

Association of operative approach with postoperative outcomes in neonates undergoing surgical repair of esophageal atresia and tracheoesophageal fistula

Paulo Castro¹, Devon Pace², Shale Mack³, David Rothstein⁴, Courtney Devin³, Emily Sagalow³, Allison Linden⁵, Matthew Boelig², Loren Berman²

OBJECTIVE & INTRODUCTION

Minimally invasive surgery (MIS) is gaining traction as a first-line approach to repair congenital anomalies. This study aims to evaluate outcomes for neonates undergoing open versus MIS repairs for esophageal atresia/tracheoesophageal fistula (EA/TEF).

Figure 1: Anatomy of EA/TEF and its variations²

METHODS

Neonates undergoing EA/TEF repair from 2013-2020 were identified using the National Surgical Quality Improvement Program-Pediatric (NSQIP-P) database.

Baseline patient characteristics and post-op outcomes were assessed using Pearson's chi square test, Fisher's exact test, Mann-Whitney U test, and Kruskal-Wallis test where appropriate (Table 1).

Post-op outcomes were further assessed using 1:1 propensity score matching without replacement using a 0.01 caliper (Table 2).

Proportions of operative approach over time were analyzed using a Cochran-Armitage trend test (Figure 2).

¹Philadelphia College of Osteopathic Medicine, Philadelphia PA ²Nemours A.I. duPont Hospital for Children, Wilmington DE ³Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia PA ⁴Seattle Children's Hospital, Seattle WA ⁵Children's Healthcare of Atlanta Hospital, Atlanta GA

Variable	Open	MIS	P-value
Morbidity	381 (27.4)	84 (24.4)	0.259
Mortality	27 (1.9)	6 (1.7)	0.808
Days on Vent	4 (2-9)	4 (2-9)	0.5197
Reoperation	112 (8.0)	43 (12.5)	0.01
Readmission	16 (1.2)	6 (1.7)	0.38
Length of Stay	20 (14-32)	19 (14-28)	0.1942
Operative Time	173 (132-234)	209 (166-272)	<0.0001

Table 1: Post-op outcomes before propensity score match

Variable	Open	MIS	P-value
Morbidity	88 (25.7)	84 (24.5)	0.72
Mortality	11 (3.2)	6 (1.7)	0.22
Days on Vent	3 (2-8)	4 (2-9)	0.27
Reoperation	12 (3.5)	27 (7.9)	0.020
Readmission	7 (2.0)	9 (2.6)	0.61
Length of Stay	19 (24-27)	19 (14-28)	0.48
Operative Time	173 (131-232)	209 (166-273)	<0.001

Table 2: Post-op outcomes after propensity score match

RESULTS

MIS is gaining traction as a first-line approach for neonates with EA/TEF but appears to be associated with a higher rate of reinterventions. Further studies evaluating both short- and long-term outcomes after EA/TEF repair are needed.

²UCSF Department of Surgery.

I would like to thank all the people I've worked with to complete this project.

ANNUAL MINIMALLY-INVASIVE EA/TEF REPAIR USAGE

CONCLUSION

REFERENCES

¹de Virgilio, Surgery 2nd Edition. p. 425

ACKNOWLEDGEMENTS