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Abstract—The field programmable gate array (FPGA) is used to 
build an artificial neural network in hardware. Architecture for a 
digital system is devised to execute a feed-forward multilayer 
neural network. ANN and CNN are very commonly used architec- 
tures. Verilog is utilized to describe the designed architecture. For 
the computation of certain tasks, a neural network’s distributed 
architecture structure makes it potentially efficient. The same 
features make neural nets suitable for application in VLSI 
technology. For the hardware of a neural network, a single neuron 
must be effectively implemented (NN). Reprogrammable computer 
systems based on FPGAs are useful for hardware implementations 
of neural networks. 

 
Keywords—artificial neural network; Spartan-6; field pro- 

grammable gate arrays (FPGAs); convolutional neural network 

I. INTRODUCTION 

NArtificial neural network and Convolutional network is 

a form of intelligent processing system that aims to 

replicate the composition and functionality of the human brain. 

In recent days it is a major topic in a broad range of fields 

and an effective in problem-solving situations. ANNs have been 

used to resolve issues where conventional methods have failed 

in the past, such as speech synthesis, recognition, image 

processing ,coding, pattern recognition and classification, 

forecasting power load, interpreting and predicting financial 

trends for the financial markets, generating composite structures, 

and processing model construction, monitoring [1]. The FPGA’s 

flexibility and adaptability allow it to meet the needs of 

reiterative learning processes, weight adjustment, and even 

architectural reconfiguration. FPGAs cannot incorporate 

infinite amounts of logical resources into a single package, 

hence optimizations are necessary [5]. The implementation of 

ANN digital computer systems has been relatively limited, with 

examples representing recent research available from it. The 

latest developments in the systematic concept allow for the 

use of large ANNs on a single scheduled gateway device 

(FPGA) device. A small improvement in component production 

technique, where the data capacity of electronic components 

increases every 18 months, is the main cause [3]. ANNs are 

biologically motivated which needs DSPs and 

microprocessors which are not suitable for comparable systems. 

ASICs and VLSIs can be utilized to design fully compatible 

modules, but creating such devices is expensive and time 

consuming. To offer ANN a design effect that is just suitable for 

a particular use. FPGAs offer flexible designs, cost savings, and 

design cycles in addition to compatibility [4]. 

II. RELATED WORKS 

The development and use of Floating Point Multipliers and 

Adders (FPMA)-based Artificial Neural Networks (ANN) with 
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Field Programmable Gate Array (FPGA). On the Spartan II 

FPGA, several nine neurons were implemented at a speed of 13 

M bits/sec. It is possible to employ multiple FPGAs on each 

layer to create a larger ANN on an FPGA. [3]. 

The implementation of essential ANN in FPGA is described. 

The FPGA implementation could use parallelism to accelerate 

processing time in comparison to software. In addition, hard- 

ware implementation can use fewer resources than CPU/GPU. 

Additionally, the system is intended for identifying objects with 

minimal hardware resources and low power usage as part of the 

work. [2]. 

Taxonomy for dividing up ANN for FPGA implementations 

is discussed. Design challenges and several implementation 

strategies are discussed. Furthermore, future research trends are 

presented. A parallel and distributed network of straight- 

forward nonlinear processing units connected in a layered con- 

figuration make up an artificial neural network (ANN). Three 

computational characteristics highly associated with ANNs they 

are parallelism, modularity, and dynamic adaptation [6]. A 

hardware implementation of an ANN using an FPGA is 

proposed. The FPGA was identified due to its more affordable 

costs for a single implementation. Creating a hardware solution 

that enabled the direct use of weight training is typically created 

in a software environment with a much higher resolution than 

typically obtained in FPGAs implementation was the main 

objective [10]. 

FPGA-based design and implementation of an ANN are dis- 

cussed. The FPGA was identified due to its more affordable 

costs for a single implementation. The objective was to create a 

hardware solution that allowed the direct use of weights, which 

is typically prepared in a software environment with resolutions 

that are significantly higher than any of those often achieved 

in FPGA implementation [11]. The creation of a hardware 

architecture that uses a Convolutional Neural Network (CNN) 

framework that is adaptable and enables the configuration 

and execution of different neural network models. The new 

HW-CNN module was tested and the CNN framework was 

developed using the High-Level Synthesis (HLS) language on 

an Altera Stratix V FPGA integrated with a Teresa DE-5-Net 

board [13]. 

Using the FPGA hardware ZYBO Z7, a convolution neural 

network based on the Lenet-5 model was implemented. The 

three-layer convolution layer, the two-layer down sampling 

layer, and the two-layer fully connected layer make up the 

Lenet-5 network module. The typical FPGA clock frequency 

is merely a few hundred MHz, and it may often be clocked more 

rapidly than general-purpose CPUs [20]. 

The evaluation of various journal articles on numerous subjects 

indicated that designing hardware accelerators for neural 
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networks is significant as it greatly improves computational 

efficiency. The effectiveness and efficiency of machine learning 

models would rise with the usage of neural networks. Some 

researchers also suggest utilizing the FPGA to implement ANN 

or CNN in hardware. The parallelism, flexibility, power 

consumption, reconfigurability, and lower costs for a single 

implementation were thought about while selecting the FPGA. 

III. MATERIALS   AND   METHODS 

A. Vivado ISE 

High-level synthesis and system on a chip development are 

now possible with the Xilinx software package Vivado Design 

Suite. It is used to synthesize and analyze designs published in 

the hardware description language (HDL). Vivado offers a total 

rebuild and rethinking of the whole design cycle in comparison 

to ISE. Vivado contains an integrated logic simulator, just like 

later versions of ISE. Another development of Vivado is high- 

level synthesis. It converts C code into programmable circuits 

via a tool chain. The Vivado High-Level Synthesis compiler 

enables programs written in C, C++, and System C to be 

directly targeted at Xilinx devices without manually writing 

RTL. The capability of Vivado HLS to support C++ classes, 

modules, functions, and operator overloading has been proven. 

B. NIST standard Data set 

In the Modified National Institute of Standards (MNIST), 

10,000 test instances compensate for the dataset of handwritten 

digits, which has 60,000 training sets. It is a modest portion of a 

larger dataset that NIST has made available. The characters have 

been size-normalized and placed in a fixed-size image. The 

source NIST (bi-level) dark images were scaled down to fit 

inside a 20x20 pixel box while preserving their aspect ratio. The 

resulting photos have grey levels because of the anti-aliasing 

strategy used by the normalization algorithm. The images were 

centered in a 28x28 image by finding the centroid of the pixels 

and translating the image to place this point in the center of 

the 28x28 field. 

IV. PROPOSED   METHOD 

Figure 1 depicts the block diagram of ANN implementation. 

This paper involves a handwritten dataset as input and which is 

converted into vectors of 784 lines and saved into a txt file. Once 

the neuron gets trained the architecture will be built with the 

desired number of layers.The used inputs are 784 and two 

hidden layers and one output layer with 10 neurons. With the 

help of the Xilinx Vivado, the simulation tool will be 

synthesized to the desired number of LUTs, flip-flops, and 

Power consumption. 

The block diagram CNN implementation is shown in figure 2 

CNN architecture uses the same data which is used in the 

ANN architecture. As we are using the convolution, first 

convolute the image of size 200*72 and with the help of bias 

values, The model is trained. Synthesis is done using Xilinx 

Vivado simulation tool to get the desired number of LUTs, flip-

flops, and Power  consumption. 

 

 

 
Fig. 1.   Block Diagram for ANN 

 

 

Fig. 2. Block Diagram for CNN 

 

V. IMPLEMENTATION 

A. ANN Implementation 

ANN is based on the structure and function of the biological 

neural network. The input layer with 784 neurons, because there 

have been used 28*28 pixel value images and each pixel is 

converted into 16 bits. 

A. Input Layer: The layer has been implemented with 784  

neuron inputs, because the data set image had 28*28 

pixels and converted into binary for each pixel and made 

into 784 lines, and given input to all the 784 neurons on 

the first layer of the architecture. 

B. Three hidden Layers: Each hidden layer for 30 neurons and 

sent to each neuron of the input layer output, and in a 

similar fashion sent to another layer also. 

C. At the output layer, there are 10 neurons and with help of 

maximum function can determine the output from the 

neuron. 

D. The Expected output and output of the neuron obtained 

from the architecture and used as comparision factor. The 

serial, parallel, and Distributed Architectures used for 

ANN implementation is shown in the figure 3. 

 

Fig. 3.   Serial Architecture 
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B. CNN Implementation: 

The architecture of CNN is shown in figure 4. CNN’s 

architecture can be summarized in the following manner. The 

network’s input is an RGB patch of 32 × 32 pixels. There  are 

three pooling layers in addition to three convolutional  layers. 

The convolutional layer has a 5 x 5 kernel with 2- pixel 

padding. The input patch is 32 × 32 in size and features 3 RBG 

channels. 32×32 feature mappings are provided by the first 

convolutional layer. 

 

 

 
 
Fig. 4. Parallel Architecture 

 

 
Fig. 5. Distributed architecture 

 

 

 
Fig. 6. Block diagram of CNN Architecture Implementation 

 

After max pooling, the 32 feature maps were down-sampled 

into 16 × 16. Finally, 125 feature maps with a 5 x 5 size are 

formed employing two more convolutional layers and average 

pooling layers. The features are combined into a feature vector, 

which is subsequently fed to the ReLU and full connection 

layers for classification. Local response normalizing layers and 

rectified linear unit layers are also included in CNN but are 

not shown for simplicity. 

VI. RESULT 

The Serial, Parallel and distributed architecture are imple- 

mented for ANN and the obtained results are discussed in the 

following section. 

A. Distributed Architecture: 

Distributed Architecture which permits the completion of 

an intricate image recognition assignment on a number of 

resources.The method significantly reduces the amount of 

memory and processing power needed by each devices to store 

and process ANN model. Designers create several ANN models 

and use the models for identifying human posture as the case 

study. In this architecture. It permits the completion of an 

intricate image recognition assignment on a number of 

resources used one input layer consists of 784 neurons and 2 

hidden layers of 30 neurons each, and an output layer of 10 

neurons. The architecture was designed for the handwritten 

recognition dataset. In this neuron architecture, each neuron will 

take input from all the neurons of the previous layer. For 

example, in the 2nd hidden layer, the 1st neuron will receive the 

output of 30 neurons of the 1st hidden layer. Resource 

utilization is shown in the below figure. LUT is 12.95% used, 

Flipflop is 6.23%,BRAM is 10.71% DSAP is 72.72%,IO is 

52.50%,BUFG is 3.13% used. 

 
TABLE I 

RESOURCE UTILIZATION OF DISTRIBUTED ARCHITECTURE 
OBTAINED IN SYNTHESIS 

Resource Utilization Available Utilization [%] 

LUT 6887 53200 12.95 

FF 6653 106400   6.25 

BRAM    15       140 10.71 

DSAP    160        220 72.73 

IO    105        200 52.50 

BUFG       1         32   3.13 

 

 

 
 
Fig. 7. Resource utilization graph of Distributed architecture 
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B. Serial Architecture 

In this architecture, the input layer consists of 784 neurons 

and 2 hidden layers of 30 neurons each, and an output layer of 

10 neurons. The architecture was also designed for the hand- 

written recognition dataset. In this neuron architecture, each 

neuron will take input from all the neurons of the previous layer 

but with some time delay. For example, in the 2nd hidden layer, 

the 1st neuron will receive the output of 30 neurons of the 

1st hidden layer. Instead of going to the next neuron of the 

3rd hidden layer, it will forward the output to all the 10 

neurons of the output layer. Once it’s all neuron receives the 

data then it goes to the 2nd neuron of the second hidden layer. 

As a result, the amount of information transmitted to each 

neuron will be more. 

 

 
Fig. 8. Resource utilization graph of Serial architecture 

 
TABLE II 

RESOURCE UTILIZATION OF SERIAL ARCHITECTURE OBTAINED  IN 

SYNTHESIS 

 

 

C. Parallel Architecture 

In this architecture, the input layer consists of 784 neurons 

and 2 hidden layers of 30 neurons each, and an output layer of 

10 neurons. The architecture was designed for the handwritten 

recognition dataset. In this neuron architecture, each neuron will 

take input from all the neurons of the previous layer. For 

example, in the 2nd hidden layer, the 1st neuron will receive the 

output of the 1st neurons of the 1st hidden layer. Similarly, the 

2nd neuron of the second hidden layer will receive the 2nd 

neuron output. As a result, the number of information 

transmitted to each neuron will be more and takes more lookup 

table. Obtained accuracy is around 82percent. 

 

 

 

TABLE III 
RESOURCE  UTILIZATION  OF  PARALLEL  ARCHITECTURE   

OBTAINED  IN SYNTHESIS 

Resource  Utilization Available Utilization [%]
 

LUT 1296 53200  2.44 

FF 1505 106400  1.41 

BRAM          0.50      140  0.36 

DSAP    26      220 11.82 

IO 105     200 52.50 

BUFG     1      32   3.13 

 

 

Fig. 9. Resource utilization graph of Parallel architecture 

 
TABLE IV 

RESOURCE UTILIZATION OF DISTRIBUTED ARCHITECTURE OBTAINED 

IN IMPLEMENTATION 

 

Resource Utilization Available Utilization [%] 

LUT 6887  53200 12.95 

FF 6653 106400    6.25 

BRAM    15       140 10.71 

DSAP  160       220 72.73 

IO  105       200 52.50 

BUFG     1        32    3.13 

 
TABLE V 

RESOURCE  UTILIZATION  OF  SERIAL  ARCHITECTURE  OBTAINED  IN 

IMPLEMENTATION 

Resource Utilization Available Utilization [%] 

LUT 6907  53200 12.98 

FF 6457 106400   6.07 

BRAM     15       140 10.71 

DSAP   160        220 72.73 

IO   105        200 52.50 

BUFG       1          32   3.13 

 

TABLE VI 
RESOURCE UTILIZATION OF PARALLEL ARCHITECTURE OBTAINED IN 

IMPLEMENTATION 

 

Resource Utilization Available Utilization [%] 

LUT 1296  53200  2.44 

FF 1505 106400  1.41 

BRAM            0.50       140  0.36 

DSAP      26       220 11.82 

IO     105       200 52.50 

BUFG        1        32   3.13 

 

 

 

Resource Utilization Available Utilization [%] 

LUT 6907 53200 12.98 

FF 6457 106400   6.07 

BRAM    15       140 10.71 

DSAP  160       220 72.73 

IO  105       200 52.50 

BUFG     1        32   3.13 
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D. Synthesis Results of CNN 

The synthesis results for the CNN are found to be 1697 LUTs 

and 910 Flip- flops which is occupying 1% of total available 

LUTs and Flip-flops. 
 

TABLE VII 
RESOURCE  UTILIZATION  OF  CNN 

 
 
 

 

 

 

 

 
 

Fig. 10. Resource utilization graph of CNN architecture 

 

E. Implementation of CNN 

The model was trained for a handwritten digit recognition 

dataset having an image size of 200*72. 
 

TABLE VIII 
SYNTHESIS  RESULT  OF  CNN 

Resource Estimation Available Utilzation [%] 

LUT 1697 134600   1.26 

FF   910 267600   0.34 

BRAM    9     365   2.47 

IO  357     500 71.40 

BUFG     1      32   3.13 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Fig. 11. Resource utilization graph of Distributed architecture 

 

F. Comparison of ANN and CNN Architectures 

The comparison of the architectures are shown in the table IX 

Considering the power requirements the distributed architecture 

takes around 248.273 W, where series architecture takes 243.273 

and Parallel was found out to be less which is about 28W. The 

architecture performs a better fitting to the image data set due to 

the reduction in the number of param- eters involved and 

reusability of weights. So this drastically reduces the actual 

usage of neurons in the real scenarios and actual 

implementation. 
 

TABLE IX 
COMPARSION  OF  ARCHITECTURE 

 Distributed Serial Parallel 

LUT 6805 6917 1296 

FF 6625 6456 1505 

Power [watt]          248.273         243.273.          27.43 

Total time [ns]   218          2.20   480 

Accuracy [%]     92   87    82 

CONCLUSION 

The ANN and CNN implementation on FPGA is done with 

the help of neuron architecture. Four layers are imple- mented 

and analyzed on FPGA and the results are compared. Using 

Distributed architecture in ANN, an accuracy of 92 percent 

is obtained and CNN has given accuracy of 89.42 percent. The 

various other key considerations is the size, parameter validity, 

and the number of interlayer connections of multipliers. The 

first primarily outlines the area resources needed, while the 

second outlines the routing. The arithmetic operations are not 

the bottleneck, and it is possible to explore massive parallelism 

in the convolutional trees. FPGAs offer enough memory 

resources to implement the feature maps. The multilayer 

approach enables the implementation of neural nets with a larger 

number of hidden layers. 
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