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Summary. Intralogistics systems, while complex, are crucial for a range of industries. One of 

their challenges is deadlock situations that can disrupt operations and decrease efficiency. This 

paper presents a four-stage framework for applying reinforcement learning algorithms to 

manage deadlocks in such systems. The stages include Problem Formulation, Model Selection, 

Algorithm Selection, and System Deployment. We carefully identify the problem, select an 

appropriate model to represent the system, choose a suitable reinforcement learning algorithm, 

and finally deploy the solution. Our approach provides a structured method to tackle deadlocks, 

improving system resilience and responsiveness. This comprehensive guide can serve resear-

chers and practitioners alike, offering a new avenue for enhancing intralogistics performance. 

Future research can explore the framework’s effectiveness and applicability across different 

systems. 
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1. Introduction 

Intralogistics systems, responsible for the internal movement and organization of materials 

within a facility, play a pivotal role in ensuring efficiency and productivity in various industries. 

However, these complex systems face numerous challenges, with one of the most significant 

being the occurrence of deadlocks (Coffman, Elphick, and Shoshani 1971). Deadlocks can 

drastically impede the system’s performance, manifesting as blocked resources and leading to 

suboptimal throughput and increased throughput time. 

The severity and complexity of deadlock situations make them a critical aspect of logistics system 

design and operation. Yet, traditional planning processes often do not adequately consider 

deadlock handling in their design and operation. This oversight may stem from the inherent 



 Müller et al. 

108 2023 International Scientific Symposium on Logistics 

complexity and dynamism of deadlocks, which often require a sophisticated understanding of 

system interactions and a capability for dynamic decision-making. 

Recent advancements in artificial intelligence, particularly reinforcement learning (RL), present 

an exciting opportunity to address this challenge (Sutton and Barto 2018). RL, with its ability to 

learn from interactions and adapt to dynamic environments, could be a potential game-changer 

for deadlock handling in intralogistics systems. 

2. Related Work 

2.1. Strategic and Operational Intralogistics Planning 

Process models for intralogistics planning are systematic processes for solving (decision-making) 

problems while considering subjective objectives in the logistics environment (Gudehus 2010). 

In this context, reinforcement learning can be a potent tool. This machine learning method 

enables agents to learn how to behave in an environment by performing certain actions and 

receiving rewards, thus learning a policy that maximizes the total reward over time (Esteso et al. 

2022; van Heeswijk 2022; Yan et al. 2022). Logistics planning can be divided into strategic and 

operational logistics planning. Strategic logistics planning refers to long-term planning, while 

operational logistics planning is assigned to a short- to medium-term planning horizon. 

Strategic intralogistics planning involves decisions that affect the long-term direction of a 

company’s logistics operations. These could include the choice of automation technologies, 

warehouse layout and design, selection of material handling equipment, and overall process 

design. The main objective is to ensure a seamless, efficient, and flexible flow of materials within 

the facility. Reinforcement learning can be used in this context to optimize resource allocation, 

routing, scheduling, and other factors over a long-term horizon. For instance, reinforcement 

learning can be used to develop policies that minimize the occurrence of deadlocks in the long 

term, such as rules for allocating resources in a way that avoids potential deadlock scenarios 

(Esteso et al. 2022; van Heeswijk 2022; Yan et al. 2022). At the strategic level, deadlocks can 

be prevented by careful design and layout of the facility, choice of equipment, and integration 

of advanced technologies: 

• Facility Design and Layout: The design and layout of a warehouse or production facility 

should aim to minimize the chances of deadlocks. This might involve designing sufficient 

space for movement, creating multiple paths to the same location, and arranging 

workstations or storage areas in a way that reduces conflicts (Pérez-Gosende, Mula, and 

Díaz-Madroñero 2021). 

• Equipment Selection: The selection of material handling equipment can significantly 

influence the likelihood of deadlocks. For instance, choosing automated guided vehicles 

(AGVs) with advanced sensors and intelligent control systems can help in detecting and 

avoiding potential deadlocks. 

• Integration of Advanced Technologies: Advanced technologies such as Warehouse 

Management Systems (WMS), Manufacturing Execution Systems (MES), or advanced 

planning and scheduling (APS) systems can be used to manage resources, tasks, and 

material flows. These systems can use sophisticated algorithms to prevent and handle 

deadlocks. 

Operational intralogistics planning, on the other hand, focuses on short- to medium-term deci-

sions that affect the daily operations within the facility. This includes scheduling of tasks, routing 
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of vehicles, inventory control, and management of resources. Here, reinforcement learning can 

be particularly useful for dynamic, real-time decision-making. For instance, a reinforcement 

learning agent could be used to monitor the logistics system in real time, identify potential 

deadlock situations as they arise, and take actions to prevent or resolve them. The agent could 

be trained to recognize patterns of resource usage that could lead to a deadlock and to take 

corrective actions, such as reallocating resources or rescheduling tasks, in response. At the 

operational level, strategies to handle, prevent, and avoid deadlocks can be built into the day-

to-day decision-making processes: 

• Scheduling: Tasks and resources should be scheduled in a way that minimizes conflicts 

and potential deadlocks. This might involve careful sequencing of tasks, ensuring that 

resources are not overcommitted, and leaving sufficient buffer time between tasks. 

• Routing: Intralogistics operations often involve the movement of goods within a facility, 

and routing decisions can significantly influence the likelihood of deadlocks. Effective 

routing strategies can ensure smooth material flow, avoiding congestion and potential 

deadlocks. 

• Real-Time Decision Making: In dynamic intralogistics environments, decisions often need 

to be made in real-time based on the current state of the system. Advanced 

decision-support systems can help to make these decisions quickly and accurately, 

helping to avoid potential deadlocks. 

2.2. Planning Principles 

The principles outlined below are foundational to effective intralogistics planning and manage-

ment: 

Prioritizing Effectiveness over Efficiency (Fottner et al. 2022): This principle underscores the 

necessity to confirm the system’s capability to meet its predefined objectives (effectiveness) 

before embarking on optimizing resources (efficiency). When considering deadlocks, the logistics 

system must initially demonstrate its capability to operate without any deadlock scenarios. The 

selection of appropriate technology is pivotal in this regard. For instance, systems with inherent 

deadlock handling or avoidance mechanisms should be given preference (Coffman, Elphick, 

and Shoshani 1971). Once this level of effectiveness is ensured, we can shift our focus towards 

enhancing efficiency by streamlining resource allocation and curtailing the time needed for 

deadlock resolution. 

Adherence to a Consistent Process and Flow Orientation (Fottner et al. 2022): This principle 

accentuates the need to maintain an uninterrupted, consistent operational flow within the 

logistics system. Deadlocks can significantly interrupt this flow, causing delays and inefficiencies. 

Hence, the formulation and implementation of deadlock prevention and avoidance strategies are 

paramount (Havender 1968). These strategies could encompass the design of processes and 

systems with a specific focus on deadlock avoidance, such as employing specific algorithms like 

Dijkstra’s Banker’s Algorithm. Moreover, maintaining a flow-oriented outlook could necessitate 

establishing a system for the timely detection and resolution of potential deadlocks. 

Robustness Against Short-term Deviations, Errors, and Disruptions (Fottner et al. 2022): A 

robust logistics system is characterized by its resilience against disruptions, continuing to 

function effectively despite them. In the context of deadlocks, it implies the existence of 

strategies to manage deadlocks as and when they occur. This could entail developing 

contingency plans, deploying redundant systems, or incorporating swift recovery mechanisms 

to tackle deadlocks. It also necessitates the design of the system with a focus on deadlock 
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avoidance, such as evading circular wait conditions or ensuring resources are not strained 

beyond their capacity (Fottner et al. 2022). 

Principle of Decentralization: This principle encourages the distribution of decision-making 

authority to various points in the system rather than concentrating it at a single point. This can 

enhance resilience, flexibility, and responsiveness, particularly in complex and dynamic 

environments (Le-Anh and M. de Koster 2006; Lombard et al. 2016). It is important to note that 

while decentralization can offer several benefits, it is not without challenges. For instance, it can 

lead to sub-optimal decisions if the subsystems do not have access to all necessary information 

or if they make decisions that benefit them individually but are detrimental to the system. 

Therefore, achieving a balance between centralization and decentralization is crucial and highly 

dependent on the specific context. Here we define resilience, flexibility, and responsiveness as: 

• Resilience: A decentralized system is typically more robust in the face of disturbances or 

failures, as the system does not rely on a single point of control. If one component of the 

system fails, others can continue to operate independently. 

• Flexibility: As each subsystem or component in a decentralized system can adjust its 

behavior independently based on local information, such systems can adapt more easily 

to changes in demand or other conditions. 

• Responsiveness: Decentralized systems can react more quickly to changes, as they do 

not need to wait for instructions from a central authority. This is particularly valuable in 

environments where conditions change rapidly and unpredictably. 

Principle of Standardization: Standardizing procedures and components can improve efficiency, 

predictability, and interoperability in an intralogistics system. It aims to reduce variability, 

improve predictability, and enhance efficiency. This principle can be applied to various aspects 

of intralogistics such as standardized containers, standardized methods of operation, 

standardized routes, etc. (R. de Koster, Le-Duc, and Roodbergen 2007; Klug 2018; Pohl, Meller, 

and Gue 2011). We define efficiency, interoperability, and predictability as follows: 

• Efficiency: Standardization reduces the need for custom solutions, thereby improving the 

efficiency of operations by reducing complexity, errors, and rework. 

• Interoperability: Standardization enables different systems or components within the 

logistics chain to work together seamlessly because they adhere to the same set of 

standards. 

• Predictability: Standardized processes are more predictable, which can improve planning 

and scheduling. 

Principle of Integration: This principle refers to the concept of creating a cohesive, interconnected 

system where all parts work together seamlessly for a common goal. This involves coordinating 

and synchronizing different activities and processes to ensure smooth operations and minimize 

inefficiencies (Goetschalckx 2002; Ivanov, Dolgui, and Sokolov 2019). We define the Stream-

lining Operations, Information Sharing. It is important to note that while integration offers many 

benefits, it also comes with challenges. These can include the complexities of coordinating 

different processes, potential difficulties in implementing changes across an integrated system, 

and the need for effective communication and information sharing mechanisms. The benefits, 

however, often outweigh the challenges, making integration a key principle in intralogistics 

planning. We define the Streamlining Operations, Information Sharing, and Improved Visibility 

as follows: 

• Streamlining Operations: Integration can help streamline operations by eliminating 

unnecessary redundancies and ensuring different parts of the system are in alignment. 

This can lead to improved productivity and efficiency. 
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• Information Sharing: An integrated system facilitates better communication and infor-

mation sharing across different parts of the logistics chain, leading to more informed 

decision making. 

• Improved Visibility: Integration can provide a holistic view of the entire logistics process, 

making it easier to identify bottlenecks, inefficiencies, and opportunities for improvement. 

Principle of Automation: Intralogistics planning can benefit from the use of automated systems 

and technologies, which can enhance efficiency, accuracy, and consistency (Vis 2006). 

Principle of Sustainability: This principle emphasizes the importance of considering the environ-

mental, social, and economic impacts of intralogistics operations, and seeking to minimize 

negative impacts (Dekker, Bloemhof, and Mallidis 2012). Here we provide a description of 

sustainable dimensions: 

• Environmental Sustainability: Intralogistics systems can be designed to reduce energy 

consumption, minimize waste, and lessen the carbon footprint. This can be achieved 

through optimizing routes, using energy-efficient equipment, and implementing recycling 

initiatives. 

• Social Sustainability: This involves ensuring fair labor practices, maintaining safe working 

conditions, and contributing positively to the local community. 

• Economic Sustainability: This principle stresses the need for intralogistics operations to 

be economically viable. This can involve improving efficiency, reducing costs, and 

ensuring the longevity of the business. 

Principle of Resilience: The Principle of Resilience in intralogistics planning refers to the ability of 

the system to adapt and recover quickly from disruptions and changes, maintaining high levels 

of performance under a range of conditions. Resilience involves aspects like flexibility, 

robustness, redundancy, and the capacity for rapid recovery. While sustainability and resilience 

are both crucial principles in intralogistics planning, tensions can arise between them. For 

instance, sustainability often involves streamlining operations, reducing waste, and minimizing 

redundancy, which can potentially decrease a system’s resilience. On the other hand, building 

resilience often involves maintaining a certain level of redundancy and flexibility, which could 

lead to higher costs and resource usage, potentially impacting the sustainability goals. It is 

important to balance sustainability and resilience in intralogistics planning. While the two 

principles can sometimes conflict, they can also be mutually supportive in many cases. For 

instance, a more sustainable logistics system may be more resilient to disruptions related to 

environmental regulations or resource scarcity. Similarly, a resilient logistics system can better 

withstand disruptions and thus ensure long-term sustainability. Thus, the key is to find the right 

balance that maximizes both sustainability and resilience (Tukamuhabwa et al. 2015).  

Logistics planning principles are intrinsically linked to strategies aimed at managing, preventing, 

and avoiding deadlocks. By prioritizing effectiveness, adhering to a consistent process and flow 

orientation, and ensuring robustness against disruptions, logistics planners can architect sys-

tems that demonstrate resilience to deadlocks and possess the capability to recover rapidly in 

their occurrence. In the pursuit of boosting intralogistics planning through reinforcement lear-

ning, several research gaps have been identified. Foremost among these is the application of 

reinforcement learning to real-world logistics systems, which present a high degree of complexi-

ty, uncertainty, and non-linearity. The current success of reinforcement learning in simplified or 

simulated scenarios does not readily translate to these complex systems, making the learning 

and decision-making process challenging. Scalability also emerges as a significant issue, 

particularly for deep-learning-based reinforcement learning methods. As the logistics system 

expands, the state-action space to be explored by the reinforcement learning agent can become 

prohibitively large, rendering the learning process inefficient. Moreover, these reinforcement 
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learning methods often lack interpretability, functioning as “black boxes” and providing limited 

insight into the decision-making process (Yan et al. 2022). This opaqueness is particularly 

problematic in logistics settings where understanding the rationale behind decisions is crucial. 

Reinforcement learning methods also typically operate in isolation from existing logistics 

planning methods, indicating a research deficit in the integration of reinforcement learning with 

traditional logistics planning methods. Lastly, the focus of reinforcement learning on immediate 

reward often overlooks the long-term consequences of actions, especially in the context of 

deadlock prevention. Addressing these research gaps, such as enhancing the capability of 

reinforcement learning methods to manage real-world logistics complexity, improving scalability 

and interpretability, and ensuring consideration of long-term consequences, provides promising 

directions for future research. 

2.3. Application of Reinforcement Learning in Logistics 

Table 1 shows related examples of applying reinforcement learning for logistics systems and 

gives a brief overview of typical applications.  

Authors Objective Methodology 
Real-world 

application 
Remarks 

(Li et al., 

2018) 

Improve task 

selection by 

autonomous 

material 

handling 

vehicles 

Deep 

reinforcement 

learning 

Material 

handling and 

warehousing 

This paper presents a deep 

reinforcement learning 

methodology for task 

selection by autonomous 

material handling vehicles 

that performs well under 

the given conditions. 

(Estanjini 

et al., 

2011) 

Improve 

forklift 

dispatching 

and reduce 

costs 

Stochastic 

learning method 

to generate 

dispatching 

recommendations 

Warehousing This paper presents a 

successful deployment of 

an inexpensive mobile 

wireless sensor network in 

a commercial warehouse 

served by a fleet of forklifts 

to improve forklift 

dispatching and reduce 

costs associated with 

loading/unloading delivery 

trucks 
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(Kamoshida 

& Kazama, 

2017) 

AGV route 

planning 

method for an 

AGV picking 

system 

Deep 

reinforcement 

learning 

The 

proposed 

method was 

evaluated 

using an 

AGV picking 

system 

simulator. 

Deep reinforcement 

learning was used to 

develop an AGV route 

planning policy 

(Andersen 

et al., 

2019) 

Increases 

sample 

efficiency and 

enables 

algorithms 

with low 

sample 

efficiency to 

function 

better in real-

world 

environments 

A model-based 

reinforcement 

learning 

algorithm 

Warehouse 

simulated 

environment 

This paper presents a 

model-based reinforcement 

learning algorithm called 

The Dreaming Variational 

Autoencoder v2 (DVAE-2) 

that increases sample 

efficiency and enables 

algorithms with low sample 

efficiency to function better 

in real-world 

environments. 

(Cals et al., 

2021) 

Minimize the 

number of 

tardy orders 

Deep 

Reinforcement 

Learning with a 

heuristic 

algorithm 

Warehousing This paper presents a Deep 

Reinforcement Learning 

(DRL) approach for 

deciding how and when 

orders should be batched 

and picked in a warehouse 

to minimize the number of 

tardy orders that performs 

well under the given 

conditions. 

(Hu et al., 

2020) 

Optimal 

transport time 

and 

equipment for 

each task 

Adaptive deep 

reinforcement 

learning 

Flexible shop 

floor 

A new Deep Q-Network 

(DQN) method is devised 

to establish the optimal 

combined rule policy. This 

policy guides the selection 

of appropriate dispatching 

rules and Automated 

Guided Vehicles (AGVs) for 

diverse scheduling 

scenarios. 
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(Rimélé et 

al., 2021) 

Minimize the 

average cycle 

time 

Partially 

observable 

Markov decision 

process and 

using a deep Q-

learning agent 

Warehousing This paper presents a 

method for learning a 

storage policy for a 

warehouse with a Robotic 

Mobile Fulfillment System 

(RMFS) using Deep Q-

learning that performs well 

under the given conditions. 

Table 1. Examples of applying reinforcement learning for logistics systems. 

3. Framework 

3.1. Overview 

The framework is based on the previous phases in logistics planning. There are many different 

approaches in logistics planning, but most of them are essentially similar. As an example, we 

use the planning phases of Gudehus (2010) for general logistics planning and the approach of 

Fottner et al. (2022) for an intralogistics-specific approach. Table 2 compares the two planning 

methodologies and adds the necessary extensions in a third column for a sufficient consideration 

to deal with deadlocks. 

Logistics system 

(Gudehus 2010) 

Intralogistics 

(Fottner et al. 2022) 

Necessary extension for deadlock 

handling with RL 

Target planning Setting targets/ constraints Resilience as a target or significant 

influence on other target parameters  

Requirement analysis Deadlock consideration 

System planning Rough concepts/ planning 

Variants 

Preventive deadlock design 

Detailed planning System design (Simulation) Modeling 

Reinforcement learning integration 

Tender Evaluation/ decision  

System construction 

System operation 

Realization Deadlock handling solution 

deployment 

Monitoring & continuous Learning 

Table 2. Comparison of selected procedure models for logistics system (Gudehus 

2010) and intralogistics system (Fottner et al. 2022) with necessary extension 

for deadlock handling with reinforcement learning (RL). 
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The avoidance of deadlock and the resulting robustness of the system becomes a central target 

in our framework. It is recognized not only as a standalone key figure but also represented by 

possible significant influence on other target parameters, as for example throughput or lead 

time. This recognition means that even if deadlocks are not directly considered as a target 

parameter by the logistics planner, their significant impact on these key figures necessitates 

their consideration in the planning process. 

During the requirement analysis phase, we integrate considerations for potential deadlocks. This 

stage could include examining past data to identify conditions that have previously resulted in 

deadlocks, as well as predicting potential deadlock scenarios based on the proposed system 

design and operation. Additionally, this phase aims to estimate the degree of disruptions that 

could occur in the system, helping determine the level of effort needed for effective deadlock 

avoidance. 

In the system planning stage, our focus shifts towards a preventive deadlock design. This 

approach underscores the importance of designing systems with the primary goal of reducing 

the risk of deadlocks as much as possible. This could be achieved by employing strategies such 

as optimizing the layout or routing, incorporating buffers for added resource allocation flexibility, 

and adhering to consistent process and flow orientation. This way, the system planning follows 

standard principles while taking extra measures for potential deadlock scenarios. 

During the detailed planning stage, we actively incorporate simulation modeling to facilitate the 

application of reinforcement learning. We create a simulation model that accurately represents 

the dynamics and interactions between agents and resources within the system. This model 

serves as a controlled environment, ideal for training the reinforcement learning algorithm. 

Alternatively, when a system’s dynamics can be accurately captured mathematically, a mathe-

matical model can be used instead of a simulation. This alternative is particularly applicable for 

simpler systems or when comprehensive, high-quality data is available. 

The integration of reinforcement learning algorithms occurs during the system operation phase. 

The selected algorithm, once trained on the simulation model, is introduced into the actual 

system, continually adjusting its strategy based on the system’s performance and effectively 

managing deadlock situations. 

Following the deployment of the deadlock handling solution, the system moves into a phase of 

continuous monitoring and learning. Performance is constantly tracked to identify changes or 

trends that might impact deadlock situations. The reinforcement learning algorithm, in turn, 

utilizes this ongoing data to continually learn and adapt its strategy, improving its deadlock 

handling capabilities over time. 

We propose a framework, which is based on four main steps for applying reinforcement learning 

for deadlock handling in logistics. Figure 1 shows the framework as it accompanies each phase 

of logistics systems planning according to Gudehus. The framework starts from the system 

planning stage by preparing the use of reinforcement learning and deriving conclusion from the 

earlier target planning. 
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Figure 1: Framework for applying reinforcement learning for deadlock handling 

in logistics.  

3.2. Problem Formulation 

The first stage of our framework is the “Reinforcement Learning (RL) Problem Formulation”. In 

this stage, we focus on understanding the specific problem at hand within the context of the 

intralogistics system. The problems that we may encounter in an intralogistics setting can be 

diverse, including but not limited to, issues related to scheduling, path planning, and inventory 

management. 

The problem formulation process begins with a thorough understanding of the logistics system, 

focusing on the nature and scope of the problem. We investigate the types of resources, agents, 

and processes involved in the system, as well as the objectives and constraints that the system 

operates under. Understanding these elements allows us to define the problem more accurately 

and tailor our approach for the best possible solution. 

We also delve into historical data, looking for patterns and trends that may contribute to 

deadlock situations. By analyzing this data, we can gain insights into the conditions under which 

deadlocks typically occur and strategize our approach accordingly. 

In this stage, we also determine the nature of the problem in terms of being a single-agent or 

multi-agent problem, and whether the system is fully observable or partially observable. These 

considerations are critical as they influence the implementation of the learning environment and 

RL algorithm in the next stages. 

Next, we define the states, actions, and rewards for the RL problem. The “state” represents the 

current condition of the system, the “action” is the decision made by the agent, and the “reward” 

is the feedback that the agent receives after taking an action. These definitions form the 

foundation of the RL problem and guide the learning process of the RL algorithm. 
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3.3. Model Selection 

The second stage, “Model Selection”, necessitates the determination of an appropriate model to 

accurately represent the logistics system and the problem identified. Owing to the dynamic and 

stochastic characteristics of logistics systems prone to deadlocks, simulation models generally 

serve as the preferred choice, though mathematical models may be employed under certain 

circumstances. 

The initial phase of this stage involves the selection of a suitable machine learning framework 

for reinforcement learning. Options for this might range from well-established frameworks such 

as Ray RLlib or Stable Baselines to a custom implementation developed to meet specific 

requirements. The choice of the framework is a significant decision, given its impact on the 

scalability and development of the solution. 

Subsequently, we proceed to establish the learning environment for the reinforcement learning 

algorithm. This environment functions as the interface bridging the reinforcement learning 

algorithm and the simulation model. The creation process might involve integration with 

simulation software like Plant Simulation or AnyLogic or the development of a custom 

environment directly in a programming language such as Python. The learning environment 

encompasses the dynamics of the logistics system and integrates the definitions of states, 

actions, and rewards that were established during the problem formulation stage. 

3.4. Algorithm Selection 

The third stage of the framework is “Algorithm Selection”, which involves determining and setting 

up the reinforcement learning algorithm that is best suited to address the problem defined in 

the learning environment. The choice of the algorithm is crucial, as different algorithms have 

varied strengths and weaknesses, making them more suited to some problems than others. For 

instance, algorithms such as Deep Q-Network (DQN) or Proximal Policy Optimization (PPO) might 

be considered, among others, depending on the specific characteristics of the problem. 

The first sub-step in this stage is hyperparameter selection. Hyperparameters are parameters 

whose values are set prior to the commencement of the learning process and significantly impact 

the training of the reinforcement learning algorithm. These might include learning rate, discount 

factor, or the number of episodes, among others. The choice of hyperparameters typically 

involves a balance between exploration and exploitation and directly affects the speed and 

effectiveness of learning. 

Following hyperparameter selection, the training process is initiated. This involves the reinforce-

ment learning algorithm interacting with the learning environment over a series of episodes, 

each time learning from the reward feedback and improving its decision-making policy. 

After a set of training episodes, the performance of the algorithm is evaluated and validated. 

This step involves analyzing the mean episode reward, a key performance metric that we aim to 

maximize. The evaluation and validation process helps ensure that the RL algorithm is learning 

effectively and that it can generalize well to new situations. 

The hyperparameter selection, training, and evaluation & validation steps form a cycle that is 

repeated until a satisfactory combination of hyperparameters is found that allows the algorithm 

to solve the problem effectively. This iterative process allows for continuous refinement and 

improvement of the RL solution. 
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3.5. System Deployment 

The final stage of our framework is “System Deployment”. This stage involves putting the trained 

RL algorithm into operation within the actual logistics system. 

The first sub-step in this stage is Implementation. Here, the RL algorithm, which has been trained 

and validated in the simulated environment, is implemented into the real-world logistics system. 

The algorithm begins to make decisions in real-time, applying the learned policy to handle 

deadlock situations. 

Following the implementation, the next sub-step is Monitoring. Given the dynamic nature of 

logistics systems, it is crucial to continuously monitor the performance of the RL algorithm once 

it has been deployed. Key performance indicators, such as throughput or throughput time, are 

tracked to ensure that the system is operating as expected and that the RL algorithm is 

effectively managing deadlocks. 

The final sub-step is Continuous Learning. In an ever-evolving logistics system, new deadlock 

situations may arise that the RL algorithm has not encountered during training. Continuous 

learning allows the RL algorithm to learn from these new experiences and adapt its policy 

accordingly. This process involves periodically retraining the RL algorithm with updated data 

from the logistics system, allowing it to refine and improve its policy over time. Continuous 

learning ensures that the RL algorithm remains effective in the face of changing conditions within 

the logistics system. 

4. Discussion and Integration 

Implementing the proposed framework in real-world intralogistics settings brings its own set of 

challenges and considerations. The framework offers a structured methodology, yet its practical 

application must be attuned to the specific context and conditions of each logistics system. For 

example, the chosen RL algorithm and model need to correspond to the characteristics of the 

logistics system and the complexity of the deadlock problem. Furthermore, practical 

implementation may entail overcoming potential obstacles such as the availability of training 

data for the RL algorithm, computational resources, or the integration of the RL solution with 

the existing system architecture. 

The efficacy of the framework is not easily evaluated through standard performance metrics 

alone. While throughput, throughput time, and the impact of deadlocks (waiting time or detours) 

provide insight into the system’s performance, they do not necessarily reflect the success of the 

framework in enabling effective deadlock handling through RL. The evaluation should, therefore, 

be multi-faceted, including not only these performance metrics but also the improvement in 

system robustness, the reduction in manual interventions for deadlock resolution, and the 

adaptability of the RL solution to changes in the system dynamics. It is also worth noting that 

these evaluation criteria should be aligned with the system’s objectives and constraints as 

defined in the problem formulation stage. 

While the framework is designed to be applicable to a wide range of intralogistics systems and 

deadlock scenarios, its actual adaptability and flexibility are dependent on the specific system 

requirements and constraints. The framework provides the structure and steps for applying RL 

for deadlock handling, but the specifics of each stage, such as the problem type in the RL problem 

formulation stage and the choice of model in the model selection stage, need to be adapted 

based on the system characteristics. The continuous learning capability of the framework allows 
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for ongoing adaptation of the RL solution to changes in the system dynamics, making the 

framework potentially robust across diverse intralogistics systems. However, the extent of this 

flexibility and adaptability needs to be explored further in practical applications. 

5. Conclusion and Future Work 

This paper has presented a comprehensive framework for applying reinforcement learning (RL) 

to handle deadlocks in intralogistics systems. The proposed framework extends conventional 

logistics planning by integrating RL considerations into each stage of the process. It provides a 

structured approach that guides practitioners through problem formulation, model selection, 

algorithm selection, and system deployment, with the aim of creating robust, resilient, and 

efficient logistics systems. 

Our approach introduces RL as a tool for dynamic deadlock handling, offering potential 

improvements in system performance and resilience. However, the application of this framework 

in real-world scenarios needs to be explored further. While we provide a roadmap for the 

implementation of RL in logistics systems, the specifics of each step are dependent on the 

individual system’s characteristics and requirements, necessitating a degree of adaptation and 

flexibility. 

Future work could involve the application and evaluation of this framework across various 

practical cases, thereby providing a more comprehensive understanding of its effectiveness and 

adaptability. Such studies would not only provide validation for our approach but also shed light 

on potential challenges and obstacles in its implementation. Additionally, research could be 

conducted to refine the evaluation criteria for the success of the framework, ensuring a 

multi-faceted assessment that captures all relevant aspects of system performance. 

Further enhancements to the framework could include more advanced RL techniques or the 

integration of other AI methods to increase the robustness and accuracy of the deadlock handling 

solution. As the field of RL continues to evolve, so too will the opportunities for its application in 

intralogistics systems, and our framework provides a starting point for this exciting journey. 
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