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Abstract: The study of the electromagnetic diffraction from penetrable screens with apertures and/or
inhomogeneities is of great relevance today due to the huge number of modern applications in which
they are involved. In this paper, the analysis of the plane wave scattering from a resistive-filled
circular hole in a resistive plane is addressed. The uniquely solvable boundary value problem for the
Maxwell equations, obtained via imposing generalized boundary conditions, power boundedness
condition, and Silver–Muller radiation condition, is equivalently formulated in terms of an infinite
set of singular dual integral equations in the vector Hankel transform domain. The Helmholtz–
Galerkin technique allows for the discretization and, simultaneously, analytical regularization of the
obtained integral equations. Fast convergence is guaranteed by a suitable choice of the basis functions
reconstructing the physical behavior of the fields at the discontinuity between the two involved
media. Moreover, the full-wave nature of the proposed approach allows the direct assessment of
near-field and far-field parameters.

Keywords: inhomogeneous resistive plane; integral equation formulation; Helmholtz–Galerkin technique

1. Introduction

The classical problem of the electromagnetic field diffraction from apertures/
inhomogeneities in conducting/dielectric screens has been recently receiving renewed
interest due to the important role that it plays in modern applications, including high res-
olution near-field scanning microscopy [1], surface-plasmon assisted light beaming [2],
fluorescence correlation spectroscopy [3,4], optical trapping [5], recent magnetome-
try strategies [6], ultra-compact spectrometers [7], extraordinary optical transmission
phenomena [8,9], frequency selective surfaces [10], and so on. The difficulty in han-
dling such structures, in which multiple diffraction and/or resonance phenomena
are involved, immediately translates into the need to develop advanced analysis and
synthesis techniques based on new ideas and existing analytical, semi-analytical, and
numerical methods [11–15].

It is worth observing that a large part of the literature devoted to the diffraction from
apertures is based on the perfectly conducting nature of the involved screens (see [16–22]
for an overview). In this way, by invoking the equivalence theorem or the Babinet prin-
ciple, the original problem can be replaced with an equivalent/complementary one with
auxiliary unknowns defined on finite supports. Conversely, the diffraction from aper-
tures/inhomogeneities in penetrable screens is significantly more challenging because it
has to be solved directly. This explains why such a case has been rarely addressed in the past
few decades [23–26]. Moreover, even using a high-performing general-purpose electromag-
netic solver, one can only try to achieve accurate numerical solutions by discretizing large
volumes/surfaces with an enormous cost in terms of computation time and storage require-
ments. On the other hand, versatility in geometry and material modeling techniques, such
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as the general finite-element method (FEM) [27,28] and the specialized spectral-element
method (SEM) [29,30], finite-difference time-domain method (FDTD) [31,32], method of mo-
ments (MoM) [33,34], and so on, suitably adapted to the problem at hand, do not generally
guarantee the convergence of the obtained approximate solutions to the exact one.

Very recently, a fast converging full-wave technique for the analysis of the diffraction
from a resistive plane with a circular hole, generalizing the one introduced for studying the
thin disk scattering [35,36], has been proposed [37]. Such a technique belongs to the family
of the so-called methods of analytical regularization [38], which have been successfully
applied by the authors to a wide class of electromagnetic problems throughout the past
20 years [39–46].

In this paper, such a technique is further generalized in order to investigate the plane-
wave diffraction from a more complex structure obtained by filling the circular aperture
in the resistive plane with a resistive disk of different material. In such a case, a uniquely
solvable boundary value problem for the Maxwell equations is obtained by imposing the
two-side generalized boundary conditions [47] on the holed plane (the external domain)
and on the disk (the internal domain) together with the Silver–Muller radiation condition
on the diffracted field and the power boundedness condition. By exploiting the azimuthal
symmetry of the problem, it is equivalently formulated in terms of an infinite set of inde-
pendent coupled dual integral equations in the vector Hankel transform (VHT) domain [48]
for the VHT of the azimuthal harmonics of the effective surface current densities on the
holed plane and on the disk. Suitable algebraic manipulations demonstrate that the un-
knowns in the internal and external domains are related to each other, thus leading to
singular dual integral equations involving only unknowns defined on a finite support.
It is worth observing that such a dual integral equations formulation is very general, in-
cluding the ones for the resistive disk [35] and the holed resistive plane [37] as special
cases. However, in the more general case at hand, the asymptotic behavior of the kernel of
the integrals and the behavior of the field at the discontinuity between the two involved
resistive media [49] differs from the ones of the disk and the holed resistive plane [50]. The
obtained integral equations are simultaneously discretized and analytically regularized by
means of the Helmholtz–Galerkin technique: (1) In order to deal with unknowns defined
on finite supports with scalar spectral domain counterparts, according to the Helmholtz
decomposition [51], the surface curl-free and divergence-free contributions of the azimuthal
harmonics of the tangential components of the effective surface current density on the
disk are assumed as new unknowns; (2) Orthogonal eigenfunctions of the most singular
part of the integral operator reconstructing the field behavior around the center and at the
edge of the hole are assumed to be expansion functions in a Galerkin scheme. As a result,
the obtained matrix equations are fast-converging Fredholm second-kind equations in l2,
whose elements are quickly evaluated by means of suitable analytical procedures in the
complex plane [35,52]. It is worth observing that the proposed full-wave approach allows
the direct assessment of near-field and far-field parameters.

The remainder of this paper is organized as follows. The formulation of the problem
is presented in Section 2. The proposed solution is summarized in Section 3. Section 4
is devoted to showing that near-field and far-field can be directly evaluated. Numerical
results and comparisons with the commercial software CST Microwave Studio (CST-MWS)
are presented in Section 5, and the conclusions are summarized in Section 6.

2. Formulation of the Problem

Figure 1 shows an infinite zero-thickness resistive plane of resistivity Re with a circular
hole of radius a filled by a zero-thickness resistive disk of resistivity Ri 6= Re. A cylindrical
coordinate system (ρ, φ, z), with the z-axis orthogonal to the structure and the origin
located at the center of the disk, and a spherical coordinate system (r, θ, φ), such that
ρ = rsθ and z = rcθ , where st = sin t and ct = cos t, are sketched. A plane wave,
propagating in the half-space z > 0 of electric field Einc(r) = E0e−jk·r and magnetic field
Hinc(r) = H0e−jk·r, where r identifies the observation point and E0 and H0 are constant
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vectors, such that H0 = 1
ωµ0

k × E0; k = −k0
(
sθ0 cφ0−φρ̂ + sθ0 sφ0−φφ̂ + cθ0 ẑ

)
is the wave

vector; k0 = ω
√

ε0µ0 = 2π/λ is the free space wavenumber; ω is the angular frequency;
ε0 and µ0 are the dielectric permittivity and the magnetic permeability of the free space;
λ is the free space wavelength; and the angles θ = θ0 and φ = φ0 identify the incidence
direction, impinges onto the structure generating a scattered field, i.e., (Esc(r), Hsc(r)).
Such a field in the upper/lower half-space can be interpreted as the superposition of the
field reflected/transmitted by the homogeneous resistive plane,

(
Erefl/tr(r), Hrefl/tr(r)

)
,

and the field diffracted due to the discontinuity in the material,
(

Ediffr(r), Hdiffr(r)
)

. Of
course, the total field, (E(r), H(r)), is given by the superposition of the incidence field and
the scattered field.
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The following two-sided generalized boundary conditions have to be verified by the
fields [47]:

ẑ×
(
E
(
ρ, φ, 0+

)
− E

(
ρ, φ, 0−

))
= 0, (1a)

1
2

ẑ×
(
E
(
ρ, φ, 0+

)
+ E

(
ρ, φ, 0−

))
× ẑ = Ri Ji(ρ, φ) + Re Je(ρ, φ), (1b)

for ρ ≥ 0 and 0 ≤ φ < 2π, where

Ji(ρ, φ) =

{
ẑ× (H(ρ, φ, 0+)− H(ρ, φ, 0−)) ρ < a

0 ρ > a
, (2a)

Je(ρ, φ) =

{
0 ρ < a

ẑ× (H(ρ, φ, 0+)− H(ρ, φ, 0−)) ρ > a
(2b)

define the effective surface current densities on the disk and the holed plane, respectively.
Supposing R{Re} > 0, conditions (1), together with the power boundedness condition

and the Silver–Muller radiation condition on the diffracted field, guarantee the unique
solvability of the boundary value problem for the Maxwell equations at hand [53]. Such
a problem can be equivalently formulated in terms of surface integral equations for the
effective surface current densities whose kernels involve the free-space dyadic Green’s
function [54]. However, according to the procedure proposed in [48], for problems with
azimuthal symmetry, all the field components can be expanded in Fourier series and, by
invoking the VHT, the n-th azimuthal harmonic of the scattered electric field can be written
in the spectral domain as follows:

Esc(n)
t (ρ, z) =

(
Esc(n)

ρ (ρ, z)
−jEsc(n)

φ (ρ, z)

)
=

+∞∫
0

H(n)(wρ)
∼
G(w)

(
J̃(n)i (w) + J̃(n)e (w)

)
e−j
√

k2
0−w2|z|wdw, (3a)
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Esc(n)
z (ρ, z) = −j

sgn(z)
2ωε0

+∞∫
0

Jn(wρ)
(

J̃(n)i,C (w) + J̃(n)e,C (w)
)

e−j
√

k2
0−w2|z|w2dw, (3b)

where
√

k2
0 − w2 = −j

√
w2 − k2

0.

H(n)(wρ) =

(
J′n(wρ)

nJn(wρ)
wρ

nJn(wρ)
wρ J′n(wρ)

)
(4)

is the kernel of the VHT of order n (VHTn), and Jν(·) and J′ν(·) are, respectively, the
Bessel function of the first kind and order ν and its first derivative with respect to the
argument [55],

∼
G(w) =

∼GC(w) 0

0
∼
GD(w)

 =

−√k2
0−w2

2ωε0
0

0 − ωµ0

2
√

k2
0−w2

 (5)

is related to the spectral domain counterpart of the free-space dyadic Green’s function [48],
and

J̃(n)s (w) =

(
J̃(n)s,C (w)

−j J̃(n)s,D (w)

)
=

+∞∫
0

H(n)(wρ)J(n)s (ρ)ρdρ (6)

with s = i, e, is the VHTn of J(n)s (ρ), i.e., the n-th azimuthal harmonic of Js(ρ, φ).
Hence, the surface integral equations can be replaced by an infinite set of independent

coupled dual integral equations in the VHT domain:

+∞∫
0

H(n)(wρ)

[(∼
G(w)− RiI

)
J̃(n)i (w) +

∼
G(w)J̃(n)e (w)

]
wdw = −Einc(n)

t (ρ, 0) for ρ < a, (7a)

+∞∫
0

H(n)(wρ)J̃(n)i (w)wdw = 0 for ρ > a, (7b)

+∞∫
0

H(n)(wρ)

[∼
G(w)J̃(n)i (w) +

(∼
G(w)− ReI

)
J̃(n)e (w)

]
wdw = −Einc(n)

t (ρ, 0) for ρ > a, (7c)

+∞∫
0

H(n)(wρ)J̃(n)e (w)wdw = 0 for ρ < a, (7d)

with n ∈ Z, where
Einc(n)

t (ρ, 0) = −jn+1e−jnφ0H(n)(k0sθ0 ρ
)
E0t (8)

is the n-th azimuthal harmonic of the transverse component of the incident electric field.
By introducing the following auxiliary unknown:

−̃
J
(n)

e (w) =
∼
G(w)J̃(n)i (w) +

(∼
G(w)− ReI

)
J̃(n)e (w) +

∼
E

inc(n)

t (w, 0), (9)

where
∼
E

inc(n)

t (w, 0) = −jn+1e−jnφ0
δ
(
w− k0sθ0

)
w

E0t (10)

denotes the VHTn of Einc(n)
t (ρ, 0), the following alternative expressions for the equations in

(7) can be readily obtained:
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+∞∫
0

H(n)(wρ)

{[
∼
G(w)− RiI−

∼
G(w)

(∼
G(w)− ReI

)−1∼
G(w)

]
J̃(n)i (w) +

∼
G(w)

(∼
G(w)− ReI

)−1−̃
J
(n)

e (w)

}
wdw

= −Etr(n)
t (ρ, 0) for ρ < a,

(11a)

+∞∫
0

H(n)(wρ)J̃(n)i (w)wdw = 0 for ρ > a, (11b)

+∞∫
0

H(n)(wρ)
−̃
J
(n)

e (w)wdw = 0 for ρ > a, (11c)

+∞∫
0

H(n)(wρ)

(∼
G(w)− ReI

)−1
(
−̃
J
(n)

e (w)−
∼
G(w)J̃(n)i (w)

)
wdw = − 1

Re
Etr(n)

t (ρ, 0) for ρ < a, (11d)

where

Etr(n)
t (ρ, 0) = Rejn+1e−jnφ0H(n)(k0sθ0 ρ

)(∼
G
(
k0sθ0

)
− ReI

)−1
E0t (12)

is the n-th azimuthal harmonic of the transverse component of the field transmitted by the
homogeneous resistive plane of resistivity Re.

By substituting (11d) in (11a), we obtain
−
J
(n)

e (ρ) = RiJ
(n)
i (ρ) for ρ < a. On the other

hand, from (11b) and (11c), we immediately conclude that
−
J
(n)

e (ρ) = J(n)i (ρ) = 0 for
ρ > a. Hence,

−
J
(n)

e (ρ) = RiJ
(n)
i (ρ) (13)

independently of ρ, and Equation (11) is reduced to the following dual integral equations:

+∞∫
0

H(n)(wρ)

(∼
G(w)− ReI

)−1(∼
G(w)− RiI

)
J̃(n)i (w)wdw =

1
Re

Etr(n)
t (ρ, 0) for ρ < a, (14a)

+∞∫
0

H(n)(wρ)J̃(n)i (w)wdw = 0 for ρ > a. (14b)

The functional space to which J(n)i (ρ) belongs can be readily established. Indeed,

J(n)i (ρ) vanishes for ρ > a and is well-behaved in 0 < ρ < a, because the sources are
off the scatterer surface. Moreover, the physical behavior prescribed for the fields at the
discontinuity between the two involved resistive media [49] allows the conclusion that

J(n)i (ρ)
ρ→a∼ O(1), whereas, according to the Fourier series expansion properties, J(n)i (ρ)

ρ→0∼
ρ||n|−1|.

On the other hand, the following asymptotic behavior,(∼
G(w)− ReI

)−1(∼
G(w)− RiI

)
w→+∞∼

(
1 0
0 Ri/Re

)
+ O(1/w), (15)

allows the establishment of the singular nature of the dual integral Equation (14).
It is easy to see that Equation (14) generalizes the ones for a resistive disk [35] and a

holed resistive plane [37] that can be obtained by taking Re → ∞ in the disk scenario and
by using (13) and taking Ri → ∞ in the holed plane scenario.
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3. Proposed Solution

The Helmholtz–Galerkin technique is adopted to simultaneously regularize and dis-
cretize the dual integral Equation (14).

The surface curl-free and divergence-free contributions of J(n)i (ρ) are assumed to be

new unknowns in the spatial domain, thus leading to the scalar unknowns J̃(n)i,C (w) and

J̃(n)i,D (w) in the spectral domain [36].

The behavior of J(n)i (ρ) at the disk rim and around the center of the disk can be
reconstructed by expanding the unknowns in the spectral domain in the following complete
and non-redundant series of weighted Bessel functions of the first kind [35,56]:

J̃(n)i,T (w) =
+∞

∑
h=−1+δn,0

γ
(n)
T,h f̃ (n)h (w), (16a)

f̃ (n)h (w) =
√

2(|n|+ 2h + 2)
J|n|+2h+2(aw)

w
, (16b)

where T = C, D, δn,m is the Kronecker delta function and γ
(n)
T,h are the expansion coefficients,

orthonormal over the interval (0,+∞) with the weight function w [57], i.e.,

+∞∫
0

f̃ (n)k (w) f̃ (n)h (w)wdw = 2
√
(|n|+ 2k + 2)(|n|+ 2h + 2)

+∞∫
0

1
w

J|n|+2k+2(aw)J|n|+2h+2(aw)dw = δh,k (17)

with h, k = −1 + δn,0, . . .. Moreover, the condition γ
(n)
D,−1 = j sgn(n)γ(n)

C,−1 for n 6= 0, where
sgn(·) denotes the Signum function [55], has to be imposed in order to guarantee the
vanishing of J(n)i (ρ) for ρ > a, i.e., in order to directly satisfy the equation in the external
domain (14b).

The following matrix equation is obtained by applying the Galerkin method:

+∞

∑
h=−1+δn,0

γ
(n)
T,h

+∞∫
0

∼
GT(w)− Ri
∼
GT(w)− Re

f̃ (n)k (w) f̃ (n)h (w)wdw = −jn+1e−jnφ0 E0t
f̃ (n)k
(
k0sθ0

)
∼
GT
(
k0sθ0

)
− Re

(18)

with k = −1 + δn,0, . . .. Starting from (15) and (17), it is simple to show that

+∞∫
0

∼
GT(w)− Ri
∼
GT(w)− Re

f̃ (n)k (w) f̃ (n)h (w)wdw =

+∞∫
0

 ∼GT(w)− Ri
∼
GT(w)− Re

− κT


︸ ︷︷ ︸

O(1/w)

f̃ (n)k (w) f̃ (n)h (w)wdw + κTδh,k, (19)

where κC = 1 and κD = Ri/Re. Hence, the most singular part of the integral operator is
diagonalized. Moreover, following the line of reasoning in [35], it is possible to demonstrate
that the remaining part of the discretized operator is a compact operator in l2. Since the
discretized counterpart of the free term has a bounded l2-norm (the sources are off the
scatterer surface), the obtained matrix equation is of the Fredholm second kind in l2, i.e., the
convergence is guaranteed. On the other hand, the reconstruction of the physical behavior
of the unknowns ensures the fast convergence of the method, i.e., few expansion functions
lead to highly accurate results. Additionally, the matrix coefficients, which are improper
integrals involving products of Bessel functions, are efficiently numerically evaluated by
means of suitable analytical techniques recently developed by the authors [35,52].
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4. Near-Field and Far-Field Reconstruction

Once J̃(n)i (w) is reconstructed, starting from Equations (9) and (13), J̃(n)e (w) can be
readily obtained, i.e.,

J̃(n)e (w) = −
(∼

G(w)− ReI
)−1[(∼

G(w)− RiI
)

J̃(n)i (w) +
∼
E

inc(n)

t (w, 0)
]

. (20)

On the other hand, it is possible to show that the n-th harmonic of the field scattered
by the homogeneous resistive plane, of resistivity Re, can be reconstructed by replacing
J̃(n)i (w) + J̃(n)e (w) in (3) with

J̃(n)0 (w) = −
(∼

G
(
k0sθ0

)
− ReI

)−1∼
E

inc(n)

t (w, 0). (21)

As a result, the field scattered by the source J̃(n)i (w) + J̃(n)e (w)− J̃(n)0 (w) can be reinter-
preted as the field diffracted due to the discontinuity between the involved resistive media.
Hence, from (3), (10), (20), and (21), it is simple to conclude that

Ediffr(n)
t (ρ, z) = (Ri − Re)

+∞∫
0

H(n)(wρ)
∼
G(w)

(∼
G(w)− ReI

)−1
J̃(n)i (w)e−j

√
k2

0−w2|z|wdw, (22a)

Ediffr(n)
z (ρ, z) = −j

sgn(z)
2ωε0

(Ri − Re)

+∞∫
0

Jn(wρ)

(∼
GC(w)− Re

)−1
J̃(n)i,C (w)e−j

√
k2

0−w2|z|w2dw. (22b)

As expected, the diffracted field vanishes for Ri = Re, i.e., when the inhomogeneity in
the plane disappears.

Moreover, by means of the stationary phase method [53], the far diffracted electric
field can be expressed in closed form as:

Ediffr
s (r) r→+∞∼ e−jk0r

r
Fs(θ, φ) (23)

for s = θ, φ, where

Fθ(θ, φ) = −ωµ0

2
cθ(Ri − Re)

(∼
GC(k0sθ)− Re

)−1 +∞

∑
n=−∞

ejn(φ+ π
2 ) J̃(n)i,C (k0sθ), (24a)

Fφ(θ, φ) = −ωµ0

2
(Ri − Re)

(∼
GD(k0sθ)− Re

)−1 +∞

∑
n=−∞

ejn(φ+ π
2 ) J̃(n)i,D (k0sθ), (24b)

and the bistatic radar cross-section (BRCS), defined by the diffracted field, can be read-
ily obtained.

5. Numerical Results

In this section, the effectiveness of the proposed method is shown.
The convergence rate is examined by means of the following truncation error:

errN(M) =

√√√√√√∑N−1
n=−N+1

∥∥∥x(n)M+1 − x(n)M

∥∥∥2

∑N−1
n=−N+1

∥∥∥x(n)M

∥∥∥2 , (25)

where the symbol ‖·‖ is used to denote the Euclidean norm, x(n)M is the vector of the first
M expansion coefficients for each unknown, and 2N − 1 is the number of cylindrical
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harmonics considered. For each example, together with the behavior of the truncation error,
a near-field parameter, i.e., the amplitude of the surface current density on the resistive
disk, and a far-field parameter, i.e., the BRCS, are reconstructed. It is worth observing that
the number of cylindrical harmonics to be used are estimated by means of the formula
provided in [58], and the symmetries of the coefficient matrix allow the reduction in the
number of elements to be numerically evaluated to NM(2M + 1). As a result, only a few
seconds are needed to accurately reconstruct the solution in all the examples proposed by
using an in-house software code implemented in a C++ environment on a laptop equipped
with an Intel Core i7-10510U 1.8GHz, 16GB RAM.

In Figure 2, the truncation error for varying values of M, the amplitude of the surface
current density on the disk along the direction θ = 90◦ and φ = 0◦, 180◦, and the BRCS
in the plane φ = 0◦, 180◦ are plotted for a = 2λ, Re = 1 kΩ and different values of the
resistivity of the disk, i.e., Ri = 10 Ω, 100 Ω, 500 Ω, when a plane wave with TE polarization
with respect to the z-axis impinges onto the structure with θ0 = 30◦ and φ0 = 0◦. The
convergence is very fast in all the cases examined in terms of numbers of cylindrical
harmonics and expansion functions to be used in order to achieve a prescribed accuracy.
Indeed, N = 15 is considered for all the cases and, in the worst case (Ri = 10 Ω), the error
reduced below 10−1, 10−2, 10−3 for M = 4, 9, 21, respectively. It is interesting to observe
that the convergence is faster the closer the values of the resistivities Ri and Re are, i.e., the
weaker the discontinuity is. Of course, even the amplitude of the diffracted field and then,
the BRCS are smaller the weaker the discontinuity is. On the other hand, the decreasing
amplitude of the surface current density for increasing values of Ri can be explained by
the higher transparency associated with higher values of Ri. To conclude, as expected, the
BRCS shows two maxima, in the forward direction and in the specular with respect to the
incidence direction.

In Figure 3, the same parameters as in Figure 2 are plotted for Ri = 100 Ω, Re = 1 kΩ,
and different values of the disk radius, i.e., a = λ, 2λ, 4λ, when a TM polarized plane
wave impinges onto the structure with θ0 = 30◦ and φ0 = 0◦. Of course, the number
of cylindrical harmonics and expansion functions needed to achieve a given accuracy
increases by increasing the radius of the disk. Moreover, the convergence is very fast in all
the cases examined. Indeed, N = 11, 15, 23 for a = λ, 2λ, 4λ, respectively. Moreover, in
the worst case (a = 4λ), errors smaller than 10−1, 10−2, 10−3 are achieved for M = 7, 11, 16,
respectively. As expected, the surface current density and the BRCS show an increasing
number of oscillations for increasing values of the disk radius.

In Figure 4, in order to validate the implemented in-house software code, comparisons
with CST-MWS are presented. Since CST-MWS cannot simulate the infinite holed resistive
plane, it has been approximated with a zero-thickness resistive annular ring of internal
radius a and external radius a. The amplitude of the surface current density on the disk
along the direction θ = 90◦ and φ = 0◦, 180◦, for a = λ/2, Ri = 100 Ω, Re = 1 kΩ, and
normal incidence of the plane wave (θ0 = 0◦) with incident electric field along the direction
θ = 90◦ and φ = 90◦, 270◦, is compared with the behavior obtained by using the integral
equation solver of CST-MWS for two values of the external radius, a = 4a, 8a. As expected,
the CST-MWS solution tends to the one provided by the proposed method as the external
radius increases, and a quite good agreement can be observed for a = 8a. However, the
proposed method requires 9 expansion functions and 2 azimuthal harmonics (for n = ±1),
which results in 648 matrix coefficients, to achieve a truncation error less than 10−3 with a
computation time of 2.5 s, whereas CST-MWS needs more than 5 million mesh-cells with a
computation time of about 10 min to reconstruct the solution for a = 8a. It is obvious to
conclude that the proposed method drastically outperforms CST-MWS in terms of both
computation time and storage requirements.
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onto the structure with θ0 = 30◦ and φ0 = 0◦. N = 11, 15, 23 for a = λ, 2λ, 4λ, respectively.
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Figure 4. Amplitude of the effective surface current density on the disk, for a = λ/2, Ri = 100 Ω,
Re = 1 kΩ, and normal incidence of the plane wave (θ0 = 0◦) with the incident electric field along
the direction θ = 90◦ and φ = 90◦, 270◦, reconstructed by means of the presented method, and using
CST-MWS by approximating the holed resistive plane with a zero-thickness resistive annular ring of
internal radius a and external radius a = 4a, 8a.

To conclude, in Figure 5, the near diffracted and total electric fields in the plane
φ = 0◦, 180◦ are plotted for a = 2λ, Ri = 100 Ω, Re = 1 kΩ, and TE incidence of the plane
wave with θ0 = 30◦ and φ0 = 0◦. In this figure, the symmetric behavior of the diffracted
electric field with respect to the structure with a maximum in the specular with respect to
the incidence direction and the forward direction can be appreciated. Moreover, observing
the total electric field behavior, it is clear that the interference between the incident and
reflected waves, on one hand, and the transmitted wave, on the other hand, are perturbed
by the diffraction due to the discontinuity between the two involved resistive media.
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Figure 5. (a) Near diffracted electric field and (b) near total electric field in the plane φ = 0◦, 180◦ for
a = 2λ, Ri = 100 Ω, Re = 1 kΩ, and TE incidence of the plane wave with θ0 = 30◦ and φ0 = 0◦.

6. Conclusions

The plane wave diffraction from a resistive-filled circular hole in an infinite resistive
plane has been carried out by means of an effective technique based on integral equation
formulation and the Helmholtz–Galerkin technique. In this way, guaranteed convergence
has been achieved according to Fredholm’s theory, and highly accurate solutions have been
reconstructed with low computational resources. This last point was broadly covered in
Section 5 for the general case of the oblique incidence of the plane wave and several values
of the internal disk resistivity and radius. As a matter of fact, the proposed simulations,
performed by means of an in-house software code implemented in a C++ environment
on a laptop equipped with an Intel Core i7-10510U 1.8GHz, 16GB RAM, required just a
few seconds to fill a reasonably sized coefficients matrix in order to obtain a very small
truncation error in all the cases examined. Moreover, simulations with the commercial
software CST-MWS were performed by approximating the infinite holed resistive plane
with an annular ring and for normal incidence of the plane wave. The comparisons between
the results provided by the commercial software and the ones obtained by means of the
proposed method have shown that: (1) the higher the external radius of the annular ring,
the better the agreement, and (2) unlike what happens with the proposed method, the
commercial software requires a considerable level of computational resources to reconstruct
a fairly accurate solution. To conclude, the full-wave nature of the proposed approach has
led to the direct assessment of near-field and far-field parameters. This has been proven
by the surface current density, the BRCS and the near-field behavior reconstructed for the
cases examined. Future generalizations include the analysis of more complex structures
involving dielectric materials, layered structures, and arrays of inhomogeneities.
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