
ЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ

LOGICAL DESIGN 65

UDC 004.272.2 Original Paper

https://doi.org/10.37661/1816-0301-2023-20-2-65-84 Оригинальная статья

Generation of shortest path search dataflow networks

of actors for parallel multi-core implementation1

Anatoly A. Prihozhy

Belarusian National Technical University,

av. Nezavisimosty, 65, Minsk, 220013, Belarus

E-mail: prihozhy@yahoo.com

Abstract

Object ives . The problem of parallelizing computations on multicore systems is considered. On the

Floyd – Warshall blocked algorithm of shortest paths search in dense graphs of large size, two types of

parallelism are compared: fork-join and network dataflow. Using the CAL programming language, a method

of developing actors and an algorithm of generating parallel dataflow networks are proposed. The objective is to

improve performance of parallel implementations of algorithms which have the property of partial order of

computations on multicore processors.

Methods. Methods of graph theory, algorithm theory, parallelization theory and formal language theory are

used.

Result s . Claims about the possibility of reordering calculations in the blocked Floyd – Warshall algorithm are

proved, which make it possible to achieve a greater load of cores during algorithm execution. Based on the

claims, a method of constructing actors in the CAL language is developed and an algorithm for automatic

generation of dataflow CAL networks for various configurations of block matrices describing the lengths of the

shortest paths is proposed. It is proved that the networks have the properties of rate consistency, boundedness,

and liveness. In actors running in parallel, the order of execution of actions with asynchronous behavior can

change dynamically, resulting in efficient use of caches and increased core load. To implement the new features

of actors, networks and the method of their generation, a tunable multi-threaded CAL engine has been developed

that implements a static dataflow model of computation with bounded sizes of buffers. From the experimental

results obtained on four types of multi-core processors it follows that there is an optimal size of the network

matrix of actors for which the performance is maximum, and the size depends on the number of cores and the

size of graph.

Conclusion. It has been shown that dataflow networks of actors are an effective means to parallelize

computationally intensive algorithms that describe a partial order of computations over decomposed data.

The results obtained on the blocked algorithm of shortest paths search prove that the parallelism of dataflow

networks gives higher performance of software implementations on multicore processors in comparison with the

fork-join parallelism of OpenMP.

Keywords: dataflow, network of actors, CAL language, shortest paths, blocked algorithm, multi-core system,

speedup

For citation. Prihozhy A. A. Generation of shortest path search dataflow networks of actors for parallel multi-

core implementation. Informatika [Informatics], 2023, vol. 20, no. 2, pp. 65−84.

https://doi.org/10.37661/1816-0301-2023-20-2-65-84

Conflict of interest. The author declares of no conflict of interest.

 Received | Поступила в редакцию 20.02.2023

Accepted | Подписана в печать 21.03.2023

Published | Опубликована 29.06.2023

© Prihozhy A. A., 2023

https://crossmark.crossref.org/dialog/?doi=10.37661/1816-0301-2023-20-2-65-84&domain=pdf&date_stamp=2023-06-29
https://crossmark.crossref.org/dialog/?doi=10.37661/1816-0301-2023-20-2-65-84&domain=pdf&date_stamp=2023-06-29
https://crossmark.crossref.org/dialog/?doi=10.37661/1816-0301-2023-20-2-65-84&domain=pdf&date_stamp=2023-06-29
https://crossmark.crossref.org/dialog/?doi=10.37661/1816-0301-2023-20-2-65-84&domain=pdf&date_stamp=2023-06-29
https://crossmark.crossref.org/dialog/?doi=10.37661/1816-0301-2023-20-2-65-84&domain=pdf&date_stamp=2023-06-29
https://crossmark.crossref.org/dialog/?doi=10.37661/1816-0301-2023-20-2-65-84&domain=pdf&date_stamp=2023-06-29

ИНУОРМАТИКА ▪ INFORMATICS

66 ТОМ ▪ VOL. 20 2|2023 С. ▪ P. 65–84

Генерация потоковых сетей акторов поиска

кратчайших путей для параллельной

многоядерной реализации

А. А. Прихожий

Белорусский национальный технический университет,

пр. Независимости, 65, Минск, 220013, Беларусь

E-mail: prihozhy@yahoo.com

Аннотация
Цели. Рассматривается задача распараллеливания вычислений на многоядерных системах. Посредством

блочного алгоритма Флойда – Уоршалла поиска кратчайших путей на плотных графах большого размера

сравниваются два вида параллелизма: разветвление/слияние и сетевой потоковый. С использованием

языка программирования CAL разрабатываются метод построения акторов потока данных и алгоритм

генерации параллельных сетей акторов. Целью работы является повышение производительности парал-

лельных сетевых реализаций алгоритмов, обладающих свойством частичного порядка вычислений, на

многоядерных процессорах.

Методы. Используются методы теории графов, теории алгоритмов, теории распараллеливания, теории

формальных языков.

Результаты. Доказаны утверждения о возможности переупорядочивания вычислений в блочном алго-

ритме Флойда – Уоршалла, способствующие повышению загрузки ядер при реализации алгоритма.

На основе утверждений разработан метод построения акторов на языке CAL и предложен алгоритм

автоматической генерации CAL-сетей потока данных для различных конфигураций матриц блоков,

описывающих длины кратчайших путей. Доказано, что сети обладают свойствами согласованности,

ограниченности и живучести. В акторах, работающих параллельно, порядок выполнения действий

с асинхронным поведением может динамически меняться, что приводит к эффективному использованию

кэшей и увеличению загрузки ядер. Для реализации новых возможностей акторов, сетей и метода их

генерации разработан настраиваемый многопоточный CAL-движок, реализующий статическую модель

потоковых вычислений с ограниченными размерами буферов. Из экспериментальных результатов, полу-

ченных на четырех типах многоядерных процессоров, следует, что существует оптимальный размер

сетевой матрицы акторов, для которого производительность максимальна, и этот размер зависит от

размера графа и количества ядер.

Заключение. Показано, что сети акторов потока данных являются эффективным средством распарал-

леливания алгоритмов с высокой вычислительной нагрузкой, описывающих частичный порядок вычис-

лений над данными, декомпозированными на части. Результаты, полученные на блочном алгоритме

поиска кратчайших путей, показали, что параллелизм сетей потока данных дает более высокую произво-

дительность программных реализаций на многоядерных процессорах по сравнению с параллелизмом

разветвления/слияния стандарта OpenMP.

Ключевые слова: поток данных, сеть акторов, язык CAL, кратчайшие пути, блочный алгоритм, много-

ядерная система, ускорение

Для цитирования. Прихожий, А. А. Генерация потоковых сетей акторов поиска кратчайших путей для

параллельной многоядерной реализации / А. А. Прихожий // Информатика. – 2023. − Т. 20, № 2. –

С. 65–84. https://doi.org/10.37661/1816-0301-2023-20-2-65-84

Конфликт интересов. Автор заявляет об отсутствии конфликта интересов.

Introduction. The problem of finding the shortest and longest paths in weighted graphs [15] has

many practical applications: computer games, signal processing, city and network traffic, video

compression, microelectronics, optimization of computer systems and networks, task scheduling,

bioinformatics, and many others. It is formulated in different settings and, therefore, is solved by

algorithms of different computational complexity, from polynomial to exponential. In this paper we

consider the all-pairs shortest path problem and the blocked Floyd – Warshall algorithm (BFW) [6–10]

which decomposes the dense graph into subgraphs, has cubic computational complexity and is a basic

one for the problem. BFW helps to 1) localize the data accesses within blocks and thereby reduce the

ЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ

LOGICAL DESIGN 67

data miss count in the processor hierarchical memory; 2) organize the parallel computation of blocks

on a multi-processor system. At the same time, BFW has drawbacks of recalculating all blocks in

every iteration of the loop along graph vertices and of parallelizing the block calculations in the fork-

join style, thus providing insufficient load of processors. Usually, BFW is implemented with OpenMP.

Although the BFW’s complexity is polynomial, to handle large graphs BFW requires huge

computational resources and much runtime even on multiprocessor systems. Scientific research was

done, and works were published which improve the properties of BFW. Thus, [11] extended the

homogeneous blocked Floyd – Warshall algorithm to a heterogeneous one recognizing four types of

blocks and speeding up their computation. In [12], a threaded block-parallel algorithm is proposed

which uses a cooperative scheduler of threads incorporated in the operating system. Work [13] aims

for selecting the optimal size of block. Methods of efficient utilization of hierarchical caches are

proposed in [14, 15]. A generalization of blocked Floyd – Warshall algorithm is proposed in [16]

aiming at reducing the usage of slow global memory in implementations on GPU.

Parallel dataflow networks [17–20] have not been used yet for the realization of BFW; this topic is

the subject of the paper. The dataflow actor concept aims at modelling of distributed knowledge-based

algorithms. Actors match to the heterogeneous and concurrent dataflow nature of various kinds of

embedded systems. The CAL dataflow language is suitable to model applications from cryptography,

multimedia processing, network processing, control systems, reconfigurable systems, power

optimization, monitoring of hardware and software, and others. Both hardware- and software-oriented

CAL-compilers were developed. The concept of actors and principles of concurrency and asynchrony

lie in the basis of CAL. Although CAL is a general-purpose actor-programming language, it was most

successfully used in the MPEG standard known as reconfigurable video coding. The property of

reconfigurability was introduced in CAL due to works [21–24]. In [21], the authors developed the

multidimensional synchronous dataflow. In [22], the authors proposed the parameterized dataflow and

used it for the reconfiguration of digital signal processing systems. Work [23] defined OpenDF as a

dataflow toolset for reconfigurable hardware and multicore systems. The authors of [24] proposed the

Boolean parametric data flow as a means for run-time reconfiguration of CAL programs. Since CAL

aims for the creation of streaming applications, the authors of works [25–27] developed methods and

tools for the synthesis and optimization of dataflow pipelines.

Although this paper develops and implements CAL-networks for parallel solving the all-pairs

shortest path problem on multi-core systems, it shows the way of how actors and dataflow networks of

actors can be created, generated, and implemented targeting other computationally heavy problems of

large sizes with partial order of computations. The main contributions of the paper are:

1. It proves that in parallel BFW the block calculations can be moved across iterations of the loop

along graph vertices and reordered, thus balancing the computational load among processors.

2. By means of simulation it is shown that the reordering of block calculations can increase the

BFW speedup up to 25 %.

3. The approach has been developed which extends the reconfigurability principal and yields a

method of automatic generation of CAL-actors and dataflow CAL-networks for various block-matrix

configurations of shortest paths lengths.

4. Based on the C/C++ language, the generation tool and tunable multi-threaded CAL-engine are

developed which create and implement the dataflow networks of actors on multi-core systems.

5. The computational experiments have shown that the optimal size of the block-matrix and

CAL-network can be found which depends on the core count and graph size; the CAL-networks give

the speedup that is up to 28 % higher than the number of cores and is higher than the speedup

OpenMP gives.

CAL dataflow actor language. Many modern forms of computation are very well suited for data

flow description and implementation. CAL is the high-level dataflow actor programming language

[20–24] in which a program is defined as a network of actors that interact and communicate by

sending and receiving data (tokens) along data lossless and order preserving communication channels.

An actor is a computational entity that consists of input and output ports, state variables, actions, and a

scheduler. Actors run in parallel. When an actor is fired, it consumes tokens from input ports, changes

the internal state and produces tokens on output ports. The action is a piece of computation that an

ИНУОРМАТИКА ▪ INFORMATICS

68 ТОМ ▪ VOL. 20 2|2023 С. ▪ P. 65–84

actor performs during firing. An actor may contain any number of actions. When an actor is fired, it

selects one of them based on the availability of input tokens and optionally based on conditions

relating to the values of tokens and state variables. An action guard enables conditional action firing.

A finite state machine (FSM) allows actions to be scheduled according to the current state of the actor

and considering action priorities. CAL enables the description of different, but still actor-like,

contexts, which have different kinds of objects (and types), different libraries, different primitive data

objects and operators. The CAL model has the properties of strong encapsulation, explicit

concurrency, and asynchrony (untimedness).

CAL as a domain-specific language provides useful abstractions for parallelizing computations and

dataflow programming. It has been shown that the CAL dataflow networks offer a representation that

can effectively support the tasks of parallelization and vectorization – thus providing a practical means

of supporting multiprocessor systems and utilizing vector instructions. CAL has been used in a wide

variety of applications and has been compiled to hardware and software implementations. It has been

chosen by the ISO/IEC standardization organization in the MPEG standard called Reconfigurable

Video Coding (RVC) (ISO/IEC 23001-4 and 23002-4).

The model of computation [17, 18] defines the semantics of the communication between the actors.

It also defines which scheduling policies can be used to fire actors. There exists a variety of models of

computation for CAL, which make trade-offs between expressiveness and analysability. The set of

recognized dataflow models which are scheduled statically by compiler include Kahn process

networks [17], synchronous dataflow networks (SDF) [18], parameterized synchronous dataflow

(PSDF) [23], Boolean parametric dataflow (BPDF) [24], multidimensional synchronous dataflow

(MDSDF) [22]. Other dataflow networks require dynamical scheduling, which induces a run-time

overhead. The Kahn network is a group of deterministic sequential processes that communicate

through unbounded FIFO channels. In SDF, the number of tokens read and written by each process is

known ahead of time, and the channels have bounded FIFOs. SDF is divided into synchronous sub-

networks connected by asynchronous links. PSDF supports dynamic reconfigurability and design

reuse, but it does not allow the topology of the dataflow graph to change at runtime. BPDF allows

restricted dynamic changes of the graph topology by disabling edges annotated with Boolean

expressions.

To be scheduled statically, the dataflow network must have a basic iteration and have the properties

of rate consistency, boundedness, and liveness [1724]. The number of tokens consumed or produced

at a given port at each firing is called the rate. The rate consistency of a dataflow network is checked

by generating a system of balance equations, which must have a non-null solution for all possible

values of parameters. The boundedness is guaranteed if the network returns to its initial state after

each iteration. The network liveness is checked by finding a schedule for a basic iteration.

The CAL was first used on the Ptolemy II platform [20]. The complete OpenDF framework has

been developed for simulating CAL networks and for generating hardware and software code [21].

The portable CAL interpreter used in the Moses project aimed for simulating a hierarchical network of

actors. OpenDF is a compilation framework using a source-to-source compiler. Backends that generate

VHDL/Verilog and C for integration with SystemC were developed.

A problem of automatic generation of dataflow networks. Nowadays, dynamic reconfigurable
embedded systems [21, 22] are widely used, since they have the capability to modify their

functionalities by adding or removing components, and by modifying interconnections among them.
The basic idea behind these systems is to autonomously modify its functionalities according to the

application’s changes. Dynamic reconfiguration is the process of adding, deleting, or moving
resources within the network configuration without deactivating the affected node. The models,

architectures, and design methodologies of the reconfigurable systems have been developed. The
PSDF approach [23] can dynamically reconfigure the behaviour of dataflow actors, edges, graphs, and

subsystems by run-time modification of parameter values. It permits the parameter reconfiguration
that does not change the subsystem interface behavior. BPDF [24] combines both the token-rate and

topology reconfigurations, although, it does not reconfigure the topology significantly. The dataflow
programming models are well-suited to program many-core streaming applications.

ЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ

LOGICAL DESIGN 69

There are a variety of application problems where it is difficult or impossible to create a

reconfigurable dataflow network; therefore, different dataflow networks must be generated depending

on the problem parameters, problem size, and problem formulation. The networks can differ by the

actors, input and output ports, actions, etc, and their quantity. In the paper, we consider such a

problem, i.e., the all-pairs shortest path search in large graphs to be solved on a multi-processor

system. By modifying the blocked Floyd – Warshall algorithm [6, 7], we create and generate dataflow

parallel CAL-networks automatically and implement them efficiently on multi-core systems by means

of creating a CAL-language-based multithreaded engine.

Block-parallel all-pairs shortest path algorithm. Let G = (V, E) be a simple directed graph with

real edge-weights consisting of a set V, |V| = N, of vertices and a set E of edges. Let W be the cost

adjacency matrix for G. So wi,i = 0, 1 i N; jiw , is the cost (weight) of edge (i, j) if (i, j) E and

wi,j = ∞ if i ≠ j and (i, j) E. When G has no cycle with negative sum of weights, the dynamic

programming Floyd – Warshall (FW) Algorithm 1 [1, 2] computes a series of distance matrices

D
0
…D

k
…D

N
 such that D

0
 = W and each element

k

jid , of matrix D
k
, k = 1…N, is the length of the

shortest path from i to j composed of the subset of vertices labelled 1 to k.

The authors of [6, 7, 11, 13] proposed a blocked version BFW of the Floyd – Warshall Algorithm 2.

BFW divides set V of vertices into subsets V0…VM-1 of size S and splits matrix D into blocks of size

S S each, creating a block-matrix B[M M], where equality M S = N holds. Algorithm 2 performs

M iterations, each consisting of three phases: calculation of diagonal D0 block Bm,m (accounts for paths

inside the subgraph on subset Vm of vertices); calculation of (M – 1) cross blocks Bv,m of type C1

through block Bm,m (accounts for paths from vertices of Vv to vertices of Vm); calculation of (M – 1)

cross blocks Bm,v of type C2 through block Bm,m (accounts for paths from vertices of Vm to vertices

of Vv); calculation of (M – 1)
2
 peripheral P3 blocks Bv,u through blocks Bv,m and Bm,u (accounts for

paths from vertices of Vv to vertices of Vu passing through vertices of Vm). In
m

uvB , , index m describes

the block calculation level. Algorithm 3 (BCA) calculates all three types of blocks. In [7], the authors

shown that BFW can be parallelized to PBFW due to all cross blocks can be calculated mutually in

parallel as well as all peripheral blocks. Algorithm 2 describes the parallelism by means of OpenMP

directives. In BFW, the blocks can be also calculated recursively [7].

Algorithm1: Floyd – Warshall FW

Input: A number N of graph vertices

Input: An edge cost matrix W[N N]
Output: Matrix DN of distances

D0 W

fork 0 to N 1 do

for i 0 to N 1 do

for j 0 to N 1 do

 min(

 ,
 +

)

return DN

Algorithm 3: Block calculation BCA

Input: A size S of block

Input: Blocks E, F and H

Output: Block B

For k 0 to S 1 do

For i 0 to S 1 do

for j 0 to S 1 do

 min(, +)

return B

Algorithm 2: Block-parallel Floyd – Warshall PBFW

Input: A number N of graph vertices

Input: A matrix W[N N] of graph edge weights
Input: A size S of block

Output: A blocked matrix [M M] of path distances

M N / S W

#pragma omp parallel

for m 0 to M 1 do

#pragma omp single

 BCA (

 ,
 ,

) // Diagonal D0

for v 0 to M 1 do

if vm then

#pragma omp task united

 BCA (

 ,
 ,

) // Cross C1

#pragma omp task united

 BCA (

 ,
 ,

) // Cross C2

#pragma omp task wait

for v 0 to M 1 do

if v m then

for u 0 to M 1 do

if u m then

#pragma omp task united

 BCA (

 ,
 ,

) // Peripheral P3

#pragma omp task wait

return

ИНУОРМАТИКА ▪ INFORMATICS

70 ТОМ ▪ VOL. 20 2|2023 С. ▪ P. 65–84

Fork-join parallelization potential. OpenMP parallelizes PBFW in the fork-join style. Since

diagonal block D0 is computed in series to all parallel cross blocks C1 and C2, and all cross blocks are

computed in series to all parallel blocks P3, (1) estimates the speedup the PBFW provides over BFW

on P processors

 PMPM
Mspeedup

/)1(/)1(21 2

2

 (1)

The parallelization potential is quite non-uniform when considering the diagonal, cross and

peripheral blocks. Let P = 8 and M = 4. Then, one step is needed for executing the diagonal block,

where 1 processor is loaded, and 7 processors stand idle. One step is needed for executing 6 cross

blocks, where 6 processors are loaded, and 2 processors stand idle. Two steps are needed for executing

9 peripheral blocks: in first step all 8 processors are loaded; in second step only 1 processor is loaded,

and 7 others stand idle. As a result, according to (1) the speedup of PBFW is 4 instead of expected

ideal 8.

The promising alternative to the fork-join is dataflow parallelism. In the paper we develop dataflow

networks which have such a property that the calculations of peripheral blocks can be moved over

iterations along m in Algorithm 2.

Reordering of block calculations. The authors of [7] proved the following assertion related to the

FW algorithm:

Claim 1. Suppose
1

,

k

jid , k = 0…N1, is computed as

1

,

k

jid = min(
k

jid , ,
'

,

k

kid +
"

,

k

jkd) (2)

for k k’, k” N, then upon termination, the Floyd – Warshall algorithm correctly computes the all-

pairs shortest paths.

In BFW and PBFW, the diagonal block
1

,

m

mmB of type D0 is calculated through
m

mmB , for which all

1

,mmB …
1

,

m

mmB have been already calculated. The cross block
1

,

m

mvB of type C1 is calculated through

1

,

m

mmB and
m

mvB , for which all
1

,mvB …
1

,

m

mvB have been already calculated. The same holds for the cross

block
1

,

m

vmB of type C2. The peripheral block
1

,

m

uvB of type P3 is calculated through
m

uvB , ,
1

,

m

mvB and

1

,

m

umB . We formulate and prove Claim 2 which relaxes the requirement to blocks
1

,

m

mvB and
1

,

m

umB .

Claim 2. Suppose P3-type block
1

,

m

uvC (that is block
1

,

m

uvB calculated by a different algorithm

BFW’), m = 0…M1, is computed as

1

,

m

uvC = BCA (
m

uvC , ,
'

,

m

mvC ,
"

,

m

umC) (3)

for m+1 m’, m” M, then upon termination, BFW’ correctly computes the all-pairs shortest paths.

Proof. In BFW and BFW’, blocks D0, C1 and C2 are calculated in the same manner. Let prove by

induction that for P3-type blocks
1

,

m

uvC and
1

,

m

uvB , 0 m M-1 the following inequality holds:

1

,

m

uvC
1

, ,m
v uB

(4)

which means inequality ci,j bi,j for all pairs of matching elements of the corresponding blocks.

Base case. By definition we have
0

,uvC =
0

,uvB = uvW , , therefore
0

,uvC
0

,uvB , v, u = 0…M1.

Induction step. Suppose the inequality as follows holds:

m

uvC ,
m

uvB , , v, u = 0…M1. (5)

ЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ

LOGICAL DESIGN 71

Then applying Algorithm 3 to the BCA call (3) we can conclude:

1

,

m

uvC BCA (
m

uvB , ,
'

,

m

mvC ,
"

,

m

umC) (6)

 BCA (
m

uvB , ,
1

,

m

mvC ,
1

,

m

umC) (7)

 BCA (
m

uvB , ,
1

,

m

mvB ,
1

,

m

umB)
1

,

m

uvB . (8)

Inequality (6) is inferred from (3) and (5). Inequality (7) is inferred from Claim 1 applied S times to

each element of block B calculated over blocks E, F and H in Algorithm 3 executed through the BCA

call of (6):

(1)
,
S m
i jb = min (

, ,S m
i je '

,
S m

i kf + "
,)S m

k jh min (
, ,S m

i je (1)
,
S m

i kf + (1)
,),S m

k jh (9)

where Sm is the calculation level of elements of the block that is at level m of calculation.

Inequality (8) that proves (4) is inferred from (7) considering inequality (5) that is used to prove the

inequality
1

,

m

mvC
1

,

m

mvB of the type C1 blocks and to prove the inequality
1

,

m

umC
1

,

m

umB of the

type C2 blocks of the BFW’ and BFW algorithms. All these blocks are calculated over the diagonal

blocks which meet (5).

On the other hand, since the traditional blocked Floyd – Warshall algorithm computes the shortest

paths at termination and (3) computes the length of some paths, we have:

1

,

m

uvB
1

,

m

uvC . (10)

It is derived from (4) and (10) that
M

uvB , =
M

uvC , , which completes the proof.

Claim 2 allows the delaying and reordering of peripheral blocks calculations. Such a reordering

was used in the multi-threaded all-pairs shortest path algorithm [12] realized using a cooperative

scheduler of threads.

Fig. 1, a depicts the estimated parallelization potential of the fork-join PBFW algorithm and the

parallelization potential of an algorithm PBFW” obtained from the former one by reordering of block

calculations and balancing the load of processors. To estimate the parallelization potential, a program

in C++ was developed which implements PBFW and its modification PBFW”. Fig. 1, b shows that the

reordering of block calculations can speed up the shortest paths parallel search up to 25 %. Moreover,

the speedup can increase in case when the block execution time is variable. It should be noted that the

gain of PBFW” against PBFW is being reduced with the growth of block count.

a)

b)

Fig. 1. Processors load a) in percent (vertical axis) provided by algorithms PBFW (fork-join parallelism fj) and PBFW”

(reordering ro of calculations) for block-counts M = 2 to M = 32 (horizontal axis) on 8 and 32 processors P; and lower bound

of speedup b) in percent (vertical axis) PBFW” has against PBFW for block-counts M = 2 to M = 32 (horizontal axis)

on 8 and 32 processors P

ИНУОРМАТИКА ▪ INFORMATICS

72 ТОМ ▪ VOL. 20 2|2023 С. ▪ P. 65–84

The BFW and PBFW are homogeneous in sense of calculating all blocks with the single BCA

function. The authors of work [11] extended the algorithms to heterogeneous ones that calculate the

blocks of types D0, C1, C2 and P3 using separate functions which operate faster than BCA.

Modelling block calculations by actors. A separate actor Ar,c is put into accordance with each

block Br,c

of block-matrix B, which introduces a matrix A[M M] of actors. The structure and

behavior of actor Ar,c depends on two factors: 1) the size M M of matrix B; 2) the location of Br,c in B

(diagonal and non-diagonal blocks). Fig. 2 shows diagonal and non-diagonal actors in matrices

A[2 2] and A[3 3]. The size M influences the number of input ports and the total number of

actions in the actor. The block location influences the structure and behavior of the actions

incorporated in the actor. In the paper, we assume that the actors have access to two global variables M

and B and assume that the actors’ ports represent the block calculation levels but the blocks themself.

Actor Ar,c may update block Br,c and may not other blocks in B.

In each actor Ar,c, the number of input ports equals 2 (M 1) and the number of output ports

equals two. The input ports describe calculation levels of other blocks located in row r and column c.

Both output ports describe the calculation level of block Br,c. The overall number of ports and the actor

interface are the same for all actors of A, no matter the actor is diagonal or non-diagonal. Fig. 3 depicts

the input and output ports of the actor in matrices A[2 2] and A[3 3].

a) b)

Fig. 2. Matrices a) A[2 2] and b) A[3 3] of diagonal and non-diagonal CAL actors

a) b)

Fig. 3. Interface of actor Ar,c(M) that models calculation of block B , in matrix A[M M]:

a) actor Ar,c(2) and b) actor Ar,c(3)

In actors of A[2 2], input port Lr1 receives the token produced by another actor located in row r,

and Lc1 receives the token produced by another actor in column c. Two output ports Lr and Lc of Ar,c

send tokens describing the calculation level of Br,c to other actors in row r and column c respectively.

In matrix A[3 3], the actor interface has four input ports Lr1, Lr2, Lc1 and Lc2 since the number of

blocks in row r and column c is increased to three.

The diagonal and non-diagonal actors have different internal structure and different actions.

Algorithm 4 depicts the behavior of a diagonal actor Block_D that models the calculation of block B0,0

in matrix A[2 2]. Input ports L_0_1 and L_1_0 describe the calculation level of blocks B0,1 and B1,0

ЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ

LOGICAL DESIGN 73

respectively. Output ports Lrow and Lcol describe the calculation level of block B0,0. Variables Lev,

Row and Col that describe the calculation level, row, and column of B0,0 represent the actor

internal state.

The actor contains three actions: diagonal, peripheral, and reset. Action Dig0 has no input, but two

output tokens (both equal Lev) directed to ports Lrow and Lcol. The guard condition requires

Lev = Row = Col. The action body increments Lev and calls the BCA function to recalculate block B0,0

over itself. According to the guard, the action is fired once. Action Per1 has three input and no output

tokens. Tokens L01 and L10 arrive from ports L_0_1 and L_1_0, and the third token is a constant

k = 1. The guard condition requires Lev < L01 and Lev < L10. The action body increments Lev and

calls the BCA function to recalculate block B0,0 over blocks B0,1 and B1,0. The peripheral action is fired

when the input tokens have arrived, and its guard is satisfied. The Reset action sets Lev to 0. It is fired

when the block has been recalculated M times.

Algorithm 5 describes a non-diagonal actor Block_N that models the calculation of block B0,1 in

matrix A[2 2]. Two input ports are L_0_0 and L_1_1. The output ports and state variables are the

same as in actor Block_D. The actor contains two actions. Action Crs0 has input token L00 arriving

from port L_0_0 and has output token Lev sended to port Lrow. Its guard condition requires

Lev = L00 1. The action body increments Lev and calls the BCA function to recalculate block B0,1

over diagonal block B0,0. Crs0 is fired when a token arrives at its input port and its guard condition

evaluates to true. The behaviour of Crs1 is like those of Crs0 except B0,1 is recalculated over B1,1. Each

of actions Crs0 and Crs1 is fired once.

Algorithms 6 and 7 describe the behavior of diagonal actor A0,0 (Block_D) and non-diagonal actor

A0,1 (Block_N) that models the calculation of blocks B0,0 and B0,1 in matrix A[3 3]. In A0,0, one action

is Dig and all others are Per. In A0,1, two actions are Crs and all others are Per. Compared to actors of

matrix A[2 2], the actors of A[3 3] have four input ports instead of two and have an additional

peripheral action each. The output ports and state variables are the same. Unlike the actor of A[2 2],

the Block_D of A[3 3] of Algorithm 6 contains two peripheral actions that are competitive in firing

and can be fired in arbitrary order. The actions’ guards are redundant and removed since their firing is

correctly managed by input tokens. Thus, block B0,0 can have two firing sequences: 1)
0

0,0B ,
1

0,0B and

2

0,0B ; 2)
0

0,0B ,
2

0,0B and
1

0,0B . CAL and its implementations require to resolve such competitions in

advance by adding schedule and priorities. We do not follow this way since the order of firings of the

actions does not influence the computation result. We perform a relaxation of CAL, omit the schedule

and priorities in the actors and create our own multi-threaded implementation of CAL which resolves

the competitions by means of an appropriate mechanism of synchronizing concurrent actions.

Algorithm 4: Diagonal actor Block_D for block B0,0 in A[2 2]

actor Block_D (m) int L_0_1, int L_1_0 ==> int Lrow, int Lcol:

int Lev := 0; int Row := m; int Col := m;

Dig0: action ==> Lrow: [Lev], Lcol: [Lev] // D0
guard Lev = Row

do

Lev := Lev + 1;

BCA (B[Row, Col], B[Row, Col], B[Row, Col]);

end
Per1: action L_0_1: [L01], L_1_0: [L10], 1:[k] ==> // P3

guard L01 > Lev and L10 > Lev

do

Lev := Lev + 1;

BCA (B[Row, Col], B[Row, k], B[k, Col]); // P3

end

Reset: action ==>

guard Lev = M do Lev := 0; end

end

Algorithm 5: Non-diagonal actor Block_N for block B0,1 in A[2 2]

actor Block_N (v, u) int L_0_0, int L_1_1 ==> int Lrow, int Lcol:

int Lev := 0; int Row := r; int Col := c;

Crs0: action L_0_0: [L00] ==> Lcol: [Lev] // C2
guard Lev = L00 – 1

do

Lev := Lev + 1;

BCA (B[Row, Col], B[Row, Row], B[Row, Col]);

end
Crs1: action L_1_1: [L11] ==> Lrow: [Lev] // C1

guard Lev = L11 – 1

do

Lev := Lev + 1;

BCA (B[Row, Col], B[Row, Col], B[Col, Col]); // P3

end
Reset: action ==>

guard Lev = M do Lev := 0; end

end

ИНУОРМАТИКА ▪ INFORMATICS

74 ТОМ ▪ VOL. 20 2|2023 С. ▪ P. 65–84

Moreover, we remove guards of actions Crs0 and Crs1 because the conditions they describe are fully

satisfied by the conditions of arriving tokens on input ports.

Parallel dataflow networks of actors for shortest paths search. Composing actors into a

network, setting connections among their input and output ports, and allocating buffers to the

connections establish a dataflow network. The shortest paths search network structure depends on M.

Fig. 4 shows a graphical view and a CAL-code of the NW22 network constructed on matrix A[2 2].

network NW22 () ⇒ :

entities

A00 = Block_D (0,0);

A01 = Block_N (0,1);

A10 = Block_N (1,0);
A11 = Block_D (1,1);

structure

A00. Lrow --> A01.L_0_0;
A00. Lcol --> A10.L_1_1;

A01. Lrow --> A00.L_0_1;

A01. Lcol --> A11.L_1_0;
A10. Lrow --> A11.L_0_1;

A10. Lcol --> A00.L_1_0;

A11. Lrow --> A10.L_0_0;
A11. Lcol --> A01.L_1_1;

end

a) b)

Fig. 4. Dataflow network NW22 constructed on matrix A[2 2] has 4 actors and 8 channels with buffers on them:

a) graphical view; b) CAL-code

NW22 consists of two diagonal and two non-diagonal actors, twelve actions and eight channels

annotated with produced and consumed token rates. All rates are 1. Every action of every actor is fired

once during the network operation. The diagonal Digm action of actor Am,m that is guarded with

Lev = m is fired once. It produces tokens, which are transferred to actions of cross non-diagonal actors

Am,v and Au,m on row m and column m. Since the tokens are produced once, the cross actions Crsv and

Crsu of the actors are fired once. The cross actions produce once and transfer tokens to actions of all

actors outside the cross, therefore, all the peripheral actions can be fired once.

Algorithm 6: Diagonal actor Block_D for block B0,0 in A[3 3]

actor Block_D (m) int L_0_1, int L_0_2, int L_1_0, int L_2_0 ==>

int Lrow, int Lcol:
int Lev := 0; int Row := r; int Col := c;

Dig0: action ==> Lrow: [Lev], Lcol: [Lev] // D0

guard Lev = Row

do

Lev := Lev + 1;

BCA (D[Row, Col], D[Row, Col], D[Row, Col]);

end
Per1: action L_0_1: [L01], L_1_0: [L10], 1:[k] ==> // P3

do

Lev := Lev + 1;

BCA (D[Row, Col], D[Row, k], D[k, Col]);

end
Per2: action L_0_2: [L02], L_2_0: [L20], 2:[k] ==> // P3

do

Lev := Lev + 1;
BCA (D[Row, Col], D[Row, k], D[k, Col]);

end
Reset: action ==>

guard Lev = M do Lev := 0; end

end

Algorithm 7: Non-diagonal actor Block_N for block B0,1 in A[3 3]

actor Block_N (v, u) int L_0_0, int L_0_2, int L_1_1, int L_2_1

==>int Lrow, int Lcol:

int Lev := 0; int Row := r; int Col := c;
Crs0: action L_0_0: [L00] ==> Lcol: [Lev] // C2

do

Lev := Lev + 1;

BCA (D[Row, Col], D[Row, Row], D[Row, Col]);

end
Crs1: action L_1_1: [L11] ==> Lrow: [Lev] // C1

do

Lev := Lev + 1;
BCA (D[Row, Col], D[Row, Col], D[Col, Col]);

end
Per2: action L_0_2: [L02], L_2_1: [L21], 2:[k] ==> // P3

do

Lev := Lev + 1;

BCA (D[Row, Col], D[Row, k], D[k, Col]);

end
Reset: action ==>

guard Lev = M do Lev := 0; end

end

ЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ

LOGICAL DESIGN 75

To prove the rate consistency of NW22, we construct a combined balance equation for each channel

(Av.pi, Au.pj) connecting output port pi of actor Av with token rate R(Av.pi) to input port pj of actor Au

with token rate R(Au.pj):

F(Av.) R(Av.) = F(Au.pj) R(Au.pj), (11)

where F(Av.pi) is the number of firings of Av that produce tokens at pi, and F(Au.pj) is the number of

firings of Au that consume tokens at pj. For NW22, the system of balance equations (11) is described

by (12)

1. F(A0,0.Lrow) 1 = F(A0,1.L_0_0) 1

2. F(A0,0.Lcol) 1 = F(A1,0.L_1_1) 1

3. F(A0,1.Lrow) 1 = F(A0,0.L_0_1) 1

4. F(A0,1.Lcol) 1 = F(A1,1.L_1_0) 1

5. F(A1,0.Lrow) 1 = F(A1,1.L_0_1) 1 (12)

6. F(A1,0Lcol) 1 = F(A0,0.L_1_0) 1

7. F(A1,1.Lrow) 1 = F(A1,0.L_0_0) 1

8. F(A1,1.Lcol) 1 = F(A0,1.L_1_1) 1.

Equations 1 and 2 of (12) are satisfied because the single firing of action Dig0 of actor A0,0 (we

denote A0,0.Dig0) produces at ports Lrow and Lcol the tokens consumed by single firing of A0,1.Crs0

and single firing A1,0.Crs1 respectively. Equation 4 is satisfied as A0,1.Crs0 is fired producing at Lcol a

token that is consumed by A1,1.Per1. Equation 5 is satisfied as A1,0.Crs1 is fired producing at Lrow a

token that is consumed by A1,1.Per1. Equations 7 and 8 are satisfied because the single firing of action

Dig0 of actor A1,1 produces at ports Lrow and Lcol tokens consumed by firings A1,0.Crs0 and A0,1.Crs1

respectively. Equation 6 is satisfied by the firing of A1,0.Crs0 producing at Lcol the token that is

consumed by A0,0.Per1. Equation 3 is satisfied by the firing of A0,1.Crs0 producing at Lcol the token

that is consumed by A0,0.Per1.

The Reset action of all diagonal and non-diagonal actors sets Lev to initial state 0 after firing of all

other actions. This guarantees the boundedness of FIFO buffers in NW22. The following schedule

proves the liveness of network NW22

A0,0.Dig0, A0,1.Crs0,

A1,0.Crs1,

A1,1.Per1,

A1,1.Dig0, A0,1.Crs1, A1,0.Crs0 and A0,0.Per1.

The firing of actions of different actors can proceed in series and in parallel. Fig. 5 depicts a rate-

consistent dataflow network constructed on matrix A[3 3], which obtains the properties of

boundedness and liveness. Therefore, the network supports the synchronous dataflow model (SDF) of

computation.

Fig. 5. Graphical view of dataflow network NW33 constructed of 9 actors

and 27 communication channels from matrix A[3 3]

ИНУОРМАТИКА ▪ INFORMATICS

76 ТОМ ▪ VOL. 20 2|2023 С. ▪ P. 65–84

Generation of parallel dataflow networks of actors. Given a blocked matrix B[M M], our goal

is to generate a matrix A[M M] of actors and to establish connections between their input and output

ports, thus generating a dataflow network NWMM for shortest paths search. The key new result of the

section is a procedure of generating actors of two types and generating a network NWMM for

various M. In NWMM, the number of actors is M
2
. Each actor has 2 (M 1) input ports, 2 output

ports, and M actions.

Algorithm 8 generates the diagonal and non-diagonal actors for block Br,c of matrix B[M M]. It

adds the input and output ports and the state variables to each actor. Then, it creates actions. For the

diagonal actor Block_D modelling Ar,r (r = c), it creates one diagonal action Digr and M 1 peripheral

actions Perk, k = 0…M 1, k ≠ r. Action Digr produces tokens at output ports Lrow and Lcol that are

transferred to 2 (M 1) input ports of other actors from row r and column c of matrix A.

The peripheral actions of the diagonal actor are divided into two groups:
1

DG = {Per0,…,Perr-1} and

2

DG = {Perr+1,…,PerM-1}.

Algorithm 8 adds one cross action of type C1, one cross action of type C2 and M-2 peripheral

actions to the non-diagonal actor Block_N representing Ar,c, r ≠ c. Cross action Crsr calculates block

Br,c of type C2 through diagonal block Br,r and produces a token at output port Lcol which is

transferred to M 1 input ports of actors on column c. Cross action Crsc calculates block Br,c of type

C1 over diagonal block Bc,c and produces a token at output port Lrow which is transferred to M 1

input ports of actors on row r. Let r < c. Peripheral actions Perk, k = 0…M 1, k ≠ r and k ≠ c of actor

Ar,c are divided into three groups:
1

NG = {Per0…Perr-1},
2

NG = {Perr+1…Perc-1} and
3

NG =

={Perc+1…PerM-1}.

Once the actors are created, Algorithm 9 generates connections among them. It traverses all actors

identified by ID_Dest and Actor_Dest and considers them as destinations. For each destination actor,

the algorithm takes every input port Port_Dest and selects a single source that is an actor

Algorithm 8: Generation of diagonal and non-diagonal actors (Generate_Actor)

Input: a number M of blocks (actors) in row (column)

Input: a row number r

Input: a column number c

Output: a generated actor Actor

if r = c then

ActorCreateActor (“Block_D”, r, c);

else

ActorCreateActor (“Block_N”, r, c);

for k 0 to M 1 do

if k c then Actor.AddInPort (r, k);

for k 0 to M 1 do

if k r then Actor.AddInPort (k, c);

Actor.AddOutPort (“Lrow”); Actor.AddOutPort (“Lcol”); Actor.AddStateVar (“Lev”, 0);

Actor.AddStateVar (“Row”, r); Actor.AddStateVar (“Col”, c);

if r = c then

ActionD0 CreateAction (“Dig”, r); Actor.AddAction (ActionD0);

for k 0 to M 1 do

if k r then ActionP3 CreateAction (“Per”, k); Actor.AddAction (ActionP3);

else

ActionC1 CreateAction (“Crs”, c); Actor.AddAction (ActionC1);

ActionC2 CreateAction (“Crs”, r); Actor.AddAction (ActionC2);

for k 0 to M 1 do

if k r and k c then ActionP3 CreateAction(“Per”, k); Actor.AddAction(ActionP3);

return Actor;

ЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ

LOGICAL DESIGN 77

(ID_Source, Actor_Source) and its output port (Port_Source). The first loop along variable p goes

over destination ports and their sources of column c, and the second loop along variable p goes over

destination ports and sources of row r.

The generated dataflow network NWMM has the properties of rate consistency, boundedness, and

liveness. The behavior of actors and actions in the network is correctly synchronized. Each actor

calculates its own block; therefore, no conflicts occur between the actors. In the diagonal and non-

diagonal actors, all actions are connected to distinct input ports, which guarantees that the same token

cannot be consumed by different actions; it leads to the independent firing of actions.

If block
kB1 of level k is used directly (or over other blocks) for calculating block

lB2 to level l, we

denote it with precedence
kB1

lB2 . It can be observed from Algorithm 2 that in BFW the

precedence
m

uvB ,
1

,

m

uvB holds for all v, u, m = 0 … M – 1. In NWMM, a precedence relation between

block calculations exists, which determines a partial order of firing actions.

Claim 3. In the diagonal CAL-actor Block_D processing block mmB , , actions of
1

DG are fired

before action Digm and actions of
2

DG are fired after Digm. Actions of
1

DG as well as actions of
2

DG

can be fired in any order with respect to each other. Then NWMM correctly computes the shortest paths

between all pairs of vertices.

Proof. In BFW,
k

mmB ,
1

,

k

mmB , k = 0 … m hold. Actions of
1

DG calculate block mmB , from level

0

,mmB to levels
1

,mmB …
m

mmB , . Action Digm calculates the block to level
1

,

m

mmB and actions of
2

DG

calculate it to levels
2

,

m

mmB …
M

mmB , respectively. The diagonal block calculations hold the following:

1. For block type D0, block mmB , must be calculated to level m before calculating
1

,

m

mmB . It can be

only done by calculating
1

,mmB …
m

mmB , through
1

0,mB ,
1

,0 mB …
m

mmB 1, ,
m

mmB ,1 while considering the

block as of type P3. Then in NWMM,
1

,mmB
m

mmB , …
1

,

m

mmB
m

mmB , hold. The actions of
1

DG are

fired before action Digm.

Algorithm 9: Generation of connections between actors (Connect_Actors)

Input: a number M of blocks in row (column)

Output: a CAL network NW

for r 0 to M 1 do

for c 0 toM 1 do

ID_Dest r M + c;

Actor_DestAcatorName (r, c);

for p 0 to M 1 do

if p r then

Port_DestPortName (p, c); ID_Source p M + c;

Actor_Source AcatorName (p, c); Port_Source “Lcol”;

NW.AddConnect (ID_Dest, Actor_Dest, Port_Dest, ID_Source, Actor_Source, Port_Source);

for p 0 to M 1 do

if p c then

Port_Dest PortName (r, p); ID_Source r M + p;

Actor_SourceAcatorName (r, p); Port_Source “Lrow”;

NW.AddConnect (ID_Dest, Actor_Dest, Port_Dest, ID_Source, Actor_Source, Port_Source);

return NW;

ИНУОРМАТИКА ▪ INFORMATICS

78 ТОМ ▪ VOL. 20 2|2023 С. ▪ P. 65–84

2. The precedencies
1

,

m

mmB
2

,

m

mmB …
1

,

m

mmB
M

mmB , are derived from the fact that
2

,

m

mmB …
M

mmB ,

are directly or indirectly calculated through
1

,

m

mmB .

3. The CAL network can reorder
k

mmB , and
1

,

k

mmB , k = 1 … m – 1, for three reasons: a) the block

calculations are independent and, therefore, do not precede each other since mmB , is calculated at

levels k and k+1 by accounting for paths between vertices of mV passing through vertices of non-

intersected subsets kV and 1kV ; b) Claim 2 allows the calculation of
k

mmB , through
'

,

k

kmB and
"

,

k

mkB of

higher levels of k’ > k and k” > k; c) the operation of choosing a minimum of two numbers is

commutative and associative.

4. Assertions like those of point 3 are proved for the case when k = m + 1 … M – 1.

Points 1 and 2 prove that in Block_D actions of
1

DG are fired before action Digm and actions
2

DG

are fired after Digm. Points 3 and 4 prove that actions of
1

DG (as well as actions of
2

DG) can be fired in

any order with respect to each other in Block_D. The claim is proved.

Claim 4. In the non-diagonal CAL-actor Block_N, which processes block uvB , , v ≠ u, actions of

1

NG are fired before action Crsv, actions of
2

NG are fired after Crsv and before Crsu, and actions of

3

NG are fired after Crsu. In each of three subsets
1

NG ,
2

NG and
3

NG the actions can be fired in any

order with respect to each other. Then NWMM correctly computes the shortest paths between all pairs

of vertices.

Proof. Let v < u. Actions of
1

NG calculate block uvB , from level
0

,uvB to levels
1

,uvB …
v

uvB , .

Action Crsv calculates the block to level
1

,

v

uvB and actions of
2

NG calculate it to levels
2

,

v

uvB …
u

uvB , .

Action Crsu calculates the block to level
1

,

u

uvB and actions of
3

NG calculate it to levels
2

,

u

uvB …
M

uvB , .

The following precedencies hold for the non-diagonal block calculations:

1. Since the block type C2 establishes precedence
v

uvB ,
1

,

v

uvB , block uvB , must be calculated to

level v before calculating
1

,

v

uvB . The only way is to perform calculations
1

,uvB …
v

uvB , by considering

the block as of type P3. In this case,
1

,uvB
v

uvB , …
1

,

v

uvB
v

uvB , hold.

2. Since the block type C1 establishes precedence
u

uvB ,
1

,

u

uvB , block uvB , must be calculated to

level u before calculating
1

,

u

uvB . The only way is to perform calculations of
2

,

v

uvB …
u

uvB , after

calculating
1

,

v

uvB by considering the block as of type P3. Therefore, precedencies
2

,

v

uvB

u

uvB , …
1

,

u

uvB
u

uvB , hold.

3. The precedencies
1

,

u

uvB
2

,

u

uvB …
1

,

u

uvB
M

uvB , are derived from the fact that
2

,

u

uvB …
M

uvB ,

can only be calculated through
1

,

u

uvB .

4. NWMM can refuse the precedence
m

uvB ,
1

,

m

uvB , m = 1 … v – 1 and can reorder
m

uvB , and
1

,

m

uvB

for three reasons: a) the calculations are independent and, therefore, do not precede each other since

uvB , is calculated at levels m and m+1 by accounting for paths between vertices of subsets vV and uV

passing through vertices of non-intersected subsets mV and 1mV ; b) Claim 2 allows the calculation of

m

uvB , through
'

,

m

uvB and
"

,

m

uvB at higher levels of m’ > m and m” > m; c) the operation of choosing a

minimum of two numbers is commutative and associative.

5. Similar assertions are proved for the case when m = v + 1 … u – 1 and when m = u + 1 … M – 1.

ЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ

LOGICAL DESIGN 79

Points 1, 2 and 3 prove that in Block_N the actions of
1

NG are fired before action Crsv, the actions

of
2

NG are fired after Crsv and before Crsu, and the actions of
3

NG are fired after action Crsu. Points 4

and 5 prove that the actions of
1

NG (as well as of
2

NG and
3

NG) can be fired in any order with respect

to each other in Block_N. The claim is proved.

The number of possible firing sequences of actions of diagonal actors is |
1

DG | ! |
2

DG | ! and is |
1

NG

| ! |
2

NG | ! |
3

NG | ! of non-diagonal actors, where |G| ! is factorial of G’s cardinality. The number

rapidly increases with the growth of M.

CAL-network development tool and tunable dataflow CAL-engine in C/C++. Based on the

C/C++ language we have developed a tool for creating parallel networks of dataflow actors and have

developed a tunable multithreaded CAL-based engine (fig. 6) for multicore systems. The tool and

engine were used for the realization of the proposed dataflow CAL-actors and parallel networks,

which solve the all-pairs shortest path problem. In the current version of engine, any action of any

actor is implemented by a separate thread, although we consider other solutions of mapping actors to

threads. Since many concurrently and asynchronously operating actions (threads) can simultaneously

update shared resources, synchronization primitives protect the resources. The concurrent

asynchronous behavior is a source of increasing the throughput of the networks and speeding up the

shortest paths search against OpenMP.

Fig. 6 depicts a flexible architecture of the tool and engine. It provides methods of specifying and

generating actors, connections and whole network for the problem under solving. The generators

process the specifications and elaborate a parallel dataflow network in an internal format.

A multithreaded CAL-based engine is firstly tuned to the network and then implements it on a multi-

core system.

Fig. 6. Architecture of CAL-based development tool and tunable CAL-engine implemented in C/C++

Although the actions may be fired (executed) within one actor only in series, the engine parallelizes

the actions’ implementations regarding their readiness and selection before firing. It can execute the

action in parallel with checking if another action is ready to be fired next (the FSM state, the

availability of action’s input tokens, the guard condition, and the availability of output ports to receive

the produced tokens are considered). To have this property, the CAL-engine implements each action

by a separate thread.

ИНУОРМАТИКА ▪ INFORMATICS

80 ТОМ ▪ VOL. 20 2|2023 С. ▪ P. 65–84

The advantage of our CAL-based implementation is the integration of CAL in C/C++ in such a

way that all facilities of C/C++ become available for the implementation. C/C++ classes of objects

implement all components of the CAL-actor and network. As a result, the network and each of its

actors are instantiated over complex data structures and sets of methods written in C/C++. The body of

each action is represented as a function in C/C++. To ensure that the implementation is consistent with

the CAL model of computation, we have developed a tool for checking and validating the structure.

Experimental results. In the paper, we report results given by the implementations of the dataflow

parallel networks and OpenMP based implementations of the PBFW algorithm on multi-core systems.

The networks of dataflow actors were generated from various block-matrix configurations and block

sizes and implemented in C/C++ with the threaded CAL engine. The results are obtained on randomly

generated simple complete weighted directed graphs of 1200, 2400, 3600 and 4800 vertices on four

Intel(R) Core(TM) processors i3-550, i5-5200U, i7-9750h and i7-10700. The graphs provide high

computational load which gives a correct comparison of the implementations. Table describes

processors’ parameters.

Parameters of four multi-core processors

Processor
Cache L1,

KB

Cache L2,

KB

Cache L3,

MB

Frequency,

GHz
Cores

Logical

processors

i7-10700 8 64 8 256 16.0 2.90 8 16

i7-9750h 6 64 6 256 12.0 2.60 6 12

i5-5200U 2 64 2 256 3.0 2.20 2 4

i3-550 32 + 64 2256 4.0 3.20 2

Fig. 7 and 8 show the speedup the dataflow CAL-networks and their multi-threaded implementations

have given against matching single-thread implementations of the Floyd–Warshall Algorithm 1.

The block count M in matrix B varied in the range 2 to 10. The number of actors varied in the range 4

to 100, the number of actor input ports varied in the range 2 to 18, and the number of output ports

was 2 for all actors. The number of actions within actor varied in the range 2 to 10, therefore, the

number of threads in the network implementations reached up to 1000. The optimal number Mopt of

blocks has given the highest speedup of the CAL-networks.

On the 2-core i3-550 processor and the graph of 1200 vertices (fig. 7, a), the CAL-network has

given the speedup of 2.57 at Mopt = 4. For larger M the speedup has reduced to 1.61. On the graph of

2400 vertices, the highest speedup of 2.45 is also obtained at Mopt = 4. For both graphs, the speedup is

larger than the number of cores. For the 2-core i5-5200U processor and the graph of 1200 vertices

(fig. 7, b) we can observe the similar pattern, where the highest speedup of 2.51 is obtained at Mopt = 4.

The increase in the graph size to 2400 and 3600 shifts the value of Mopt from 4 to 8 (speedup is 2.54)

and then to 10 (speedup is 2.55). We can mainly explain this as the CAL-networks exploit the

processor hierarchical memory and caches more efficiently for lower size of block.

a) b)

Fig. 7. Speedup (vertical axis) of multi-threaded CAL-networks against single-thread FW vs. block count M (horizontal

axis) on a) i3-550 and b) i5-5200U processors for three sizes of graphs: 1200, 2400 and 3600 vertices

ЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ

LOGICAL DESIGN 81

On the 6-core i7-9750hprocessor and the graph of 1200 vertices (fig. 8, a), the CAL-networks have

given the maximum speedup of 4.98 at Mopt = 6, which is smaller than the number of cores due to the

insufficient potential parallelism and low useful load (see fig. 1, a). On the graphs of 2400 and 3600

vertices, the highest speedups of 6.59 and 6.96 are obtained at Mopt = 8 and Mopt = 6 respectively. In

both cases, the speedup exceeds the number of cores. On the 8-core i7-10700 processor, the speedup

patterns by the CAL-networks are very close for graphs of 2400, 3600 and 4800 vertices (fig. 8, b).

For all graphs the maximum speedup of 9.78, 9.37 and 9.34 is obtained at Mopt = 10. Fig. 8, b also

shows the speedup given by OpenMP on the three graph-sizes, which is significantly less against the

networks. The speedup is being decreased with the growth of the graph-size and is being increased

with the growth of the number of blocks. It can be observed that the CAL-networks convincingly gain

the BFW OpenMP implementations with respect to runtime.

a) b)

Fig. 8. Speedup (vertical axis) of multi-threaded CAL-networks and OpenMP-BFW implementations against

single-thread FW vs. block count M (horizontal axis) on a) i7-9750h and b) i7-10700 processors for four

sizes of graphs (omp2 – 2400, omp3 – 3600 and omp4 – 4800 vertices)

According to (1), the estimated speedup of the block-parallel Floyd – Warshall algorithm

implemented in the fork-join style (OpenMP) is 1.33, 3.00, 4.00, 6.25, 5.14, 6.40 and 6.66 for M = 2,

3, 4, 5, 6, 8, 10 respectively on 8 cores. For comparison, the networks have given on i7-10700 and on

the graph of 2400 vertices much higher speedup of 1.72, 3.35, 5.68, 7.90, 8.31, 9.01 and 9.78

respectively for the same values of M. We can mainly explain this by efficient exploitation of caches

and advantages of the networks and their threaded parallel implementations due to highly

asynchronous behaviour.

The graphics depicted in fig. 7 and 8 have found out the patterns as follows:

1. There is an optimal number Mopt of blocks for which the speedup by the multithreaded CAL-

networks is the highest compared to the single-thread FW.

2. The highest speedup given by the dataflow networks exceeds the number of cores, which is a

very good result for the blocked algorithm with strong data dependences between blocks.

3. Mopt depends on the number P of cores, the block-matrix size M, the graph size N, and the

scheduler of threads of the operating system.

4. The increase in the size M of matrices B and A increases the amount of parallelism in the CAL-

networks, which leads to the growth of computation speedup.

5. The larger number P of cores requires more parallelism and therefore larger Mopt.

6. The growth of the graph size N usually leads to the increase of Mopt as the processor caches

operate more efficiently at smaller block sizes [13].

7. The CAL-networks give the speedup which is higher than that OpenMP gives.

It should be noted that the scheduler of threads of the operating system influences the order of

executions of threads, and the increase in M increases the number of threads in the CAL-network

implementations which increases the workload of the operating system.

ИНУОРМАТИКА ▪ INFORMATICS

82 ТОМ ▪ VOL. 20 2|2023 С. ▪ P. 65–84

Conclusion. Nowadays, the blocked Floyd – Warshall algorithm is typically parallelized in the

fork-join style with OpenMP where each block is calculated in a loop level-by-level. The paper has

proven that the block calculations can be reordered, thus increasing the load of cores in the multi-core

system. The simulation tool has shown that the reordering can speed up the shortest paths search up

to 25 %. The paper has proposed a novel method of generating dataflow networks of CAL-actors,

where the management of actor and action firing is carried out over the block calculation levels.

The new feature of the networks is that in each actor the executions of actions are ordered partially.

The multi-threaded tuneable CAL-engine accounts for the feature and implements the networks in

C/C++. The experiments on large complete directed graphs and four multi-core processors have shown

that at optimal block count the networks speed up computations against the single-threaded

implementations by the following figures: i3-550 (2 cores) – 2.57 (28.5 % higher than core count);

i5-5200U (2 cores) – 2.55 (27.5 % higher than core count); i7-9750h (6 cores) – 6.96 (16.0 % higher

than core count); i7-10700 (8 cores) – 9.78 (22.3 % higher than core count).

References

1. Floyd R. W. Algorithm 97: Shortest path. Communications of the ACM, 1962, vol. 5, no. 6, p. 345.

2. Madkour A, Aref W. G., Rehman F. U., Rahman M. A., Basalamah S. A. Survey of Shortest-Path

Algorithms, 2017, 26 р. Available at: https://arxiv.org/abs/1705.02044 (accessed 23.11.2022).

3. Anu P., Kumar M. G. Finding all-pairs shortest path for a large-scale transportation network using parallel

Floyd-Warshall and parallel Dijkstra algorithms. Journal of Computing in Civil Engineering, 2013, vol. 27,

no. 3, pp. 263–273.

4. Prihozhy A. A., Mattavelli M., Mlynek D. Evaluation of parallelization potential for efficient multimedia

implementations: dynamic evaluation of algorithm critical path. IEEE Transactions on Circuits and Systems for

Video Technology, vol. 15, no. 5, 2005, pp. 593–608.

5. Singh A., Mishra P. K. Performance analysis of Floyd Warshall algorithm vs rectangular algorithm.

International Journal of Computer Applications, 2014, vol. 107, no. 16, pp. 23–27.

6. Venkataraman G. A., Sahni S., Mukhopadhyaya S. Blocked all-pairs shortest paths algorithm. Journal of

Experimental Algorithmics (JEA), 2003, vol. 8, pp. 857–874.

7. Park J., Penner M., Prasanna V. K. Optimizing graph algorithms for improved cache performance. IEEE

Transactions on Parallel and Distributed Systems, 2004, vol. 15, no. 9, pp. 769–782.

8. Madduri K., Bader D. A., Berry J. W., Crobak J. R. An experimental study of a parallel shortest path

algorithm for solving large-scale graph instances. Proceedings of the Nine Workshop on Algorithm Engineering

and Experiments, ALENEX 2007, New Orleans, Louisiana, USA, 6 January 2007. New Orleans, 2007, pp. 23–35.

9. Albalwi E., Thulasiraman P., Thulasiram R. Task level parallelization of all pair shortest path algorithm in

OpenMP 3.0. Advances in Computer Science and Engineering (CSE 2013). Los Angeles, Atlantis Press, 2013,

pp. 109–112.

10. Tang P. Rapid development of parallel blocked all-pairs shortest paths code for multi-core computers.

IEEE SOUTHEASTCON 2014, Lexington, KY, USA, 13–16 March 2014. Lexington, 2014, pp. 1–7.

11. Prihozhy A. A., Karasik O. N. Heterogeneous blocked all-pairs shortest paths algorithm. Sistemnyj

analiz i prikladnaja informatika [System Analysis and Applied Information Science], 2017, no. 3, pp. 68–75

(In Russ.). https://doi.org/10.21122/2309-4923-2017-3-68-75

12. Karasik O. N., Prihozhy A. A. Threaded block-parallel algorithm for finding the shortest paths on graph.

Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki [Reports of the Belarusian

State University of Informatics and Radioelectronics], 2018, no. 2, pp. 77–84 (In Russ.).

13. Karasik O. N., Prihozhy A. A. Tuning block-parallel all-pairs shortest path algorithm for efficient

multi-core implementation. System Analysis and Applied Information Science, 2022, no. 3, pp. 68–75.

https://doi.org/10.21122/2309-4923-2022-3-57-65

14. Prihozhy A. A. Simulation of direct mapped, k-way and fully associative cache on all pairs shortest

paths algorithms. System Analysis and Applied Information Science, 2019, no. 4, pp. 10–18.

https://doi.org/10.21122/2309-4923-2019-4-10-18

15. Prihozhy A. A. Optimization of data allocation in hierarchical memory for blocked shortest paths

algorithms. System Analysis and Applied Information Science, 2021, no. 3, pp. 40–50.

https://doi.org/10.21122/2309-4923-2021-3-40-50

16. Likhoded N. A., Sipeyko D. S. Generalized blocked Floyd – Warshall algorithm. Journal of the

Belarusian State University. Mathematics and Informatics, 2019, no. 3, pp. 84– 92 (In Russ).

https://doi.org/10.21122/2309-4923-2017-3-68-75
https://doi.org/10.21122/2309-4923-2022-3-57-65
https://doi.org/10.21122/2309-4923-2019-4-10-18
https://doi.org/10.21122/2309-4923-2021-3-40-50

ЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ

LOGICAL DESIGN 83

17. Kahn G. The semantics of a simple language for parallel programming. Information Processing 74:

Proceedings of the IFIP Congress 74, Stockholm, Sweden, 5–10 August 1974. Stockholm, 1974, pp. 471–475.

18. Lee E. A., Messerschmitt D. G. Synchronous dataflow. Proceedings of the IEEE, September 1987,

vol. 75, no. 9, pp. 1235–1245.

19. Prihozhy A., Mlynek D., Solomennik M., Mattavelli M. Techniques for optimization of net algorithms.

2002 International Conference on Parallel Computing in Electrical Engineering (PARELEC 2002), Warsaw,

Poland, 22–25 September 2002. Warsaw, 2002, pp. 211–216.

20. Eker J., Janneck J. W. Cal Language Report : Technical Report UCB/ERL M03/48. University of

California at Berkeley, December 2003, 107 p.

21. Bhattacharyya S. S., Brebner G., Janneck J. W., Eker J., Platen C., …, Raulet M. OpenDF – a dataflow

toolset for reconfigurable hardware and multicore systems. First Swedish Workshop on Multi-Core Computing,

MCC, Ronneby, Sweden, 27–28 November 2008. Ronneby, 2008, рр. 43–49.

22. Murthy P. K., Lee E. A. Multidimensional synchronous dataflow. IEEE Transactions on Signal

Processing, 2002, vol. 50, no. 8, pp. 2064–2079.

23. Bhattacharya B., Bhattacharyya S. S. Parameterized dataflow modeling for DSP systems. IEEE

Transactions on Signal Processing, 2001, vol. 49, no. 10, pp. 2408–2421.

24. Bebelis V., Fradet P., Girault A., Lavigueur B. BPDF: Boolean Parametric Data Flow : Research Report

RR-8333. INRIA, 2013, 21 p.

25. Rahman A.-H. Ab, Prihozhy A., Mattavelli M. Pipeline synthesis and optimization of FPGA-based video

processing applications with CAL. EURASIP Journal on Image and Video Processing, vol. 2011:19, pp. 1–28.

https://doi.org/10.1186/16875281-2011-19

26. Prihozhy A., Casale-Brunet S., Bezati E., Mattavelli M. Efficient dynamic optimization heuristics for

dataflow pipelines. 2018 IEEE International Workshop on Signal Processing Systems, SiPS 2018, Cape Town,

South Africa, 21–24 October 2018. Cape Town, 2018, pp. 337–342.

27. Prihozhy A. A., Casale-Brunet S., Bezati E., Mattavelli M. Pipeline synthesis and optimization from

branched feedback dataflow programs. Journal of Signal Processing Systems, Springer Nature, 2020, vol. 92,

pp. 1091–1099. https://doi.org/10.1007/s11265-020-01568-5

Список использованных источников

1. Floyd, R. W. Algorithm 97: Shortest path / R. W. Floyd // Communications of the ACM. – 1962. – Vol. 5,

no. 6. – P. 345.

2. Survey of Shortest-Path Algorithms / A. Madkour [et al.]. – 2017. – 26 p. – Mode of access:

https://arxiv.org/abs/1705.02044. – Date of access: 23.11.2022.

3. Anu, P. Finding all-pairs shortest path for a large-scale transportation network using parallel Floyd-

Warshall and parallel Dijkstra algorithms / P. Anu, M. G. Kumar // J. of Computing in Civil Engineering. –

2013. – Vol. 27, no. 3. – P. 263–273.

4. Prihozhy, A. A. Evaluation of parallelization potential for efficient multimedia implementations: dynamic

evaluation of algorithm critical path / A. A. Prihozhy, M. Mattavelli, D. Mlynek // IEEE Transactions on Circuits

and Systems for Video Technology. – 2005. – Vol. 15, no. 5. – P. 593–608.

5. Singh, A. Performance analysis of Floyd Warshall algorithm vs rectangular algorithm / A. Singh,

P. K. Mishra // Intern. J. of Computer Applications. – 2014. – Vol. 107, no. 16. – P. 23–27.

6. Venkataraman, G. A. Blocked all-pairs shortest paths algorithm / G. A. Venkataraman, S. Sahni,

S. Mukhopadhyaya // J. of Experimental Algorithmics (JEA). – 2003. – Vol. 8. – P. 857–874.

7. Park, J. Optimizing graph algorithms for improved cache performance / J. Park, M. Penner, V. K. Prasanna //

IEEE Transactions on Parallel and Distributed Systems. – 2004. – Vol. 15, no. 9. – P. 769–782.

8. An experimental study of a parallel shortest path algorithm for solving large-scale graph instances /

K. Madduri [et al.] // Proc. of the Nine Workshop on Algorithm Engineering and Experiments, ALENEX 2007,

New Orleans, Louisiana, USA, 6 Jan. 2007. – New Orleans, 2007. – P. 23–35.

9. Albalwi, E. Task level parallelization of all pair shortest path algorithm in OpenMP 3.0 / E. Albalwi,

P. Thulasiraman, R. Thulasiram // Advances in Computer Science and Engineering (CSE 2013). – Los Angeles :

Atlantis Press, 2013. – P. 109–112.

10. Tang, P. Rapid development of parallel blocked all-pairs shortest paths code for multi-core computers /

P. Tang // IEEE SOUTHEASTCON 2014, Lexington, KY, USA, 13–16 Mar. 2014. – Lexington, 2014. – P. 1–7.

11. Прихожий, А. А. Разнородный блочный алгоритм поиска кратчайших путей между всеми парами

вершин графа / А. А. Прихожий, О. Н. Карасик // Системный анализ и прикладная информатика. –

2017. – № 3. – С. 68–75. https://doi.org/10.21122/2309-4923-2017-3-68-75

http://dx.doi.org/10.1186/16875281-2011-19
http://dx.doi.org/10.1186/16875281-2011-19
https://doi.org/10.1007/s11265-020-01568-5

ИНУОРМАТИКА ▪ INFORMATICS

84 ТОМ ▪ VOL. 20 2|2023 С. ▪ P. 65–84

12. Карасик, О. Н. Потоковый блочно-параллельный алгоритм поиска кратчайших путей на графе /

О. Н. Карасик, А. А. Прихожий // Доклады БГУИР. – 2018. – № 2. – С. 77–84.

13. Karasik, O. N. Tuning block-parallel all-pairs shortest path algorithm for efficient multi-core

implementation / O. N. Karasik, A. A. Prihozhy // System Analysis and Applied Information Science. – 2022. –

No. 3. – P. 68–75. https://doi.org/10.21122/2309-4923-2022-3-57-65

14. Prihozhy, A. A. Simulation of direct mapped, k-way and fully associative cache on all pairs shortest

paths algorithms / A. A. Prihozhy // System Analysis and Applied Information Science. – 2019. – No. 4. –

P. 10–18. https://doi.org/10.21122/2309-4923-2019-4-10-18

15. Prihozhy, A. A. Optimization of data allocation in hierarchical memory for blocked shortest paths

algorithms / A. A. Prihozhy // System Analysis and Applied Information Science. – 2021. – No. 3. – P. 40–50.

https://doi.org/10.21122/2309-4923-2021-3-40-50

16. Лиходед, Н. А. Обобщенный блочный алгоритм Флойда – Уоршелла / Н. А. Лиходед, Д. С. Си-

пейко // Журнал Бел. гос. ун-та. Математика. Информатика. – 2019. – № 3. – С. 84–92.

17. Kahn, G. The semantics of a simple language for parallel programming / G. Kahn // Information

Processing 74: Proc. of the IFIP Congress 74, Stockholm, Sweden, 5–10 Aug. 1974. – Stockholm, 1974. –

P. 471–475.

18. Lee, E. A. Synchronous dataflow / E. A. Lee, D. G. Messerschmitt // Proc. of the IEEE. – Sept. 1987. –

Vol. 75, no. 9. – P. 1235–1245.

19. Techniques for optimization of net algorithms / A. Prihozhy [et al.] // 2002 Intern. Conf. on Parallel

Computing in Electrical Engineering (PARELEC 2002), Warsaw, Poland, 22–25 Sept. 2002. – Warsaw, 2002. –

P. 211–216.

20. Eker, J. Cal Language Report : Technical Report UCB/ERL M03/48 / J. Eker, J. W. Janneck. –

University of California at Berkeley, Dec. 2003. – 107 p.

21. OpenDF – a dataflow toolset for reconfigurable hardware and multicore systems / S. S. Bhattacharyya

[et al.] // First Swedish Workshop on Multi-Core Computing, MCC, Ronneby, Sweden, 27–28 Nov. 2008. –

Ronneby, 2008. – P. 43–49.

22. Murthy, P. K. Multidimensional synchronous dataflow / P. K. Murthy, E. A. Lee // IEEE Transactions on

Signal Processing. – 2002. – Vol. 50, no. 8. – P. 2064–2079.

23. Bhattacharya, B. Parameterized dataflow modeling for DSP systems / B. Bhattacharya, S. S. Bhattacharyya //

IEEE Transactions on Signal Processing. – 2001. – Vol. 49, no. 10. – P. 2408–2421.

24. BPDF: Boolean Parametric Data Flow: Research Report RR-8333/ V. Bebelis [et al.]. – INRIA, 2013. – 21 p.

25. Rahman, A.-H. Ab. Pipeline synthesis and optimization of FPGA-based video processing applications

with CAL / A.-H. Ab Rahman, A. Prihozhy, M. Mattavelli // EURASIP J. on Image and Video Processing. –

2011. – Vol. 2011:19. – P. 1–28. https://doi.org/10.1186/16875281-2011-19

26. Efficient dynamic optimization heuristics for dataflow pipelines / A. Prihozhy [et al.] // 2018 IEEE

Intern. Workshop on Signal Processing Systems, SiPS 2018, Cape Town, South Africa, 21–24 Oct. 2018. – Cape

Town, 2018. – P. 337–342.

27. Pipeline synthesis and optimization from branched feedback dataflow programs / A. A. Prihozhy [et al.] //

J. of Signal Processing Systems, Springer Nature. – 2020. – Vol. 92. – P. 1091–1099. https://doi.org/10.1007/

s11265-020-01568-5

 Information about the author

Anatoly A. Prihozhy, D. Sc. (Eng.), Professor, Belarusian

National Technical University.

E-mail: prihozhy@yahoo.com

 Информация об авторе

Анатолий Алексеевич Прихожий, доктор техничес-

ких наук, профессор, Белорусский национальный

технический университет.

E-mail: prihozhy@yahoo.com

https://doi.org/10.21122/2309-4923-2022-3-57-65
https://doi.org/10.21122/2309-4923-2019-4-10-18
https://doi.org/10.21122/2309-4923-2021-3-40-50
http://dx.doi.org/10.1186/16875281-2011-19

