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Abstract 

This study aims to investigate the advantages of employing numerical models based on Shallow-water equations 

for simulating von Karman vortex shedding. Furthermore, a comparative analysis with Navier-Stokes equations will 

be conducted to assess their effectiveness. In addition to Reynolds number (Re), Froude number (Fr), relevant to 

water depth, plays an important role in the Shallow-Water modeling of the von Karman vortex. In this study, 

simulations of 2D von Karman vortex shedding are performed using the Navier-Stokes model and Shallow-Water 

model, employing the least-squares finite-element method for space discretization and θ-method for time integration. 

The computed vortices characteristics, including the recirculation zone behind the cylinder, vortices size, and 

frequency, are presented. In the Navier-Stokes modeling, the computed results indicate that the size of vortices in 

space decreases and the Strouhal number increases as Re increases. In the Shallow-Water modeling for the same Re 

condition, the size of vortices increases and the Strouhal number decreases as Fr increases. 
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1. Introduction 

von Karman vortex shedding, pairs of periodic counter-rotating vortices downstream of an obstacle, is generated by the 

flow past an obstacle, which is a classic flow mechanic problem with many engineering and science applications [1]. These 

flows are characterized by flow separation and vortex shedding phenomena due to the pressure gradient. This fascinating fluid 

mechanic problem usually occurs when the flow passes an obstacle in a specific range of Reynolds number (Re) i.e., 46 < Re < 

800 [2-3]. Different flow properties (i.e., different Re) may lead to distinct bluff body wakes. von Karman vortex shedding has 

been experimentally [4-8] and numerically [9-15] studied in previous studies. Real-world observations of von Karman vortex 

street from a circular cylinder and its effects can be found in hydrodynamic applications and engineering structures like bridges, 

chimneys, and skyscrapers. An excellent overview of flow past a circular cylinder can be found in Zdravkovich [16-17]. 

Many models have been developed with different numerical methods for incompressible viscous flows and free-surface 

flows [18-20]. The importance of vortex shedding and evolution in the design of submerged structures has been revealed by 

numerous researchers, Ai et al. [21] employed a second-order flux-limiter method to study the vortex shedding and evolution 

induced by the interactions between a solitary wave and a submerged horizontal plate. Their results provide a better description 

of the vortex generation and evolution. 

A wind turbine blade is the core component of a wind turbine, the airfoil is in the low Re flow field, and the flow field 

instability is significantly higher than that of medium and high Re. Chang et al. [22] have numerically studied the shedding 

vortex characteristics of NACA 0012 airfoil at low Re. Wind-induced vibration is often used in piezoelectric energy harvesters 
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to convert wind energy into electrical energy. Li et al. [23] have developed efficient vortex-induced, wake-induced, flutter-

induced, and galloping-induced wind energy harvesters. In this study, the 2D Navier-Stokes model and Shallow-Water model 

are used to simulate 2D von Karman vortex shedding. The models employ the least-squares finite-element approach for space 

discretization with the θ-method for time integration [24-25]. The Shallow-Water model has been successfully applied to 

model the ocean circulation of Dongsha water by Liang et al. [26]. 

This study aims to perform a series of simulations of 2D von Karman vortex shedding with the Navier-Stokes model and 

Shallow-Water model at Re of 60, 100, and 200, as well as Froude number (Fr) of 0.014, 0.010, and 0.007, corresponding to 

water depth (h) of 0.2, 0.4, and 0.8 m, respectively. The objective is to investigate the effect of Re and Fr on the computed 

results. The simulations are carried out for a long time to ensure that adequate observation of the flow characteristics is obtained. 

Sequential changes of flow pattern at a particular Re due to a change in water depth are presented. Emphasis is given to the 

flow wake pattern in space and the period of the vortex shedding in time. Several important flow characteristics such as the 

recirculation zone behind the cylinder, size of vortices, and Strouhal number (St), are examined with the flow conditions (input 

parameters). Based on the computed results, a relationship between St and Re is evaluated and compared with the previous 

study [16]. Moreover, the effect of Fr on the St-Re relationship of Shallow-Water modeling is discussed. 

2. Governing Equations and Numerical Methods 

The governing equations for the Navier-Stokes model and the Shallow-Water model are briefly presented in Section 2.1, 

and the numerical methods of the models are described in Section 2.2. 

2.1.   Navier-Stokes equations and Shallow-Water equations 

Navier-Stokes equations are derived from the principles of mass conversation and momentum conversation, they describe 

how the velocity and pressure of a moving fluid are related. The 2D equations of incompressible fluids can be presented as 
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where u and v are flow velocity components in the x and y directions, t is time, � is the density of water, p is pressure, and � 

is the kinematic viscosity of the water.  

2D Shallow-Water equations are derived by depth-integrating the 3D Navier-Stokes equations with the Leibniz integral 

rule. It simplifies the 3D problem to a 2D one and includes the consideration of time-varying free-surface and bottom variations. 
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where U and V are the depth-averaged velocities, which can be expressed by 
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���, �, �	 is the free surface, ℎ��, �	 is the bottom elevation, and � = � − ℎ is the total water depth. �� and S� are the source 

terms, including the atmosphere pressure, wind stress, bottom drag stresses, etc. The Shallow-Water equations are derived by 

depth-integrating the 3D NS equations with the hydrostatic assumption by the Leibnitz rule. These equations are represented 

by Eqs. (4)-(6). 

2.2.   Numerical methods 

Both the Navier-Stokes model and the Shallow-Water model are formulated with the least-squares finite-element 

approach [27-28]. The �-method is employed for the time integration. Due to the use of least-squares formulation, the resulting 

system of equations in both models is symmetric and positive-definite. Therefore, an efficient solution can be obtained by 

using preconditioned conjugate gradient solver [29]. The detailed formulation of the Shallow-Water model with source terms 

as well as verifications and application of the model can be found in [24-25]. 

3. Results and Discussion 

The study problem which involves the modeling of von Karman vortices in various Re and water depth (H), is briefly 

described. This study presents the modeling results of the Navier-Stokes and Shallow-Water models. Additionally, the 

computed results are compared with the results of the previous study. Finally, the impact of Re and h on the size of vortices 

and St is discussed.  

3.1.   Study problem  

The domain of the simulation is defined as -4.0 m <= X <= 20.0 m in the x direction and -4.0 m <= Y <= 4.0 m in the y 

direction, as shown in Fig. 1. A circular cylinder with a diameter D = 1.0 m and the center locates at the origin. An inflow with 

a constant speed U = 0.01 m/s enters the domain from the left boundary, passes the cylinder, and exits the domain from the 

right open boundary. The free slip boundary condition is employed for both top and bottom boundaries, while the non-slip 

boundary condition is enforced on the cylinder boundary. von Karman vortex shedding is modeled in the present study using 

three Re conditions, i.e., Re = 60, 100, and 200. Point P is the location of the monitor point where flow variations are recorded 

for the post-process and analysis. 

In addition, Fig. 1 depicts the computational meshes, a total of 5,093 9-node quadrilaterals, and 20,590 nodes. Finer 

meshes are used near the cylinder area because a significant variation of flow and wave in that area is expected. ∆t = 0.05 s is 

used in the computations. The simulation begins with a motionless flow, i.e., fluid initially rests. Throughout the transition, 

i.e., about 3-5 periods of von Karman vortex shedding, depending on the value of Re. The flow develops and reaches a periodic 

state in both space and time. 

 

Fig. 1 Illustration of the study problem, domain, and computational meshes 
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3.2.   Navier-Stokes modeling results 

Characteristics of vortex shedding are more prominent in the cross direction compared to the mainstream direction. 

Therefore, the velocity component in the y-direction is chosen to illustrate the spatial variations of vortex shedding at various 

Re. Fig. 2 plots V-Contours of Navier-Stokes modeling at different Re. It is noted that the recirculation zone, about 1.5-2.5 D, 

becomes smaller as Re increases. As Re increases, the pattern of the vortex streets becomes more organized, and the size of 

the vortices in the span (mainstream) direction decreases. 

 

(a) Re = 60 

  

(b) Re = 100 (c) Re = 200 

Fig. 2 V-Contours of Navier-Stokes modeling with Re 

Fig. 3 shows the time history of U and V at monitor point P for different Re. It is observed that flow reaches the periodic 

state with varying periods of transition. About 3-5 periods of von Karman vortex shedding. The frequency of U is observed to 

be twice that of V, which is a typical feature of the von Karman vortex shedding. St (Strouhal number), which associates the 

frequency of the von Karman vortex shedding is computed by St = fL / U, where L and U are reference length and velocity, 

and f is the frequency of V. Computed St are 0.142, 0.163, and 0.184 for Re = 60, 100, and 200, respectively. The data shows 

that St increases as Re increases, and the momentum becomes more significant, resulting in faster variations of the vortices. 

 

(a) Time history of U 

 

(b) Time history of V 

Fig. 3 Time history of U and V in Navier-Stokes modeling of Re = 60, 100, and 200 
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3.3.   Shallow-Water modeling results 

Fig. 4 depicts the time history of U and V of the Shallow-Water modeling with h = 0.8 m and Re = 60, 100, and 200, 

respectively. As mentioned previously, the variation of V is more significant than that of U. It is evident that the frequency of 

U is approximately twice that of V, which is another salient feature of vortex shedding. Furthermore, the frequency of the von 

Karman vortex shedding increases the rise of Re. The main reason for this observation is that the momentum becomes much 

more significant as Re increases. This leads to faster variations of the vortices, as illustrated in Fig. 2. 

 

(a) Time history of U 

 

(b) Time history of V 

Fig. 4 Time history of U and V in Shallow-Water modeling with h = 0.8 m of Re = 60, 100, and 200 

 

 

(a) Time history of U 

 

(b) Time history of V 

Fig. 5 Time history of U and V in Shallow-Water modeling of Re = 200 with h = 0.2, 0.4, and 0.8 m 

Water depth, expressed by Fr, also affects the temporal and spatial variation of vortex shedding. Fig. 5 illustrates the time 

history of U and V of the Shallow-Water modeling with Re = 200 and h = 0.2, 0.4, and 0.8 m, respectively. The periodicity of 

V is more distinct than that of U. The flow reaches a stationary state with different periods of transition at different water 
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depths. As the water depth decreases, the period of flow transition becomes shorter. It reveals that the frequency of von Karman 

vortex shedding increases as h decreases. In other words, the smaller the inertia, the faster the fluid responds to the inflow 

forcing as the water depth decreases. 

Well-organized flow oscillations downstream the cylinder are the most prominent phenomenon of the von Karman vortex 

shedding, especially the variations of V. Fig. 6 plots V-contours of von Karmann vortex shedding by the Navier-Stokes and 

Shallow-Water modelings with Re = 60, 100, and 200 and h = 0.2, 0.4, and 0.8 m, respectively. It should be noted that no 

appropriate solution is obtained with Re = 60 with h = 0.2 m due to the influence of the top and bottom walls. The interactions 

between the sidewall vortices and cylinder vortices indicate that the computational domain needs to be more significant to 

accommodate considered the flow condition. Flow property, especially the V-contours, exhibit significant variation with 

different Re and h. Flow becomes more complicated as Re increases. It is observed that the recirculation zone behind the 

cylinder, about 2.0-3.5 D, decreases as Re increases, and the vortices structure becomes periodic in space with a size of about 

1.5-2.5 D in the span direction downstream of the cylinder. 

Re = 60 Re = 100 Re = 200 

 

 

  

  

Fig. 6 Comparison of V-contours in Shallow-Water modeling of Re = 60, 100, and 200 

3.4.   Discussions 

The Navier-Stokes model is based on the 2D Navier-Stokes equations, Eqs. (1)-(3), are simplified from the 3D Navier-

Stokes equations by neglecting the vertical (z) related terms. While the Shallow-Water model is based on the Shallow-Water 

equations, Eqs. (4)-(6), is derived by vertically integrating the 3D Navier-Stokes equations with the hydrostatic assumption 

and including the boundary conditions of the free surface and bottom using the Leibniz rule. The pressure gradient terms in 

Eqs. (2)-(3) are replaced by the gradients of the free surface in Eqs. (5)-(6). Therefore, water depth ���, �, �	 = ���, �, �	 −

ℎ��, �	 plays an important role in determining the flow properties of the free surface. The effect of h is evaluated and expressed 

by the Fr, i.e., �� = � ���⁄ . In addition, the required minimum domain is found to be dependent on Re and h, as well as the 

applied boundary conditions. 

Computed results of von Karmann vortices by the Navier-Stokes model and Shallow-Water model are summarized and 

shown with the previous study in Fig. 7. Predicted relationship of St vs. Re of the Navier-Stokes modeling shows a good 

agreement and similar trend [12, 30]. Water depth has a pronounced effect on the temporal oscillations of the vortices. St 
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decreases as Fr decreases, i.e., the vortices oscillate slower as the water depth increases, for the same Re. The reason for this 

observation is attributed to more volume and inertia of fluid as water depth increases retards the response of the fluid to the 

inflow forcing. 

 

Fig. 7 Comparison of computed St-Re relationship with the previous study 

Note: Background figure is from Qu et al. [12] 

Cross marks (x) denote the results of the Navier-Stokes modeling. 

Star marks (★) denote the results of Shallow-Water modeling. 

4. Conclusions 

A 2D von Karman vortex shedding due to flow passing a stationary circular cylinder was simulated in this study using 

the Navier-Stokes and Shallow-Water models under various Re and Fr conditions. The computed vortices characteristics, 

including the recirculation zone behind the cylinder, vortices size, and frequency of the vortices, were investigated. The main 

conclusions are summarized as: 

(1) Computed results show that cylinder vortices are periodic both in space and time, and their structures and variations 

become more complicated as Re increases.  

(2) Computed results of the Navier-Stokes modeling show that the recirculation zone behind the cylinder, approximately 3.0-

5.0 D, and the spatial size of the vortices, about 1.5-2.5 D in the span direction, decreases as Re increases. The computed 

Strouhal number (St) agrees with the previous study. 

(3) Simulations of the Shallow-Water modeling show that water depth, related to Fr, plays an important role in the vortices 

properties. The larger the water depth, the smaller the recirculation zone, and the larger the size of the vortices for the 

same Re condition. 

(4) St is found to be very sensitive to the water depth: the smaller St, implying a longer period of vortex shedding, the larger 

the water depth for the same Re condition. 

It is noted that the required minimum domain, water depth, and applied boundary conditions for different flows deserve 

further study in the future. 
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