLDL_CE Simple mode 38 0.128 1.379 0.920 2.065 Brisk Walking 

Omega_6_pct Simple mode 36 0.386 0.864 0.624 1.197 Dietary advice, brisk wlking 

Acetate Inverse variance weighted 6 0.807 1.056 0.683 1.634 Dietary advice 

Omega_6_pct Weighted mode 36 0.427 0.907 0.716 1.150 Dietary advice, brisk wlking 
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Exposure 

(metabolic trait) Method 

Number 

of snps p-val 

Odds 

ratio 

Odds ratio lower 

95% CI 

Odds ratio 

upper 95% CI Intervention 

Omega_6_pct Weighted median 36 0.461 0.916 0.725 1.157 Dietary advice, brisk wlking 

Omega_6_pct MR Egger 36 0.246 0.842 0.633 1.120 Dietary advice, brisk wlking 

XL_VLDL_CE Inverse variance weighted 42 0.369 1.067 0.926 1.229 Brisk Walking 

PUFA_pct Weighted median 35 0.730 0.962 0.774 1.197 Brisk Walking 

PUFA_pct Simple mode 35 0.945 0.987 0.675 1.442 Brisk Walking 

PUFA_pct Weighted mode 35 0.699 1.046 0.833 1.314 Brisk Walking 

PUFA_pct MR Egger 35 0.562 1.078 0.838 1.387 Brisk Walking 

XL_VLDL_C Inverse variance weighted 37 0.372 1.073 0.920 1.251 Brisk Walking 

Pyruvate MR Egger 15 0.470 1.212 0.730 2.013 Dietary advice 

Pyruvate Weighted median 15 0.477 1.107 0.837 1.464 Dietary advice 

Pyruvate Weighted mode 15 0.312 1.154 0.883 1.509 Dietary advice 

Pyruvate Simple mode 15 0.465 1.217 0.729 2.030 Dietary advice 

XL_HDL_TG Inverse variance weighted 46 0.110 1.081 0.983 1.189 Brisk Walking 

S_HDL_P Weighted median 31 0.770 1.026 0.863 1.221 Dietary advice 
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Exposure 

(metabolic trait) Method 

Number 

of snps p-val 

Odds 

ratio 

Odds ratio lower 

95% CI 

Odds ratio 

upper 95% CI Intervention 

S_HDL_P Simple mode 31 0.730 1.049 0.800 1.377 Dietary advice 

S_HDL_P Weighted mode 31 0.522 1.058 0.893 1.253 Dietary advice 

S_HDL_P MR Egger 31 0.556 1.075 0.848 1.362 Dietary advice 

XXL_VLDL_CE Inverse variance weighted 43 0.164 1.085 0.967 1.217 Brisk Walking 

SFA Weighted median 40 0.366 1.087 0.907 1.303 Brisk Walking 

SFA Weighted mode 40 0.351 1.094 0.908 1.318 Brisk Walking 

SFA MR Egger 40 0.618 1.066 0.830 1.369 Brisk Walking 

SFA Simple mode 40 0.348 1.155 0.858 1.553 Brisk Walking 

XL_VLDL_C Weighted mode 37 0.218 1.130 0.933 1.369 Brisk Walking 

XL_VLDL_C Weighted median 37 0.148 1.136 0.956 1.351 Brisk Walking 

XL_VLDL_C MR Egger 37 0.222 1.195 0.902 1.584 Brisk Walking 

XL_VLDL_C Simple mode 37 0.248 1.168 0.901 1.514 Brisk Walking 

XL_VLDL_PL Inverse variance weighted 39 0.159 1.093 0.966 1.236 Brisk Walking 

XL_VLDL_CE Weighted mode 42 0.389 1.087 0.901 1.311 Brisk Walking 
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Exposure 

(metabolic trait) Method 

Number 

of snps p-val 

Odds 

ratio 

Odds ratio lower 

95% CI 

Odds ratio 

upper 95% CI Intervention 

XL_VLDL_CE Weighted median 42 0.311 1.094 0.920 1.301 Brisk Walking 

XL_VLDL_CE Simple mode 42 0.506 1.098 0.836 1.440 Brisk Walking 

XL_VLDL_CE MR Egger 42 0.767 1.043 0.793 1.371 Brisk Walking 

XXL_VLDL_P Inverse variance weighted 42 0.139 1.096 0.970 1.238 Brisk Walking 

XL_VLDL_FC Weighted mode 34 0.349 1.104 0.900 1.355 Brisk Walking 

XL_VLDL_FC Weighted median 34 0.254 1.114 0.925 1.343 Brisk Walking 

XL_VLDL_FC Simple mode 34 0.383 1.131 0.861 1.486 Brisk Walking 

XL_VLDL_FC MR Egger 34 0.155 1.182 0.944 1.480 Brisk Walking 

SFA Inverse variance weighted 40 0.156 1.105 0.962 1.270 Brisk Walking 

XXL_VLDL_C Inverse variance weighted 43 0.089 1.108 0.984 1.247 Brisk Walking 

XL_VLDL_PL Weighted median 39 0.260 1.105 0.929 1.314 Brisk Walking 

XL_VLDL_PL Simple mode 39 0.506 1.107 0.823 1.490 Brisk Walking 

XL_VLDL_PL Weighted mode 39 0.315 1.107 0.910 1.346 Brisk Walking 

XL_VLDL_PL MR Egger 39 0.213 1.154 0.925 1.439 Brisk Walking 
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Exposure 

(metabolic trait) Method 

Number 

of snps p-val 

Odds 

ratio 

Odds ratio lower 

95% CI 

Odds ratio 

upper 95% CI Intervention 

XL_HDL_TG Weighted median 46 0.573 1.034 0.920 1.164 Brisk Walking 

XL_HDL_TG Weighted mode 46 0.515 1.036 0.932 1.151 Brisk Walking 

XXL_VLDL_FC Inverse variance weighted 44 0.090 1.109 0.984 1.251 Brisk Walking 

XL_HDL_TG MR Egger 46 0.873 0.989 0.860 1.136 Brisk Walking 

XL_HDL_TG Simple mode 46 0.128 1.212 0.950 1.545 Brisk Walking 

XXL_VLDL_C Weighted median 43 0.390 1.075 0.911 1.270 Brisk Walking 

XXL_VLDL_C Weighted mode 43 0.275 1.109 0.923 1.334 Brisk Walking 

XXL_VLDL_C Simple mode 43 0.277 1.170 0.885 1.548 Brisk Walking 

XXL_VLDL_C MR Egger 43 0.183 1.141 0.942 1.382 Brisk Walking 

XXL_VLDL_L Inverse variance weighted 45 0.080 1.111 0.987 1.251 Brisk Walking 

XXL_VLDL_CE Weighted median 43 0.404 1.073 0.909 1.266 Brisk Walking 

XXL_VLDL_CE Weighted mode 43 0.437 1.081 0.890 1.313 Brisk Walking 

XXL_VLDL_CE Simple mode 43 0.333 1.154 0.866 1.538 Brisk Walking 

XXL_VLDL_CE MR Egger 43 0.351 1.094 0.907 1.320 Brisk Walking 
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Exposure 

(metabolic trait) Method 

Number 

of snps p-val 

Odds 

ratio 

Odds ratio lower 

95% CI 

Odds ratio 

upper 95% CI Intervention 

XL_VLDL_FC Inverse variance weighted 34 0.079 1.121 0.987 1.273 Brisk Walking 

XXL_VLDL_FC Weighted median 44 0.393 1.085 0.900 1.307 Brisk Walking 

XXL_VLDL_FC Weighted mode 44 0.260 1.116 0.924 1.347 Brisk Walking 

XXL_VLDL_FC Simple mode 44 0.227 1.226 0.885 1.699 Brisk Walking 

XXL_VLDL_FC MR Egger 44 0.105 1.174 0.971 1.418 Brisk Walking 

L_VLDL_CE Inverse variance weighted 36 0.123 1.123 0.969 1.301 Brisk Walking 

XXL_VLDL_PL Inverse variance weighted 45 0.040 1.139 1.006 1.290 Brisk Walking 

XXL_VLDL_L Weighted median 45 0.491 1.070 0.883 1.297 Brisk Walking 

XXL_VLDL_L Weighted mode 45 0.412 1.089 0.890 1.334 Brisk Walking 

XXL_VLDL_L Simple mode 45 0.474 1.123 0.820 1.538 Brisk Walking 

XXL_VLDL_L MR Egger 45 0.089 1.176 0.980 1.410 Brisk Walking 

XXL_VLDL_P Weighted median 42 0.451 1.075 0.891 1.297 Brisk Walking 

XXL_VLDL_P Weighted mode 42 0.342 1.103 0.903 1.349 Brisk Walking 

XXL_VLDL_P Simple mode 42 0.211 1.220 0.898 1.659 Brisk Walking 
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Exposure 

(metabolic trait) Method 

Number 

of snps p-val 

Odds 

ratio 

Odds ratio lower 

95% CI 

Odds ratio 

upper 95% CI Intervention 

XXL_VLDL_P MR Egger 42 0.077 1.193 0.986 1.443 Brisk Walking 

M_VLDL_CE Inverse variance weighted 38 0.033 1.163 1.013 1.336 Brisk Walking 

XXL_VLDL_PL Weighted median 45 0.285 1.104 0.921 1.325 Brisk Walking 

XXL_VLDL_PL Weighted mode 45 0.297 1.118 0.908 1.377 Brisk Walking 

XXL_VLDL_PL Simple mode 45 0.266 1.205 0.871 1.666 Brisk Walking 

XXL_VLDL_PL MR Egger 45 0.209 1.138 0.933 1.389 Brisk Walking 

Ala Inverse variance weighted 22 0.057 1.240 0.994 1.547 Lycopene 

SFA_pct Simple mode 20 0.717 0.916 0.573 1.464 Brisk Walking 

SFA_pct Weighted mode 20 0.880 0.968 0.637 1.470 Brisk Walking 

SFA_pct Weighted median 20 0.840 1.034 0.748 1.429 Brisk Walking 

Lactate Inverse variance weighted 6 0.086 1.488 0.945 2.343 Dietary advice 

SFA_pct MR Egger 20 0.728 0.852 0.351 2.067 Brisk Walking 
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Appendix C Table C 19: F-statistic and r-square measures for instruments of individual 6 extra metabolites from the dietary intervention arm 

(top 10% metabolites in the unadjusted ITT) 

 

Metabolite Total r2 
Number of 

SNPs 

Sample 

Size 
F statistic 

Total lipids in small HDL 0.0421592 37 115078 136.9 

Glucose 0.01125766 16 114867 81.7 

Phospholipids in small HDL 0.04218063 43 115078 117.8 

Triglycerides in medium HDL 0.04937673 41 115078 145.7 

Free cholesterol in small HDL 0.03781267 37 115078 122.2 

Cholesterol in small HDL 0.03808213 36 115078 126.5 
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Appendix C Table C 20: Mendelian Randomization results for Prostate Cancer survival in the PRACTICAL consortium of select metabolites 

(sensitivity analysis, metabolites taken forward from PrEvENT trial, top 10% effect sizes) 

 

Exposure (metabolic trait) Outcome Method Number of snps p-value Odds ratio Odds ratio lower 95% CI 

Glucose PCa mortality MR Egger 16 0.362 1.270 0.773 

Glucose PCa mortality Simple mode 16 0.830 0.943 0.559 

Glucose PCa mortality Inverse variance weighted 16 0.849 0.978 0.780 

Glucose PCa mortality Weighted median 16 0.731 1.054 0.781 

Glucose PCa mortality Weighted mode 16 0.544 1.103 0.808 

S_HDL_PL PCa mortality Inverse variance weighted 43 0.996 1.000 0.865 

S_HDL_PL PCa mortality Simple mode 43 0.821 1.033 0.780 

S_HDL_PL PCa mortality Weighted median 43 0.559 1.051 0.889 

S_HDL_PL PCa mortality Weighted mode 43 0.501 1.054 0.905 

S_HDL_PL PCa mortality MR Egger 43 0.536 1.088 0.835 

S_HDL_L PCa mortality Inverse variance weighted 37 0.675 1.028 0.903 

S_HDL_L PCa mortality Weighted median 37 0.501 1.059 0.896 
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S_HDL_L PCa mortality Weighted mode 37 0.461 1.063 0.905 

S_HDL_L PCa mortality MR Egger 37 0.986 1.002 0.791 

S_HDL_L PCa mortality Simple mode 37 0.482 1.100 0.846 

M_HDL_TG PCa mortality Inverse variance weighted 40 0.783 1.017 0.902 

M_HDL_TG PCa mortality MR Egger 40 0.817 1.024 0.839 

M_HDL_TG PCa mortality Weighted median 40 0.537 1.052 0.896 

M_HDL_TG PCa mortality Weighted mode 40 0.456 1.058 0.914 

M_HDL_TG PCa mortality Simple mode 40 0.463 1.120 0.830 

S_HDL_FC PCa mortality Inverse variance weighted 37 0.453 1.057 0.915 

S_HDL_FC PCa mortality Simple mode 37 0.604 1.070 0.830 

S_HDL_FC PCa mortality Weighted mode 37 0.496 1.070 0.882 

S_HDL_FC PCa mortality Weighted median 37 0.440 1.075 0.895 

S_HDL_FC PCa mortality MR Egger 37 0.819 1.034 0.776 

S_HDL_C PCa mortality Weighted median 36 0.729 1.033 0.860 

S_HDL_C PCa mortality Inverse variance weighted 36 0.548 1.043 0.910 

S_HDL_C PCa mortality Simple mode 36 0.706 1.051 0.812 

S_HDL_C PCa mortality Weighted mode 36 0.565 1.051 0.888 

S_HDL_C PCa mortality MR Egger 36 0.959 1.007 0.778 
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9.4. Appendix D 

Appendix D Table D 1:  Cox regression results for individual metabolites and PCa death in the minimally and fully adjusted model, cases only. 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

xxl_vldl_p 2093 1.381 1.064 1.793 0.015 Main PCAdeath 

xxl_vldl_l 2085 1.446 1.098 1.904 0.009 Main PCAdeath 

xxl_vldl_pl 2085 1.456 1.111 1.908 0.006 Main PCAdeath 

xxl_vldl_c 2087 1.383 1.038 1.844 0.027 Main PCAdeath 

xxl_vldl_ce 2088 1.302 0.967 1.754 0.082 Main PCAdeath 

xxl_vldl_fc 2086 1.446 1.101 1.898 0.008 Main PCAdeath 

xxl_vldl_tg 2086 1.445 1.101 1.896 0.008 Main PCAdeath 

xl_vldl_p 2089 1.401 1.062 1.849 0.017 Main PCAdeath 

xl_vldl_l 2088 1.412 1.068 1.867 0.015 Main PCAdeath 

xl_vldl_pl 2087 1.413 1.069 1.869 0.015 Main PCAdeath 

xl_vldl_c 2089 1.373 1.034 1.823 0.028 Main PCAdeath 

xl_vldl_ce 2088 1.357 1.016 1.813 0.039 Main PCAdeath 

xl_vldl_fc 2088 1.402 1.061 1.851 0.017 Main PCAdeath 

xl_vldl_tg 2088 1.420 1.075 1.876 0.014 Main PCAdeath 



 

 521 

Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

l_vldl_p 2089 1.391 1.041 1.859 0.026 Main PCAdeath 

l_vldl_l 2089 1.392 1.042 1.859 0.025 Main PCAdeath 

l_vldl_pl 2089 1.386 1.037 1.851 0.027 Main PCAdeath 

l_vldl_c 2088 1.376 1.025 1.846 0.033 Main PCAdeath 

l_vldl_ce 2088 1.339 0.989 1.812 0.059 Main PCAdeath 

l_vldl_fc 2089 1.396 1.050 1.857 0.022 Main PCAdeath 

l_vldl_tg 2089 1.399 1.048 1.866 0.022 Main PCAdeath 

m_vldl_p 2088 1.346 0.991 1.828 0.058 Main PCAdeath 

m_vldl_l 2088 1.340 0.985 1.821 0.062 Main PCAdeath 

m_vldl_pl 2089 1.324 0.976 1.798 0.071 Main PCAdeath 

m_vldl_c 2089 1.277 0.934 1.747 0.126 Main PCAdeath 

m_vldl_ce 2091 1.208 0.874 1.670 0.251 Main PCAdeath 

m_vldl_fc 2088 1.343 0.989 1.824 0.059 Main PCAdeath 

m_vldl_tg 2089 1.361 1.005 1.842 0.046 Main PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

s_vldl_p 2091 1.268 0.918 1.752 0.149 Main PCAdeath 

s_vldl_l 2092 1.258 0.910 1.739 0.164 Main PCAdeath 

s_vldl_pl 2092 1.295 0.941 1.782 0.113 Main PCAdeath 

s_vldl_c 2092 1.131 0.812 1.575 0.468 Main PCAdeath 

s_vldl_ce 2092 1.043 0.744 1.463 0.806 Main PCAdeath 

s_vldl_fc 2092 1.266 0.919 1.745 0.149 Main PCAdeath 

s_vldl_tg 2089 1.297 0.947 1.778 0.105 Main PCAdeath 

xs_vldl_p 2092 1.047 0.748 1.463 0.790 Main PCAdeath 

xs_vldl_l 2092 1.029 0.734 1.441 0.870 Main PCAdeath 

xs_vldl_pl 2093 0.898 0.634 1.273 0.546 Main PCAdeath 

xs_vldl_c 2093 1.015 0.721 1.429 0.932 Main PCAdeath 

xs_vldl_ce 2093 1.053 0.750 1.480 0.765 Main PCAdeath 

xs_vldl_fc 2092 0.935 0.662 1.321 0.705 Main PCAdeath 

xs_vldl_tg 2092 1.204 0.875 1.657 0.255 Main PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

idl_p 2093 0.898 0.633 1.272 0.544 Main PCAdeath 

idl_l 2093 0.880 0.620 1.248 0.473 Main PCAdeath 

idl_pl 2093 0.833 0.586 1.186 0.311 Main PCAdeath 

idl_c 2093 0.881 0.621 1.250 0.477 Main PCAdeath 

idl_ce 2093 0.920 0.650 1.303 0.641 Main PCAdeath 

idl_fc 2093 0.798 0.562 1.131 0.205 Main PCAdeath 

idl_tg 2092 1.085 0.784 1.500 0.624 Main PCAdeath 

l_ldl_p 2093 0.880 0.620 1.249 0.475 Main PCAdeath 

l_ldl_l 2093 0.868 0.611 1.232 0.428 Main PCAdeath 

l_ldl_pl 2093 0.877 0.617 1.245 0.462 Main PCAdeath 

l_ldl_c 2093 0.854 0.601 1.213 0.377 Main PCAdeath 

l_ldl_ce 2093 0.869 0.612 1.233 0.430 Main PCAdeath 

l_ldl_fc 2093 0.809 0.569 1.151 0.239 Main PCAdeath 

l_ldl_tg 2092 1.060 0.764 1.471 0.727 Main PCAdeath 



 

 524 

Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

m_ldl_p 2093 0.879 0.619 1.247 0.470 Main PCAdeath 

m_ldl_l 2093 0.874 0.616 1.241 0.453 Main PCAdeath 

m_ldl_pl 2093 1.000 0.710 1.409 0.999 Main PCAdeath 

m_ldl_c 2093 0.836 0.588 1.189 0.318 Main PCAdeath 

m_ldl_ce 2093 0.820 0.576 1.165 0.268 Main PCAdeath 

m_ldl_fc 2093 0.914 0.645 1.294 0.611 Main PCAdeath 

m_ldl_tg 2092 1.060 0.763 1.472 0.729 Main PCAdeath 

s_ldl_p 2093 0.917 0.648 1.298 0.626 Main PCAdeath 

s_ldl_l 2093 0.910 0.643 1.290 0.598 Main PCAdeath 

s_ldl_pl 2093 1.095 0.781 1.534 0.600 Main PCAdeath 

s_ldl_c 2093 0.840 0.591 1.193 0.329 Main PCAdeath 

s_ldl_ce 2093 0.814 0.573 1.157 0.252 Main PCAdeath 

s_ldl_fc 2093 0.962 0.681 1.358 0.825 Main PCAdeath 

s_ldl_tg 2092 1.228 0.895 1.686 0.204 Main PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

xl_hdl_p 2091 1.037 0.746 1.441 0.829 Main PCAdeath 

xl_hdl_l 2091 1.045 0.753 1.452 0.791 Main PCAdeath 

xl_hdl_pl 2091 0.926 0.657 1.306 0.661 Main PCAdeath 

xl_hdl_c 2091 1.168 0.847 1.611 0.342 Main PCAdeath 

xl_hdl_ce 2091 1.187 0.861 1.637 0.295 Main PCAdeath 

xl_hdl_fc 2091 1.128 0.817 1.557 0.464 Main PCAdeath 

xl_hdl_tg 2088 1.268 0.932 1.724 0.131 Main PCAdeath 

l_hdl_p 2092 0.928 0.654 1.316 0.675 Main PCAdeath 

l_hdl_l 2092 0.925 0.652 1.312 0.661 Main PCAdeath 

l_hdl_pl 2093 0.918 0.647 1.302 0.631 Main PCAdeath 

l_hdl_c 2092 0.929 0.655 1.318 0.680 Main PCAdeath 

l_hdl_ce 2092 0.939 0.663 1.331 0.725 Main PCAdeath 

l_hdl_fc 2092 0.898 0.631 1.278 0.549 Main PCAdeath 

l_hdl_tg 2091 0.984 0.703 1.377 0.925 Main PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

m_hdl_p 2093 1.141 0.819 1.590 0.436 Main PCAdeath 

m_hdl_l 2093 1.124 0.805 1.569 0.493 Main PCAdeath 

m_hdl_pl 2092 1.167 0.838 1.623 0.361 Main PCAdeath 

m_hdl_c 2093 1.053 0.749 1.481 0.765 Main PCAdeath 

m_hdl_ce 2093 1.056 0.751 1.484 0.754 Main PCAdeath 

m_hdl_fc 2093 1.046 0.743 1.472 0.798 Main PCAdeath 

m_hdl_tg 2092 1.306 0.945 1.805 0.106 Main PCAdeath 

s_hdl_p 2093 1.306 0.947 1.802 0.104 Main PCAdeath 

s_hdl_l 2093 1.268 0.916 1.755 0.152 Main PCAdeath 

s_hdl_pl 2093 1.454 1.071 1.974 0.016 Main PCAdeath 

s_hdl_c 2087 0.848 0.606 1.187 0.337 Main PCAdeath 

s_hdl_ce 2087 0.784 0.568 1.084 0.141 Main PCAdeath 

s_hdl_fc 2093 1.466 1.073 2.005 0.016 Main PCAdeath 

s_hdl_tg 2091 1.362 0.997 1.860 0.052 Main PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

vldl_d 2093 1.440 1.023 2.028 0.037 Main PCAdeath 

ldl_d 2093 0.886 0.631 1.245 0.485 Main PCAdeath 

hdl_d 2093 0.902 0.639 1.274 0.559 Main PCAdeath 

serum_c 2093 0.948 0.672 1.339 0.763 Main PCAdeath 

vldl_c 2093 1.248 0.904 1.721 0.178 Main PCAdeath 

remnant_c 2093 1.098 0.785 1.536 0.585 Main PCAdeath 

ldl_c 2093 0.843 0.593 1.199 0.342 Main PCAdeath 

hdl_c 2093 0.989 0.703 1.391 0.948 Main PCAdeath 

hdl2_c 2093 0.980 0.696 1.381 0.909 Main PCAdeath 

hdl3_c 2093 1.037 0.741 1.452 0.831 Main PCAdeath 

estc 2090 0.947 0.670 1.337 0.757 Main PCAdeath 

freec 2090 0.950 0.673 1.340 0.769 Main PCAdeath 

serum_tg 2093 1.334 0.990 1.796 0.058 Main PCAdeath 

vldl_tg 2093 1.351 1.008 1.812 0.044 Main PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

ldl_tg 2093 1.092 0.789 1.513 0.596 Main PCAdeath 

hdl_tg 2093 1.273 0.933 1.736 0.127 Main PCAdeath 

totpg 2090 1.197 0.859 1.667 0.288 Main PCAdeath 

tg_pg 2090 1.316 0.961 1.802 0.087 Main PCAdeath 

pc 2090 1.127 0.807 1.573 0.483 Main PCAdeath 

sm 2090 1.131 0.802 1.595 0.484 Main PCAdeath 

totcho 2090 1.121 0.803 1.566 0.503 Main PCAdeath 

apoa1 2093 1.078 0.772 1.505 0.659 Main PCAdeath 

apob 2092 1.091 0.780 1.527 0.610 Main PCAdeath 

apob_apoa1 2092 1.060 0.755 1.489 0.736 Main PCAdeath 

totfa 2089 1.279 0.931 1.757 0.129 Main PCAdeath 

unsat 2089 0.863 0.614 1.213 0.397 Main PCAdeath 

dha 2089 1.239 0.942 1.628 0.125 Main PCAdeath 

la 2089 0.970 0.690 1.363 0.861 Main PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

faw3 2089 1.298 0.983 1.714 0.066 Main PCAdeath 

faw6 2089 1.036 0.738 1.454 0.839 Main PCAdeath 

pufa 2089 1.099 0.786 1.536 0.583 Main PCAdeath 

mufa 2089 1.304 0.962 1.766 0.087 Main PCAdeath 

sfa 2089 1.337 0.986 1.814 0.062 Main PCAdeath 

dha_fa 2089 1.072 0.775 1.484 0.673 Main PCAdeath 

la_fa 2089 0.675 0.518 0.879 0.003 Main PCAdeath 

faw3_fa 2089 1.169 0.866 1.579 0.308 Main PCAdeath 

faw6_fa 2089 0.669 0.494 0.905 0.009 Main PCAdeath 

pufa_fa 2089 0.721 0.528 0.986 0.040 Main PCAdeath 

mufa_fa 2089 1.245 0.910 1.704 0.171 Main PCAdeath 

sfa_fa 2089 1.379 1.010 1.882 0.043 Main PCAdeath 

glc 2087 1.228 0.979 1.539 0.076 Main PCAdeath 

lac 2093 0.822 0.531 1.274 0.382 Main PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

pyr 2091 1.029 0.823 1.286 0.803 Main PCAdeath 

cit 2092 0.967 0.684 1.367 0.848 Main PCAdeath 

ala 2093 0.870 0.616 1.229 0.430 Main PCAdeath 

gln 2092 0.908 0.648 1.270 0.572 Main PCAdeath 

gly 2084 0.565 0.374 0.854 0.007 Main PCAdeath 

his 2088 1.028 0.745 1.417 0.867 Main PCAdeath 

ile 2092 1.563 1.177 2.075 0.002 Main PCAdeath 

leu 2093 1.532 1.157 2.028 0.003 Main PCAdeath 

val 2092 1.423 1.055 1.919 0.021 Main PCAdeath 

phe 2093 0.909 0.649 1.273 0.580 Main PCAdeath 

tyr 2088 1.259 0.933 1.698 0.131 Main PCAdeath 

ace 2093 1.171 1.044 1.313 0.007 Main PCAdeath 

acace 2093 1.274 1.061 1.529 0.009 Main PCAdeath 

bohbut 2041 1.183 0.955 1.465 0.125 Main PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

crea 2087 1.064 0.773 1.463 0.704 Main PCAdeath 

alb 2093 1.146 0.807 1.628 0.446 Main PCAdeath 

gp 2093 1.285 0.937 1.761 0.119 Main PCAdeath 

xxl_vldl_p 2039 1.207 0.885 1.648 0.235 FullyAdjusted PCAdeath 

xxl_vldl_l 2031 1.231 0.904 1.678 0.187 FullyAdjusted PCAdeath 

xxl_vldl_pl 2031 1.242 0.915 1.686 0.164 FullyAdjusted PCAdeath 

xxl_vldl_c 2033 1.194 0.858 1.663 0.294 FullyAdjusted PCAdeath 

xxl_vldl_ce 2034 1.145 0.808 1.622 0.446 FullyAdjusted PCAdeath 

xxl_vldl_fc 2032 1.230 0.903 1.675 0.189 FullyAdjusted PCAdeath 

xxl_vldl_tg 2032 1.233 0.908 1.675 0.179 FullyAdjusted PCAdeath 

xl_vldl_p 2035 1.215 0.882 1.674 0.234 FullyAdjusted PCAdeath 

xl_vldl_l 2034 1.217 0.883 1.677 0.231 FullyAdjusted PCAdeath 

xl_vldl_pl 2033 1.214 0.883 1.671 0.233 FullyAdjusted PCAdeath 

xl_vldl_c 2035 1.191 0.855 1.659 0.302 FullyAdjusted PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

xl_vldl_ce 2034 1.174 0.836 1.649 0.354 FullyAdjusted PCAdeath 

xl_vldl_fc 2034 1.209 0.877 1.667 0.246 FullyAdjusted PCAdeath 

xl_vldl_tg 2034 1.222 0.888 1.681 0.218 FullyAdjusted PCAdeath 

l_vldl_p 2035 1.212 0.867 1.695 0.260 FullyAdjusted PCAdeath 

l_vldl_l 2035 1.212 0.867 1.695 0.261 FullyAdjusted PCAdeath 

l_vldl_pl 2035 1.210 0.865 1.692 0.266 FullyAdjusted PCAdeath 

l_vldl_c 2034 1.191 0.846 1.677 0.315 FullyAdjusted PCAdeath 

l_vldl_ce 2034 1.158 0.812 1.651 0.418 FullyAdjusted PCAdeath 

l_vldl_fc 2035 1.214 0.873 1.690 0.250 FullyAdjusted PCAdeath 

l_vldl_tg 2035 1.219 0.874 1.700 0.243 FullyAdjusted PCAdeath 

m_vldl_p 2034 1.174 0.825 1.670 0.372 FullyAdjusted PCAdeath 

m_vldl_l 2034 1.168 0.821 1.664 0.388 FullyAdjusted PCAdeath 

m_vldl_pl 2035 1.160 0.815 1.650 0.410 FullyAdjusted PCAdeath 

m_vldl_c 2035 1.116 0.776 1.606 0.554 FullyAdjusted PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

m_vldl_ce 2037 1.058 0.726 1.541 0.770 FullyAdjusted PCAdeath 

m_vldl_fc 2034 1.173 0.825 1.669 0.375 FullyAdjusted PCAdeath 

m_vldl_tg 2035 1.190 0.840 1.687 0.328 FullyAdjusted PCAdeath 

s_vldl_p 2037 1.123 0.774 1.629 0.540 FullyAdjusted PCAdeath 

s_vldl_l 2038 1.120 0.771 1.629 0.552 FullyAdjusted PCAdeath 

s_vldl_pl 2038 1.147 0.790 1.664 0.471 FullyAdjusted PCAdeath 

s_vldl_c 2038 1.052 0.719 1.537 0.795 FullyAdjusted PCAdeath 

s_vldl_ce 2038 0.999 0.683 1.461 0.995 FullyAdjusted PCAdeath 

s_vldl_fc 2038 1.136 0.782 1.649 0.504 FullyAdjusted PCAdeath 

s_vldl_tg 2035 1.140 0.793 1.638 0.479 FullyAdjusted PCAdeath 

xs_vldl_p 2038 1.039 0.713 1.513 0.843 FullyAdjusted PCAdeath 

xs_vldl_l 2038 1.032 0.708 1.504 0.870 FullyAdjusted PCAdeath 

xs_vldl_pl 2039 0.969 0.665 1.413 0.872 FullyAdjusted PCAdeath 

xs_vldl_c 2039 1.028 0.703 1.504 0.887 FullyAdjusted PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

xs_vldl_ce 2039 1.043 0.712 1.526 0.830 FullyAdjusted PCAdeath 

xs_vldl_fc 2038 0.995 0.685 1.446 0.980 FullyAdjusted PCAdeath 

xs_vldl_tg 2038 1.106 0.766 1.598 0.591 FullyAdjusted PCAdeath 

idl_p 2039 0.944 0.643 1.385 0.768 FullyAdjusted PCAdeath 

idl_l 2039 0.933 0.636 1.370 0.724 FullyAdjusted PCAdeath 

idl_pl 2039 0.904 0.615 1.327 0.605 FullyAdjusted PCAdeath 

idl_c 2039 0.935 0.637 1.373 0.733 FullyAdjusted PCAdeath 

idl_ce 2039 0.954 0.650 1.401 0.811 FullyAdjusted PCAdeath 

idl_fc 2039 0.897 0.614 1.312 0.576 FullyAdjusted PCAdeath 

idl_tg 2038 1.067 0.738 1.541 0.731 FullyAdjusted PCAdeath 

l_ldl_p 2039 0.947 0.646 1.386 0.778 FullyAdjusted PCAdeath 

l_ldl_l 2039 0.938 0.640 1.373 0.740 FullyAdjusted PCAdeath 

l_ldl_pl 2039 0.937 0.639 1.376 0.741 FullyAdjusted PCAdeath 

l_ldl_c 2039 0.931 0.636 1.362 0.712 FullyAdjusted PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

l_ldl_ce 2039 0.938 0.642 1.373 0.743 FullyAdjusted PCAdeath 

l_ldl_fc 2039 0.905 0.618 1.324 0.606 FullyAdjusted PCAdeath 

l_ldl_tg 2038 1.055 0.729 1.527 0.775 FullyAdjusted PCAdeath 

m_ldl_p 2039 0.961 0.658 1.402 0.835 FullyAdjusted PCAdeath 

m_ldl_l 2039 0.958 0.657 1.398 0.824 FullyAdjusted PCAdeath 

m_ldl_pl 2039 1.027 0.702 1.503 0.891 FullyAdjusted PCAdeath 

m_ldl_c 2039 0.937 0.643 1.365 0.735 FullyAdjusted PCAdeath 

m_ldl_ce 2039 0.925 0.636 1.345 0.683 FullyAdjusted PCAdeath 

m_ldl_fc 2039 0.990 0.676 1.449 0.958 FullyAdjusted PCAdeath 

m_ldl_tg 2038 1.066 0.737 1.540 0.735 FullyAdjusted PCAdeath 

s_ldl_p 2039 0.996 0.683 1.453 0.983 FullyAdjusted PCAdeath 

s_ldl_l 2039 0.994 0.681 1.451 0.976 FullyAdjusted PCAdeath 

s_ldl_pl 2039 1.120 0.767 1.635 0.558 FullyAdjusted PCAdeath 

s_ldl_c 2039 0.947 0.651 1.379 0.778 FullyAdjusted PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

s_ldl_ce 2039 0.928 0.639 1.349 0.697 FullyAdjusted PCAdeath 

s_ldl_fc 2039 1.036 0.708 1.518 0.854 FullyAdjusted PCAdeath 

s_ldl_tg 2038 1.154 0.803 1.658 0.440 FullyAdjusted PCAdeath 

xl_hdl_p 2037 1.104 0.763 1.595 0.600 FullyAdjusted PCAdeath 

xl_hdl_l 2037 1.113 0.770 1.607 0.569 FullyAdjusted PCAdeath 

xl_hdl_pl 2037 1.013 0.696 1.476 0.946 FullyAdjusted PCAdeath 

xl_hdl_c 2037 1.223 0.850 1.760 0.279 FullyAdjusted PCAdeath 

xl_hdl_ce 2037 1.238 0.860 1.783 0.251 FullyAdjusted PCAdeath 

xl_hdl_fc 2037 1.185 0.824 1.704 0.361 FullyAdjusted PCAdeath 

xl_hdl_tg 2034 1.124 0.787 1.604 0.520 FullyAdjusted PCAdeath 

l_hdl_p 2038 0.992 0.684 1.438 0.965 FullyAdjusted PCAdeath 

l_hdl_l 2038 0.991 0.683 1.439 0.964 FullyAdjusted PCAdeath 

l_hdl_pl 2039 0.989 0.683 1.431 0.952 FullyAdjusted PCAdeath 

l_hdl_c 2038 1.001 0.688 1.454 0.998 FullyAdjusted PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

l_hdl_ce 2038 1.003 0.691 1.456 0.986 FullyAdjusted PCAdeath 

l_hdl_fc 2038 0.989 0.678 1.443 0.953 FullyAdjusted PCAdeath 

l_hdl_tg 2038 0.912 0.609 1.367 0.656 FullyAdjusted PCAdeath 

m_hdl_p 2039 1.079 0.772 1.506 0.657 FullyAdjusted PCAdeath 

m_hdl_l 2039 1.073 0.767 1.502 0.679 FullyAdjusted PCAdeath 

m_hdl_pl 2038 1.099 0.786 1.536 0.580 FullyAdjusted PCAdeath 

m_hdl_c 2039 1.048 0.744 1.477 0.788 FullyAdjusted PCAdeath 

m_hdl_ce 2039 1.048 0.744 1.475 0.790 FullyAdjusted PCAdeath 

m_hdl_fc 2039 1.051 0.742 1.488 0.780 FullyAdjusted PCAdeath 

m_hdl_tg 2038 1.085 0.751 1.568 0.665 FullyAdjusted PCAdeath 

s_hdl_p 2039 1.205 0.851 1.706 0.294 FullyAdjusted PCAdeath 

s_hdl_l 2039 1.189 0.837 1.689 0.333 FullyAdjusted PCAdeath 

s_hdl_pl 2039 1.222 0.879 1.698 0.232 FullyAdjusted PCAdeath 

s_hdl_c 2033 0.961 0.661 1.397 0.834 FullyAdjusted PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

s_hdl_ce 2033 0.909 0.633 1.307 0.608 FullyAdjusted PCAdeath 

s_hdl_fc 2039 1.277 0.909 1.794 0.159 FullyAdjusted PCAdeath 

s_hdl_tg 2037 1.166 0.809 1.681 0.410 FullyAdjusted PCAdeath 

vldl_d 2039 1.160 0.802 1.679 0.430 FullyAdjusted PCAdeath 

ldl_d 2039 0.877 0.601 1.280 0.495 FullyAdjusted PCAdeath 

hdl_d 2039 0.982 0.673 1.433 0.924 FullyAdjusted PCAdeath 

serum_c 2039 1.004 0.685 1.471 0.985 FullyAdjusted PCAdeath 

vldl_c 2039 1.120 0.770 1.630 0.553 FullyAdjusted PCAdeath 

remnant_c 2039 1.044 0.714 1.525 0.825 FullyAdjusted PCAdeath 

ldl_c 2039 0.934 0.640 1.363 0.723 FullyAdjusted PCAdeath 

hdl_c 2039 1.063 0.741 1.525 0.739 FullyAdjusted PCAdeath 

hdl2_c 2039 1.054 0.735 1.513 0.775 FullyAdjusted PCAdeath 

hdl3_c 2039 1.097 0.758 1.589 0.623 FullyAdjusted PCAdeath 

estc 2036 0.990 0.672 1.457 0.958 FullyAdjusted PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

freec 2036 0.990 0.672 1.457 0.958 FullyAdjusted PCAdeath 

serum_tg 2039 1.176 0.828 1.671 0.366 FullyAdjusted PCAdeath 

vldl_tg 2039 1.186 0.839 1.676 0.335 FullyAdjusted PCAdeath 

ldl_tg 2039 1.081 0.747 1.564 0.680 FullyAdjusted PCAdeath 

hdl_tg 2039 1.088 0.748 1.582 0.658 FullyAdjusted PCAdeath 

totpg 2036 1.109 0.768 1.603 0.581 FullyAdjusted PCAdeath 

tg_pg 2036 1.105 0.771 1.584 0.587 FullyAdjusted PCAdeath 

pc 2036 1.065 0.733 1.548 0.741 FullyAdjusted PCAdeath 

sm 2036 1.207 0.818 1.782 0.342 FullyAdjusted PCAdeath 

totcho 2036 1.096 0.750 1.602 0.636 FullyAdjusted PCAdeath 

apoa1 2039 1.103 0.770 1.578 0.593 FullyAdjusted PCAdeath 

apob 2038 1.055 0.725 1.535 0.781 FullyAdjusted PCAdeath 

apob_apoa1 2038 1.007 0.696 1.457 0.969 FullyAdjusted PCAdeath 

totfa 2035 1.138 0.790 1.638 0.488 FullyAdjusted PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

unsat 2035 0.960 0.669 1.377 0.825 FullyAdjusted PCAdeath 

dha 2035 1.103 0.777 1.564 0.584 FullyAdjusted PCAdeath 

la 2035 0.989 0.669 1.461 0.956 FullyAdjusted PCAdeath 

faw3 2035 1.136 0.797 1.620 0.480 FullyAdjusted PCAdeath 

faw6 2035 1.040 0.706 1.531 0.843 FullyAdjusted PCAdeath 

pufa 2035 1.065 0.726 1.563 0.748 FullyAdjusted PCAdeath 

mufa 2035 1.119 0.788 1.590 0.530 FullyAdjusted PCAdeath 

sfa 2035 1.178 0.828 1.676 0.364 FullyAdjusted PCAdeath 

dha_fa 2035 1.040 0.728 1.486 0.830 FullyAdjusted PCAdeath 

la_fa 2035 0.796 0.565 1.121 0.192 FullyAdjusted PCAdeath 

faw3_fa 2035 1.089 0.770 1.541 0.630 FullyAdjusted PCAdeath 

faw6_fa 2035 0.848 0.597 1.204 0.356 FullyAdjusted PCAdeath 

pufa_fa 2035 0.886 0.624 1.256 0.495 FullyAdjusted PCAdeath 

mufa_fa 2035 1.035 0.722 1.482 0.852 FullyAdjusted PCAdeath 



 

 541 

Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

sfa_fa 2035 1.273 0.883 1.837 0.196 FullyAdjusted PCAdeath 

glc 2033 1.166 0.881 1.544 0.281 FullyAdjusted PCAdeath 

lac 2039 0.815 0.502 1.323 0.407 FullyAdjusted PCAdeath 

pyr 2037 0.995 0.724 1.369 0.977 FullyAdjusted PCAdeath 

cit 2038 0.980 0.671 1.433 0.919 FullyAdjusted PCAdeath 

ala 2039 0.834 0.569 1.222 0.352 FullyAdjusted PCAdeath 

gln 2038 0.967 0.668 1.400 0.857 FullyAdjusted PCAdeath 

gly 2030 0.552 0.352 0.866 0.010 FullyAdjusted PCAdeath 

his 2034 0.826 0.585 1.164 0.275 FullyAdjusted PCAdeath 

ile 2038 1.128 0.803 1.585 0.488 FullyAdjusted PCAdeath 

leu 2039 1.112 0.795 1.557 0.535 FullyAdjusted PCAdeath 

val 2038 1.074 0.762 1.515 0.683 FullyAdjusted PCAdeath 

phe 2039 0.707 0.475 1.050 0.086 FullyAdjusted PCAdeath 

tyr 2034 0.954 0.663 1.372 0.798 FullyAdjusted PCAdeath 
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Metabolite N Hazard Ratio Lower 95% CI Upper 95% CI p-value Model Outcome 

ace 2039 1.197 1.042 1.374 0.011 FullyAdjusted PCAdeath 

acace 2039 1.253 1.024 1.533 0.029 FullyAdjusted PCAdeath 

bohbut 1988 1.206 0.975 1.491 0.085 FullyAdjusted PCAdeath 

crea 2033 1.260 0.900 1.763 0.179 FullyAdjusted PCAdeath 

alb 2039 1.075 0.737 1.570 0.706 FullyAdjusted PCAdeath 

gp 2039 1.225 0.852 1.762 0.274 FullyAdjusted PCAdeath 

 

 

 

 

 

 

Appendix D Table D 2: Cox regression results for individual metabolites and all-cause death in the minimally and fully adjusted model, case 

only. 
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Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

xxl_vldl_p_z 2093 1.159 1.034 1.301 0.012 Main allcausedeath 

xxl_vldl_l_z 2085 1.171 1.040 1.319 0.009 Main allcausedeath 

xxl_vldl_pl_z 2085 1.176 1.045 1.323 0.007 Main allcausedeath 

xxl_vldl_c_z 2087 1.133 1.003 1.280 0.045 Main allcausedeath 

xxl_vldl_ce_z 2088 1.083 0.957 1.225 0.208 Main allcausedeath 

xxl_vldl_fc_z 2086 1.177 1.046 1.324 0.007 Main allcausedeath 

xxl_vldl_tg_z 2086 1.171 1.041 1.317 0.009 Main allcausedeath 

xl_vldl_p_z 2089 1.131 1.004 1.274 0.043 Main allcausedeath 

xl_vldl_l_z 2088 1.139 1.010 1.284 0.033 Main allcausedeath 

xl_vldl_pl_z 2087 1.145 1.016 1.291 0.026 Main allcausedeath 

xl_vldl_c_z 2089 1.106 0.980 1.249 0.104 Main allcausedeath 

xl_vldl_ce_z 2088 1.087 0.961 1.230 0.183 Main allcausedeath 

xl_vldl_fc_z 2088 1.137 1.008 1.281 0.036 Main allcausedeath 

xl_vldl_tg_z 2088 1.145 1.016 1.291 0.026 Main allcausedeath 
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Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

l_vldl_p_z 2089 1.111 0.983 1.256 0.091 Main allcausedeath 

l_vldl_l_z 2089 1.111 0.982 1.255 0.094 Main allcausedeath 

l_vldl_pl_z 2089 1.111 0.983 1.255 0.092 Main allcausedeath 

l_vldl_c_z 2088 1.091 0.964 1.235 0.167 Main allcausedeath 

l_vldl_ce_z 2088 1.056 0.930 1.199 0.399 Main allcausedeath 

l_vldl_fc_z 2089 1.120 0.992 1.264 0.067 Main allcausedeath 

l_vldl_tg_z 2089 1.118 0.989 1.263 0.074 Main allcausedeath 

m_vldl_p_z 2088 1.059 0.933 1.202 0.375 Main allcausedeath 

m_vldl_l_z 2088 1.057 0.931 1.200 0.393 Main allcausedeath 

m_vldl_pl_z 2089 1.049 0.924 1.192 0.457 Main allcausedeath 

m_vldl_c_z 2089 1.024 0.901 1.165 0.714 Main allcausedeath 

m_vldl_ce_z 2091 0.987 0.865 1.126 0.845 Main allcausedeath 

m_vldl_fc_z 2088 1.065 0.938 1.208 0.331 Main allcausedeath 

m_vldl_tg_z 2089 1.070 0.943 1.214 0.296 Main allcausedeath 
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Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

s_vldl_p_z 2091 0.977 0.857 1.114 0.728 Main allcausedeath 

s_vldl_l_z 2092 0.990 0.869 1.129 0.882 Main allcausedeath 

s_vldl_pl_z 2092 1.002 0.880 1.141 0.975 Main allcausedeath 

s_vldl_c_z 2092 0.917 0.803 1.047 0.202 Main allcausedeath 

s_vldl_ce_z 2092 0.882 0.772 1.009 0.067 Main allcausedeath 

s_vldl_fc_z 2092 0.986 0.865 1.123 0.828 Main allcausedeath 

s_vldl_tg_z 2089 1.013 0.891 1.153 0.839 Main allcausedeath 

xs_vldl_p_z 2092 0.946 0.829 1.079 0.409 Main allcausedeath 

xs_vldl_l_z 2092 0.937 0.821 1.069 0.331 Main allcausedeath 

xs_vldl_pl_z 2093 0.892 0.780 1.019 0.093 Main allcausedeath 

xs_vldl_c_z 2093 0.934 0.818 1.067 0.315 Main allcausedeath 

xs_vldl_ce_z 2093 0.969 0.849 1.106 0.643 Main allcausedeath 

xs_vldl_fc_z 2092 0.867 0.758 0.990 0.036 Main allcausedeath 

xs_vldl_tg_z 2092 1.020 0.897 1.159 0.767 Main allcausedeath 



 

 546 

Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

idl_p_z 2093 0.925 0.810 1.056 0.249 Main allcausedeath 

idl_l_z 2093 0.917 0.803 1.048 0.202 Main allcausedeath 

idl_pl_z 2093 0.889 0.777 1.016 0.084 Main allcausedeath 

idl_c_z 2093 0.915 0.801 1.045 0.190 Main allcausedeath 

idl_ce_z 2093 0.936 0.819 1.069 0.326 Main allcausedeath 

idl_fc_z 2093 0.871 0.763 0.995 0.042 Main allcausedeath 

idl_tg_z 2092 1.049 0.925 1.190 0.460 Main allcausedeath 

l_ldl_p_z 2093 0.892 0.781 1.020 0.096 Main allcausedeath 

l_ldl_l_z 2093 0.886 0.775 1.013 0.076 Main allcausedeath 

l_ldl_pl_z 2093 0.892 0.780 1.020 0.096 Main allcausedeath 

l_ldl_c_z 2093 0.872 0.763 0.997 0.045 Main allcausedeath 

l_ldl_ce_z 2093 0.875 0.765 1.000 0.051 Main allcausedeath 

l_ldl_fc_z 2093 0.866 0.758 0.990 0.035 Main allcausedeath 

l_ldl_tg_z 2092 1.059 0.934 1.201 0.373 Main allcausedeath 



 

 547 

Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

m_ldl_p_z 2093 0.861 0.753 0.985 0.029 Main allcausedeath 

m_ldl_l_z 2093 0.856 0.748 0.979 0.023 Main allcausedeath 

m_ldl_pl_z 2093 0.922 0.807 1.054 0.235 Main allcausedeath 

m_ldl_c_z 2093 0.833 0.728 0.952 0.008 Main allcausedeath 

m_ldl_ce_z 2093 0.826 0.722 0.944 0.005 Main allcausedeath 

m_ldl_fc_z 2093 0.867 0.758 0.991 0.037 Main allcausedeath 

m_ldl_tg_z 2092 1.037 0.913 1.177 0.579 Main allcausedeath 

s_ldl_p_z 2093 0.859 0.751 0.983 0.027 Main allcausedeath 

s_ldl_l_z 2093 0.855 0.747 0.978 0.022 Main allcausedeath 

s_ldl_pl_z 2093 0.936 0.819 1.069 0.328 Main allcausedeath 

s_ldl_c_z 2093 0.825 0.721 0.943 0.005 Main allcausedeath 

s_ldl_ce_z 2093 0.818 0.716 0.935 0.003 Main allcausedeath 

s_ldl_fc_z 2093 0.858 0.750 0.981 0.025 Main allcausedeath 

s_ldl_tg_z 2092 1.055 0.929 1.198 0.410 Main allcausedeath 



 

 548 

Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

xl_hdl_p_z 2091 1.102 0.972 1.249 0.129 Main allcausedeath 

xl_hdl_l_z 2091 1.102 0.972 1.249 0.131 Main allcausedeath 

xl_hdl_pl_z 2091 1.088 0.959 1.234 0.190 Main allcausedeath 

xl_hdl_c_z 2091 1.095 0.965 1.244 0.159 Main allcausedeath 

xl_hdl_ce_z 2091 1.080 0.951 1.227 0.235 Main allcausedeath 

xl_hdl_fc_z 2091 1.131 0.998 1.282 0.053 Main allcausedeath 

xl_hdl_tg_z 2088 1.173 1.040 1.323 0.009 Main allcausedeath 

l_hdl_p_z 2092 1.129 0.996 1.281 0.058 Main allcausedeath 

l_hdl_l_z 2092 1.127 0.993 1.278 0.064 Main allcausedeath 

l_hdl_pl_z 2093 1.113 0.981 1.264 0.097 Main allcausedeath 

l_hdl_c_z 2092 1.124 0.992 1.275 0.067 Main allcausedeath 

l_hdl_ce_z 2092 1.134 1.000 1.284 0.049 Main allcausedeath 

l_hdl_fc_z 2092 1.094 0.963 1.242 0.167 Main allcausedeath 

l_hdl_tg_z 2091 1.135 1.004 1.283 0.044 Main allcausedeath 



 

 549 

Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

m_hdl_p_z 2093 1.170 1.030 1.329 0.016 Main allcausedeath 

m_hdl_l_z 2093 1.161 1.022 1.319 0.022 Main allcausedeath 

m_hdl_pl_z 2092 1.170 1.030 1.330 0.016 Main allcausedeath 

m_hdl_c_z 2093 1.115 0.979 1.270 0.100 Main allcausedeath 

m_hdl_ce_z 2093 1.117 0.981 1.272 0.094 Main allcausedeath 

m_hdl_fc_z 2093 1.107 0.972 1.261 0.127 Main allcausedeath 

m_hdl_tg_z 2092 1.149 1.012 1.305 0.032 Main allcausedeath 

s_hdl_p_z 2093 1.064 0.934 1.213 0.348 Main allcausedeath 

s_hdl_l_z 2093 1.046 0.918 1.192 0.500 Main allcausedeath 

s_hdl_pl_z 2093 1.231 1.088 1.394 0.001 Main allcausedeath 

s_hdl_c_z 2087 0.824 0.726 0.937 0.003 Main allcausedeath 

s_hdl_ce_z 2087 0.803 0.710 0.909 0.001 Main allcausedeath 

s_hdl_fc_z 2093 1.141 1.004 1.296 0.043 Main allcausedeath 

s_hdl_tg_z 2091 1.091 0.961 1.238 0.177 Main allcausedeath 



 

 550 

Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

vldl_d_z 2093 1.148 1.007 1.308 0.040 Main allcausedeath 

ldl_d_z 2093 1.257 1.110 1.422 0.000 Main allcausedeath 

hdl_d_z 2093 1.091 0.960 1.240 0.181 Main allcausedeath 

serum_c_z 2093 0.923 0.808 1.055 0.239 Main allcausedeath 

vldl_c_z 2093 1.013 0.889 1.155 0.842 Main allcausedeath 

remnant_c_z 2093 0.968 0.848 1.104 0.628 Main allcausedeath 

ldl_c_z 2093 0.849 0.743 0.971 0.017 Main allcausedeath 

hdl_c_z 2093 1.078 0.948 1.227 0.252 Main allcausedeath 

hdl2_c_z 2093 1.084 0.953 1.233 0.217 Main allcausedeath 

hdl3_c_z 2093 0.987 0.867 1.125 0.849 Main allcausedeath 

estc_z 2090 0.919 0.804 1.050 0.214 Main allcausedeath 

freec_z 2090 0.934 0.818 1.067 0.313 Main allcausedeath 

serum_tg_z 2093 1.106 0.976 1.253 0.114 Main allcausedeath 

vldl_tg_z 2093 1.102 0.972 1.249 0.130 Main allcausedeath 



 

 551 

Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

ldl_tg_z 2093 1.055 0.929 1.197 0.410 Main allcausedeath 

hdl_tg_z 2093 1.176 1.041 1.327 0.009 Main allcausedeath 

totpg_z 2090 1.079 0.948 1.228 0.252 Main allcausedeath 

tg_pg_z 2090 1.091 0.960 1.240 0.182 Main allcausedeath 

pc_z 2090 1.062 0.933 1.210 0.361 Main allcausedeath 

sm_z 2090 0.976 0.854 1.115 0.721 Main allcausedeath 

totcho_z 2090 1.065 0.935 1.213 0.344 Main allcausedeath 

apoa1_z 2093 1.098 0.965 1.249 0.155 Main allcausedeath 

apob_z 2092 0.959 0.840 1.094 0.532 Main allcausedeath 

apob_apoa1_z 2092 0.931 0.816 1.062 0.288 Main allcausedeath 

totfa_z 2089 1.055 0.928 1.200 0.411 Main allcausedeath 

unsat_z 2089 0.775 0.683 0.879 0.000 Main allcausedeath 

dha_z 2089 0.893 0.776 1.026 0.110 Main allcausedeath 

la_z 2089 0.917 0.804 1.048 0.203 Main allcausedeath 



 

 552 

Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

faw3_z 2089 0.888 0.773 1.020 0.092 Main allcausedeath 

faw6_z 2089 0.933 0.817 1.066 0.307 Main allcausedeath 

pufa_z 2089 0.920 0.805 1.051 0.220 Main allcausedeath 

mufa_z 2089 1.118 0.989 1.265 0.076 Main allcausedeath 

sfa_z 2089 1.097 0.967 1.244 0.149 Main allcausedeath 

dha_fa_z 2089 0.830 0.719 0.957 0.011 Main allcausedeath 

la_fa_z 2089 0.795 0.707 0.893 0.000 Main allcausedeath 

faw3_fa_z 2089 0.789 0.681 0.914 0.002 Main allcausedeath 

faw6_fa_z 2089 0.791 0.701 0.893 0.000 Main allcausedeath 

pufa_fa_z 2089 0.765 0.678 0.862 0.000 Main allcausedeath 

mufa_fa_z 2089 1.235 1.095 1.394 0.001 Main allcausedeath 

sfa_fa_z 2089 1.253 1.107 1.419 0.000 Main allcausedeath 

glc_z 2087 1.183 1.076 1.300 0.001 Main allcausedeath 

lac_z 2093 1.025 0.914 1.151 0.669 Main allcausedeath 



 

 553 

Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

pyr_z 2091 0.998 0.900 1.106 0.964 Main allcausedeath 

cit_z 2092 1.050 0.921 1.196 0.467 Main allcausedeath 

ala_z 2093 0.991 0.872 1.126 0.887 Main allcausedeath 

gln_z 2092 0.890 0.782 1.014 0.079 Main allcausedeath 

gly_z 2084 0.944 0.827 1.077 0.392 Main allcausedeath 

his_z 2088 0.997 0.879 1.131 0.960 Main allcausedeath 

ile_z 2092 1.059 0.932 1.204 0.377 Main allcausedeath 

leu_z 2093 1.057 0.932 1.200 0.387 Main allcausedeath 

val_z 2092 0.957 0.839 1.091 0.507 Main allcausedeath 

phe_z 2093 1.165 1.035 1.312 0.012 Main allcausedeath 

tyr_z 2088 1.058 0.934 1.199 0.373 Main allcausedeath 

ace_z 2093 1.127 1.063 1.196 0.000 Main allcausedeath 

acace_z 2093 1.162 1.053 1.283 0.003 Main allcausedeath 

bohbut_z 2041 1.086 0.973 1.211 0.140 Main allcausedeath 



 

 554 

Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

crea_z 2087 0.899 0.783 1.032 0.131 Main allcausedeath 

alb_z 2093 1.030 0.901 1.176 0.665 Main allcausedeath 

gp_z 2093 1.142 1.007 1.294 0.038 Main allcausedeath 

xxl_vldl_p_z 2039 1.132 1.002 1.279 0.047 FullyAdjusted allcausedeath 

xxl_vldl_l_z 2031 1.134 1.001 1.284 0.048 FullyAdjusted allcausedeath 

xxl_vldl_pl_z 2031 1.138 1.006 1.288 0.040 FullyAdjusted allcausedeath 

xxl_vldl_c_z 2033 1.106 0.972 1.257 0.125 FullyAdjusted allcausedeath 

xxl_vldl_ce_z 2034 1.066 0.936 1.214 0.335 FullyAdjusted allcausedeath 

xxl_vldl_fc_z 2032 1.137 1.004 1.287 0.043 FullyAdjusted allcausedeath 

xxl_vldl_tg_z 2032 1.133 1.001 1.283 0.048 FullyAdjusted allcausedeath 

xl_vldl_p_z 2035 1.095 0.965 1.241 0.158 FullyAdjusted allcausedeath 

xl_vldl_l_z 2034 1.102 0.971 1.251 0.131 FullyAdjusted allcausedeath 

xl_vldl_pl_z 2033 1.111 0.979 1.260 0.103 FullyAdjusted allcausedeath 

xl_vldl_c_z 2035 1.076 0.947 1.223 0.262 FullyAdjusted allcausedeath 



 

 555 

Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

xl_vldl_ce_z 2034 1.058 0.928 1.205 0.399 FullyAdjusted allcausedeath 

xl_vldl_fc_z 2034 1.105 0.974 1.254 0.120 FullyAdjusted allcausedeath 

xl_vldl_tg_z 2034 1.106 0.975 1.255 0.119 FullyAdjusted allcausedeath 

l_vldl_p_z 2035 1.077 0.946 1.225 0.263 FullyAdjusted allcausedeath 

l_vldl_l_z 2035 1.076 0.945 1.225 0.268 FullyAdjusted allcausedeath 

l_vldl_pl_z 2035 1.078 0.947 1.226 0.257 FullyAdjusted allcausedeath 

l_vldl_c_z 2034 1.060 0.930 1.208 0.382 FullyAdjusted allcausedeath 

l_vldl_ce_z 2034 1.030 0.901 1.177 0.669 FullyAdjusted allcausedeath 

l_vldl_fc_z 2035 1.085 0.955 1.233 0.212 FullyAdjusted allcausedeath 

l_vldl_tg_z 2035 1.081 0.951 1.230 0.234 FullyAdjusted allcausedeath 

m_vldl_p_z 2034 1.032 0.903 1.179 0.646 FullyAdjusted allcausedeath 

m_vldl_l_z 2034 1.030 0.902 1.178 0.660 FullyAdjusted allcausedeath 

m_vldl_pl_z 2035 1.026 0.897 1.173 0.708 FullyAdjusted allcausedeath 

m_vldl_c_z 2035 1.009 0.881 1.155 0.901 FullyAdjusted allcausedeath 



 

 556 

Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

m_vldl_ce_z 2037 0.981 0.854 1.127 0.787 FullyAdjusted allcausedeath 

m_vldl_fc_z 2034 1.038 0.909 1.186 0.583 FullyAdjusted allcausedeath 

m_vldl_tg_z 2035 1.038 0.909 1.186 0.578 FullyAdjusted allcausedeath 

s_vldl_p_z 2037 0.968 0.843 1.112 0.646 FullyAdjusted allcausedeath 

s_vldl_l_z 2038 0.987 0.860 1.132 0.850 FullyAdjusted allcausedeath 

s_vldl_pl_z 2038 0.997 0.869 1.143 0.966 FullyAdjusted allcausedeath 

s_vldl_c_z 2038 0.939 0.817 1.080 0.378 FullyAdjusted allcausedeath 

s_vldl_ce_z 2038 0.915 0.795 1.053 0.217 FullyAdjusted allcausedeath 

s_vldl_fc_z 2038 0.985 0.859 1.130 0.833 FullyAdjusted allcausedeath 

s_vldl_tg_z 2035 0.990 0.865 1.135 0.890 FullyAdjusted allcausedeath 

xs_vldl_p_z 2038 0.979 0.852 1.124 0.761 FullyAdjusted allcausedeath 

xs_vldl_l_z 2038 0.973 0.847 1.118 0.698 FullyAdjusted allcausedeath 

xs_vldl_pl_z 2039 0.937 0.815 1.078 0.362 FullyAdjusted allcausedeath 

xs_vldl_c_z 2039 0.980 0.852 1.127 0.778 FullyAdjusted allcausedeath 



 

 557 

Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

xs_vldl_ce_z 2039 1.014 0.882 1.166 0.841 FullyAdjusted allcausedeath 

xs_vldl_fc_z 2038 0.912 0.793 1.048 0.194 FullyAdjusted allcausedeath 

xs_vldl_tg_z 2038 1.012 0.884 1.158 0.866 FullyAdjusted allcausedeath 

idl_p_z 2039 0.970 0.843 1.116 0.673 FullyAdjusted allcausedeath 

idl_l_z 2039 0.964 0.838 1.110 0.613 FullyAdjusted allcausedeath 

idl_pl_z 2039 0.939 0.816 1.081 0.382 FullyAdjusted allcausedeath 

idl_c_z 2039 0.964 0.838 1.109 0.607 FullyAdjusted allcausedeath 

idl_ce_z 2039 0.982 0.854 1.130 0.799 FullyAdjusted allcausedeath 

idl_fc_z 2039 0.924 0.804 1.063 0.270 FullyAdjusted allcausedeath 

idl_tg_z 2038 1.053 0.922 1.202 0.448 FullyAdjusted allcausedeath 

l_ldl_p_z 2039 0.941 0.817 1.083 0.393 FullyAdjusted allcausedeath 

l_ldl_l_z 2039 0.935 0.812 1.076 0.348 FullyAdjusted allcausedeath 

l_ldl_pl_z 2039 0.942 0.818 1.084 0.403 FullyAdjusted allcausedeath 

l_ldl_c_z 2039 0.923 0.802 1.062 0.263 FullyAdjusted allcausedeath 



 

 558 

Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

l_ldl_ce_z 2039 0.925 0.803 1.064 0.275 FullyAdjusted allcausedeath 

l_ldl_fc_z 2039 0.919 0.798 1.057 0.237 FullyAdjusted allcausedeath 

l_ldl_tg_z 2038 1.070 0.937 1.221 0.319 FullyAdjusted allcausedeath 

m_ldl_p_z 2039 0.909 0.790 1.047 0.186 FullyAdjusted allcausedeath 

m_ldl_l_z 2039 0.905 0.786 1.042 0.163 FullyAdjusted allcausedeath 

m_ldl_pl_z 2039 0.962 0.836 1.107 0.591 FullyAdjusted allcausedeath 

m_ldl_c_z 2039 0.884 0.768 1.018 0.087 FullyAdjusted allcausedeath 

m_ldl_ce_z 2039 0.878 0.763 1.010 0.070 FullyAdjusted allcausedeath 

m_ldl_fc_z 2039 0.914 0.793 1.052 0.210 FullyAdjusted allcausedeath 

m_ldl_tg_z 2038 1.048 0.916 1.198 0.496 FullyAdjusted allcausedeath 

s_ldl_p_z 2039 0.906 0.787 1.043 0.170 FullyAdjusted allcausedeath 

s_ldl_l_z 2039 0.902 0.784 1.039 0.153 FullyAdjusted allcausedeath 

s_ldl_pl_z 2039 0.972 0.845 1.119 0.695 FullyAdjusted allcausedeath 

s_ldl_c_z 2039 0.876 0.762 1.008 0.065 FullyAdjusted allcausedeath 



 

 559 

Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

s_ldl_ce_z 2039 0.871 0.757 1.002 0.053 FullyAdjusted allcausedeath 

s_ldl_fc_z 2039 0.903 0.784 1.040 0.156 FullyAdjusted allcausedeath 

s_ldl_tg_z 2038 1.053 0.921 1.204 0.449 FullyAdjusted allcausedeath 

xl_hdl_p_z 2037 1.110 0.973 1.267 0.121 FullyAdjusted allcausedeath 

xl_hdl_l_z 2037 1.110 0.973 1.267 0.122 FullyAdjusted allcausedeath 

xl_hdl_pl_z 2037 1.096 0.960 1.252 0.175 FullyAdjusted allcausedeath 

xl_hdl_c_z 2037 1.104 0.966 1.263 0.146 FullyAdjusted allcausedeath 

xl_hdl_ce_z 2037 1.090 0.953 1.247 0.208 FullyAdjusted allcausedeath 

xl_hdl_fc_z 2037 1.136 0.995 1.296 0.058 FullyAdjusted allcausedeath 

xl_hdl_tg_z 2034 1.156 1.017 1.313 0.026 FullyAdjusted allcausedeath 

l_hdl_p_z 2038 1.140 1.000 1.300 0.050 FullyAdjusted allcausedeath 

l_hdl_l_z 2038 1.137 0.997 1.297 0.055 FullyAdjusted allcausedeath 

l_hdl_pl_z 2039 1.129 0.989 1.289 0.072 FullyAdjusted allcausedeath 

l_hdl_c_z 2038 1.131 0.992 1.290 0.066 FullyAdjusted allcausedeath 



 

 560 

Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

l_hdl_ce_z 2038 1.139 0.999 1.298 0.052 FullyAdjusted allcausedeath 

l_hdl_fc_z 2038 1.105 0.967 1.262 0.141 FullyAdjusted allcausedeath 

l_hdl_tg_z 2038 1.166 1.025 1.326 0.020 FullyAdjusted allcausedeath 

m_hdl_p_z 2039 1.174 1.030 1.339 0.017 FullyAdjusted allcausedeath 

m_hdl_l_z 2039 1.167 1.023 1.332 0.021 FullyAdjusted allcausedeath 

m_hdl_pl_z 2038 1.172 1.027 1.338 0.018 FullyAdjusted allcausedeath 

m_hdl_c_z 2039 1.125 0.984 1.287 0.084 FullyAdjusted allcausedeath 

m_hdl_ce_z 2039 1.126 0.985 1.287 0.083 FullyAdjusted allcausedeath 

m_hdl_fc_z 2039 1.124 0.983 1.286 0.089 FullyAdjusted allcausedeath 

m_hdl_tg_z 2038 1.134 0.993 1.296 0.064 FullyAdjusted allcausedeath 

s_hdl_p_z 2039 1.074 0.937 1.230 0.306 FullyAdjusted allcausedeath 

s_hdl_l_z 2039 1.059 0.924 1.214 0.412 FullyAdjusted allcausedeath 

s_hdl_pl_z 2039 1.202 1.056 1.368 0.005 FullyAdjusted allcausedeath 

s_hdl_c_z 2033 0.868 0.759 0.993 0.039 FullyAdjusted allcausedeath 



 

 561 

Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

s_hdl_ce_z 2033 0.848 0.743 0.966 0.013 FullyAdjusted allcausedeath 

s_hdl_fc_z 2039 1.125 0.984 1.286 0.084 FullyAdjusted allcausedeath 

s_hdl_tg_z 2037 1.056 0.924 1.208 0.424 FullyAdjusted allcausedeath 

vldl_d_z 2039 1.094 0.954 1.254 0.200 FullyAdjusted allcausedeath 

ldl_d_z 2039 1.253 1.099 1.428 0.001 FullyAdjusted allcausedeath 

hdl_d_z 2039 1.101 0.963 1.260 0.160 FullyAdjusted allcausedeath 

serum_c_z 2039 0.973 0.845 1.119 0.698 FullyAdjusted allcausedeath 

vldl_c_z 2039 1.019 0.888 1.169 0.790 FullyAdjusted allcausedeath 

remnant_c_z 2039 0.996 0.866 1.144 0.950 FullyAdjusted allcausedeath 

ldl_c_z 2039 0.900 0.782 1.037 0.144 FullyAdjusted allcausedeath 

hdl_c_z 2039 1.100 0.962 1.257 0.165 FullyAdjusted allcausedeath 

hdl2_c_z 2039 1.103 0.965 1.261 0.150 FullyAdjusted allcausedeath 

hdl3_c_z 2039 1.025 0.894 1.175 0.724 FullyAdjusted allcausedeath 

estc_z 2036 0.966 0.839 1.111 0.625 FullyAdjusted allcausedeath 
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Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

freec_z 2036 0.980 0.852 1.127 0.777 FullyAdjusted allcausedeath 

serum_tg_z 2039 1.081 0.947 1.234 0.246 FullyAdjusted allcausedeath 

vldl_tg_z 2039 1.074 0.941 1.226 0.292 FullyAdjusted allcausedeath 

ldl_tg_z 2039 1.065 0.932 1.217 0.356 FullyAdjusted allcausedeath 

hdl_tg_z 2039 1.159 1.019 1.319 0.025 FullyAdjusted allcausedeath 

totpg_z 2036 1.098 0.958 1.260 0.180 FullyAdjusted allcausedeath 

tg_pg_z 2036 1.050 0.917 1.201 0.480 FullyAdjusted allcausedeath 

pc_z 2036 1.082 0.943 1.241 0.260 FullyAdjusted allcausedeath 

sm_z 2036 1.029 0.893 1.186 0.690 FullyAdjusted allcausedeath 

totcho_z 2036 1.094 0.953 1.256 0.200 FullyAdjusted allcausedeath 

apoa1_z 2039 1.126 0.984 1.288 0.084 FullyAdjusted allcausedeath 

apob_z 2038 0.984 0.857 1.131 0.822 FullyAdjusted allcausedeath 

apob_apoa1_z 2038 0.946 0.824 1.086 0.429 FullyAdjusted allcausedeath 

totfa_z 2035 1.055 0.922 1.208 0.437 FullyAdjusted allcausedeath 
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Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

unsat_z 2035 0.814 0.712 0.929 0.002 FullyAdjusted allcausedeath 

dha_z 2035 0.890 0.768 1.030 0.119 FullyAdjusted allcausedeath 

la_z 2035 0.947 0.822 1.090 0.447 FullyAdjusted allcausedeath 

faw3_z 2035 0.884 0.764 1.023 0.098 FullyAdjusted allcausedeath 

faw6_z 2035 0.965 0.838 1.111 0.621 FullyAdjusted allcausedeath 

pufa_z 2035 0.946 0.822 1.090 0.442 FullyAdjusted allcausedeath 

mufa_z 2035 1.101 0.967 1.254 0.146 FullyAdjusted allcausedeath 

sfa_z 2035 1.087 0.952 1.241 0.216 FullyAdjusted allcausedeath 

dha_fa_z 2035 0.828 0.713 0.962 0.014 FullyAdjusted allcausedeath 

la_fa_z 2035 0.833 0.734 0.945 0.005 FullyAdjusted allcausedeath 

faw3_fa_z 2035 0.787 0.675 0.919 0.002 FullyAdjusted allcausedeath 

faw6_fa_z 2035 0.840 0.738 0.956 0.008 FullyAdjusted allcausedeath 

pufa_fa_z 2035 0.807 0.711 0.916 0.001 FullyAdjusted allcausedeath 

mufa_fa_z 2035 1.185 1.043 1.347 0.009 FullyAdjusted allcausedeath 
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Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

sfa_fa_z 2035 1.199 1.049 1.370 0.008 FullyAdjusted allcausedeath 

glc_z 2033 1.126 1.009 1.256 0.034 FullyAdjusted allcausedeath 

lac_z 2039 1.024 0.908 1.154 0.704 FullyAdjusted allcausedeath 

pyr_z 2037 0.976 0.858 1.110 0.710 FullyAdjusted allcausedeath 

cit_z 2038 1.039 0.904 1.193 0.593 FullyAdjusted allcausedeath 

ala_z 2039 1.001 0.876 1.144 0.990 FullyAdjusted allcausedeath 

gln_z 2038 0.923 0.805 1.058 0.251 FullyAdjusted allcausedeath 

gly_z 2030 0.965 0.841 1.106 0.605 FullyAdjusted allcausedeath 

his_z 2034 0.962 0.843 1.098 0.568 FullyAdjusted allcausedeath 

ile_z 2038 0.985 0.860 1.129 0.828 FullyAdjusted allcausedeath 

leu_z 2039 0.999 0.874 1.142 0.987 FullyAdjusted allcausedeath 

val_z 2038 0.924 0.805 1.059 0.255 FullyAdjusted allcausedeath 

phe_z 2039 1.130 0.995 1.284 0.060 FullyAdjusted allcausedeath 

tyr_z 2034 1.003 0.877 1.147 0.963 FullyAdjusted allcausedeath 
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Metabolite N 
Hazard 

Ratio 

Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

ace_z 2039 1.127 1.057 1.202 0.000 FullyAdjusted allcausedeath 

acace_z 2039 1.157 1.043 1.284 0.006 FullyAdjusted allcausedeath 

bohbut_z 1988 1.104 0.990 1.231 0.075 FullyAdjusted allcausedeath 

crea_z 2033 0.927 0.803 1.070 0.301 FullyAdjusted allcausedeath 

alb_z 2039 1.043 0.907 1.199 0.553 FullyAdjusted allcausedeath 

gp_z 2039 1.121 0.982 1.281 0.092 FullyAdjusted allcausedeath 
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Appendix D Table D 3: Cox regression results for PCa-mRS and All-cause mRS, for all-cause and PCa specific mortality, in the minimally and 

fully adjusted regression models, cases only. 

 

Metabolomic model Outcome Regression model Hazard ratio Lower 95%CI Upper 95% CI p-value 

PCa-mRS PCa death Main* 1.16 0.83 1.61 0.38 

PCa-mRS PCa death Fully adjusted** 1.32 0.91 1.9 0.12 

PCa-mRS 
All-cause 

death 
Main* 1.17 1.02 1.33 0.015 

PCa-mRS 
All-cause 

death 
Fully adjusted** 1.14 0.99 1.31 0.063 

All-cause mRS PCa death Main* 0.95 0.67 1.4 0.14 

All-cause mRS PCa death Fully adjusted** 1.03 0.7 1.51 0.88 

All-cause mRS 
All-cause 

death 
Main* 1.34 1.19 1.51 <0.0001 

All-cause mRS 
All-cause 

death 
Fully adjusted** 1.29 1.13 1.47 <0.0001 

*Main regression: adjusted for age and centre  

**Fully Adjusted regression: adjusted for age, centre, PSA at baseline, stage, Gleason score 
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Appendix D Table D 4: Correlation between individual metabolites and PCa mRS and all-cause mRS in the ProtecT trial, cases only. 

 

 

 

 

Metabolite vldl_size pufa_pct lactate ile acetoacetate mufa_pct albumin apob_by_apoa1 clinical_ldl_c total_tg creatinine glucose sfa_pct glyca his leu phe dha ala gly tyr xxl_vldl_l s_hdl_l val Nightingale score Deleen score

vldl_size 1.00

pufa_pct -0.86 1.00

lactate 0.13 -0.11 1.00

ile 0.65 -0.53 0.19 1.00

acetoacetate 0.21 -0.22 0.01 0.20 1.00

mufa_pct 0.86 -0.89 0.08 0.50 0.23 1.00

albumin 0.01 0.02 0.03 0.00 0.12 0.05 1.00

apob_by_apoa1 0.50 -0.29 0.16 0.43 0.03 0.43 0.01 1.00

clinical_ldl_c -0.25 0.42 0.09 -0.04 -0.13 -0.29 0.09 0.60 1.00

total_tg 0.88 -0.73 0.15 0.65 0.18 0.81 0.10 0.77 0.14 1.00

creatinine -0.02 0.07 0.01 0.12 0.04 -0.02 0.03 0.07 0.07 0.03 1.00

glucose 0.16 -0.15 0.04 0.29 -0.01 0.11 -0.07 -0.03 -0.16 0.09 0.02 1.00

sfa_pct 0.36 -0.60 0.10 0.25 0.09 0.17 -0.13 -0.11 -0.37 0.16 -0.12 0.12 1.00

glyca 0.65 -0.50 0.16 0.49 0.15 0.62 0.16 0.58 0.07 0.73 0.04 0.09 0.00 1.00

his 0.09 -0.05 0.10 0.32 0.03 0.02 -0.05 0.07 0.03 0.09 0.07 0.09 0.07 0.01 1.00

leu 0.52 -0.43 0.20 0.94 0.14 0.39 0.02 0.33 -0.03 0.52 0.11 0.29 0.25 0.39 0.33 1.00

phe 0.18 -0.19 0.23 0.47 -0.04 0.19 -0.06 0.16 -0.01 0.20 0.16 0.23 0.07 0.35 0.24 0.54 1.00

dha 0.02 0.17 0.09 0.19 -0.01 -0.02 0.22 0.38 0.47 0.31 0.08 -0.03 -0.34 0.27 0.05 0.17 0.03 1.00

ala 0.24 -0.17 0.42 0.41 -0.21 0.14 -0.01 0.16 0.03 0.25 0.12 0.25 0.11 0.18 0.30 0.41 0.35 0.12 1.00

gly -0.19 0.18 0.16 -0.05 -0.19 -0.16 -0.07 -0.04 0.08 -0.14 0.20 -0.04 -0.12 -0.03 0.15 -0.02 0.21 -0.06 0.30 1.00

tyr 0.22 -0.20 0.15 0.56 0.00 0.13 -0.10 0.04 -0.08 0.16 0.06 0.25 0.21 0.08 0.33 0.60 0.53 0.00 0.41 0.02 1.00

xxl_vldl_l 0.88 -0.78 0.14 0.67 0.20 0.75 0.02 0.62 0.00 0.91 -0.06 0.13 0.35 0.67 0.10 0.55 0.17 0.16 0.24 -0.17 0.20 1.00

s_hdl_l 0.02 -0.08 -0.02 -0.04 0.12 0.13 0.43 -0.16 0.04 0.05 -0.01 0.02 -0.05 0.03 -0.05 0.00 -0.08 0.15 -0.01 -0.16 -0.04 -0.03 1.00

val 0.25 -0.17 0.14 0.78 0.11 0.13 0.04 0.19 0.00 0.25 0.16 0.26 0.14 0.22 0.31 0.85 0.52 0.15 0.36 -0.02 0.59 0.23 -0.01 1.00

Nightingale score 0.00 -0.09 0.09 0.05 -0.08 -0.15 -0.39 -0.32 -0.37 -0.18 0.13 0.31 0.45 0.18 -0.24 0.05 0.27 -0.24 0.18 0.24 0.23 -0.02 -0.20 0.08 1.00

Deleen score 0.19 -0.29 0.22 0.07 0.13 0.29 -0.38 0.12 -0.23 0.15 0.03 0.35 0.11 0.47 -0.19 -0.03 0.40 -0.17 0.05 0.12 0.02 0.15 -0.39 -0.11 0.58 1.00
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Appendix D Table D 5: Cox regression results for individual metabolites and all-cause death in the minimally adjusted model, in controls and 

pooled 

 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

xxl_vldl_p 2167 0.920 0.796 1.062 0.254 Controls allcausedeath 

xxl_vldl_l 2153 0.921 0.801 1.059 0.247 Controls allcausedeath 

xxl_vldl_pl 2153 0.920 0.800 1.057 0.239 Controls allcausedeath 

xxl_vldl_c 2157 0.956 0.833 1.096 0.515 Controls allcausedeath 

xxl_vldl_ce 2160 0.957 0.835 1.097 0.530 Controls allcausedeath 

xxl_vldl_fc 2154 0.926 0.806 1.064 0.280 Controls allcausedeath 

xxl_vldl_tg 2152 0.917 0.798 1.055 0.226 Controls allcausedeath 

xl_vldl_p 2155 0.912 0.793 1.050 0.200 Controls allcausedeath 

xl_vldl_l 2155 0.913 0.794 1.051 0.205 Controls allcausedeath 
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Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

xl_vldl_pl 2154 0.922 0.802 1.060 0.254 Controls allcausedeath 

xl_vldl_c 2158 0.940 0.819 1.079 0.379 Controls allcausedeath 

xl_vldl_ce 2160 0.935 0.814 1.073 0.339 Controls allcausedeath 

xl_vldl_fc 2156 0.922 0.802 1.061 0.258 Controls allcausedeath 

xl_vldl_tg 2155 0.909 0.790 1.046 0.183 Controls allcausedeath 

l_vldl_p 2162 0.921 0.801 1.059 0.247 Controls allcausedeath 

l_vldl_l 2161 0.922 0.802 1.060 0.253 Controls allcausedeath 

l_vldl_pl 2161 0.926 0.805 1.064 0.276 Controls allcausedeath 

l_vldl_c 2161 0.929 0.809 1.067 0.298 Controls allcausedeath 

l_vldl_ce 2162 0.931 0.810 1.070 0.314 Controls allcausedeath 

l_vldl_fc 2159 0.905 0.786 1.042 0.166 Controls allcausedeath 

l_vldl_tg 2160 0.895 0.777 1.032 0.127 Controls allcausedeath 

m_vldl_p 2163 0.908 0.789 1.045 0.179 Controls allcausedeath 

m_vldl_l 2163 0.910 0.791 1.047 0.189 Controls allcausedeath 
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Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

m_vldl_pl 2163 0.910 0.791 1.048 0.191 Controls allcausedeath 

m_vldl_c 2165 0.929 0.808 1.069 0.304 Controls allcausedeath 

m_vldl_ce 2166 0.948 0.824 1.090 0.453 Controls allcausedeath 

m_vldl_fc 2165 0.913 0.794 1.050 0.204 Controls allcausedeath 

m_vldl_tg 2163 0.902 0.783 1.038 0.150 Controls allcausedeath 

s_vldl_p 2167 0.908 0.789 1.046 0.182 Controls allcausedeath 

s_vldl_l 2167 0.910 0.790 1.048 0.190 Controls allcausedeath 

s_vldl_pl 2167 0.914 0.794 1.052 0.208 Controls allcausedeath 

s_vldl_c 2167 0.939 0.817 1.080 0.379 Controls allcausedeath 

s_vldl_ce 2167 0.958 0.834 1.100 0.541 Controls allcausedeath 

s_vldl_fc 2167 0.917 0.796 1.056 0.228 Controls allcausedeath 

s_vldl_tg 2165 0.903 0.785 1.039 0.154 Controls allcausedeath 

xs_vldl_p 2167 0.980 0.856 1.123 0.776 Controls allcausedeath 

xs_vldl_l 2167 0.984 0.859 1.127 0.814 Controls allcausedeath 
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Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

xs_vldl_pl 2167 0.982 0.857 1.124 0.788 Controls allcausedeath 

xs_vldl_c 2166 0.985 0.859 1.129 0.829 Controls allcausedeath 

xs_vldl_ce 2166 1.001 0.874 1.147 0.987 Controls allcausedeath 

xs_vldl_fc 2167 0.973 0.850 1.113 0.686 Controls allcausedeath 

xs_vldl_tg 2167 0.950 0.827 1.092 0.472 Controls allcausedeath 

idl_p 2166 0.986 0.860 1.130 0.837 Controls allcausedeath 

idl_l 2166 0.985 0.860 1.129 0.829 Controls allcausedeath 

idl_pl 2167 0.987 0.862 1.130 0.849 Controls allcausedeath 

idl_c 2167 0.980 0.855 1.123 0.774 Controls allcausedeath 

idl_ce 2167 0.975 0.850 1.118 0.714 Controls allcausedeath 

idl_fc 2167 0.994 0.869 1.138 0.931 Controls allcausedeath 

idl_tg 2164 1.003 0.875 1.149 0.970 Controls allcausedeath 

l_ldl_p 2167 0.956 0.834 1.097 0.521 Controls allcausedeath 

l_ldl_l 2167 0.955 0.833 1.095 0.511 Controls allcausedeath 
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Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

l_ldl_pl 2167 0.955 0.832 1.095 0.507 Controls allcausedeath 

l_ldl_c 2167 0.948 0.826 1.087 0.445 Controls allcausedeath 

l_ldl_ce 2167 0.940 0.819 1.079 0.378 Controls allcausedeath 

l_ldl_fc 2167 0.971 0.848 1.112 0.670 Controls allcausedeath 

l_ldl_tg 2165 1.012 0.885 1.158 0.859 Controls allcausedeath 

m_ldl_p 2167 0.918 0.799 1.054 0.223 Controls allcausedeath 

m_ldl_l 2167 0.914 0.796 1.049 0.202 Controls allcausedeath 

m_ldl_pl 2167 0.913 0.794 1.050 0.202 Controls allcausedeath 

m_ldl_c 2167 0.909 0.792 1.043 0.173 Controls allcausedeath 

m_ldl_ce 2167 0.911 0.794 1.046 0.185 Controls allcausedeath 

m_ldl_fc 2167 0.897 0.781 1.031 0.125 Controls allcausedeath 

m_ldl_tg 2166 1.017 0.890 1.162 0.804 Controls allcausedeath 

s_ldl_p 2167 0.892 0.776 1.025 0.106 Controls allcausedeath 

s_ldl_l 2167 0.890 0.774 1.022 0.100 Controls allcausedeath 
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Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

s_ldl_pl 2167 0.874 0.760 1.006 0.060 Controls allcausedeath 

s_ldl_c 2167 0.897 0.781 1.029 0.120 Controls allcausedeath 

s_ldl_ce 2167 0.904 0.788 1.037 0.151 Controls allcausedeath 

s_ldl_fc 2167 0.864 0.752 0.992 0.039 Controls allcausedeath 

s_ldl_tg 2167 0.957 0.833 1.099 0.537 Controls allcausedeath 

xl_hdl_p 2165 1.061 0.931 1.209 0.375 Controls allcausedeath 

xl_hdl_l 2165 1.054 0.924 1.202 0.432 Controls allcausedeath 

xl_hdl_pl 2165 1.127 0.993 1.281 0.065 Controls allcausedeath 

xl_hdl_c 2165 0.961 0.839 1.101 0.569 Controls allcausedeath 

xl_hdl_ce 2165 0.935 0.815 1.072 0.333 Controls allcausedeath 

xl_hdl_fc 2165 1.029 0.901 1.174 0.678 Controls allcausedeath 

xl_hdl_tg 2161 1.054 0.925 1.201 0.427 Controls allcausedeath 

l_hdl_p 2167 1.163 1.024 1.321 0.020 Controls allcausedeath 

l_hdl_l 2167 1.159 1.020 1.316 0.023 Controls allcausedeath 
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Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

l_hdl_pl 2167 1.157 1.015 1.317 0.028 Controls allcausedeath 

l_hdl_c 2167 1.147 1.010 1.302 0.035 Controls allcausedeath 

l_hdl_ce 2167 1.151 1.014 1.306 0.030 Controls allcausedeath 

l_hdl_fc 2167 1.134 0.998 1.289 0.053 Controls allcausedeath 

l_hdl_tg 2163 1.240 1.093 1.405 0.001 Controls allcausedeath 

m_hdl_p 2167 1.089 0.950 1.248 0.222 Controls allcausedeath 

m_hdl_l 2167 1.086 0.947 1.246 0.235 Controls allcausedeath 

m_hdl_pl 2167 1.103 0.963 1.263 0.156 Controls allcausedeath 

m_hdl_c 2167 1.060 0.923 1.217 0.411 Controls allcausedeath 

m_hdl_ce 2167 1.053 0.917 1.209 0.467 Controls allcausedeath 

m_hdl_fc 2167 1.083 0.944 1.243 0.255 Controls allcausedeath 

m_hdl_tg 2166 1.080 0.946 1.234 0.256 Controls allcausedeath 

s_hdl_p 2167 0.933 0.812 1.073 0.332 Controls allcausedeath 

s_hdl_l 2167 0.927 0.806 1.066 0.287 Controls allcausedeath 
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Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

s_hdl_pl 2167 0.996 0.870 1.140 0.948 Controls allcausedeath 

s_hdl_c 2161 0.907 0.795 1.035 0.149 Controls allcausedeath 

s_hdl_ce 2159 0.914 0.801 1.042 0.176 Controls allcausedeath 

s_hdl_fc 2167 0.930 0.810 1.068 0.303 Controls allcausedeath 

s_hdl_tg 2167 0.972 0.848 1.114 0.683 Controls allcausedeath 

vldl_d 2166 0.905 0.789 1.038 0.155 Controls allcausedeath 

ldl_d 2166 1.603 1.413 1.819 0.000 Controls allcausedeath 

hdl_d 2166 1.147 1.010 1.303 0.035 Controls allcausedeath 

serum_c 2166 0.954 0.832 1.093 0.497 Controls allcausedeath 

vldl_c 2166 0.933 0.811 1.075 0.338 Controls allcausedeath 

remnant_c 2166 0.945 0.822 1.086 0.422 Controls allcausedeath 

ldl_c 2166 0.924 0.805 1.061 0.261 Controls allcausedeath 

hdl_c 2166 1.064 0.930 1.217 0.368 Controls allcausedeath 

hdl2_c 2166 1.074 0.939 1.229 0.296 Controls allcausedeath 
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Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

hdl3_c 2166 0.949 0.828 1.087 0.448 Controls allcausedeath 

estc 2165 0.951 0.829 1.090 0.467 Controls allcausedeath 

freec 2165 0.961 0.839 1.100 0.565 Controls allcausedeath 

serum_tg 2166 0.921 0.798 1.062 0.258 Controls allcausedeath 

vldl_tg 2166 0.901 0.780 1.042 0.159 Controls allcausedeath 

ldl_tg 2166 1.025 0.897 1.171 0.719 Controls allcausedeath 

hdl_tg 2166 1.093 0.958 1.246 0.185 Controls allcausedeath 

totpg 2165 0.999 0.872 1.143 0.983 Controls allcausedeath 

tg_pg 2164 0.895 0.776 1.031 0.124 Controls allcausedeath 

pc 2165 1.016 0.887 1.163 0.822 Controls allcausedeath 

sm 2165 0.977 0.853 1.117 0.730 Controls allcausedeath 

totcho 2165 1.044 0.913 1.193 0.532 Controls allcausedeath 

apoa1 2166 1.027 0.897 1.177 0.697 Controls allcausedeath 

apob 2166 0.909 0.789 1.046 0.184 Controls allcausedeath 
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Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

apob_apoa1 2166 0.905 0.787 1.041 0.162 Controls allcausedeath 

totfa 2162 0.921 0.800 1.061 0.254 Controls allcausedeath 

unsat 2162 0.931 0.814 1.064 0.295 Controls allcausedeath 

dha 2162 0.930 0.808 1.070 0.311 Controls allcausedeath 

la 2162 0.883 0.766 1.017 0.083 Controls allcausedeath 

faw3 2162 0.865 0.748 1.001 0.052 Controls allcausedeath 

faw6 2162 0.895 0.778 1.030 0.121 Controls allcausedeath 

pufa 2162 0.883 0.766 1.017 0.084 Controls allcausedeath 

mufa 2162 0.955 0.830 1.099 0.519 Controls allcausedeath 

sfa 2162 0.934 0.811 1.075 0.339 Controls allcausedeath 

dha_fa 2162 0.970 0.848 1.108 0.650 Controls allcausedeath 

la_fa 2162 0.927 0.811 1.060 0.268 Controls allcausedeath 

faw3_fa 2162 0.868 0.751 1.004 0.056 Controls allcausedeath 

faw6_fa 2162 0.957 0.837 1.094 0.519 Controls allcausedeath 
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Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

pufa_fa 2162 0.921 0.806 1.052 0.223 Controls allcausedeath 

mufa_fa 2162 1.074 0.937 1.230 0.305 Controls allcausedeath 

sfa_fa 2162 1.065 0.927 1.224 0.375 Controls allcausedeath 

glc 2158 1.110 1.001 1.231 0.048 Controls allcausedeath 

lac 2165 1.127 1.022 1.243 0.016 Controls allcausedeath 

pyr 2163 1.073 0.969 1.188 0.175 Controls allcausedeath 

cit 2164 0.978 0.850 1.126 0.755 Controls allcausedeath 

ala 2165 0.982 0.856 1.126 0.793 Controls allcausedeath 

gln 2164 0.909 0.792 1.043 0.173 Controls allcausedeath 

gly 2158 1.103 0.971 1.253 0.133 Controls allcausedeath 

his 2158 1.026 0.903 1.166 0.690 Controls allcausedeath 

ile 2165 0.969 0.844 1.112 0.651 Controls allcausedeath 

leu 2165 0.937 0.815 1.076 0.357 Controls allcausedeath 

val 2164 0.956 0.832 1.099 0.529 Controls allcausedeath 



 

 579 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

phe 2165 1.219 1.076 1.381 0.002 Controls allcausedeath 

tyr 2158 1.017 0.891 1.161 0.799 Controls allcausedeath 

ace 2165 1.085 1.019 1.155 0.010 Controls allcausedeath 

acace 2165 1.026 0.898 1.172 0.709 Controls allcausedeath 

bohbut 2095 0.965 0.827 1.125 0.647 Controls allcausedeath 

crea 2158 1.003 0.873 1.153 0.967 Controls allcausedeath 

alb 2166 0.963 0.838 1.107 0.596 Controls allcausedeath 

gp 2165 1.056 0.923 1.207 0.427 Controls allcausedeath 

xxl_vldl_p 2093 1.178 1.037 1.337 0.012 Cases allcausedeath 

xxl_vldl_l 2085 1.187 1.043 1.350 0.009 Cases allcausedeath 

xxl_vldl_pl 2085 1.193 1.049 1.356 0.007 Cases allcausedeath 

xxl_vldl_c 2087 1.143 1.003 1.303 0.045 Cases allcausedeath 

xxl_vldl_ce 2088 1.088 0.954 1.240 0.208 Cases allcausedeath 

xxl_vldl_fc 2086 1.193 1.050 1.356 0.007 Cases allcausedeath 



 

 580 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

xxl_vldl_tg 2086 1.186 1.044 1.347 0.009 Cases allcausedeath 

xl_vldl_p 2089 1.141 1.004 1.296 0.043 Cases allcausedeath 

xl_vldl_l 2088 1.150 1.011 1.309 0.033 Cases allcausedeath 

xl_vldl_pl 2087 1.157 1.017 1.316 0.026 Cases allcausedeath 

xl_vldl_c 2089 1.114 0.978 1.268 0.104 Cases allcausedeath 

xl_vldl_ce 2088 1.094 0.959 1.248 0.183 Cases allcausedeath 

xl_vldl_fc 2088 1.147 1.009 1.305 0.036 Cases allcausedeath 

xl_vldl_tg 2088 1.157 1.017 1.317 0.026 Cases allcausedeath 

l_vldl_p 2089 1.121 0.982 1.280 0.091 Cases allcausedeath 

l_vldl_l 2089 1.120 0.981 1.278 0.094 Cases allcausedeath 

l_vldl_pl 2089 1.120 0.982 1.277 0.092 Cases allcausedeath 

l_vldl_c 2088 1.098 0.961 1.254 0.167 Cases allcausedeath 

l_vldl_ce 2088 1.060 0.926 1.212 0.399 Cases allcausedeath 

l_vldl_fc 2089 1.129 0.991 1.286 0.067 Cases allcausedeath 



 

 581 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

l_vldl_tg 2089 1.127 0.989 1.286 0.074 Cases allcausedeath 

m_vldl_p 2088 1.063 0.929 1.218 0.375 Cases allcausedeath 

m_vldl_l 2088 1.061 0.926 1.215 0.393 Cases allcausedeath 

m_vldl_pl 2089 1.053 0.920 1.204 0.457 Cases allcausedeath 

m_vldl_c 2089 1.026 0.896 1.175 0.714 Cases allcausedeath 

m_vldl_ce 2091 0.986 0.861 1.131 0.845 Cases allcausedeath 

m_vldl_fc 2088 1.069 0.934 1.225 0.331 Cases allcausedeath 

m_vldl_tg 2089 1.075 0.939 1.230 0.296 Cases allcausedeath 

s_vldl_p 2091 0.976 0.852 1.118 0.728 Cases allcausedeath 

s_vldl_l 2092 0.990 0.865 1.132 0.882 Cases allcausedeath 

s_vldl_pl 2092 1.002 0.877 1.145 0.975 Cases allcausedeath 

s_vldl_c 2092 0.917 0.802 1.048 0.202 Cases allcausedeath 

s_vldl_ce 2092 0.882 0.771 1.009 0.067 Cases allcausedeath 

s_vldl_fc 2092 0.985 0.863 1.126 0.828 Cases allcausedeath 



 

 582 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

s_vldl_tg 2089 1.014 0.886 1.161 0.839 Cases allcausedeath 

xs_vldl_p 2092 0.945 0.827 1.080 0.409 Cases allcausedeath 

xs_vldl_l 2092 0.936 0.818 1.070 0.331 Cases allcausedeath 

xs_vldl_pl 2093 0.890 0.777 1.020 0.093 Cases allcausedeath 

xs_vldl_c 2093 0.934 0.816 1.067 0.315 Cases allcausedeath 

xs_vldl_ce 2093 0.969 0.848 1.107 0.643 Cases allcausedeath 

xs_vldl_fc 2092 0.864 0.753 0.990 0.036 Cases allcausedeath 

xs_vldl_tg 2092 1.020 0.895 1.163 0.767 Cases allcausedeath 

idl_p 2093 0.924 0.808 1.057 0.249 Cases allcausedeath 

idl_l 2093 0.916 0.801 1.048 0.202 Cases allcausedeath 

idl_pl 2093 0.887 0.775 1.016 0.084 Cases allcausedeath 

idl_c 2093 0.914 0.799 1.045 0.190 Cases allcausedeath 

idl_ce 2093 0.935 0.818 1.069 0.326 Cases allcausedeath 

idl_fc 2093 0.869 0.759 0.995 0.042 Cases allcausedeath 



 

 583 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

idl_tg 2092 1.049 0.924 1.192 0.460 Cases allcausedeath 

l_ldl_p 2093 0.891 0.779 1.020 0.096 Cases allcausedeath 

l_ldl_l 2093 0.885 0.773 1.013 0.076 Cases allcausedeath 

l_ldl_pl 2093 0.892 0.779 1.021 0.096 Cases allcausedeath 

l_ldl_c 2093 0.871 0.761 0.997 0.045 Cases allcausedeath 

l_ldl_ce 2093 0.874 0.763 1.000 0.051 Cases allcausedeath 

l_ldl_fc 2093 0.864 0.755 0.990 0.035 Cases allcausedeath 

l_ldl_tg 2092 1.060 0.933 1.204 0.373 Cases allcausedeath 

m_ldl_p 2093 0.860 0.751 0.985 0.029 Cases allcausedeath 

m_ldl_l 2093 0.855 0.746 0.979 0.023 Cases allcausedeath 

m_ldl_pl 2093 0.922 0.807 1.054 0.235 Cases allcausedeath 

m_ldl_c 2093 0.831 0.725 0.952 0.008 Cases allcausedeath 

m_ldl_ce 2093 0.824 0.719 0.943 0.005 Cases allcausedeath 

m_ldl_fc 2093 0.866 0.757 0.991 0.037 Cases allcausedeath 



 

 584 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

m_ldl_tg 2092 1.037 0.911 1.181 0.579 Cases allcausedeath 

s_ldl_p 2093 0.858 0.749 0.983 0.027 Cases allcausedeath 

s_ldl_l 2093 0.853 0.745 0.977 0.022 Cases allcausedeath 

s_ldl_pl 2093 0.936 0.819 1.069 0.328 Cases allcausedeath 

s_ldl_c 2093 0.823 0.718 0.942 0.005 Cases allcausedeath 

s_ldl_ce 2093 0.816 0.712 0.935 0.003 Cases allcausedeath 

s_ldl_fc 2093 0.857 0.749 0.981 0.025 Cases allcausedeath 

s_ldl_tg 2092 1.056 0.927 1.203 0.410 Cases allcausedeath 

xl_hdl_p 2091 1.104 0.972 1.254 0.129 Cases allcausedeath 

xl_hdl_l 2091 1.103 0.971 1.254 0.131 Cases allcausedeath 

xl_hdl_pl 2091 1.090 0.958 1.239 0.190 Cases allcausedeath 

xl_hdl_c 2091 1.098 0.964 1.249 0.159 Cases allcausedeath 

xl_hdl_ce 2091 1.082 0.950 1.232 0.235 Cases allcausedeath 

xl_hdl_fc 2091 1.134 0.998 1.288 0.053 Cases allcausedeath 



 

 585 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

xl_hdl_tg 2088 1.183 1.042 1.343 0.009 Cases allcausedeath 

l_hdl_p 2092 1.132 0.996 1.287 0.058 Cases allcausedeath 

l_hdl_l 2092 1.129 0.993 1.283 0.064 Cases allcausedeath 

l_hdl_pl 2093 1.115 0.980 1.269 0.097 Cases allcausedeath 

l_hdl_c 2092 1.127 0.992 1.280 0.067 Cases allcausedeath 

l_hdl_ce 2092 1.136 1.000 1.290 0.049 Cases allcausedeath 

l_hdl_fc 2092 1.096 0.962 1.248 0.167 Cases allcausedeath 

l_hdl_tg 2091 1.136 1.004 1.287 0.044 Cases allcausedeath 

m_hdl_p 2093 1.171 1.030 1.331 0.016 Cases allcausedeath 

m_hdl_l 2093 1.162 1.022 1.322 0.022 Cases allcausedeath 

m_hdl_pl 2092 1.172 1.030 1.333 0.016 Cases allcausedeath 

m_hdl_c 2093 1.116 0.979 1.272 0.100 Cases allcausedeath 

m_hdl_ce 2093 1.118 0.981 1.274 0.094 Cases allcausedeath 

m_hdl_fc 2093 1.108 0.971 1.265 0.127 Cases allcausedeath 



 

 586 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

m_hdl_tg 2092 1.156 1.013 1.319 0.032 Cases allcausedeath 

s_hdl_p 2093 1.064 0.934 1.213 0.348 Cases allcausedeath 

s_hdl_l 2093 1.046 0.918 1.193 0.500 Cases allcausedeath 

s_hdl_pl 2093 1.237 1.090 1.404 0.001 Cases allcausedeath 

s_hdl_c 2087 0.817 0.715 0.934 0.003 Cases allcausedeath 

s_hdl_ce 2087 0.795 0.698 0.905 0.001 Cases allcausedeath 

s_hdl_fc 2093 1.142 1.004 1.300 0.043 Cases allcausedeath 

s_hdl_tg 2091 1.095 0.960 1.249 0.177 Cases allcausedeath 

vldl_d 2093 1.153 1.007 1.321 0.040 Cases allcausedeath 

ldl_d 2093 1.260 1.111 1.428 0.000 Cases allcausedeath 

hdl_d 2093 1.092 0.960 1.244 0.181 Cases allcausedeath 

serum_c 2093 0.922 0.806 1.055 0.239 Cases allcausedeath 

vldl_c 2093 1.014 0.886 1.160 0.842 Cases allcausedeath 

remnant_c 2093 0.968 0.847 1.106 0.628 Cases allcausedeath 



 

 587 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

ldl_c 2093 0.848 0.740 0.971 0.017 Cases allcausedeath 

hdl_c 2093 1.080 0.947 1.231 0.252 Cases allcausedeath 

hdl2_c 2093 1.086 0.953 1.237 0.217 Cases allcausedeath 

hdl3_c 2093 0.987 0.864 1.127 0.849 Cases allcausedeath 

estc 2090 0.918 0.802 1.050 0.214 Cases allcausedeath 

freec 2090 0.933 0.815 1.068 0.313 Cases allcausedeath 

serum_tg 2093 1.112 0.975 1.270 0.114 Cases allcausedeath 

vldl_tg 2093 1.109 0.970 1.267 0.130 Cases allcausedeath 

ldl_tg 2093 1.055 0.928 1.200 0.410 Cases allcausedeath 

hdl_tg 2093 1.182 1.042 1.341 0.009 Cases allcausedeath 

totpg 2090 1.080 0.947 1.233 0.252 Cases allcausedeath 

tg_pg 2090 1.097 0.958 1.257 0.182 Cases allcausedeath 

pc 2090 1.063 0.932 1.213 0.361 Cases allcausedeath 

sm 2090 0.976 0.852 1.117 0.721 Cases allcausedeath 



 

 588 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

totcho 2090 1.066 0.934 1.217 0.344 Cases allcausedeath 

apoa1 2093 1.099 0.965 1.252 0.155 Cases allcausedeath 

apob 2092 0.958 0.838 1.096 0.532 Cases allcausedeath 

apob_apoa1 2092 0.930 0.814 1.063 0.288 Cases allcausedeath 

totfa 2089 1.057 0.926 1.208 0.411 Cases allcausedeath 

unsat 2089 0.771 0.678 0.877 0.000 Cases allcausedeath 

dha 2089 0.890 0.771 1.027 0.110 Cases allcausedeath 

la 2089 0.917 0.803 1.048 0.203 Cases allcausedeath 

faw3 2089 0.885 0.768 1.020 0.092 Cases allcausedeath 

faw6 2089 0.933 0.816 1.066 0.307 Cases allcausedeath 

pufa 2089 0.919 0.803 1.052 0.220 Cases allcausedeath 

mufa 2089 1.124 0.988 1.278 0.076 Cases allcausedeath 

sfa 2089 1.102 0.966 1.256 0.149 Cases allcausedeath 

dha_fa 2089 0.826 0.713 0.956 0.011 Cases allcausedeath 



 

 589 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

la_fa 2089 0.792 0.704 0.892 0.000 Cases allcausedeath 

faw3_fa 2089 0.787 0.677 0.913 0.002 Cases allcausedeath 

faw6_fa 2089 0.785 0.693 0.890 0.000 Cases allcausedeath 

pufa_fa 2089 0.759 0.671 0.858 0.000 Cases allcausedeath 

mufa_fa 2089 1.239 1.096 1.400 0.001 Cases allcausedeath 

sfa_fa 2089 1.253 1.107 1.419 0.000 Cases allcausedeath 

glc 2087 1.198 1.082 1.328 0.001 Cases allcausedeath 

lac 2093 1.025 0.916 1.146 0.669 Cases allcausedeath 

pyr 2091 0.998 0.909 1.095 0.964 Cases allcausedeath 

cit 2092 1.049 0.921 1.195 0.467 Cases allcausedeath 

ala 2093 0.991 0.874 1.124 0.887 Cases allcausedeath 

gln 2092 0.890 0.782 1.014 0.079 Cases allcausedeath 

gly 2084 0.944 0.827 1.077 0.392 Cases allcausedeath 

his 2088 0.997 0.876 1.134 0.960 Cases allcausedeath 



 

 590 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

ile 2092 1.062 0.929 1.214 0.377 Cases allcausedeath 

leu 2093 1.060 0.929 1.209 0.387 Cases allcausedeath 

val 2092 0.956 0.836 1.093 0.507 Cases allcausedeath 

phe 2093 1.166 1.035 1.314 0.012 Cases allcausedeath 

tyr 2088 1.060 0.932 1.205 0.373 Cases allcausedeath 

ace 2093 1.140 1.069 1.217 0.000 Cases allcausedeath 

acace 2093 1.160 1.052 1.279 0.003 Cases allcausedeath 

bohbut 2041 1.081 0.975 1.199 0.140 Cases allcausedeath 

crea 2087 0.901 0.787 1.032 0.131 Cases allcausedeath 

alb 2093 1.029 0.903 1.174 0.665 Cases allcausedeath 

gp 2093 1.149 1.008 1.310 0.038 Cases allcausedeath 

xxl_vldl_p 4260 1.036 0.943 1.139 0.461 Pooled allcausedeath 

xxl_vldl_l 4238 1.039 0.946 1.141 0.425 Pooled allcausedeath 

xxl_vldl_pl 4238 1.041 0.948 1.143 0.400 Pooled allcausedeath 



 

 591 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

xxl_vldl_c 4244 1.040 0.947 1.142 0.415 Pooled allcausedeath 

xxl_vldl_ce 4248 1.017 0.926 1.118 0.720 Pooled allcausedeath 

xxl_vldl_fc 4240 1.045 0.952 1.147 0.352 Pooled allcausedeath 

xxl_vldl_tg 4238 1.038 0.945 1.139 0.436 Pooled allcausedeath 

xl_vldl_p 4244 1.018 0.927 1.118 0.712 Pooled allcausedeath 

xl_vldl_l 4243 1.021 0.929 1.122 0.667 Pooled allcausedeath 

xl_vldl_pl 4241 1.029 0.936 1.130 0.555 Pooled allcausedeath 

xl_vldl_c 4247 1.020 0.928 1.120 0.686 Pooled allcausedeath 

xl_vldl_ce 4248 1.007 0.916 1.107 0.887 Pooled allcausedeath 

xl_vldl_fc 4244 1.026 0.933 1.127 0.599 Pooled allcausedeath 

xl_vldl_tg 4243 1.021 0.929 1.122 0.662 Pooled allcausedeath 

l_vldl_p 4251 1.010 0.919 1.111 0.831 Pooled allcausedeath 

l_vldl_l 4250 1.011 0.919 1.112 0.825 Pooled allcausedeath 

l_vldl_pl 4250 1.013 0.921 1.114 0.789 Pooled allcausedeath 



 

 592 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

l_vldl_c 4249 1.005 0.914 1.106 0.911 Pooled allcausedeath 

l_vldl_ce 4250 0.990 0.899 1.090 0.834 Pooled allcausedeath 

l_vldl_fc 4248 1.007 0.916 1.108 0.880 Pooled allcausedeath 

l_vldl_tg 4249 1.001 0.909 1.101 0.991 Pooled allcausedeath 

m_vldl_p 4251 0.979 0.888 1.078 0.662 Pooled allcausedeath 

m_vldl_l 4251 0.979 0.889 1.078 0.666 Pooled allcausedeath 

m_vldl_pl 4252 0.976 0.886 1.075 0.625 Pooled allcausedeath 

m_vldl_c 4254 0.974 0.884 1.073 0.597 Pooled allcausedeath 

m_vldl_ce 4257 0.966 0.877 1.065 0.488 Pooled allcausedeath 

m_vldl_fc 4253 0.984 0.893 1.084 0.741 Pooled allcausedeath 

m_vldl_tg 4252 0.980 0.889 1.080 0.681 Pooled allcausedeath 

s_vldl_p 4258 0.941 0.854 1.037 0.221 Pooled allcausedeath 

s_vldl_l 4259 0.949 0.861 1.046 0.291 Pooled allcausedeath 

s_vldl_pl 4259 0.957 0.869 1.054 0.375 Pooled allcausedeath 



 

 593 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

s_vldl_c 4259 0.929 0.843 1.023 0.133 Pooled allcausedeath 

s_vldl_ce 4259 0.920 0.836 1.013 0.091 Pooled allcausedeath 

s_vldl_fc 4259 0.951 0.864 1.048 0.309 Pooled allcausedeath 

s_vldl_tg 4254 0.955 0.867 1.052 0.350 Pooled allcausedeath 

xs_vldl_p 4259 0.965 0.877 1.061 0.464 Pooled allcausedeath 

xs_vldl_l 4259 0.962 0.875 1.058 0.427 Pooled allcausedeath 

xs_vldl_pl 4260 0.939 0.854 1.034 0.200 Pooled allcausedeath 

xs_vldl_c 4259 0.963 0.875 1.059 0.436 Pooled allcausedeath 

xs_vldl_ce 4259 0.989 0.899 1.087 0.813 Pooled allcausedeath 

xs_vldl_fc 4259 0.921 0.837 1.014 0.093 Pooled allcausedeath 

xs_vldl_tg 4259 0.985 0.895 1.083 0.753 Pooled allcausedeath 

idl_p 4259 0.959 0.872 1.054 0.385 Pooled allcausedeath 

idl_l 4259 0.954 0.868 1.050 0.338 Pooled allcausedeath 

idl_pl 4260 0.941 0.856 1.035 0.213 Pooled allcausedeath 



 

 594 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

idl_c 4260 0.951 0.865 1.046 0.301 Pooled allcausedeath 

idl_ce 4260 0.959 0.872 1.055 0.387 Pooled allcausedeath 

idl_fc 4260 0.935 0.851 1.029 0.169 Pooled allcausedeath 

idl_tg 4256 1.029 0.937 1.129 0.551 Pooled allcausedeath 

l_ldl_p 4260 0.928 0.843 1.021 0.124 Pooled allcausedeath 

l_ldl_l 4260 0.924 0.839 1.017 0.105 Pooled allcausedeath 

l_ldl_pl 4260 0.927 0.843 1.021 0.122 Pooled allcausedeath 

l_ldl_c 4260 0.913 0.830 1.005 0.063 Pooled allcausedeath 

l_ldl_ce 4260 0.911 0.827 1.002 0.056 Pooled allcausedeath 

l_ldl_fc 4260 0.922 0.838 1.014 0.094 Pooled allcausedeath 

l_ldl_tg 4257 1.039 0.948 1.140 0.410 Pooled allcausedeath 

m_ldl_p 4260 0.893 0.810 0.983 0.021 Pooled allcausedeath 

m_ldl_l 4260 0.888 0.806 0.978 0.016 Pooled allcausedeath 

m_ldl_pl 4260 0.922 0.837 1.015 0.096 Pooled allcausedeath 



 

 595 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

m_ldl_c 4260 0.873 0.793 0.962 0.006 Pooled allcausedeath 

m_ldl_ce 4260 0.871 0.791 0.959 0.005 Pooled allcausedeath 

m_ldl_fc 4260 0.886 0.805 0.976 0.014 Pooled allcausedeath 

m_ldl_tg 4258 1.030 0.939 1.130 0.532 Pooled allcausedeath 

s_ldl_p 4260 0.879 0.798 0.968 0.009 Pooled allcausedeath 

s_ldl_l 4260 0.876 0.795 0.965 0.007 Pooled allcausedeath 

s_ldl_pl 4260 0.909 0.826 1.001 0.052 Pooled allcausedeath 

s_ldl_c 4260 0.863 0.784 0.951 0.003 Pooled allcausedeath 

s_ldl_ce 4260 0.864 0.785 0.951 0.003 Pooled allcausedeath 

s_ldl_fc 4260 0.865 0.786 0.953 0.003 Pooled allcausedeath 

s_ldl_tg 4259 1.007 0.916 1.107 0.885 Pooled allcausedeath 

xl_hdl_p 4256 1.083 0.989 1.186 0.084 Pooled allcausedeath 

xl_hdl_l 4256 1.080 0.986 1.183 0.099 Pooled allcausedeath 

xl_hdl_pl 4256 1.110 1.014 1.215 0.023 Pooled allcausedeath 



 

 596 

Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

xl_hdl_c 4256 1.029 0.937 1.130 0.547 Pooled allcausedeath 

xl_hdl_ce 4256 1.008 0.917 1.107 0.874 Pooled allcausedeath 

xl_hdl_fc 4256 1.081 0.987 1.185 0.093 Pooled allcausedeath 

xl_hdl_tg 4249 1.113 1.017 1.218 0.021 Pooled allcausedeath 

l_hdl_p 4259 1.150 1.051 1.258 0.002 Pooled allcausedeath 

l_hdl_l 4259 1.146 1.048 1.254 0.003 Pooled allcausedeath 

l_hdl_pl 4260 1.139 1.040 1.248 0.005 Pooled allcausedeath 

l_hdl_c 4259 1.139 1.041 1.246 0.005 Pooled allcausedeath 

l_hdl_ce 4259 1.145 1.047 1.252 0.003 Pooled allcausedeath 

l_hdl_fc 4259 1.117 1.020 1.223 0.017 Pooled allcausedeath 

l_hdl_tg 4254 1.188 1.088 1.297 0.000 Pooled allcausedeath 

m_hdl_p 4260 1.135 1.034 1.247 0.008 Pooled allcausedeath 

m_hdl_l 4260 1.130 1.029 1.241 0.011 Pooled allcausedeath 

m_hdl_pl 4259 1.142 1.040 1.254 0.005 Pooled allcausedeath 
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Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

m_hdl_c 4260 1.093 0.994 1.202 0.066 Pooled allcausedeath 

m_hdl_ce 4260 1.090 0.992 1.199 0.074 Pooled allcausedeath 

m_hdl_fc 4260 1.101 1.001 1.211 0.047 Pooled allcausedeath 

m_hdl_tg 4258 1.117 1.017 1.227 0.020 Pooled allcausedeath 

s_hdl_p 4260 1.004 0.913 1.105 0.927 Pooled allcausedeath 

s_hdl_l 4260 0.992 0.902 1.092 0.874 Pooled allcausedeath 

s_hdl_pl 4260 1.114 1.016 1.222 0.022 Pooled allcausedeath 

s_hdl_c 4248 0.870 0.793 0.954 0.003 Pooled allcausedeath 

s_hdl_ce 4246 0.860 0.785 0.942 0.001 Pooled allcausedeath 

s_hdl_fc 4260 1.038 0.944 1.141 0.442 Pooled allcausedeath 

s_hdl_tg 4258 1.030 0.937 1.132 0.544 Pooled allcausedeath 

vldl_d 4259 1.015 0.922 1.117 0.761 Pooled allcausedeath 

ldl_d 4259 1.415 1.295 1.546 0.000 Pooled allcausedeath 

hdl_d 4259 1.121 1.024 1.228 0.013 Pooled allcausedeath 
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Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

serum_c 4259 0.943 0.857 1.037 0.224 Pooled allcausedeath 

vldl_c 4259 0.973 0.883 1.072 0.581 Pooled allcausedeath 

remnant_c 4259 0.958 0.870 1.055 0.383 Pooled allcausedeath 

ldl_c 4259 0.890 0.808 0.979 0.017 Pooled allcausedeath 

hdl_c 4259 1.076 0.980 1.181 0.127 Pooled allcausedeath 

hdl2_c 4259 1.084 0.987 1.190 0.092 Pooled allcausedeath 

hdl3_c 4259 0.973 0.885 1.069 0.564 Pooled allcausedeath 

estc 4255 0.939 0.854 1.033 0.198 Pooled allcausedeath 

freec 4255 0.951 0.865 1.046 0.304 Pooled allcausedeath 

serum_tg 4259 1.010 0.917 1.113 0.833 Pooled allcausedeath 

vldl_tg 4259 0.997 0.904 1.099 0.952 Pooled allcausedeath 

ldl_tg 4259 1.042 0.950 1.142 0.381 Pooled allcausedeath 

hdl_tg 4259 1.136 1.038 1.244 0.006 Pooled allcausedeath 

totpg 4255 1.043 0.949 1.146 0.385 Pooled allcausedeath 
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Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

tg_pg 4254 0.985 0.894 1.086 0.762 Pooled allcausedeath 

pc 4255 1.043 0.950 1.146 0.379 Pooled allcausedeath 

sm 4255 0.980 0.891 1.077 0.671 Pooled allcausedeath 

totcho 4255 1.059 0.964 1.162 0.234 Pooled allcausedeath 

apoa1 4259 1.067 0.972 1.172 0.173 Pooled allcausedeath 

apob 4258 0.935 0.849 1.031 0.176 Pooled allcausedeath 

apob_apoa1 4258 0.918 0.833 1.010 0.080 Pooled allcausedeath 

totfa 4251 0.989 0.898 1.089 0.823 Pooled allcausedeath 

unsat 4251 0.850 0.775 0.933 0.001 Pooled allcausedeath 

dha 4251 0.911 0.824 1.007 0.069 Pooled allcausedeath 

la 4251 0.903 0.820 0.995 0.039 Pooled allcausedeath 

faw3 4251 0.876 0.792 0.970 0.011 Pooled allcausedeath 

faw6 4251 0.918 0.833 1.011 0.081 Pooled allcausedeath 

pufa 4251 0.905 0.821 0.997 0.043 Pooled allcausedeath 
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Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

mufa 4251 1.038 0.944 1.140 0.441 Pooled allcausedeath 

sfa 4251 1.016 0.923 1.117 0.751 Pooled allcausedeath 

dha_fa 4251 0.900 0.815 0.994 0.038 Pooled allcausedeath 

la_fa 4251 0.855 0.782 0.935 0.001 Pooled allcausedeath 

faw3_fa 4251 0.828 0.746 0.919 0.000 Pooled allcausedeath 

faw6_fa 4251 0.870 0.794 0.952 0.003 Pooled allcausedeath 

pufa_fa 4251 0.837 0.765 0.916 0.000 Pooled allcausedeath 

mufa_fa 4251 1.155 1.054 1.265 0.002 Pooled allcausedeath 

sfa_fa 4251 1.158 1.054 1.272 0.002 Pooled allcausedeath 

glc 4245 1.145 1.066 1.230 0.000 Pooled allcausedeath 

lac 4258 1.075 0.999 1.157 0.052 Pooled allcausedeath 

pyr 4254 1.022 0.958 1.090 0.506 Pooled allcausedeath 

cit 4256 1.016 0.923 1.117 0.748 Pooled allcausedeath 

ala 4258 0.985 0.898 1.081 0.757 Pooled allcausedeath 
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Metabolite N Hazard Ratio 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

gln 4256 0.901 0.820 0.990 0.030 Pooled allcausedeath 

gly 4242 1.022 0.933 1.119 0.641 Pooled allcausedeath 

his 4246 1.013 0.925 1.110 0.773 Pooled allcausedeath 

ile 4257 1.011 0.919 1.112 0.823 Pooled allcausedeath 

leu 4258 0.995 0.905 1.094 0.917 Pooled allcausedeath 

val 4256 0.954 0.866 1.051 0.339 Pooled allcausedeath 

phe 4258 1.193 1.094 1.300 0.000 Pooled allcausedeath 

tyr 4246 1.036 0.945 1.136 0.446 Pooled allcausedeath 

ace 4258 1.105 1.058 1.155 0.000 Pooled allcausedeath 

acace 4258 1.100 1.014 1.194 0.022 Pooled allcausedeath 

bohbut 4136 1.037 0.949 1.133 0.424 Pooled allcausedeath 

crea 4245 0.952 0.864 1.048 0.315 Pooled allcausedeath 

alb 4259 1.001 0.909 1.101 0.991 Pooled allcausedeath 

gp 4258 1.100 1.002 1.207 0.046 Pooled allcausedeath 
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Appendix D Table D 6:Cox regression results for PCa mRS and All-cause mRS for all-cause mortality, in controls and cases and controls 

(pooled) 

 

 

Metabolomic 

model 
Outcome Regression model participant category 

Hazard 

ratio 

Lower 

95%CI 

Upper 95% 

CI 
p-value 

PCa mRS All-cause death Minimally adjusted Controls 1.15 1.01 1.32 0.039 
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PCa mRS All-cause death Minimally adjusted Cases and controls(pooled) 1.16 1.06 1.27 0.002 

All-cause mRS All-cause death Minimally adjusted Controls 1.37 1.22 1.55 <0.0001 

All-cause mRS All-cause death Minimally adjusted Cases and controls(pooled) 1.36 1.25 1.48 <0.0001 

 

 

 



 

 

Appendix D Table D 7: Linear regression results for the associations between individual 

biomarkers and age in cases, controls and pooled cases and controls with follow-up data in 

the CAP trial (4,260 participants: 2,167 controls, 2,093 cases) 

 

 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

acace 2093 -0.009 -0.018 0.000 0.04591 Cases age 

acace 4258 -0.006 -0.012 0.000 0.04864 Pooled age 

acace 2165 -0.004 -0.012 0.005 0.40141 Controls age 

ace 4258 0.004 -0.002 0.010 0.15627 Pooled age 

ace 2093 0.004 -0.003 0.012 0.26777 Cases age 

ace 2165 0.004 -0.005 0.013 0.34481 Controls age 

ala 4258 0.010 0.004 0.016 0.00130 Pooled age 

ala 2165 0.011 0.003 0.019 0.00998 Controls age 

ala 2093 0.009 0.000 0.017 0.05312 Cases age 

alb 4259 -0.022 -0.028 -0.016 0.00000 Pooled age 

alb 2093 -0.024 -0.033 -0.016 0.00000 Cases age 

alb 2166 -0.020 -0.029 -0.012 0.00000 Controls age 

apoa1 2166 -0.020 -0.028 -0.011 0.00001 Controls age 

apoa1 4259 -0.013 -0.019 -0.007 0.00003 Pooled age 

apoa1 2093 -0.005 -0.014 0.003 0.20894 Cases age 

apob_apoa1 4258 -0.012 -0.018 -0.006 0.00011 Pooled age 

apob_apoa1 2166 -0.014 -0.022 -0.005 0.00152 Controls age 

apob_apoa1 2092 -0.010 -0.018 -0.001 0.02231 Cases age 

apob 4258 -0.018 -0.024 -0.012 0.00000 Pooled age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

apob 2166 -0.023 -0.031 -0.014 0.00000 Controls age 

apob 2092 -0.013 -0.021 -0.004 0.00370 Cases age 

bohbut 2095 0.006 -0.002 0.015 0.13725 Controls age 

bohbut 4136 0.003 -0.004 0.009 0.42075 Pooled age 

bohbut 2041 -0.002 -0.011 0.007 0.63748 Cases age 

cit 4256 0.027 0.021 0.033 0.00000 Pooled age 

cit 2092 0.028 0.020 0.037 0.00000 Cases age 

cit 2164 0.026 0.018 0.035 0.00000 Controls age 

crea 4245 0.021 0.015 0.027 0.00000 Pooled age 

crea 2087 0.022 0.013 0.031 0.00000 Cases age 

crea 2158 0.020 0.012 0.028 0.00000 Controls age 

dha_fa 4251 0.019 0.013 0.025 0.00000 Pooled age 

dha_fa 2162 0.024 0.015 0.033 0.00000 Controls age 

dha_fa 2089 0.013 0.004 0.021 0.00339 Cases age 

dha 2089 0.004 -0.004 0.012 0.34732 Cases age 

dha 4251 0.003 -0.003 0.009 0.40705 Pooled age 

dha 2162 0.001 -0.007 0.010 0.77957 Controls age 

estc 4255 -0.020 -0.026 -0.014 0.00000 Pooled age 

estc 2165 -0.026 -0.034 -0.017 0.00000 Controls age 

estc 2090 -0.013 -0.022 -0.005 0.00235 Cases age 

faw3_fa 4251 0.017 0.011 0.023 0.00000 Pooled age 

faw3_fa 2162 0.020 0.012 0.029 0.00000 Controls age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

faw3_fa 2089 0.012 0.004 0.021 0.00507 Cases age 

faw3 2162 -0.004 -0.012 0.005 0.42662 Controls age 

faw3 2089 0.002 -0.006 0.010 0.64365 Cases age 

faw3 4251 -0.001 -0.007 0.005 0.78500 Pooled age 

faw6_fa 4251 -0.005 -0.011 0.001 0.07771 Pooled age 

faw6_fa 2162 -0.006 -0.015 0.003 0.19519 Controls age 

faw6_fa 2089 -0.005 -0.014 0.003 0.20750 Cases age 

faw6 4251 -0.020 -0.026 -0.014 0.00000 Pooled age 

faw6 2162 -0.027 -0.036 -0.019 0.00000 Controls age 

faw6 2089 -0.012 -0.021 -0.003 0.00635 Cases age 

freec 4255 -0.017 -0.023 -0.011 0.00000 Pooled age 

freec 2165 -0.023 -0.031 -0.014 0.00000 Controls age 

freec 2090 -0.011 -0.019 -0.002 0.01256 Cases age 

glc 4245 0.014 0.008 0.020 0.00000 Pooled age 

glc 2087 0.015 0.007 0.023 0.00016 Cases age 

glc 2158 0.012 0.003 0.020 0.00914 Controls age 

gln 2164 0.015 0.007 0.024 0.00050 Controls age 

gln 4256 0.010 0.004 0.016 0.00120 Pooled age 

gln 2092 0.005 -0.004 0.013 0.27542 Cases age 

gly 2084 0.001 -0.008 0.010 0.83160 Cases age 

gly 2158 0.000 -0.009 0.008 0.94395 Controls age 

gly 4242 0.000 -0.006 0.006 0.94478 Pooled age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

gp 2165 -0.006 -0.015 0.003 0.18165 Controls age 

gp 4258 -0.003 -0.009 0.003 0.27483 Pooled age 

gp 2093 -0.001 -0.009 0.007 0.84316 Cases age 

hdl_c 2166 -0.007 -0.016 0.001 0.09103 Controls age 

hdl_c 4259 -0.004 -0.010 0.002 0.16884 Pooled age 

hdl_c 2093 -0.001 -0.009 0.008 0.88002 Cases age 

hdl_d 2093 0.010 0.002 0.019 0.01928 Cases age 

hdl_d 4259 0.005 -0.001 0.012 0.07518 Pooled age 

hdl_d 2166 0.001 -0.007 0.010 0.79371 Controls age 

hdl_tg 2166 -0.011 -0.019 -0.002 0.01570 Controls age 

hdl_tg 4259 -0.004 -0.010 0.002 0.18245 Pooled age 

hdl_tg 2093 0.003 -0.006 0.011 0.54597 Cases age 

hdl2_c 2166 -0.007 -0.016 0.002 0.10682 Controls age 

hdl2_c 4259 -0.004 -0.010 0.002 0.20021 Pooled age 

hdl2_c 2093 0.000 -0.009 0.008 0.90870 Cases age 

hdl3_c 2166 -0.009 -0.018 0.000 0.03885 Controls age 

hdl3_c 4259 -0.006 -0.012 0.000 0.05234 Pooled age 

hdl3_c 2093 -0.002 -0.011 0.006 0.56791 Cases age 

his 2088 0.003 -0.006 0.011 0.51289 Cases age 

his 2158 -0.002 -0.010 0.007 0.70642 Controls age 

his 4246 0.000 -0.006 0.007 0.88277 Pooled age 

idl_c 4260 -0.017 -0.023 -0.011 0.00000 Pooled age 



 

 608 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

idl_c 2167 -0.021 -0.030 -0.013 0.00000 Controls age 

idl_c 2093 -0.012 -0.021 -0.004 0.00576 Cases age 

idl_ce 4260 -0.018 -0.024 -0.012 0.00000 Pooled age 

idl_ce 2167 -0.023 -0.031 -0.014 0.00000 Controls age 

idl_ce 2093 -0.013 -0.021 -0.004 0.00333 Cases age 

idl_fc 4260 -0.013 -0.019 -0.007 0.00003 Pooled age 

idl_fc 2167 -0.016 -0.025 -0.008 0.00024 Controls age 

idl_fc 2093 -0.009 -0.018 -0.001 0.03310 Cases age 

idl_l 4259 -0.016 -0.022 -0.010 0.00000 Pooled age 

idl_l 2166 -0.021 -0.029 -0.012 0.00000 Controls age 

idl_l 2093 -0.011 -0.020 -0.003 0.01074 Cases age 

idl_p 4259 -0.016 -0.022 -0.009 0.00000 Pooled age 

idl_p 2166 -0.020 -0.028 -0.011 0.00001 Controls age 

idl_p 2093 -0.011 -0.019 -0.002 0.01291 Cases age 

idl_pl 4260 -0.016 -0.022 -0.010 0.00000 Pooled age 

idl_pl 2167 -0.020 -0.028 -0.011 0.00001 Controls age 

idl_pl 2093 -0.011 -0.020 -0.003 0.00993 Cases age 

idl_tg 2164 -0.006 -0.014 0.003 0.19023 Controls age 

idl_tg 2092 0.003 -0.005 0.012 0.44699 Cases age 

idl_tg 4256 -0.001 -0.007 0.005 0.66290 Pooled age 

ile 2165 -0.011 -0.020 -0.002 0.01418 Controls age 

ile 4257 -0.005 -0.011 0.001 0.09324 Pooled age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

ile 2092 0.001 -0.008 0.009 0.90158 Cases age 

l_hdl_c 2092 0.009 0.000 0.017 0.04905 Cases age 

l_hdl_c 4259 0.005 -0.001 0.011 0.08775 Pooled age 

l_hdl_c 2167 0.002 -0.006 0.011 0.61720 Controls age 

l_hdl_ce 2092 0.009 0.000 0.017 0.04568 Cases age 

l_hdl_ce 4259 0.005 -0.001 0.011 0.08671 Pooled age 

l_hdl_ce 2167 0.002 -0.007 0.011 0.63306 Controls age 

l_hdl_fc 2092 0.008 0.000 0.017 0.06019 Cases age 

l_hdl_fc 4259 0.005 -0.001 0.011 0.10449 Pooled age 

l_hdl_fc 2167 0.002 -0.006 0.011 0.61902 Controls age 

l_hdl_l 2092 0.008 -0.001 0.016 0.08054 Cases age 

l_hdl_l 4259 0.004 -0.002 0.010 0.19967 Pooled age 

l_hdl_l 2167 0.001 -0.008 0.009 0.89558 Controls age 

l_hdl_p 2092 0.008 -0.001 0.016 0.08088 Cases age 

l_hdl_p 4259 0.004 -0.002 0.010 0.25025 Pooled age 

l_hdl_p 2167 0.000 -0.009 0.008 0.97866 Controls age 

l_hdl_pl 2093 0.006 -0.003 0.014 0.19901 Cases age 

l_hdl_pl 4260 0.002 -0.004 0.008 0.53914 Pooled age 

l_hdl_pl 2167 -0.001 -0.010 0.007 0.73974 Controls age 

l_hdl_tg 2091 0.017 0.009 0.026 0.00008 Cases age 

l_hdl_tg 4254 0.009 0.002 0.015 0.00562 Pooled age 

l_hdl_tg 2163 0.000 -0.008 0.009 0.93531 Controls age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

l_ldl_c 4260 -0.018 -0.024 -0.011 0.00000 Pooled age 

l_ldl_c 2167 -0.021 -0.030 -0.013 0.00000 Controls age 

l_ldl_c 2093 -0.013 -0.022 -0.005 0.00273 Cases age 

l_ldl_ce 4260 -0.018 -0.024 -0.012 0.00000 Pooled age 

l_ldl_ce 2167 -0.022 -0.031 -0.014 0.00000 Controls age 

l_ldl_ce 2093 -0.014 -0.022 -0.005 0.00179 Cases age 

l_ldl_fc 4260 -0.015 -0.021 -0.009 0.00000 Pooled age 

l_ldl_fc 2167 -0.018 -0.027 -0.009 0.00004 Controls age 

l_ldl_fc 2093 -0.011 -0.020 -0.003 0.01027 Cases age 

l_ldl_l 4260 -0.017 -0.023 -0.011 0.00000 Pooled age 

l_ldl_l 2167 -0.022 -0.030 -0.013 0.00000 Controls age 

l_ldl_l 2093 -0.013 -0.021 -0.004 0.00412 Cases age 

l_ldl_p 4260 -0.017 -0.023 -0.011 0.00000 Pooled age 

l_ldl_p 2167 -0.021 -0.029 -0.012 0.00000 Controls age 

l_ldl_p 2093 -0.012 -0.021 -0.004 0.00477 Cases age 

l_ldl_pl 4260 -0.019 -0.025 -0.013 0.00000 Pooled age 

l_ldl_pl 2167 -0.023 -0.031 -0.014 0.00000 Controls age 

l_ldl_pl 2093 -0.014 -0.022 -0.005 0.00153 Cases age 

l_ldl_tg 2165 -0.008 -0.017 0.000 0.06308 Controls age 

l_ldl_tg 4257 -0.004 -0.010 0.003 0.25410 Pooled age 

l_ldl_tg 2092 0.001 -0.007 0.010 0.73093 Cases age 

l_vldl_c 2161 -0.012 -0.021 -0.003 0.00980 Controls age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

l_vldl_c 4249 -0.008 -0.014 -0.002 0.01063 Pooled age 

l_vldl_c 2088 -0.004 -0.012 0.004 0.31413 Cases age 

l_vldl_ce 2162 -0.013 -0.022 -0.004 0.00334 Controls age 

l_vldl_ce 4250 -0.009 -0.015 -0.003 0.00438 Pooled age 

l_vldl_ce 2088 -0.004 -0.013 0.004 0.29096 Cases age 

l_vldl_fc 2159 -0.011 -0.020 -0.002 0.01501 Controls age 

l_vldl_fc 4248 -0.007 -0.014 -0.001 0.01595 Pooled age 

l_vldl_fc 2089 -0.004 -0.012 0.004 0.34117 Cases age 

l_vldl_l 4250 -0.007 -0.013 -0.001 0.01846 Pooled age 

l_vldl_l 2161 -0.010 -0.019 -0.001 0.02303 Controls age 

l_vldl_l 2089 -0.004 -0.012 0.004 0.28224 Cases age 

l_vldl_p 4251 -0.008 -0.014 -0.002 0.01045 Pooled age 

l_vldl_p 2162 -0.012 -0.021 -0.003 0.01164 Controls age 

l_vldl_p 2089 -0.004 -0.012 0.004 0.28069 Cases age 

l_vldl_pl 4250 -0.008 -0.014 -0.002 0.01103 Pooled age 

l_vldl_pl 2161 -0.011 -0.020 -0.002 0.01341 Controls age 

l_vldl_pl 2089 -0.005 -0.013 0.004 0.26970 Cases age 

l_vldl_tg 4249 -0.007 -0.013 -0.001 0.01654 Pooled age 

l_vldl_tg 2160 -0.010 -0.019 -0.002 0.02132 Controls age 

l_vldl_tg 2089 -0.004 -0.012 0.004 0.27783 Cases age 

la_fa 4251 -0.008 -0.014 -0.002 0.00865 Pooled age 

la_fa 2162 -0.009 -0.018 -0.001 0.03069 Controls age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

la_fa 2089 -0.007 -0.016 0.001 0.10277 Cases age 

la 4251 -0.020 -0.026 -0.014 0.00000 Pooled age 

la 2162 -0.027 -0.036 -0.019 0.00000 Controls age 

la 2089 -0.012 -0.021 -0.003 0.00631 Cases age 

lac 2165 0.003 -0.005 0.012 0.45743 Controls age 

lac 4258 0.001 -0.005 0.007 0.65526 Pooled age 

lac 2093 -0.001 -0.010 0.008 0.76516 Cases age 

ldl_c 4259 -0.017 -0.023 -0.011 0.00000 Pooled age 

ldl_c 2166 -0.021 -0.029 -0.012 0.00000 Controls age 

ldl_c 2093 -0.013 -0.022 -0.005 0.00235 Cases age 

ldl_d 4259 0.009 0.003 0.015 0.00467 Pooled age 

ldl_d 2093 0.010 0.001 0.019 0.02215 Cases age 

ldl_d 2166 0.008 -0.001 0.016 0.07728 Controls age 

ldl_tg 2166 -0.010 -0.019 -0.002 0.01672 Controls age 

ldl_tg 4259 -0.006 -0.012 0.000 0.07080 Pooled age 

ldl_tg 2093 0.000 -0.009 0.008 0.94514 Cases age 

leu 2165 -0.011 -0.020 -0.003 0.00990 Controls age 

leu 4258 -0.006 -0.012 0.000 0.04959 Pooled age 

leu 2093 -0.001 -0.009 0.008 0.88497 Cases age 

m_hdl_c 4260 -0.013 -0.019 -0.007 0.00003 Pooled age 

m_hdl_c 2167 -0.015 -0.023 -0.006 0.00073 Controls age 

m_hdl_c 2093 -0.011 -0.019 -0.002 0.01440 Cases age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

m_hdl_ce 4260 -0.013 -0.019 -0.007 0.00001 Pooled age 

m_hdl_ce 2167 -0.015 -0.024 -0.007 0.00046 Controls age 

m_hdl_ce 2093 -0.011 -0.020 -0.003 0.00899 Cases age 

m_hdl_fc 4260 -0.010 -0.016 -0.004 0.00090 Pooled age 

m_hdl_fc 2167 -0.013 -0.021 -0.004 0.00346 Controls age 

m_hdl_fc 2093 -0.007 -0.016 0.001 0.08918 Cases age 

m_hdl_l 4260 -0.013 -0.019 -0.007 0.00002 Pooled age 

m_hdl_l 2167 -0.016 -0.025 -0.008 0.00017 Controls age 

m_hdl_l 2093 -0.010 -0.018 -0.001 0.02733 Cases age 

m_hdl_p 4260 -0.014 -0.020 -0.008 0.00001 Pooled age 

m_hdl_p 2167 -0.017 -0.026 -0.009 0.00008 Controls age 

m_hdl_p 2093 -0.010 -0.018 -0.001 0.02623 Cases age 

m_hdl_pl 4259 -0.011 -0.017 -0.005 0.00026 Pooled age 

m_hdl_pl 2167 -0.015 -0.024 -0.006 0.00056 Controls age 

m_hdl_pl 2092 -0.007 -0.016 0.001 0.10143 Cases age 

m_hdl_tg 2166 -0.016 -0.025 -0.007 0.00039 Controls age 

m_hdl_tg 4258 -0.011 -0.017 -0.005 0.00048 Pooled age 

m_hdl_tg 2092 -0.006 -0.014 0.003 0.19102 Cases age 

m_ldl_c 4260 -0.017 -0.023 -0.011 0.00000 Pooled age 

m_ldl_c 2167 -0.020 -0.028 -0.011 0.00001 Controls age 

m_ldl_c 2093 -0.013 -0.022 -0.005 0.00235 Cases age 

m_ldl_ce 4260 -0.016 -0.022 -0.010 0.00000 Pooled age 



 

 614 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

m_ldl_ce 2167 -0.019 -0.028 -0.010 0.00001 Controls age 

m_ldl_ce 2093 -0.013 -0.022 -0.004 0.00286 Cases age 

m_ldl_fc 4260 -0.018 -0.024 -0.012 0.00000 Pooled age 

m_ldl_fc 2167 -0.022 -0.030 -0.013 0.00000 Controls age 

m_ldl_fc 2093 -0.014 -0.023 -0.006 0.00119 Cases age 

m_ldl_l 4260 -0.017 -0.023 -0.011 0.00000 Pooled age 

m_ldl_l 2167 -0.021 -0.030 -0.013 0.00000 Controls age 

m_ldl_l 2093 -0.013 -0.022 -0.005 0.00218 Cases age 

m_ldl_p 4260 -0.017 -0.023 -0.011 0.00000 Pooled age 

m_ldl_p 2167 -0.020 -0.029 -0.012 0.00000 Controls age 

m_ldl_p 2093 -0.013 -0.022 -0.005 0.00251 Cases age 

m_ldl_pl 4260 -0.021 -0.027 -0.015 0.00000 Pooled age 

m_ldl_pl 2167 -0.025 -0.034 -0.017 0.00000 Controls age 

m_ldl_pl 2093 -0.016 -0.024 -0.007 0.00033 Cases age 

m_ldl_tg 2166 -0.010 -0.018 -0.001 0.02326 Controls age 

m_ldl_tg 4258 -0.005 -0.011 0.001 0.09374 Pooled age 

m_ldl_tg 2092 0.000 -0.009 0.008 0.99276 Cases age 

m_vldl_c 2165 -0.014 -0.023 -0.005 0.00156 Controls age 

m_vldl_c 4254 -0.009 -0.015 -0.003 0.00269 Pooled age 

m_vldl_c 2089 -0.004 -0.013 0.004 0.30705 Cases age 

m_vldl_ce 2166 -0.017 -0.026 -0.008 0.00012 Controls age 

m_vldl_ce 4257 -0.012 -0.018 -0.006 0.00013 Pooled age 



 

 615 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

m_vldl_ce 2091 -0.006 -0.015 0.002 0.12972 Cases age 

m_vldl_fc 2165 -0.011 -0.020 -0.003 0.01156 Controls age 

m_vldl_fc 4253 -0.008 -0.014 -0.002 0.01433 Pooled age 

m_vldl_fc 2088 -0.004 -0.012 0.004 0.36605 Cases age 

m_vldl_l 4251 -0.008 -0.014 -0.002 0.00877 Pooled age 

m_vldl_l 2163 -0.012 -0.020 -0.003 0.00971 Controls age 

m_vldl_l 2088 -0.005 -0.013 0.003 0.25500 Cases age 

m_vldl_p 4251 -0.009 -0.015 -0.003 0.00509 Pooled age 

m_vldl_p 2163 -0.013 -0.022 -0.004 0.00533 Controls age 

m_vldl_p 2088 -0.005 -0.013 0.003 0.25369 Cases age 

m_vldl_pl 2163 -0.013 -0.022 -0.004 0.00388 Controls age 

m_vldl_pl 4252 -0.009 -0.015 -0.003 0.00435 Pooled age 

m_vldl_pl 2089 -0.005 -0.013 0.004 0.27461 Cases age 

m_vldl_tg 4252 -0.008 -0.014 -0.001 0.01480 Pooled age 

m_vldl_tg 2163 -0.011 -0.019 -0.002 0.01865 Controls age 

m_vldl_tg 2089 -0.005 -0.013 0.004 0.27115 Cases age 

mufa_fa 2162 -0.003 -0.012 0.005 0.43426 Controls age 

mufa_fa 4251 -0.001 -0.008 0.005 0.63224 Pooled age 

mufa_fa 2089 0.000 -0.009 0.008 0.99359 Cases age 

mufa 2162 -0.019 -0.028 -0.011 0.00001 Controls age 

mufa 4251 -0.013 -0.019 -0.007 0.00001 Pooled age 

mufa 2089 -0.007 -0.015 0.001 0.09244 Cases age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

pc 2165 -0.025 -0.033 -0.016 0.00000 Controls age 

pc 4255 -0.016 -0.022 -0.010 0.00000 Pooled age 

pc 2090 -0.006 -0.014 0.003 0.20165 Cases age 

phe 4258 0.017 0.011 0.023 0.00000 Pooled age 

phe 2093 0.020 0.011 0.028 0.00001 Cases age 

phe 2165 0.015 0.007 0.024 0.00036 Controls age 

pufa_fa 2089 -0.001 -0.010 0.007 0.77512 Cases age 

pufa_fa 4251 0.000 -0.006 0.006 0.90770 Pooled age 

pufa_fa 2162 0.000 -0.008 0.009 0.95104 Controls age 

pufa 4251 -0.017 -0.023 -0.011 0.00000 Pooled age 

pufa 2162 -0.024 -0.032 -0.015 0.00000 Controls age 

pufa 2089 -0.010 -0.018 -0.001 0.02605 Cases age 

pyr 4254 0.004 -0.002 0.010 0.22801 Pooled age 

pyr 2091 0.005 -0.005 0.014 0.34645 Cases age 

pyr 2163 0.003 -0.005 0.011 0.46742 Controls age 

remnant_c 4259 -0.017 -0.023 -0.011 0.00000 Pooled age 

remnant_c 2166 -0.023 -0.031 -0.014 0.00000 Controls age 

remnant_c 2093 -0.011 -0.019 -0.002 0.01205 Cases age 

s_hdl_c 4248 -0.011 -0.017 -0.005 0.00022 Pooled age 

s_hdl_c 2087 -0.013 -0.021 -0.005 0.00216 Cases age 

s_hdl_c 2161 -0.010 -0.019 -0.001 0.02633 Controls age 

s_hdl_ce 4246 -0.010 -0.016 -0.004 0.00157 Pooled age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

s_hdl_ce 2087 -0.012 -0.020 -0.003 0.00613 Cases age 

s_hdl_ce 2159 -0.008 -0.017 0.001 0.07052 Controls age 

s_hdl_fc 4260 -0.010 -0.016 -0.004 0.00170 Pooled age 

s_hdl_fc 2167 -0.011 -0.020 -0.002 0.01165 Controls age 

s_hdl_fc 2093 -0.008 -0.017 0.000 0.06077 Cases age 

s_hdl_l 4260 -0.017 -0.023 -0.011 0.00000 Pooled age 

s_hdl_l 2167 -0.017 -0.026 -0.009 0.00005 Controls age 

s_hdl_l 2093 -0.015 -0.024 -0.007 0.00045 Cases age 

s_hdl_p 4260 -0.017 -0.023 -0.011 0.00000 Pooled age 

s_hdl_p 2167 -0.018 -0.026 -0.009 0.00003 Controls age 

s_hdl_p 2093 -0.015 -0.024 -0.007 0.00056 Cases age 

s_hdl_pl 4260 -0.011 -0.017 -0.005 0.00057 Pooled age 

s_hdl_pl 2167 -0.012 -0.021 -0.004 0.00500 Controls age 

s_hdl_pl 2093 -0.009 -0.017 0.000 0.04471 Cases age 

s_hdl_tg 2167 -0.006 -0.015 0.002 0.15713 Controls age 

s_hdl_tg 4258 -0.003 -0.009 0.003 0.37593 Pooled age 

s_hdl_tg 2091 0.001 -0.008 0.009 0.85211 Cases age 

s_ldl_c 4260 -0.016 -0.023 -0.010 0.00000 Pooled age 

s_ldl_c 2167 -0.019 -0.028 -0.011 0.00001 Controls age 

s_ldl_c 2093 -0.013 -0.022 -0.005 0.00212 Cases age 

s_ldl_ce 4260 -0.016 -0.022 -0.010 0.00000 Pooled age 

s_ldl_ce 2167 -0.019 -0.027 -0.010 0.00002 Controls age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

s_ldl_ce 2093 -0.013 -0.021 -0.004 0.00281 Cases age 

s_ldl_fc 4260 -0.018 -0.024 -0.012 0.00000 Pooled age 

s_ldl_fc 2167 -0.022 -0.030 -0.013 0.00000 Controls age 

s_ldl_fc 2093 -0.015 -0.023 -0.006 0.00086 Cases age 

s_ldl_l 4260 -0.018 -0.024 -0.012 0.00000 Pooled age 

s_ldl_l 2167 -0.022 -0.031 -0.014 0.00000 Controls age 

s_ldl_l 2093 -0.014 -0.023 -0.006 0.00114 Cases age 

s_ldl_p 4260 -0.018 -0.024 -0.012 0.00000 Pooled age 

s_ldl_p 2167 -0.022 -0.030 -0.013 0.00000 Controls age 

s_ldl_p 2093 -0.014 -0.023 -0.006 0.00121 Cases age 

s_ldl_pl 4260 -0.022 -0.028 -0.016 0.00000 Pooled age 

s_ldl_pl 2167 -0.027 -0.036 -0.019 0.00000 Controls age 

s_ldl_pl 2093 -0.017 -0.026 -0.009 0.00009 Cases age 

s_ldl_tg 2167 -0.015 -0.024 -0.007 0.00048 Controls age 

s_ldl_tg 4259 -0.010 -0.016 -0.004 0.00131 Pooled age 

s_ldl_tg 2092 -0.004 -0.013 0.004 0.32228 Cases age 

s_vldl_c 4259 -0.012 -0.018 -0.006 0.00006 Pooled age 

s_vldl_c 2167 -0.017 -0.026 -0.009 0.00007 Controls age 

s_vldl_c 2092 -0.007 -0.016 0.001 0.09867 Cases age 

s_vldl_ce 4259 -0.012 -0.018 -0.006 0.00005 Pooled age 

s_vldl_ce 2167 -0.017 -0.026 -0.009 0.00007 Controls age 

s_vldl_ce 2092 -0.007 -0.016 0.001 0.09011 Cases age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

s_vldl_fc 2167 -0.015 -0.024 -0.007 0.00051 Controls age 

s_vldl_fc 4259 -0.011 -0.017 -0.005 0.00059 Pooled age 

s_vldl_fc 2092 -0.006 -0.014 0.003 0.17350 Cases age 

s_vldl_l 4259 -0.010 -0.016 -0.004 0.00094 Pooled age 

s_vldl_l 2167 -0.014 -0.023 -0.006 0.00119 Controls age 

s_vldl_l 2092 -0.006 -0.015 0.002 0.14423 Cases age 

s_vldl_p 4258 -0.010 -0.016 -0.004 0.00121 Pooled age 

s_vldl_p 2167 -0.014 -0.023 -0.006 0.00134 Controls age 

s_vldl_p 2091 -0.006 -0.014 0.003 0.18092 Cases age 

s_vldl_pl 4259 -0.012 -0.018 -0.006 0.00016 Pooled age 

s_vldl_pl 2167 -0.016 -0.025 -0.007 0.00027 Controls age 

s_vldl_pl 2092 -0.007 -0.016 0.001 0.09630 Cases age 

s_vldl_tg 2165 -0.009 -0.018 0.000 0.03910 Controls age 

s_vldl_tg 4254 -0.006 -0.012 0.000 0.05734 Pooled age 

s_vldl_tg 2089 -0.003 -0.011 0.006 0.54199 Cases age 

serum_c 4259 -0.019 -0.025 -0.013 0.00000 Pooled age 

serum_c 2166 -0.025 -0.033 -0.016 0.00000 Controls age 

serum_c 2093 -0.013 -0.021 -0.004 0.00404 Cases age 

serum_tg 4259 -0.008 -0.014 -0.002 0.01157 Pooled age 

serum_tg 2166 -0.011 -0.020 -0.002 0.01233 Controls age 

serum_tg 2093 -0.005 -0.013 0.003 0.21413 Cases age 

sfa_fa 2162 0.008 -0.001 0.016 0.06735 Controls age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

sfa_fa 4251 0.006 0.000 0.012 0.06920 Pooled age 

sfa_fa 2089 0.003 -0.006 0.011 0.51849 Cases age 

sfa 4251 -0.015 -0.021 -0.009 0.00000 Pooled age 

sfa 2162 -0.021 -0.029 -0.012 0.00000 Controls age 

sfa 2089 -0.008 -0.016 0.000 0.05412 Cases age 

sm 4255 -0.018 -0.024 -0.012 0.00000 Pooled age 

sm 2165 -0.022 -0.031 -0.013 0.00000 Controls age 

sm 2090 -0.014 -0.022 -0.005 0.00168 Cases age 

tg_pg 4254 -0.003 -0.009 0.003 0.36190 Pooled age 

tg_pg 2164 -0.004 -0.012 0.005 0.42776 Controls age 

tg_pg 2090 -0.003 -0.011 0.005 0.47450 Cases age 

totcho 2165 -0.022 -0.030 -0.013 0.00000 Controls age 

totcho 4255 -0.013 -0.019 -0.007 0.00004 Pooled age 

totcho 2090 -0.003 -0.012 0.005 0.47900 Cases age 

totfa 4251 -0.016 -0.022 -0.010 0.00000 Pooled age 

totfa 2162 -0.023 -0.031 -0.014 0.00000 Controls age 

totfa 2089 -0.009 -0.017 0.000 0.03828 Cases age 

totpg 2165 -0.026 -0.034 -0.017 0.00000 Controls age 

totpg 4255 -0.016 -0.022 -0.010 0.00000 Pooled age 

totpg 2090 -0.005 -0.014 0.003 0.24566 Cases age 

tyr 4246 0.011 0.005 0.017 0.00048 Pooled age 

tyr 2088 0.015 0.007 0.023 0.00048 Cases age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

tyr 2158 0.007 -0.002 0.015 0.13958 Controls age 

unsat 4251 0.006 0.000 0.012 0.03864 Pooled age 

unsat 2162 0.007 -0.001 0.016 0.10349 Controls age 

unsat 2089 0.006 -0.003 0.014 0.17766 Cases age 

val 2164 -0.005 -0.014 0.004 0.25222 Controls age 

val 2092 0.004 -0.005 0.012 0.36267 Cases age 

val 4256 -0.001 -0.007 0.005 0.85882 Pooled age 

vldl_c 4259 -0.013 -0.019 -0.007 0.00003 Pooled age 

vldl_c 2166 -0.018 -0.027 -0.009 0.00004 Controls age 

vldl_c 2093 -0.008 -0.016 0.001 0.07172 Cases age 

vldl_d 4259 -0.003 -0.009 0.003 0.29005 Pooled age 

vldl_d 2166 -0.004 -0.013 0.005 0.37627 Controls age 

vldl_d 2093 -0.003 -0.011 0.005 0.46474 Cases age 

vldl_tg 4259 -0.008 -0.014 -0.002 0.00928 Pooled age 

vldl_tg 2166 -0.011 -0.019 -0.002 0.01559 Controls age 

vldl_tg 2093 -0.006 -0.014 0.002 0.14114 Cases age 

xl_hdl_c 2165 -0.008 -0.016 0.001 0.07275 Controls age 

xl_hdl_c 4256 -0.003 -0.009 0.003 0.37346 Pooled age 

xl_hdl_c 2091 0.003 -0.005 0.011 0.48525 Cases age 

xl_hdl_ce 2165 -0.009 -0.017 0.000 0.05138 Controls age 

xl_hdl_ce 4256 -0.003 -0.010 0.003 0.26017 Pooled age 

xl_hdl_ce 2091 0.002 -0.006 0.011 0.62091 Cases age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

xl_hdl_fc 2165 -0.006 -0.014 0.003 0.20291 Controls age 

xl_hdl_fc 2091 0.005 -0.003 0.014 0.23299 Cases age 

xl_hdl_fc 4256 0.000 -0.006 0.006 0.89581 Pooled age 

xl_hdl_l 2091 0.007 -0.002 0.015 0.10776 Cases age 

xl_hdl_l 2165 -0.004 -0.013 0.004 0.34074 Controls age 

xl_hdl_l 4256 0.001 -0.005 0.007 0.74605 Pooled age 

xl_hdl_p 2091 0.007 -0.001 0.016 0.09054 Cases age 

xl_hdl_p 2165 -0.003 -0.012 0.005 0.44389 Controls age 

xl_hdl_p 4256 0.002 -0.004 0.008 0.55028 Pooled age 

xl_hdl_pl 2091 0.009 0.001 0.018 0.02913 Cases age 

xl_hdl_pl 4256 0.005 -0.001 0.011 0.11588 Pooled age 

xl_hdl_pl 2165 0.001 -0.008 0.009 0.87787 Controls age 

xl_hdl_tg 2161 -0.008 -0.016 0.001 0.08989 Controls age 

xl_hdl_tg 2088 0.007 -0.002 0.015 0.11105 Cases age 

xl_hdl_tg 4249 -0.001 -0.007 0.006 0.86608 Pooled age 

xl_vldl_c 2158 -0.012 -0.021 -0.003 0.00894 Controls age 

xl_vldl_c 4247 -0.008 -0.014 -0.002 0.01048 Pooled age 

xl_vldl_c 2089 -0.004 -0.012 0.004 0.32945 Cases age 

xl_vldl_ce 2160 -0.011 -0.020 -0.002 0.01242 Controls age 

xl_vldl_ce 4248 -0.007 -0.013 -0.001 0.01604 Pooled age 

xl_vldl_ce 2088 -0.004 -0.012 0.004 0.37961 Cases age 

xl_vldl_fc 4244 -0.009 -0.015 -0.003 0.00419 Pooled age 



 

 623 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

xl_vldl_fc 2156 -0.013 -0.022 -0.004 0.00489 Controls age 

xl_vldl_fc 2088 -0.005 -0.013 0.003 0.22837 Cases age 

xl_vldl_l 4243 -0.008 -0.014 -0.002 0.01269 Pooled age 

xl_vldl_l 2155 -0.011 -0.019 -0.002 0.02127 Controls age 

xl_vldl_l 2088 -0.005 -0.013 0.003 0.21857 Cases age 

xl_vldl_p 4244 -0.007 -0.014 -0.001 0.01538 Pooled age 

xl_vldl_p 2155 -0.011 -0.020 -0.002 0.02033 Controls age 

xl_vldl_p 2089 -0.005 -0.013 0.004 0.26777 Cases age 

xl_vldl_pl 4241 -0.009 -0.015 -0.003 0.00343 Pooled age 

xl_vldl_pl 2154 -0.012 -0.021 -0.003 0.00770 Controls age 

xl_vldl_pl 2087 -0.006 -0.014 0.002 0.13868 Cases age 

xl_vldl_tg 4243 -0.007 -0.013 -0.001 0.01656 Pooled age 

xl_vldl_tg 2155 -0.010 -0.019 -0.001 0.02887 Controls age 

xl_vldl_tg 2088 -0.005 -0.013 0.003 0.22235 Cases age 

xs_vldl_c 4259 -0.012 -0.018 -0.006 0.00013 Pooled age 

xs_vldl_c 2166 -0.016 -0.025 -0.008 0.00021 Controls age 

xs_vldl_c 2093 -0.007 -0.016 0.002 0.10704 Cases age 

xs_vldl_ce 4259 -0.012 -0.018 -0.006 0.00011 Pooled age 

xs_vldl_ce 2166 -0.016 -0.025 -0.008 0.00018 Controls age 

xs_vldl_ce 2093 -0.007 -0.016 0.001 0.10048 Cases age 

xs_vldl_fc 4259 -0.011 -0.017 -0.005 0.00059 Pooled age 

xs_vldl_fc 2167 -0.014 -0.023 -0.006 0.00108 Controls age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

xs_vldl_fc 2092 -0.006 -0.015 0.002 0.13514 Cases age 

xs_vldl_l 4259 -0.012 -0.018 -0.006 0.00008 Pooled age 

xs_vldl_l 2167 -0.017 -0.025 -0.008 0.00012 Controls age 

xs_vldl_l 2092 -0.007 -0.016 0.001 0.10295 Cases age 

xs_vldl_p 4259 -0.012 -0.018 -0.006 0.00016 Pooled age 

xs_vldl_p 2167 -0.016 -0.025 -0.008 0.00023 Controls age 

xs_vldl_p 2092 -0.007 -0.015 0.002 0.11313 Cases age 

xs_vldl_pl 4260 -0.013 -0.019 -0.007 0.00002 Pooled age 

xs_vldl_pl 2167 -0.017 -0.025 -0.008 0.00012 Controls age 

xs_vldl_pl 2093 -0.009 -0.017 -0.001 0.03732 Cases age 

xs_vldl_tg 2167 -0.009 -0.018 0.000 0.03963 Controls age 

xs_vldl_tg 4259 -0.005 -0.011 0.001 0.07721 Pooled age 

xs_vldl_tg 2092 -0.002 -0.010 0.007 0.67524 Cases age 

xxl_vldl_c 4244 -0.009 -0.015 -0.003 0.00464 Pooled age 

xxl_vldl_c 2157 -0.013 -0.022 -0.004 0.00542 Controls age 

xxl_vldl_c 2087 -0.005 -0.013 0.003 0.23177 Cases age 

xxl_vldl_ce 2160 -0.013 -0.022 -0.004 0.00326 Controls age 

xxl_vldl_ce 4248 -0.009 -0.015 -0.003 0.00506 Pooled age 

xxl_vldl_ce 2088 -0.004 -0.012 0.004 0.33255 Cases age 

xxl_vldl_fc 4240 -0.008 -0.014 -0.002 0.01110 Pooled age 

xxl_vldl_fc 2154 -0.011 -0.020 -0.002 0.02078 Controls age 

xxl_vldl_fc 2086 -0.005 -0.013 0.003 0.19336 Cases age 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 

p-

value 
Model Outcome 

xxl_vldl_l 4238 -0.010 -0.016 -0.004 0.00145 Pooled age 

xxl_vldl_l 2153 -0.013 -0.022 -0.004 0.00462 Controls age 

xxl_vldl_l 2085 -0.007 -0.015 0.001 0.09303 Cases age 

xxl_vldl_p 4260 -0.012 -0.018 -0.006 0.00015 Pooled age 

xxl_vldl_p 2167 -0.016 -0.025 -0.007 0.00064 Controls age 

xxl_vldl_p 2093 -0.008 -0.015 0.000 0.05525 Cases age 

xxl_vldl_pl 4238 -0.010 -0.016 -0.004 0.00190 Pooled age 

xxl_vldl_pl 2153 -0.013 -0.022 -0.004 0.00525 Controls age 

xxl_vldl_pl 2085 -0.007 -0.015 0.001 0.10758 Cases age 

xxl_vldl_tg 4238 -0.010 -0.016 -0.003 0.00206 Pooled age 

xxl_vldl_tg 2152 -0.012 -0.021 -0.003 0.00688 Controls age 

xxl_vldl_tg 2086 -0.007 -0.015 0.001 0.09430 Cases age 

 

 

Appendix D Table D 8:  Linear regression results for the associations between individual 

biomarkers and BMI in cases, controls and pooled cases and controls with follow-up data in 

the CAP trial (4,260 participants: 2,167 controls, 2,093 cases) 

 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

xxl_vldl_p 1425 0.055 0.043 0.068 0.000 Cases bmi 



 

 626 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

xxl_vldl_l 1421 0.059 0.046 0.072 0.000 Cases bmi 

xxl_vldl_pl 1421 0.058 0.045 0.071 0.000 Cases bmi 

xxl_vldl_c 1422 0.055 0.042 0.068 0.000 Cases bmi 

xxl_vldl_ce 1421 0.048 0.035 0.061 0.000 Cases bmi 

xxl_vldl_fc 1421 0.060 0.047 0.073 0.000 Cases bmi 

xxl_vldl_tg 1422 0.062 0.049 0.075 0.000 Cases bmi 

xl_vldl_p 1422 0.065 0.052 0.077 0.000 Cases bmi 

xl_vldl_l 1422 0.065 0.052 0.079 0.000 Cases bmi 

xl_vldl_pl 1421 0.060 0.047 0.073 0.000 Cases bmi 

xl_vldl_c 1422 0.059 0.046 0.072 0.000 Cases bmi 

xl_vldl_ce 1421 0.059 0.046 0.072 0.000 Cases bmi 

xl_vldl_fc 1422 0.059 0.046 0.072 0.000 Cases bmi 

xl_vldl_tg 1422 0.067 0.054 0.080 0.000 Cases bmi 

l_vldl_p 1422 0.067 0.054 0.080 0.000 Cases bmi 

l_vldl_l 1422 0.070 0.057 0.083 0.000 Cases bmi 

l_vldl_pl 1422 0.067 0.054 0.080 0.000 Cases bmi 

l_vldl_c 1421 0.063 0.050 0.076 0.000 Cases bmi 

l_vldl_ce 1421 0.059 0.046 0.073 0.000 Cases bmi 

l_vldl_fc 1422 0.065 0.052 0.078 0.000 Cases bmi 

l_vldl_tg 1422 0.071 0.058 0.084 0.000 Cases bmi 

m_vldl_p 1421 0.063 0.050 0.076 0.000 Cases bmi 

m_vldl_l 1421 0.066 0.052 0.079 0.000 Cases bmi 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

m_vldl_pl 1422 0.062 0.048 0.075 0.000 Cases bmi 

m_vldl_c 1422 0.052 0.038 0.066 0.000 Cases bmi 

m_vldl_ce 1423 0.039 0.026 0.053 0.000 Cases bmi 

m_vldl_fc 1421 0.062 0.048 0.075 0.000 Cases bmi 

m_vldl_tg 1422 0.069 0.056 0.082 0.000 Cases bmi 

s_vldl_p 1423 0.047 0.033 0.061 0.000 Cases bmi 

s_vldl_l 1424 0.046 0.032 0.060 0.000 Cases bmi 

s_vldl_pl 1424 0.043 0.029 0.057 0.000 Cases bmi 

s_vldl_c 1424 0.015 0.000 0.029 0.046 Cases bmi 

s_vldl_ce 1424 0.000 -0.014 0.014 0.986 Cases bmi 

s_vldl_fc 1424 0.037 0.023 0.051 0.000 Cases bmi 

s_vldl_tg 1422 0.061 0.047 0.074 0.000 Cases bmi 

xs_vldl_p 1424 -0.005 -0.019 0.010 0.520 Cases bmi 

xs_vldl_l 1424 -0.011 -0.025 0.003 0.139 Cases bmi 

xs_vldl_pl 1425 -0.029 -0.042 -0.015 0.000 Cases bmi 

xs_vldl_c 1425 -0.024 -0.038 -0.010 0.001 Cases bmi 

xs_vldl_ce 1425 -0.018 -0.032 -0.004 0.012 Cases bmi 

xs_vldl_fc 1424 -0.035 -0.049 -0.021 0.000 Cases bmi 

xs_vldl_tg 1424 0.041 0.027 0.055 0.000 Cases bmi 

idl_p 1425 -0.030 -0.044 -0.016 0.000 Cases bmi 

idl_l 1425 -0.034 -0.048 -0.020 0.000 Cases bmi 

idl_pl 1425 -0.041 -0.054 -0.027 0.000 Cases bmi 



 

 628 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

idl_c 1425 -0.036 -0.050 -0.022 0.000 Cases bmi 

idl_ce 1425 -0.027 -0.041 -0.014 0.000 Cases bmi 

idl_fc 1425 -0.053 -0.066 -0.040 0.000 Cases bmi 

idl_tg 1424 0.013 -0.001 0.027 0.076 Cases bmi 

l_ldl_p 1425 -0.030 -0.044 -0.016 0.000 Cases bmi 

l_ldl_l 1425 -0.034 -0.047 -0.020 0.000 Cases bmi 

l_ldl_pl 1425 -0.032 -0.046 -0.018 0.000 Cases bmi 

l_ldl_c 1425 -0.036 -0.049 -0.022 0.000 Cases bmi 

l_ldl_ce 1425 -0.031 -0.045 -0.017 0.000 Cases bmi 

l_ldl_fc 1425 -0.046 -0.060 -0.033 0.000 Cases bmi 

l_ldl_tg 1424 -0.002 -0.016 0.012 0.775 Cases bmi 

m_ldl_p 1425 -0.029 -0.043 -0.015 0.000 Cases bmi 

m_ldl_l 1425 -0.031 -0.044 -0.017 0.000 Cases bmi 

m_ldl_pl 1425 -0.014 -0.028 0.000 0.049 Cases bmi 

m_ldl_c 1425 -0.035 -0.049 -0.022 0.000 Cases bmi 

m_ldl_ce 1425 -0.036 -0.049 -0.022 0.000 Cases bmi 

m_ldl_fc 1425 -0.033 -0.047 -0.019 0.000 Cases bmi 

m_ldl_tg 1424 -0.008 -0.022 0.007 0.289 Cases bmi 

s_ldl_p 1425 -0.029 -0.043 -0.015 0.000 Cases bmi 

s_ldl_l 1425 -0.032 -0.045 -0.018 0.000 Cases bmi 

s_ldl_pl 1425 -0.016 -0.030 -0.002 0.026 Cases bmi 

s_ldl_c 1425 -0.039 -0.052 -0.025 0.000 Cases bmi 



 

 629 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

s_ldl_ce 1425 -0.039 -0.052 -0.025 0.000 Cases bmi 

s_ldl_fc 1425 -0.036 -0.050 -0.023 0.000 Cases bmi 

s_ldl_tg 1424 0.021 0.007 0.035 0.003 Cases bmi 

xl_hdl_p 1423 -0.075 -0.089 -0.062 0.000 Cases bmi 

xl_hdl_l 1423 -0.076 -0.089 -0.062 0.000 Cases bmi 

xl_hdl_pl 1423 -0.082 -0.096 -0.068 0.000 Cases bmi 

xl_hdl_c 1423 -0.065 -0.079 -0.051 0.000 Cases bmi 

xl_hdl_ce 1423 -0.063 -0.077 -0.049 0.000 Cases bmi 

xl_hdl_fc 1423 -0.068 -0.082 -0.054 0.000 Cases bmi 

xl_hdl_tg 1422 0.015 0.001 0.028 0.038 Cases bmi 

l_hdl_p 1424 -0.078 -0.092 -0.064 0.000 Cases bmi 

l_hdl_l 1424 -0.079 -0.092 -0.065 0.000 Cases bmi 

l_hdl_pl 1425 -0.078 -0.091 -0.064 0.000 Cases bmi 

l_hdl_c 1424 -0.079 -0.092 -0.065 0.000 Cases bmi 

l_hdl_ce 1424 -0.077 -0.091 -0.063 0.000 Cases bmi 

l_hdl_fc 1424 -0.083 -0.096 -0.069 0.000 Cases bmi 

l_hdl_tg 1423 -0.046 -0.061 -0.032 0.000 Cases bmi 

m_hdl_p 1425 -0.028 -0.041 -0.014 0.000 Cases bmi 

m_hdl_l 1425 -0.030 -0.044 -0.017 0.000 Cases bmi 

m_hdl_pl 1425 -0.028 -0.042 -0.015 0.000 Cases bmi 

m_hdl_c 1425 -0.039 -0.052 -0.025 0.000 Cases bmi 

m_hdl_ce 1425 -0.037 -0.050 -0.023 0.000 Cases bmi 



 

 630 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

m_hdl_fc 1425 -0.045 -0.058 -0.031 0.000 Cases bmi 

m_hdl_tg 1424 0.049 0.036 0.063 0.000 Cases bmi 

s_hdl_p 1425 0.023 0.009 0.037 0.002 Cases bmi 

s_hdl_l 1425 0.016 0.002 0.031 0.021 Cases bmi 

s_hdl_pl 1425 0.039 0.025 0.052 0.000 Cases bmi 

s_hdl_c 1422 -0.034 -0.047 -0.021 0.000 Cases bmi 

s_hdl_ce 1422 -0.039 -0.052 -0.025 0.000 Cases bmi 

s_hdl_fc 1425 0.019 0.006 0.033 0.006 Cases bmi 

s_hdl_tg 1423 0.072 0.058 0.085 0.000 Cases bmi 

vldl_d 1425 0.082 0.068 0.095 0.000 Cases bmi 

ldl_d 1425 -0.007 -0.021 0.006 0.290 Cases bmi 

hdl_d 1425 -0.086 -0.100 -0.072 0.000 Cases bmi 

serum_c 1425 -0.043 -0.057 -0.029 0.000 Cases bmi 

vldl_c 1425 0.036 0.022 0.050 0.000 Cases bmi 

remnant_c 1425 0.007 -0.007 0.021 0.326 Cases bmi 

ldl_c 1425 -0.037 -0.051 -0.023 0.000 Cases bmi 

hdl_c 1425 -0.075 -0.088 -0.061 0.000 Cases bmi 

hdl2_c 1425 -0.074 -0.088 -0.061 0.000 Cases bmi 

hdl3_c 1425 -0.062 -0.075 -0.048 0.000 Cases bmi 

estc 1424 -0.045 -0.058 -0.031 0.000 Cases bmi 

freec 1424 -0.039 -0.053 -0.026 0.000 Cases bmi 

serum_tg 1425 0.063 0.050 0.077 0.000 Cases bmi 



 

 631 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

vldl_tg 1425 0.068 0.055 0.082 0.000 Cases bmi 

ldl_tg 1425 0.002 -0.013 0.016 0.802 Cases bmi 

hdl_tg 1425 0.035 0.021 0.049 0.000 Cases bmi 

totpg 1424 -0.022 -0.036 -0.008 0.002 Cases bmi 

tg_pg 1424 0.076 0.063 0.089 0.000 Cases bmi 

pc 1424 -0.031 -0.045 -0.017 0.000 Cases bmi 

sm 1424 -0.040 -0.054 -0.026 0.000 Cases bmi 

totcho 1424 -0.033 -0.047 -0.019 0.000 Cases bmi 

apoa1 1425 -0.065 -0.078 -0.051 0.000 Cases bmi 

apob 1424 0.014 0.000 0.028 0.055 Cases bmi 

apob_apoa1 1424 0.041 0.027 0.055 0.000 Cases bmi 

totfa 1423 0.022 0.008 0.036 0.002 Cases bmi 

unsat 1423 -0.070 -0.083 -0.056 0.000 Cases bmi 

dha 1423 -0.007 -0.021 0.007 0.323 Cases bmi 

la 1423 -0.015 -0.030 -0.001 0.035 Cases bmi 

faw3 1423 0.004 -0.010 0.019 0.548 Cases bmi 

faw6 1423 -0.019 -0.033 -0.004 0.010 Cases bmi 

pufa 1423 -0.015 -0.029 -0.001 0.037 Cases bmi 

mufa 1423 0.041 0.027 0.055 0.000 Cases bmi 

sfa 1423 0.030 0.016 0.044 0.000 Cases bmi 

dha_fa 1423 -0.030 -0.044 -0.016 0.000 Cases bmi 

la_fa 1423 -0.065 -0.079 -0.052 0.000 Cases bmi 



 

 632 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

faw3_fa 1423 -0.017 -0.031 -0.003 0.015 Cases bmi 

faw6_fa 1423 -0.078 -0.091 -0.065 0.000 Cases bmi 

pufa_fa 1423 -0.077 -0.090 -0.064 0.000 Cases bmi 

mufa_fa 1423 0.073 0.059 0.087 0.000 Cases bmi 

sfa_fa 1423 0.048 0.033 0.062 0.000 Cases bmi 

glc 1421 0.055 0.042 0.067 0.000 Cases bmi 

lac 1425 0.014 0.002 0.026 0.023 Cases bmi 

pyr 1423 0.033 0.022 0.044 0.000 Cases bmi 

cit 1424 -0.011 -0.025 0.004 0.160 Cases bmi 

ala 1425 0.027 0.012 0.041 0.000 Cases bmi 

gln 1424 -0.057 -0.070 -0.043 0.000 Cases bmi 

gly 1416 -0.041 -0.054 -0.027 0.000 Cases bmi 

his 1421 0.004 -0.010 0.019 0.532 Cases bmi 

ile 1424 0.081 0.067 0.094 0.000 Cases bmi 

leu 1425 0.078 0.064 0.091 0.000 Cases bmi 

val 1425 0.081 0.067 0.095 0.000 Cases bmi 

phe 1425 0.061 0.047 0.075 0.000 Cases bmi 

tyr 1421 0.061 0.048 0.075 0.000 Cases bmi 

ace 1425 0.003 -0.011 0.016 0.706 Cases bmi 

acace 1425 0.037 0.023 0.052 0.000 Cases bmi 

bohbut 1387 0.003 -0.011 0.018 0.662 Cases bmi 

crea 1421 0.007 -0.006 0.021 0.284 Cases bmi 



 

 633 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

alb 1425 -0.007 -0.022 0.007 0.334 Cases bmi 

gp 1425 0.060 0.047 0.074 0.000 Cases bmi 

xxl_vldl_p 1395 0.059 0.046 0.073 0.000 Controls bmi 

xxl_vldl_l 1390 0.064 0.050 0.079 0.000 Controls bmi 

xxl_vldl_pl 1390 0.064 0.050 0.079 0.000 Controls bmi 

xxl_vldl_c 1392 0.059 0.044 0.073 0.000 Controls bmi 

xxl_vldl_ce 1393 0.051 0.037 0.065 0.000 Controls bmi 

xxl_vldl_fc 1391 0.065 0.051 0.080 0.000 Controls bmi 

xxl_vldl_tg 1390 0.065 0.050 0.079 0.000 Controls bmi 

xl_vldl_p 1391 0.068 0.054 0.082 0.000 Controls bmi 

xl_vldl_l 1391 0.069 0.055 0.084 0.000 Controls bmi 

xl_vldl_pl 1391 0.066 0.052 0.080 0.000 Controls bmi 

xl_vldl_c 1392 0.062 0.048 0.076 0.000 Controls bmi 

xl_vldl_ce 1393 0.061 0.047 0.075 0.000 Controls bmi 

xl_vldl_fc 1392 0.063 0.048 0.077 0.000 Controls bmi 

xl_vldl_tg 1391 0.071 0.057 0.085 0.000 Controls bmi 

l_vldl_p 1393 0.070 0.056 0.084 0.000 Controls bmi 

l_vldl_l 1393 0.074 0.060 0.088 0.000 Controls bmi 

l_vldl_pl 1393 0.071 0.057 0.085 0.000 Controls bmi 

l_vldl_c 1393 0.068 0.054 0.082 0.000 Controls bmi 

l_vldl_ce 1393 0.064 0.050 0.078 0.000 Controls bmi 

l_vldl_fc 1392 0.070 0.056 0.084 0.000 Controls bmi 



 

 634 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

l_vldl_tg 1393 0.074 0.060 0.088 0.000 Controls bmi 

m_vldl_p 1393 0.068 0.054 0.082 0.000 Controls bmi 

m_vldl_l 1393 0.070 0.056 0.084 0.000 Controls bmi 

m_vldl_pl 1393 0.067 0.053 0.081 0.000 Controls bmi 

m_vldl_c 1394 0.059 0.045 0.073 0.000 Controls bmi 

m_vldl_ce 1394 0.047 0.033 0.061 0.000 Controls bmi 

m_vldl_fc 1394 0.068 0.054 0.082 0.000 Controls bmi 

m_vldl_tg 1393 0.073 0.059 0.087 0.000 Controls bmi 

s_vldl_p 1395 0.057 0.043 0.071 0.000 Controls bmi 

s_vldl_l 1395 0.056 0.042 0.070 0.000 Controls bmi 

s_vldl_pl 1395 0.055 0.041 0.069 0.000 Controls bmi 

s_vldl_c 1395 0.025 0.011 0.039 0.001 Controls bmi 

s_vldl_ce 1395 0.008 -0.006 0.022 0.252 Controls bmi 

s_vldl_fc 1395 0.049 0.035 0.063 0.000 Controls bmi 

s_vldl_tg 1394 0.069 0.055 0.083 0.000 Controls bmi 

xs_vldl_p 1395 0.006 -0.008 0.020 0.377 Controls bmi 

xs_vldl_l 1395 -0.001 -0.015 0.013 0.906 Controls bmi 

xs_vldl_pl 1395 -0.019 -0.033 -0.005 0.007 Controls bmi 

xs_vldl_c 1395 -0.018 -0.032 -0.004 0.012 Controls bmi 

xs_vldl_ce 1395 -0.013 -0.027 0.001 0.069 Controls bmi 

xs_vldl_fc 1395 -0.026 -0.040 -0.012 0.000 Controls bmi 

xs_vldl_tg 1395 0.054 0.040 0.068 0.000 Controls bmi 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

idl_p 1394 -0.024 -0.038 -0.010 0.001 Controls bmi 

idl_l 1394 -0.031 -0.045 -0.017 0.000 Controls bmi 

idl_pl 1395 -0.037 -0.051 -0.023 0.000 Controls bmi 

idl_c 1395 -0.034 -0.048 -0.020 0.000 Controls bmi 

idl_ce 1395 -0.026 -0.039 -0.012 0.000 Controls bmi 

idl_fc 1395 -0.050 -0.064 -0.036 0.000 Controls bmi 

idl_tg 1393 0.028 0.014 0.042 0.000 Controls bmi 

l_ldl_p 1395 -0.026 -0.040 -0.012 0.000 Controls bmi 

l_ldl_l 1395 -0.031 -0.046 -0.017 0.000 Controls bmi 

l_ldl_pl 1395 -0.029 -0.043 -0.015 0.000 Controls bmi 

l_ldl_c 1395 -0.034 -0.048 -0.020 0.000 Controls bmi 

l_ldl_ce 1395 -0.029 -0.043 -0.015 0.000 Controls bmi 

l_ldl_fc 1395 -0.045 -0.059 -0.031 0.000 Controls bmi 

l_ldl_tg 1394 0.012 -0.002 0.026 0.104 Controls bmi 

m_ldl_p 1395 -0.025 -0.039 -0.011 0.001 Controls bmi 

m_ldl_l 1395 -0.029 -0.043 -0.015 0.000 Controls bmi 

m_ldl_pl 1395 -0.011 -0.025 0.003 0.130 Controls bmi 

m_ldl_c 1395 -0.034 -0.048 -0.020 0.000 Controls bmi 

m_ldl_ce 1395 -0.034 -0.048 -0.020 0.000 Controls bmi 

m_ldl_fc 1395 -0.033 -0.046 -0.019 0.000 Controls bmi 

m_ldl_tg 1395 0.009 -0.005 0.023 0.196 Controls bmi 

s_ldl_p 1395 -0.025 -0.039 -0.011 0.000 Controls bmi 



 

 636 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

s_ldl_l 1395 -0.030 -0.044 -0.016 0.000 Controls bmi 

s_ldl_pl 1395 -0.014 -0.028 0.000 0.054 Controls bmi 

s_ldl_c 1395 -0.038 -0.052 -0.024 0.000 Controls bmi 

s_ldl_ce 1395 -0.037 -0.051 -0.023 0.000 Controls bmi 

s_ldl_fc 1395 -0.037 -0.051 -0.024 0.000 Controls bmi 

s_ldl_tg 1395 0.035 0.021 0.049 0.000 Controls bmi 

xl_hdl_p 1395 -0.081 -0.095 -0.068 0.000 Controls bmi 

xl_hdl_l 1395 -0.082 -0.096 -0.069 0.000 Controls bmi 

xl_hdl_pl 1395 -0.085 -0.098 -0.072 0.000 Controls bmi 

xl_hdl_c 1395 -0.076 -0.089 -0.062 0.000 Controls bmi 

xl_hdl_ce 1395 -0.074 -0.088 -0.061 0.000 Controls bmi 

xl_hdl_fc 1395 -0.077 -0.091 -0.064 0.000 Controls bmi 

xl_hdl_tg 1393 0.018 0.004 0.032 0.013 Controls bmi 

l_hdl_p 1395 -0.076 -0.089 -0.063 0.000 Controls bmi 

l_hdl_l 1395 -0.077 -0.091 -0.064 0.000 Controls bmi 

l_hdl_pl 1395 -0.075 -0.088 -0.061 0.000 Controls bmi 

l_hdl_c 1395 -0.079 -0.092 -0.065 0.000 Controls bmi 

l_hdl_ce 1395 -0.077 -0.090 -0.064 0.000 Controls bmi 

l_hdl_fc 1395 -0.083 -0.096 -0.070 0.000 Controls bmi 

l_hdl_tg 1394 -0.039 -0.053 -0.025 0.000 Controls bmi 

m_hdl_p 1395 -0.018 -0.032 -0.004 0.011 Controls bmi 

m_hdl_l 1395 -0.022 -0.036 -0.008 0.003 Controls bmi 



 

 637 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

m_hdl_pl 1395 -0.020 -0.034 -0.005 0.006 Controls bmi 

m_hdl_c 1395 -0.032 -0.047 -0.018 0.000 Controls bmi 

m_hdl_ce 1395 -0.031 -0.045 -0.017 0.000 Controls bmi 

m_hdl_fc 1395 -0.037 -0.051 -0.023 0.000 Controls bmi 

m_hdl_tg 1394 0.063 0.049 0.077 0.000 Controls bmi 

s_hdl_p 1395 0.030 0.016 0.045 0.000 Controls bmi 

s_hdl_l 1395 0.024 0.010 0.039 0.001 Controls bmi 

s_hdl_pl 1395 0.044 0.030 0.059 0.000 Controls bmi 

s_hdl_c 1392 -0.031 -0.045 -0.017 0.000 Controls bmi 

s_hdl_ce 1392 -0.036 -0.051 -0.022 0.000 Controls bmi 

s_hdl_fc 1395 0.022 0.007 0.036 0.003 Controls bmi 

s_hdl_tg 1395 0.079 0.065 0.092 0.000 Controls bmi 

vldl_d 1394 0.081 0.068 0.094 0.000 Controls bmi 

ldl_d 1394 0.000 -0.014 0.015 0.958 Controls bmi 

hdl_d 1394 -0.087 -0.100 -0.074 0.000 Controls bmi 

serum_c 1394 -0.040 -0.054 -0.026 0.000 Controls bmi 

vldl_c 1394 0.045 0.031 0.058 0.000 Controls bmi 

remnant_c 1394 0.014 0.000 0.028 0.055 Controls bmi 

ldl_c 1394 -0.037 -0.051 -0.022 0.000 Controls bmi 

hdl_c 1394 -0.074 -0.088 -0.061 0.000 Controls bmi 

hdl2_c 1394 -0.073 -0.087 -0.060 0.000 Controls bmi 

hdl3_c 1394 -0.063 -0.077 -0.049 0.000 Controls bmi 



 

 638 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

estc 1393 -0.043 -0.057 -0.029 0.000 Controls bmi 

freec 1393 -0.034 -0.048 -0.020 0.000 Controls bmi 

serum_tg 1394 0.071 0.057 0.085 0.000 Controls bmi 

vldl_tg 1394 0.074 0.061 0.088 0.000 Controls bmi 

ldl_tg 1394 0.017 0.004 0.031 0.014 Controls bmi 

hdl_tg 1394 0.047 0.033 0.061 0.000 Controls bmi 

totpg 1393 -0.016 -0.030 -0.002 0.023 Controls bmi 

tg_pg 1392 0.083 0.069 0.096 0.000 Controls bmi 

pc 1393 -0.025 -0.039 -0.011 0.000 Controls bmi 

sm 1393 -0.045 -0.059 -0.032 0.000 Controls bmi 

totcho 1393 -0.030 -0.044 -0.016 0.000 Controls bmi 

apoa1 1394 -0.060 -0.074 -0.046 0.000 Controls bmi 

apob 1394 0.020 0.006 0.034 0.005 Controls bmi 

apob_apoa1 1394 0.045 0.031 0.059 0.000 Controls bmi 

totfa 1392 0.031 0.016 0.045 0.000 Controls bmi 

unsat 1392 -0.064 -0.078 -0.051 0.000 Controls bmi 

dha 1392 0.005 -0.010 0.019 0.521 Controls bmi 

la 1392 -0.014 -0.028 0.000 0.045 Controls bmi 

faw3 1392 0.014 0.000 0.029 0.049 Controls bmi 

faw6 1392 -0.014 -0.028 0.000 0.054 Controls bmi 

pufa 1392 -0.009 -0.023 0.005 0.206 Controls bmi 

mufa 1392 0.053 0.039 0.067 0.000 Controls bmi 



 

 639 

Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

sfa 1392 0.036 0.022 0.050 0.000 Controls bmi 

dha_fa 1392 -0.024 -0.038 -0.010 0.001 Controls bmi 

la_fa 1392 -0.081 -0.095 -0.067 0.000 Controls bmi 

faw3_fa 1392 -0.012 -0.027 0.002 0.086 Controls bmi 

faw6_fa 1392 -0.088 -0.102 -0.074 0.000 Controls bmi 

pufa_fa 1392 -0.084 -0.098 -0.070 0.000 Controls bmi 

mufa_fa 1392 0.087 0.074 0.101 0.000 Controls bmi 

sfa_fa 1392 0.035 0.021 0.049 0.000 Controls bmi 

glc 1388 0.052 0.038 0.066 0.000 Controls bmi 

lac 1393 0.017 0.005 0.030 0.006 Controls bmi 

pyr 1392 0.032 0.021 0.043 0.000 Controls bmi 

cit 1392 -0.007 -0.021 0.008 0.351 Controls bmi 

ala 1393 0.023 0.009 0.037 0.001 Controls bmi 

gln 1392 -0.064 -0.078 -0.050 0.000 Controls bmi 

gly 1390 -0.058 -0.072 -0.044 0.000 Controls bmi 

his 1388 -0.015 -0.029 0.000 0.046 Controls bmi 

ile 1393 0.074 0.060 0.088 0.000 Controls bmi 

leu 1393 0.070 0.056 0.084 0.000 Controls bmi 

val 1392 0.071 0.057 0.085 0.000 Controls bmi 

phe 1393 0.060 0.046 0.074 0.000 Controls bmi 

tyr 1388 0.055 0.041 0.069 0.000 Controls bmi 

ace 1393 -0.005 -0.018 0.008 0.488 Controls bmi 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

acace 1393 0.040 0.026 0.053 0.000 Controls bmi 

bohbut 1357 0.006 -0.008 0.020 0.409 Controls bmi 

crea 1388 0.022 0.008 0.036 0.002 Controls bmi 

alb 1394 0.010 -0.004 0.025 0.153 Controls bmi 

gp 1393 0.070 0.056 0.084 0.000 Controls bmi 

xxl_vldl_p 2820 0.058 0.048 0.067 0.000 Pooled bmi 

xxl_vldl_l 2811 0.062 0.052 0.072 0.000 Pooled bmi 

xxl_vldl_pl 2811 0.061 0.052 0.071 0.000 Pooled bmi 

xxl_vldl_c 2814 0.057 0.047 0.067 0.000 Pooled bmi 

xxl_vldl_ce 2814 0.050 0.040 0.060 0.000 Pooled bmi 

xxl_vldl_fc 2812 0.063 0.053 0.073 0.000 Pooled bmi 

xxl_vldl_tg 2812 0.063 0.054 0.073 0.000 Pooled bmi 

xl_vldl_p 2813 0.067 0.057 0.076 0.000 Pooled bmi 

xl_vldl_l 2813 0.068 0.058 0.077 0.000 Pooled bmi 

xl_vldl_pl 2812 0.063 0.054 0.073 0.000 Pooled bmi 

xl_vldl_c 2814 0.061 0.051 0.071 0.000 Pooled bmi 

xl_vldl_ce 2814 0.060 0.051 0.070 0.000 Pooled bmi 

xl_vldl_fc 2814 0.061 0.051 0.071 0.000 Pooled bmi 

xl_vldl_tg 2813 0.069 0.060 0.079 0.000 Pooled bmi 

l_vldl_p 2815 0.069 0.059 0.078 0.000 Pooled bmi 

l_vldl_l 2815 0.072 0.063 0.082 0.000 Pooled bmi 

l_vldl_pl 2815 0.069 0.060 0.079 0.000 Pooled bmi 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

l_vldl_c 2814 0.066 0.056 0.075 0.000 Pooled bmi 

l_vldl_ce 2814 0.062 0.052 0.072 0.000 Pooled bmi 

l_vldl_fc 2814 0.068 0.058 0.077 0.000 Pooled bmi 

l_vldl_tg 2815 0.073 0.063 0.082 0.000 Pooled bmi 

m_vldl_p 2814 0.066 0.056 0.075 0.000 Pooled bmi 

m_vldl_l 2814 0.068 0.058 0.078 0.000 Pooled bmi 

m_vldl_pl 2815 0.065 0.055 0.074 0.000 Pooled bmi 

m_vldl_c 2816 0.056 0.046 0.065 0.000 Pooled bmi 

m_vldl_ce 2817 0.043 0.033 0.053 0.000 Pooled bmi 

m_vldl_fc 2815 0.065 0.056 0.075 0.000 Pooled bmi 

m_vldl_tg 2815 0.071 0.062 0.081 0.000 Pooled bmi 

s_vldl_p 2818 0.052 0.042 0.062 0.000 Pooled bmi 

s_vldl_l 2819 0.051 0.041 0.061 0.000 Pooled bmi 

s_vldl_pl 2819 0.049 0.039 0.059 0.000 Pooled bmi 

s_vldl_c 2819 0.020 0.010 0.030 0.000 Pooled bmi 

s_vldl_ce 2819 0.004 -0.006 0.014 0.428 Pooled bmi 

s_vldl_fc 2819 0.043 0.033 0.053 0.000 Pooled bmi 

s_vldl_tg 2816 0.065 0.056 0.075 0.000 Pooled bmi 

xs_vldl_p 2819 0.001 -0.009 0.011 0.866 Pooled bmi 

xs_vldl_l 2819 -0.006 -0.016 0.004 0.255 Pooled bmi 

xs_vldl_pl 2820 -0.024 -0.034 -0.014 0.000 Pooled bmi 

xs_vldl_c 2820 -0.021 -0.031 -0.011 0.000 Pooled bmi 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

xs_vldl_ce 2820 -0.016 -0.026 -0.006 0.002 Pooled bmi 

xs_vldl_fc 2819 -0.031 -0.040 -0.021 0.000 Pooled bmi 

xs_vldl_tg 2819 0.048 0.038 0.058 0.000 Pooled bmi 

idl_p 2819 -0.027 -0.037 -0.017 0.000 Pooled bmi 

idl_l 2819 -0.033 -0.043 -0.023 0.000 Pooled bmi 

idl_pl 2820 -0.039 -0.049 -0.029 0.000 Pooled bmi 

idl_c 2820 -0.035 -0.045 -0.025 0.000 Pooled bmi 

idl_ce 2820 -0.027 -0.037 -0.017 0.000 Pooled bmi 

idl_fc 2820 -0.052 -0.061 -0.042 0.000 Pooled bmi 

idl_tg 2817 0.021 0.011 0.031 0.000 Pooled bmi 

l_ldl_p 2820 -0.028 -0.038 -0.018 0.000 Pooled bmi 

l_ldl_l 2820 -0.033 -0.043 -0.023 0.000 Pooled bmi 

l_ldl_pl 2820 -0.031 -0.040 -0.021 0.000 Pooled bmi 

l_ldl_c 2820 -0.035 -0.045 -0.025 0.000 Pooled bmi 

l_ldl_ce 2820 -0.031 -0.040 -0.021 0.000 Pooled bmi 

l_ldl_fc 2820 -0.046 -0.055 -0.036 0.000 Pooled bmi 

l_ldl_tg 2818 0.005 -0.005 0.015 0.344 Pooled bmi 

m_ldl_p 2820 -0.027 -0.037 -0.017 0.000 Pooled bmi 

m_ldl_l 2820 -0.030 -0.040 -0.020 0.000 Pooled bmi 

m_ldl_pl 2820 -0.013 -0.023 -0.003 0.012 Pooled bmi 

m_ldl_c 2820 -0.035 -0.045 -0.025 0.000 Pooled bmi 

m_ldl_ce 2820 -0.035 -0.045 -0.025 0.000 Pooled bmi 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

m_ldl_fc 2820 -0.033 -0.043 -0.023 0.000 Pooled bmi 

m_ldl_tg 2819 0.001 -0.009 0.011 0.860 Pooled bmi 

s_ldl_p 2820 -0.027 -0.037 -0.018 0.000 Pooled bmi 

s_ldl_l 2820 -0.031 -0.041 -0.021 0.000 Pooled bmi 

s_ldl_pl 2820 -0.015 -0.025 -0.005 0.003 Pooled bmi 

s_ldl_c 2820 -0.038 -0.048 -0.029 0.000 Pooled bmi 

s_ldl_ce 2820 -0.038 -0.048 -0.028 0.000 Pooled bmi 

s_ldl_fc 2820 -0.037 -0.047 -0.027 0.000 Pooled bmi 

s_ldl_tg 2819 0.029 0.019 0.038 0.000 Pooled bmi 

xl_hdl_p 2818 -0.079 -0.088 -0.069 0.000 Pooled bmi 

xl_hdl_l 2818 -0.079 -0.089 -0.069 0.000 Pooled bmi 

xl_hdl_pl 2818 -0.084 -0.093 -0.074 0.000 Pooled bmi 

xl_hdl_c 2818 -0.071 -0.080 -0.061 0.000 Pooled bmi 

xl_hdl_ce 2818 -0.069 -0.079 -0.059 0.000 Pooled bmi 

xl_hdl_fc 2818 -0.073 -0.083 -0.063 0.000 Pooled bmi 

xl_hdl_tg 2815 0.016 0.007 0.026 0.001 Pooled bmi 

l_hdl_p 2819 -0.077 -0.087 -0.068 0.000 Pooled bmi 

l_hdl_l 2819 -0.078 -0.088 -0.069 0.000 Pooled bmi 

l_hdl_pl 2820 -0.076 -0.086 -0.067 0.000 Pooled bmi 

l_hdl_c 2819 -0.079 -0.088 -0.069 0.000 Pooled bmi 

l_hdl_ce 2819 -0.077 -0.087 -0.068 0.000 Pooled bmi 

l_hdl_fc 2819 -0.083 -0.092 -0.073 0.000 Pooled bmi 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

l_hdl_tg 2817 -0.043 -0.053 -0.033 0.000 Pooled bmi 

m_hdl_p 2820 -0.023 -0.033 -0.013 0.000 Pooled bmi 

m_hdl_l 2820 -0.026 -0.036 -0.016 0.000 Pooled bmi 

m_hdl_pl 2820 -0.024 -0.034 -0.014 0.000 Pooled bmi 

m_hdl_c 2820 -0.036 -0.046 -0.026 0.000 Pooled bmi 

m_hdl_ce 2820 -0.034 -0.044 -0.024 0.000 Pooled bmi 

m_hdl_fc 2820 -0.041 -0.051 -0.031 0.000 Pooled bmi 

m_hdl_tg 2818 0.056 0.047 0.066 0.000 Pooled bmi 

s_hdl_p 2820 0.026 0.016 0.036 0.000 Pooled bmi 

s_hdl_l 2820 0.020 0.010 0.030 0.000 Pooled bmi 

s_hdl_pl 2820 0.041 0.032 0.051 0.000 Pooled bmi 

s_hdl_c 2814 -0.033 -0.043 -0.023 0.000 Pooled bmi 

s_hdl_ce 2814 -0.038 -0.048 -0.028 0.000 Pooled bmi 

s_hdl_fc 2820 0.021 0.011 0.031 0.000 Pooled bmi 

s_hdl_tg 2818 0.075 0.066 0.085 0.000 Pooled bmi 

vldl_d 2819 0.082 0.072 0.091 0.000 Pooled bmi 

ldl_d 2819 -0.004 -0.014 0.006 0.487 Pooled bmi 

hdl_d 2819 -0.087 -0.096 -0.077 0.000 Pooled bmi 

serum_c 2819 -0.042 -0.052 -0.032 0.000 Pooled bmi 

vldl_c 2819 0.041 0.031 0.050 0.000 Pooled bmi 

remnant_c 2819 0.010 0.000 0.020 0.041 Pooled bmi 

ldl_c 2819 -0.037 -0.047 -0.027 0.000 Pooled bmi 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

hdl_c 2819 -0.075 -0.084 -0.065 0.000 Pooled bmi 

hdl2_c 2819 -0.074 -0.084 -0.064 0.000 Pooled bmi 

hdl3_c 2819 -0.063 -0.072 -0.053 0.000 Pooled bmi 

estc 2817 -0.044 -0.054 -0.034 0.000 Pooled bmi 

freec 2817 -0.037 -0.047 -0.027 0.000 Pooled bmi 

serum_tg 2819 0.068 0.058 0.077 0.000 Pooled bmi 

vldl_tg 2819 0.072 0.062 0.081 0.000 Pooled bmi 

ldl_tg 2819 0.010 0.000 0.020 0.056 Pooled bmi 

hdl_tg 2819 0.041 0.031 0.051 0.000 Pooled bmi 

totpg 2817 -0.019 -0.029 -0.009 0.000 Pooled bmi 

tg_pg 2816 0.080 0.070 0.089 0.000 Pooled bmi 

pc 2817 -0.028 -0.038 -0.018 0.000 Pooled bmi 

sm 2817 -0.043 -0.053 -0.033 0.000 Pooled bmi 

totcho 2817 -0.032 -0.041 -0.022 0.000 Pooled bmi 

apoa1 2819 -0.063 -0.072 -0.053 0.000 Pooled bmi 

apob 2818 0.017 0.007 0.027 0.001 Pooled bmi 

apob_apoa1 2818 0.043 0.033 0.053 0.000 Pooled bmi 

totfa 2815 0.026 0.016 0.036 0.000 Pooled bmi 

unsat 2815 -0.067 -0.077 -0.057 0.000 Pooled bmi 

dha 2815 -0.001 -0.011 0.009 0.828 Pooled bmi 

la 2815 -0.015 -0.025 -0.005 0.003 Pooled bmi 

faw3 2815 0.009 -0.001 0.020 0.065 Pooled bmi 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

faw6 2815 -0.016 -0.026 -0.006 0.001 Pooled bmi 

pufa 2815 -0.012 -0.022 -0.002 0.017 Pooled bmi 

mufa 2815 0.047 0.038 0.057 0.000 Pooled bmi 

sfa 2815 0.033 0.023 0.043 0.000 Pooled bmi 

dha_fa 2815 -0.027 -0.037 -0.017 0.000 Pooled bmi 

la_fa 2815 -0.073 -0.083 -0.063 0.000 Pooled bmi 

faw3_fa 2815 -0.015 -0.025 -0.005 0.004 Pooled bmi 

faw6_fa 2815 -0.084 -0.093 -0.074 0.000 Pooled bmi 

pufa_fa 2815 -0.081 -0.090 -0.071 0.000 Pooled bmi 

mufa_fa 2815 0.080 0.071 0.090 0.000 Pooled bmi 

sfa_fa 2815 0.041 0.031 0.051 0.000 Pooled bmi 

glc 2809 0.053 0.044 0.063 0.000 Pooled bmi 

lac 2818 0.016 0.007 0.025 0.000 Pooled bmi 

pyr 2815 0.033 0.025 0.041 0.000 Pooled bmi 

cit 2816 -0.009 -0.019 0.002 0.101 Pooled bmi 

ala 2818 0.025 0.015 0.035 0.000 Pooled bmi 

gln 2816 -0.061 -0.070 -0.051 0.000 Pooled bmi 

gly 2806 -0.050 -0.059 -0.040 0.000 Pooled bmi 

his 2809 -0.006 -0.016 0.005 0.284 Pooled bmi 

ile 2817 0.078 0.068 0.087 0.000 Pooled bmi 

leu 2818 0.074 0.064 0.084 0.000 Pooled bmi 

val 2817 0.076 0.066 0.086 0.000 Pooled bmi 
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Metabolite N Beta 
Lower 

95% CI 

Upper 

95% CI 
p-value Model Outcome 

phe 2818 0.060 0.051 0.070 0.000 Pooled bmi 

tyr 2809 0.058 0.048 0.068 0.000 Pooled bmi 

ace 2818 -0.001 -0.011 0.008 0.823 Pooled bmi 

acace 2818 0.038 0.028 0.048 0.000 Pooled bmi 

bohbut 2744 0.005 -0.006 0.015 0.376 Pooled bmi 

crea 2809 0.015 0.005 0.025 0.002 Pooled bmi 

alb 2819 0.002 -0.009 0.012 0.756 Pooled bmi 

gp 2818 0.065 0.056 0.075 0.000 Pooled bmi 
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Appendix D Figure D 1: Hazard ratios (per 1SD) for the associations between individual 

biomarkers and all-cause mortality in controls, cases and pooled cases and controls) with 

follow-up data in the ProtecT trial (N=4,260 participants (2,167 controls and 2,093 cases) 

with 436 deaths)   
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Appendix D Figure D 2: Beta coefficients (per 1SD) for the associations between individual 

biomarkers and age in cases, controls and pooled cases and controls with follow-up data in 

the CAP trial (4,260 participants: 2,167 controls, 2,093 cases)     
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Appendix D Figure D 3: Beta coefficients for the associations between individual biomarkers 

and BMI in cases, controls and pooled cases and controls with follow-up data in the CAP 

trial (N=2,820 participants: 1,393 controls and 1,425 cases)      

  




