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The onset of frictional motion is mediated by the dynamic propagation of a rupture front, analogous to a
shear crack. The rupture front nucleates quasi-statically in a localized region of the frictional interface
and slowly increases in size. When it reaches a critical nucleation length it becomes unstable, propagates
dynamically and eventually breaks the entire interface, leading to macroscopic sliding. The nucleation
process is particularly important because it determines the stress level at which the frictional interface
fails, and therefore, the macroscopic friction strength. However, the mechanisms governing nucleation
of frictional rupture fronts are still not well understood. Specifically, our knowledge of the nucleation pro-
cess along a heterogeneous interface remains incomplete. Here, we study the nucleation of localized slip
patches on linear slip-weakening interfaces with deterministic and stochastic heterogeneous friction
properties. Using numerical simulations, we analyze the process leading to a slip patch of critical size
for systems with varying correlation lengths of the local friction strength. Our deterministic interface
model reveals that the growth of the critical nucleation patch at interfaces with small correlation lengths
is non smooth due to the coalescence of neighboring slip patches. Existing analytical solutions do not
account for this effect, which leads to an overestimation of global interface strength. Conversely, when
the correlation length is large, the growth of the slip patch is continuous and our simulations match
the analytical solution. Furthermore, nucleation by coalescence is also observed on stochastic interfaces
with small correlation length. In this case, the applied load for a given slip patch size is a random variable.
We show that its expectation follows a logistic function, which allows us to predict the strength of the
interface well before failure occurs. Our model and observations provide new understanding of the nucle-
ation process and its effect on the static frictional strength.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Friction occurs in many mechanical, biological and geophysical
systems. In some systems, it is undesirable because it decreases
efficiency and causes wear. While in other systems, friction is ben-
eficial because it provides a stabilizing force, e.g., walking would be
impossible without friction. Due to its relevance, friction has been
extensively studied over the last centuries. However, a complete
fundamental understanding, especially concerning the nucleation
of frictional sliding, is still missing.

The oldest and most widely known friction model is the
Amontons-Coulomb friction law, which states that the friction
strength is proportional to the applied normal force with the pro-
portionality constant being the friction coefficient ls (Amontons,
1699; Coulomb, 1785; Popova and Popov, 2015). The reason for
this proportionality was explained by Bowden and Tabor (1950).
They observed that the real contact area of contacting rough sur-
faces is considerably smaller than the apparent area, implying that
the normal stress at the contact points reaches the material hard-
ness rH. Thus, to maintain equilibrium, the real area of contact is
proportional to the applied normal stress (Dieterich and Kilgore,
1996). Assuming that the frictional strength is the sum of the shear
strength of the micro-contacts, ss, this results in the friction coef-
ficient being the shear-strength-to–hardness ratio, ls ¼ ss=rH, of
the micro-contacts (Bowden and Tabor, 1950; Svetlizky et al.,
2019).

Many studies have been dedicated to refining this friction law
by including rate dependency and aging. Direct observation of
the evolution of real contact area revealed that it increases with
contact age (Dieterich and Kilgore, 1994; Dillavou and
Rubinstein, 2018) and decreases with changes in shear stress well
before the onset of frictional sliding (Sahli et al., 2018; Dillavou and
Rubinstein, 2020). These state-dependent properties of friction can
be taken into account by state variables with a given evolution law.
In addition, slip-rate dependent properties have been reported on
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Fig. 1. Problem statement. (a) Two 2D linear elastic solids with a frictional interface
subjected to a uniform shear load s0. The solid half spaces are periodic in x-direction
with repetition length L, and infinite in y-direction. (b) Schematic representation of
average interface stress hsi. It increases quasi-statically with time up to the critical
value scr , which is reached at time T. At this instance, the interface becomes globally
unstable and macroscopic sliding occurs, which results in a drop from the peak
strength (static friction) to the kinetic strength skin (sliding friction). (c) Linear slip-
weakening law of the interface. The local interface strength sf declines linearly with
increasing slip at a weakening rate W from its peak, sp, to its residual strength level
sr . (d) Deterministic profile with frictional peak strength, sp, oscillating around its
base value ŝ. The maxima are located at the boundaries of the profile and the
minimum at the center. (e) Random profile with a correlation length n0 ¼ 0:05hn

(see definition of the nucleation length hn in Eq. (7)).
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multiple materials such as rock (Kilgore et al., 1993), metals
(Rabinowicz, 1958) and polymer glasses (Baumberger and Caroli,
2006). A widely used family of models combines these effects into
rate-and-state friction laws (Ruina, 1983; Marone, 1998;
Selvadurai et al., 2020).

Interestingly, it is common to see large variations of friction
coefficients in experiments with seemingly identical setups
(Rabinowicz, 1992; Ben-David and Fineberg, 2011), even though
friction laws are generally deterministic. The reason is that most
friction laws are based on single degree-of-freedom considerations
assuming the interaction between two undeformable blocks. This
is a very limiting assumption and does generally not hold for many
systems that are relatively large and compliant. These systems typ-
ically show stable localized sliding, while large parts of the inter-
face are still stuck (Nielsen et al., 2010; Latour et al., 2013;
McLaskey and Kilgore, 2013). Eventually, the sliding region
becomes unstable, propagates dynamically – like a crack – and,
once it ruptures the entire frictional interfaces, leads to macro-
scopic sliding (Svetlizky and Fineberg, 2014; Kammer et al.,
2015; Rubino et al., 2017; Svetlizky et al., 2019, 2020).

Although, the presence of large variation in frictional strength is
well known and the nucleation of frictional sliding has been stud-
ied theoretically (Uenishi and Rice, 2003; Uenishi, 2018; Rubin and
Ampuero, 2005; Ampuero et al., 2006; Ampuero and Rubin, 2008;
Ray and Viesca, 2017; de Geus et al., 2019) as well as experimen-
tally (Nielsen et al., 2010; Latour et al., 2013; McLaskey and
Kilgore, 2013), the link between local variations in interface prop-
erties and the observed variations in macroscopic strength remains
poorly understood.

Recently, Albertini et al. (2021) demonstrated, using numerical
simulations, that the macroscopic strength of a random interface
can be quantitatively well predicted with an analytical solution
(Uenishi and Rice, 2003; Ampuero et al., 2006), which determines
a critical nucleation length and its associated stress level. The sim-
ulations confirmed that macroscopic sliding occurs when a slip-
ping region reaches this critical length. They further showed that
random interfaces with decreasing correlation length of the local
strength present increasing global strength. However, the simula-
tions also suggested that there is an increasing discrepancy
between the theoretical prediction and the observations in the
simulations for decreasing correlation length. The cause of this dis-
crepancy and its effect have not been explored, but are important
for realistic systems because asperities, one of the main origins
of randomness at interfaces, are usually much smaller than the
nucleation length (Stoyanov and Chromik, 2017) and, therefore,
the interface correlation length is expected to be comparably small.

In the present work, we aim to understand the growth process
that leads to this critical nucleation length and, therefore, provide
fundamental knowledge about the macroscopic strength of ran-
dom interfaces with small correlation length. We will demonstrate
that heterogeneities on a very small length scale result in the same
critical nucleation length as for systems with intermediate and
large correlation length. However, the growth process leading to
nucleation is very different. While large heterogeneities cause con-
tinuous growth, as expected from previous work, small hetero-
geneities lead to growth by coalescence, which results in lower
overall strength compared to existing theoretical predictions.

This paper is organized as follows. First, in Section 2 we will
introduce the physical system used for dynamic simulations, pre-
sent our approach to generate deterministic frictional interfaces
and summarize the method used by Albertini et al. (2021) to gen-
erate random interfaces with a specific correlation length and
probability density. In Section 3, we describe an analytical
approach to predict the frictional strength of our dynamic simula-
tions. The nucleation process of frictional sliding for different cor-
relation lengths is presented in Section 4. Further, we show how
2

the accuracy of the analytical approach depends on the correlation
length and we verify our findings on a random interface. We then
consider the growth of the largest slip patch as a stochastic process
and, therefore, predict the macroscopic frictional strength before
the onset of global sliding. Finally, we discuss our results on the
nucleation process, the analytical approach and the prediction of
the global strength in Section 5 and draw a conclusion in Section 6.
2. Material and methods

In this section, we describe the physical model used and the
dynamic simulations performed to investigate the nucleation of
frictional sliding. We will study deterministic frictional interfaces,
which we will use to precisely analyze the nucleation and growth
of slip patches. Further, we will verify the observed formation pat-
terns of critical slip patches on random frictional interfaces with
specific stochastic properties.

2.1. Physical model

We study how microscopic heterogeneities at frictional inter-
faces influence their macroscopic frictional strength with a focus
on the nucleation process. We consider two semi-infinite solids,
as shown in Fig. 1a. The solids are infinite in the y-direction and
periodic in x with repetition length L. Because we consider thin
plates, a two-dimensional plane-stress system is used. Both half
spaces have the same linear elastic material properties with a
shear modulus of G ¼ 1 GPa, a Poisson’s ratio of v ¼ 0:33 and a
density of q ¼ 1170 kg/m3. These values are related to glassy poly-
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mers, which are commonly used in experimental friction and frac-
ture mechanics.

On a macroscopic level the system is loaded with a shear load
s0ðtÞ. The load is uniformly distributed along the interface and
increases quasi-statically at a constant rate (see Fig. 1b). When s0
exceeds the macroscopic strength scr of the interface, it becomes
unstable and starts sliding. This global instability results in a stress
drop to the kinetic level of friction skin. The drop in frictional
strength is associated with the transition from static friction to
sliding friction.

The macroscopic observation is related to the microscopic level,
where we consider a linear slip-weakening friction law (Fig. 1c),

sfðdÞ ¼ sr þWðdc � dÞHðdc � dÞ; ð1Þ
which states that the interface strength sf decreases with slip dis-
tance d from its peak sp to its residual strength sr at a constant
weakening rate W ¼ ðsp � srÞ=dc over a characteristic slip-length
dc . Note that Hð:Þ is the Heaviside function. When the local shear
stress level reaches the local peak strength sp within the interface,
it initiates the onset of slip. Slip is accompanied by a reduction of
the frictional strength sfðdÞ according to the slip-weakening law
in Eq. (1). Because of the residual strength, we observe a plateau
of the frictional strength at skin on the macroscopic level. In this
work, without loss of generality, we set sr to zero (by exploiting
the linearity of the problem one can add an arbitrary sr to the solu-
tion sðx; tÞ). Additionally, we consider a constant W ¼ 500 GPa=m,
which implies that dc depends on sp, which is spatially nonuniform.
Since we consider a uni-material interface, the normal stress r
remains constant during the nucleation and propagation phase of
the friction onset. Thus, a possible coupling of local normal stress
to local friction strength similar to the Amontons-Coulomb law
would yield the same results. The assumption of using a linear
slip-weakening friction law is discussed in Section 5.

2.2. Dynamic simulations

We solve the physical model described in Section 2.1 with
numerical simulations. Since our interfaces are periodic in x, we
solved the elasto-dynamic equations efficiently with the spectral
boundary integral method (Geubelle and Rice, 1995; Geubelle
and Breitenfeld, 1997). Due to symmetry, only one half-space
was solved and we verified convergence with respect to spatial dis-
cretization Dx ¼ 13:78 lm, loading rate ds0=dt ¼ 0:5 GPa=s and
time step Dt ¼ 0:1Dx

ffiffiffiffiffiffiffiffiffi
q=G

p ¼ 1:49 ns.

2.3. Deterministic frictional interface

In a first step, we will study the microscopic nucleation process
of frictional sliding in a system with deterministic distribution of
the local peak strength spðxÞ along the interface (see Fig. 1d). This
will allow us to gain a fundamental understanding of the process,
which we then use in a second step for interfaces with random
strength profiles, as outlined in Section 2.4. The deterministic
strength profile sp is a superposition of a triangular base strength
ŝ and a sinusoidal component ssin with the period P and amplitude
samp:

spðxÞ ¼ ŝðxÞ � ssinðxÞ;
ŝðxÞ ¼ m xj j þ ŝmin;

ssinðxÞ ¼ samp cos 2px=Pð Þ:
ð2Þ

The slope m is fixed to 10 MPa/m and ŝmin to 0:9 MPa. Conse-
quently, the initial slip nucleation is forced to the center of the pro-
file. We define L as an odd multiple of the period P to ensure a
smooth continuity with smax

p across the repetition length of the sys-
3

tem. To separate the length scale L from the one of the critical
nucleation length hn (see Section 3), L is set to at least four times
hn, which was calculated based on the material and frictional prop-
erties as described in Section 3. We verified on selected simula-
tions that a larger L does not affect the results.

2.4. Stochastic frictional interface

In addition to the deterministic interface profile, we also study
the nucleation of frictional sliding on random interfaces. We gener-
ate profiles of random local peak strength spðxÞ that exhibit specific
stochastic properties (see Fig. 1e). We aim to generate random fric-
tional interfaces with given spectral density function and probabil-
ity distribution, and, therefore, adopted the following procedure
(Grigoriu, 2013, ch. 5), which was also used by Albertini et al.
(2021).

A Gaussian random field ZðxÞ with two sets of independent
Gaussian random variables Aj and Bj with zero mean and unit vari-
ance was constructed following

ZðxÞ ¼
XJ

j¼1

rj Aj cosðkjxÞ þ Bj sinðkjxÞ
� �

; ð3Þ

and rj was normalized to ensure that ZðxÞ has unit variance

r2
j ¼ gðkjÞPJ

j¼1gðkjÞ
: ð4Þ

The wave numbers kj ¼ j2p=L make the profile L-periodic. The
spectral density function, gðkÞ, is defined as the Fourier transform
of the correlation function of Z;Czð:Þ, and is given by

gðkÞ ¼
Z 1

�1
CZðnÞe�ikndn; ð5Þ

which decays with a power law gðkÞ / ðk2 þ k2Þ�4
. The correlation

length n0 is inversely proportional to the cutoff frequency,
k : n0 ¼ 2p=k. The Gaussian random field was transformed into a
field following a Beta distribution by applying the cumulative den-
sity function (CDF) of a standard normal distribution /ð:Þ and the
inverse CDF of a Beta distribution F�1ð:Þ with shape parameters
a ¼ 1:5 and b ¼ 3

spðxÞ ¼ smin
p þ smax

p � smin
p

� �
F�1 / ZðxÞð Þð Þ: ð6Þ

smin
p and smax

p were set to 0:667 MPa and 1:667 MPa, respec-
tively. These values result in a mean value for sp of 1 MPa with a

standard deviation of 0:2 MPa. The nonlinear mapping F�1 � / in
Eq. (6) only has a minor effect on the correlation function, such that
CZðnÞ � Csp ðnÞ. The approximate conservation of the correlation
function after applying a nonlinear mapping is a property of posi-
tive correlation functions CZðnÞ > 0 (Grigoriu, 1995, p.48).

3. Theory

In a frictional system, slip initiates when the loading stress
locally exceeds the strength level of the interface. Slip goes along
with a local reduction in stress level due to a slip-weakening pro-
cess (Eq. (1)). Consequently, for the system to remain stable, the
load is partially redistributed on regions with a stress level below
their strength. With increasing load, more and more stress is redis-
tributed from slipping areas to ever shrinking sticking parts. Even-
tually, the system cannot find any static solution to carry the load
anymore, and it fails. This leads to a dynamic propagation of a slip
front until the entire interface is sliding.

Uenishi and Rice (2003) studied nucleation on slip-weakening
interfaces with uniform friction properties and a locally peaked
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load. They showed that the stability of a slip patch can be reduced
to an eigenvalue problem, and that the critical nucleation length
hn, which leads to instability, is universal. In particular, they
showed that hn is independent of the spatial distribution of the
load and depends only on the material and friction properties:

hn � 1:158
l�

W
; ð7Þ

where l� is an effective shear modulus. Ampuero et al. (2006)
extended this approach from a system with a locally peaked load
to a random stress distribution. This criterion bears similarity with
Leguillon (2002), which combines an energy and a stress condition
to study the stability of cracks.

Recently, Albertini et al. (2021) reformulated the problem for an
interface with a random strength profile and defined a nucleation
stress snðxÞ, which is given by

snðxÞ � 0:751
Z 1

�1
sp ðhn=2Þsþ x½ �v0ðsÞds; ð8Þ

where v0ðsÞ � ð0:925� 0:308s2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
is the first eigenfunction of

the elastic problem. Note that this assumesW to be a constant. snðxÞ
is the stress required to nucleate a slip patch of size hn centered at x.

The critical load scr for the entire interface is the stress at which
the first slip patch reaches a nucleation length of size hn. Hence, it
corresponds to the minimum of snðxÞ (Albertini et al., 2021):
scr ¼ minðsnðxÞÞ: ð9Þ

Note that in all simulations presented here, we set dcðxÞ such
that W is uniform (see Eq. (1)). Therefore, Eq. (8) is applicable
and the nucleation length is expected to be constant.

4. Results

We will first present simulation results for the deterministic
case in Section 4.1 and compare our observations with theoretical
predictions from Section 3. We will identify the range of parame-
ters for which the theoretical solution fails to predict accurately
the actual interface strength and show that the discrepancy is
caused by a different growth mechanism based on coalescence of
localized slip patches. In the second part, in Section 4.2, we will
present simulation results for the stochastic case, which exhibit
the same coalescence process, and analyze the growth rate of the
slip patches.

4.1. Deterministic interfaces

4.1.1. Nucleation patterns
We run simulations of interfaces with deterministic profiles of

varying characteristic length scale P, ranging between
P=hn ¼ 0:1� 1:0, and we study the effect of P on the growth pro-
cess leading to nucleation. Three representative cases are shown
in Fig. 2 (see also animations S1,S2 and S3 in supplementary mate-
rial). In all simulations, the load is slowly increased over time
s0 ¼ Rt. When the local shear stress sðxÞ reaches spðxÞ at any point
within the interface, slip initiates locally and the stress level starts
to decrease due to the slip-weakening process (Eq. (1)). At time
t=TC � 0:7, for instance, all three cases shown in Fig. 2 present
localized slip patches (see blue curves), which are co-located at
the minima of the spðxÞ profile. In setup A, there are three slip
patches located at x=hn � 0, and �1:4. Setup B has 7 slip patches
at that time and setup C many more. These early stage slip patches
are stable and the system remains in equilibrium.

As the load continuous to increase, the slip patches grow in size
and local slip rate increases. In setup A, this slow and stable growth
of the slip patches continues until the most critical one, which is
4

located at x=hn ¼ 0 reaches the critical length hn (highlighted by
gray area) at t=TC � 0:80 and becomes unstable. At this moment,
it propagates dynamically through the interface and causes global
sliding. In this process, it coalesces with the other slip patches.
However, this is a post critical mechanism. The smooth growth
process of the critical slip patches is also shown in Fig. 3a and b.
Note the change in slope in Fig. 3b when amax reaches hn, which
highlights the transition towards unstable growth. This process
corresponds to the assumption of the theoretical solution pre-
sented in Section 3, which is why we name this here a Uenishi &
Rice nucleation.

In setup B, the nucleation process is different. First, all slip
patches grow stably, as in setup A, but at t=TC � 0:95, the central
slip patch coalesces with its two neighbors (see Fig. 2e). This causes
a jump in the size of the largest slip patch, as shown in Fig. 3a and
c. This happens because the characteristic length of the spðxÞ pro-
file is considerably smaller than the critical nucleation length, i.e.,
P=hn ¼ 0:48. Interestingly, the coalescence leads directly to a slip
patch that is larger than the critical nucleation length (see Fig. 2e
and Fig. 3c), and hence the interface becomes unstable and transi-
tions to global sliding. During this process, the unstable slip front
dynamically coalesces with the other stable patches. In this setup
B, nucleation occurred with the first slip-patch coalescence, when
the largest stable slip patch was far from its critical length, i.e.,
amax=hn < 0:5 before coalescence. We name this mechanisms a
nucleation by critical coalescence.

Finally, the nucleation processes in setup C and setup B are sim-
ilar. However, in setup C, P=hn � 1, which results in multiple coa-
lescence events before failure (see Fig. 2f and Fig. 3d). Due to the
small characteristic interface length P, the first 4 coalescence
events do not lead to amax=hn > 1 (see Fig. 3d). Hence, stable
growth continues until eventually a coalescence event leads to a
super-critical slip patch and instability. We call this process a
nucleation by sub-critical coalescence.
4.1.2. Comparison with theoretical solution
In the previous section, we showed that coalescence of slip

patches causes discontinuities in the growth of the largest slip
patch. This may lead to a critical slip patch that becomes unstable
even though shortly before, the most critical slip patch was much
smaller than hn. This coalescence-based process was not included
in existing theory (see Section 3), which considered a single local-
ized monotonically evolving heterogeneity. To verify the extent of
this discrepancy, we compare here the simulation results with the
theoretical prediction for a wide range of characteristic interface
length P=hn and three different values of samp.

We observe that the predictive power of the theoretical solution
varies between the three nucleation regimes, as shown in Fig. 4. In
the Uenishi & Rice nucleation regime, i.e., for large P=hn where no
pre-critical coalescence occurs (see Fig. 2d), the prediction is gen-
erally good and improves even more for increasing P=hn. Increasing
discrepancies for P=hn � 1 are likely related to second order effects
due to the interaction between neighboring slip patches, which are
in these configurations in particularly close proximity (when local
maxima in sp are just at the border of hn, e.g., Fig. 2a). Note that the
Uenishi & Rice nucleation regime reaches P=hn < 1 due to the
superposition of ŝðxÞ onto the sinusoidal profile.

The discrepancy between theory and simulation reaches its
maximum in the critical coalescence regime (see Fig. 4). This is
due to very early and critical coalescence, which is not accounted
for in the theoretical solution. The reason is that Eq. (8) computes
the nucleation stress at a given point by integrating the spðxÞ pro-
file along �hn=2. In this calculation, it does not know about the
other local minima in spðxÞ that are in close proximity but still fur-
ther away than �hn=2. Therefore, it does not know of the existence



Fig. 2. Nucleation of slip in deterministic profiles. Setup A corresponds to a period P ¼ 1:4 hn, setup B to P ¼ 0:48 hn and setup C to P ¼ 0:1 hn. (a), (b) and (c) show the profile
as a gray line and the stress levels at various times as colored lines. The times t are normalized by the time TC at which setup C fails. For each setup, the stress states plotted in
color correspond to stable systems and the dashed lines show unstable stress states after failure. sðxÞ is normalized by ŝcr ¼ 0:907 MPa, which is the theoretical strength of
the deterministic profile spðxÞ ¼ ŝðxÞ (Eq. (2)) without the sinusoidal component. (d), (e) and (f) show the slip rate and, therefore, the extension of the slip area within the
profile at the same time steps as the stresses in (a), (b), and (c), respectively. (c) and (f) show, for visual purposes, only a subsection of the simulated domain, i.e., L=hn P 4.

Fig. 3. Growth of the critical slip patch. (a) Size of the critical slip patch of setup A, B
and C. Stable slip initiates for all profiles at s0 ¼ 0:67sCcr ¼ smin

p . (b) Final phase of
crack growth of setup A: Continuous patch growth until the profile fails at s0 ¼ sAcr .
(c) Final growth phase of the critical nucleation patch of setup B. At s0 ¼ sBcr the
central patch coalesces with its neighboring patches. The size of the critical patch
rises sharply by coalescence and initiates a dynamic slip front. (d) The final growth
phase of the critical patch of setup C is governed by multiple coalescence events of
the central patch with its adjacent patches. The fifth coalescence results in dynamic
failure at s0 ¼ sCcr .

Fig. 4. Comparison of the simulation results with the analytical solution. (a) The
dashed line is a linear interpolation between the simulation results depicted as
triangles. The continuous lines show the analytical solution with Eq. (2) applied in
Eq. (8) and scr ¼ snð0Þ due to symmetry. The results are plotted for various periods P
of spðxÞ. (b) Error between the simulation results and the results obtain from the
analytical approach. The error between the markers is calculated using the
interpolation (dashed line in (a)).
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of the adjacent slip patch, caused by this near local minimum, and
hence cannot predict coalescence. Consequently, the theoretical
solution overestimates the strength of the interface at this point,
which is confirmed by Fig. 4.

In the sub-critical coalescence regime, the theoretical predic-
tion works well again. For decreasing P=hn, theory and simulation
converge to ŝcr, which is the critical nucleation stress computed
5
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with Eq. (9) for the ŝðxÞ profile (Eq. (2)). In this regime, coalescence
happens within hn, hence the theoretical solution accounts for the
local minima in spðxÞ. Only the last coalescence, e.g., coalescence 5
in Fig. 2f, is not included in the prediction, but its effect diminishes
with decreasing P=hn.

It is interesting to note, that the overall trend indicates an
increase in macroscopic strength scr for decreasing characteristic
interface length, i.e. P=hn. This is consistent with observations by
Albertini et al. (2021) on stochastic interfaces. Here, in this deter-
ministic configuration, the theoretical solution presents oscilla-
tions (see Fig. 4a). They are caused by the integration in Eq. (8)
over length hn with varying fraction of period P of the sinusoidal
profile in spðxÞ. Finally, we note that in the sub-critical coalescence
regime, the effect of samp is minor as scr ! ŝcr. In addition, the lim-
its of the three regimes (i.e., subcritical, critical and Uenishi & Rice)
are not affected by samp.

In summary, the comparison between theory and simulation
shows that the theoretical prediction works generally well for
deterministic interfaces except if the interface fails through nucle-
ation by critical coalescence.

4.2. Stochastic interfaces: sub-critical slip nucleation

We now focus on interfaces with random strength profiles with
relatively small correlation lengths, which have not been simulated
by Albertini et al. (2021). First, we will consider a representative
example shown in Fig. 5 to illustrate the nucleation process (see
also animation S4 in supplementary material). In a second step,
we will analyze the growth of slip patches for systems with various
(small) correlation lengths.

In these stochastic systems, the interface is characterized by a
random profile of spðxÞ. Therefore, the location for nucleation of
Fig. 5. Coalescence of microslips in a random profile. (a) The random profile spðxÞ
with correlation length n0=hn ¼ 0:05 shown as a gray line and the computed
nucleation stress snðxÞ depicted as a blue line. The black dot marks the minimum of
snðxÞ and corresponds to the location and stress level where global instability will
nucleate. The gray area with width hn is centered around this critical point. (b) The
random profile shown as a gray line and the stable stress state at various times is
shown as colored lines with red being the last stable moment. Dashed lines show
stress states during failure. The times t are normalized by the time T at which the
profile fails and correspond to the load normalized by the interfacial strength s0=scr
(color bar). (c) Slip rate along the profile marking the extension of the slip areas. The
plotted time steps and colors match those in (b). The dashed lines show the
dynamic slip propagation during failure. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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unstable slip is not obvious from spðxÞ. However, the profile of
snðxÞ, computed through Eq. (8), presents a minimum (see
Fig. 5a), which is a good prediction for the location of unstable slip
nucleation (Albertini et al., 2021). Note that this point is not
located at minspðxÞ. The dynamic simulations confirm these obser-
vations (see Fig. 5b and c).

We further observe that multiple sub-critical coalescence
events occur before the interface transitions to macroscopic slid-
ing. The slip rate (see Fig. 5c) shows the early formation of many
small slip patches in areas of low strength. Because the random
profile has randomly distributed local minima, the growth of exist-
ing patches, the formation of new ones and the coalescence of adja-
cent patches happen in a disordered manner in contrast to the
deterministic cases presented in the previous section. However,
the formation of large nucleation patches is mainly caused by a
stepwise coalescence of several small patches and is not due to
growth of large individual patches. Note that the coalescence
events show a hierarchical pattern. Small patches coalesce first,
then medium size patches coalesce to form a large patch. This is
in contrast to the deterministic case, where the largest patch grew
by constant increments at each coalescence event. Eventually, at
s0 ¼ scr the size of the largest nucleation patch is close to the pre-
dicted hn. It then becomes unstable and propagates dynamically
through the whole system.

How does the critical slip patch grow during this process? We
track the size of the largest slip patch amax (see Fig. 6a) and observe
that growth occurs smoothly for some periods but is regularly
intermitted by small and large discontinuities. These jumps corre-
spond to slip patch coalescence events. Note that the largest slip
patch may not always remain the same patch because the coales-
Fig. 6. Slip patch growth. (a) Size of the largest slip patch amax with increasing load
s0 as a continuous line and logistic regression (Eq. (10)) as a dashed line. For each
n0=hn one representative example is shown. The n0=hn ¼ 0:05 example corresponds
to the one shown in Fig. 5. (b) amax versus expected load E½s0� based on 30
simulations for each n0=hn (continuous line) with one standard deviation error
band. The logistic regression is depicted as a dashed line. The inset shows the
average logistic rate r for each n0=hn with a one standard deviation error bar. (c), (d)
and (e) Coalescence event sizes Damax of the largest slip patch of all simulations for
each n0=hn, respectively. Data is reported before the onset of instability i.e.,
amaxðs0Þ 6 amaxðscrÞ and for Damax greater than twice the spatial discretization. The
continuous line shows the average Damax computed for bins of size 0:025s0=hspi
(markers represent center of bin). All average Damax are reported in (e) to allow for
comparison.



Fig. 7. Prediction of the critical load. (a) Critical load of the simulation ssimcr plotted
against the extrapolated critical load sextcr using a logistic regression (Eq. (10))
interpolated over different intervals. (a) interpolates the amax in the interval
½0;0:75hn�. (b) and (c) interpolate over an earlier nucleation state of amax < 0:5hn

and amax < 0:25hn, respectively. The 10% error range is depicted as dashed lines.
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cence of two smaller areas could exceed an existing larger patch.
Generally, the growth of amax is initially rather slow but accelerates
continuously. This accelerating effect is general as demonstrated
by the expectation of the load E½s0� required to cause a slip patch
of size amax computed from 30 independent simulations (see
Fig. 6b). These observations are valid for simulations with various
(generally small) correlation lengths, as shown for
n0=hn ¼ ½0:025;0:05;0:1� in Fig. 6b. Here, we further observe that
systems with smaller correlation lengths require, on average, a
smaller load for the largest slip patch to reach the critical length,
and hence the macroscopic strength is lower. This confirms the
results from the deterministic systems (see Section 4.1.2) and pre-
vious observations on stochastic systems by Albertini et al. (2021).

The acceleration in slip patch growth is directly linked to the
coalescence size, i.e., the increase in size of the maximal slip patch
caused by coalescence. This coalescence size Damax varies signifi-
cantly during the nucleation process (see Fig. 6c–e). For all correla-
tion lengths considered, we observe that there is a tendency for
larger coalescence events as the loading proceeds. Nevertheless,
small coalescence event also occur at later stages of the growth
process. Hence, the variability of Damax gradually increases with
s0, and Damax can even be larger than n0 and exceed 0:4hn. Further,
we observe that the growth of the mean Damax as function of s0 is
higher for larger correlation length (see Fig. 6e). This is consistent
also with the following observations. The total number of coales-
cence events detected over 30 simulations are 295, 237 and 153
for n0=hn ¼ 0:025;0:05; and 0:1, respectively, and the inter-
coalescence continuous slip patch growth represents, in average,
18%, 27%, and 43% of the nucleation phase for
n0=hn ¼ 0:025;0:05; and 0:1, respectively. All in all, this shows
that larger correlation lengths of the interface tend to support ear-
lier and larger coalescence events, which results in less coalescence
events over the course of the nucleation but faster slip patch
growth and hence lower scr since hn is reached more rapidly.

Can we provide an analytical expression for this growth process
during nucleation? While s0 is the control variable in our simula-
tions, the value of s0ðhnÞ ¼ scr is a random variable corresponding
to the onset of instability (Albertini et al., 2021; Ampuero et al.,
2002). In view of hn being a constant, we propose to describe s0
as function of amax since this will enable us, in a second step, to
make a prediction for macroscopic friction strength. Based on the
observed growth process in Fig. 6b, we apply heuristically a logistic
regression, which follows

s0ðamaxÞ � smin
p þ sextcr � smin

p

� � 2
1þ e�r amax=hn

� 1
� �

ð10Þ

with two fitting parameters, which are the logistic rate, r, and the
stress sextcr . The logistic function is suitable to model stochastic pro-
cesses that involve the probability of exceeding a given bound,
which, in our case, is the onset of instability. When amax ! 0, the
term within the square bracket vanishes, thus, s0ð0Þ ¼ smin

p i.e., in
this case, the interface is at rest and there is no nucleation. This also
implies that the y-intercept within the exponential function (i.e., r0
in e�ðr0þramaxÞ=hn , which we omitted in Eq. (10)) is systematically
found null. When amax ! 1, which represents the onset of the
instability, the term within the square-brackets goes to 1, and, we
find s0ðamax ! 1Þ ¼ sextcr . Therefore, sextcr corresponds to the critical
strength. The parameter r represents the rate of increase in applied
stress for an increase in nucleation patch size. Physically, r is a mea-
sure of instability: Interfaces with small r would show a gradual
growth of amax with a mild acceleration phase; Conversely, large r
would result in a slow growth of amax followed by a strong, almost
abrupt, acceleration phase. A similar observation can be made in the
deterministic case: for short correlation length, r is large and the
initial growth of amax is slow then suddenly accelerates due to coa-
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lescence (see Fig. 3a setup C). In a later step, we will apply this
regression on a smaller range of patch sizes amax < hn, and hence,
sextcr will become an extrapolated prediction of the critical strength.

The logistic regression works relatively well to describe single
simulations (see dashed lines in Fig. 6a). However, large discrepan-
cies appear whenever large coalescence events occur (e.g. at
s0=hspi � 0:82 for simulation with n0=hn ¼ 0:1 in Fig. 6a). These
discrepancies disappear when we apply the logistic regression on
the expectation E½s0� (see Fig. 6b). We observe that the logistic rate
r is smaller for larger n0, which results in lower E½s0� for a given
amax=hn.

Finally, we test if the logistic regression can be used to predict
macroscopic strength by fitting it to sub-periods of slip patch
growth. The fitting parameter of interest is the extrapolated critical
stress sextcr , which is then compared with the actual critical stress
from the simulation ssimcr . For relatively long regression windows
(amax 2 ½0;0:75hn�), the prediction works quantitatively well as
shown in Fig. 7a. However, for shorter regression windows, which
would be more useful for prediction purposes, the precision
decreases (see Fig. 7b and c). Interestingly, the proposed extrapola-
tion procedure performs better for cases with small correlation
length because large coalescence events Damax are less likely, espe-
cially in the early and mid-nucleation phase.

5. Discussion

5.1. Physical model

In the current study we considered the nucleation of frictional
ruptures along interfaces with spatially heterogeneous friction
strength embedded in a two dimensional linear elastic periodic
medium. Moreover, we assumed a linear slip-weakening friction
law, uniform loading, and uniform weakening rate. These assump-
tions allowed us to study the nucleation problem efficiently using
dynamic simulations and analytical theory. However, real systems
are three dimensional and friction laws can depend on the age of
contact (Dieterich and Kilgore, 1994; Dillavou and Rubinstein,
2018) and on the rate of sliding (Rabinowicz, 1958; Kilgore et al.,
1993; Baumberger and Caroli, 2006). Additionally, in finite-size
systems, the applied loading on the interface is non-uniform due
to geometry.

We assumed a linear-slip weakening friction law because it is
the simplest law that can represent the experimentally observed
dynamic weakening during dynamic frictional rupture propagation
(Svetlizky et al., 2020; Kammer and McLaskey, 2019). Rate-and-
state dependent friction laws, as introduced by Dieterich (1979)
and Ruina (1983), would also capture the dynamic weakening
and generally represent well the experimentally observed rate
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dependence of friction at velocities typical of the nucleation
regime. However, the concept of static friction coefficient is not
clearly represented by the most common rate-and-state laws
because the formulations usually diverge for zero slip rate. Nucle-
ation on rate-and-state interfaces has been studied by Ray and
Viesca (2017) and Ray and Viesca (2019) using stability analysis
and recently by Cattania and Segall (2020) using numerical simu-
lations. Considering nucleation on random interfaces with rate-
and-state friction will be addressed in future work.

We assumed a uniform weakening rate, while the peak strength
is a random field. The uniformweakening rate implies that the crit-
ical nucleation length is homogeneous and allows us to apply the
theoretical framework introduced by Uenishi and Rice (2003).
However, frictional interfaces might exhibit spatially heteroge-
neous weakening rates as a result of local constituents, roughness
and normal stress (Ohnaka, 2013). Consideration of non-uniform
weakening rate on stochastic frictional interfaces and its effect
on the macroscopic stability and critical nucleation length has
been addressed in recent work by Lebihain et al. (2021).

We considered contact between thin plates and, therefore,
assumed a two dimensional medium. This assumption is valid for
cases where the critical nucleation length is considerably larger
than the plate thickness, such that three dimensional effects only
occur during the initial phase of the nucleation, when the slip
patch size is smaller than the plate thickness. However, if the
nucleation length is similar or even smaller than the plate thick-
ness, we expect three dimensional effects to play an important
role. An interesting mechanism has been observed on brittle rup-
tures in three dimensional media, where the stress intensity factor
is affected by the local curvature of the front (Rice, 1985; Lebihain
et al., 2020). Thus, the characteristic length of the interface proper-
ties would directly affect the effective front strength due to its non-
planar geometry.

Similar models that incorporate inertia, long-range elastic inter-
actions and disorder at the frictional interface down to the asperi-
ties include (Trømborg et al., 2014), which reproduced
experimentally observed transition from fast to slow fronts and
short-time slip dynamics by considering asperities with random
relaxation time; and de Geus et al. (2019), which considered
elasto-plastic asperities with random potential energy and found
the critical size of artificially triggered events to be governed by
a Griffith criterion. Both studies differ from the current one, either
by focusing on the propagation phase or using an artificial trigger-
ing, respectively, while we consider the spontaneous nucleation of
slip patches and their coalescence to a critical patch.
5.2. Interpretation of nucleation patterns

By considering deterministic frictional interfaces, we were able
to create a controlled nucleation process and to study different for-
mation patterns of critical slip patches. We showed that initiation
of slip varies depending on the characteristic length of the interface
and that it can be categorized into three regimes.

Large correlation lengths correspond to the ‘‘Uenishi & Rice
nucleation” (UR nucleation), which is characterized by the contin-
uous growth of non-interacting slip patches. This nucleation pro-
cess resembles experimental observations (Nielsen et al., 2010;
Latour et al., 2013; Fukuyama et al., 2018), where only a single rup-
ture front was recorded. Further, for very large correlation lengths
the system approaches the homogeneous limit.

We defined the regime of ‘‘critical coalescence” when a critical
nucleation patch is suddenly formed by coalescence of nucleation
patches considerably smaller than the critical nucleation length.
Such a behavior was observed by McLaskey and Kilgore (2013) in
some of their experiments. They recorded the formation of multi-
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ple ruptures and observed that the onset of global instability was
initiated by the coalescence of two rupture fronts.

If the critical nucleation patch grows by a stepwise coalescence
of its neighboring patches, we classified it as ‘‘sub-critical coales-
cence”. To our knowledge, there has been no experimental evi-
dence supporting the existence of ‘‘sub-critical coalescence”.
However, it may not have been detected yet because of lacking
spatial resolution in experimental measurements. A sub-critical
coalescence process could appear as continuous nucleation, i.e.,
Fig. 3d would become a continuous line. The case of very small cor-
relation length corresponds to the homogenization limit, where
the system’s response corresponds to its average properties.

In Fig. 4 we compared the critical stress of the simulation with
the analytical approach introduced by Uenishi and Rice (2003). We
noted large discrepancies in the regime of ‘‘critical coalescence”
and for the UR nucleation regime with small n0=hn (Fig. 4b). Intu-
itively, we would expect large errors for critical coalescence only.
However, for the UR nucleation with small n0=hn, the presence of
closely spaced interacting slipping regions affects the nucleation
process. The theoretical model does not account for this effect
and hence overestimates the strength.
5.3. Interpretation of stochastic interfaces

With this study, we not only showed the mechanism of slip
nucleation by coalescence of microslip on deterministic interfaces
but also verified it on random frictional interfaces with small cor-
relation lengths compared to the critical nucleation length. We
showed that for a given slip patch size the expected (average) load
value follows a logistic function with increasing logistic rate for
smaller correlation length. While the logistic regression describes
well the expectation curves (Fig. 6b), it has limitations for predict-
ing individual examples because of large coalescence events lead-
ing to sudden large increments followed by a plateau (see case
n0=hn ¼ 0:1 in Fig. 6a). The coalescence size is a random variable
with non-stationary properties as function of applied load. We
have shown that large coalescence events occur earlier in the
nucleation phase when the correlation length is large (see
Fig. 6c–e), leading to lower interface strength and higher strength
variation. Interestingly, we also noted that phases of continuous
propagation are longer for larger correlation length, as well as
the cumulative continuous propagation. In these disordered sys-
tems, the growth of the largest slip patch is analogous to a random
walk with varying step size. The coalescence size corresponds to
the random step taken at each load increment. With increased
loading, large coalescence events become more likely. For larger
correlation length n0 > hn, however, the nucleation process is not
governed by coalescence events anymore and the logistic model
is not expected to apply because the growth process would depend
directly on the functional form of the strength profile (Uenishi and
Rice, 2003).

The nucleation of in-plane frictional ruptures has been investi-
gated by Latour et al. (2013) in laboratory experiments. By measur-
ing the evolution of the rupture length as a function of time, they
identified three phases during nucleation: quasi-static, accelerated
and dynamic propagation phase. They observed an exponential
growth during the quasi-static phase, and an inverse power law
in the acceleration phase. However, they report a single nucleation
patch in their experiments, whereas in our simulation many small
patches nucleate and coalesce to a large one. Consequently, the
laboratory situation would rather correspond to a very large corre-
lation length with a single slip patch that grows in size continu-
ously. However, distinct spatial patterns are visible in their
measurements (Latour et al., 2013, Fig. 1), which may represent
interface heterogeneity. As shown in Fig. 5c, the largest slip patch
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has larger slip rates compared to smaller, less critical patches (note
that slip rate is on a logarithmic axis). This implies that small sub-
critical patches may be difficult to detect in experiments. Further,
the average curves in Fig. 6b show a similar behavior as the labo-
ratory observations of Latour et al. (2013): Initially, (for
amax=hn < 1=4) we observe quasi-static growth that transforms
into the acceleration phase (1=4 < amax=hn < 1), and then propa-
gates dynamically (amax=hn > 1). The transition from the quasi-
static to the acceleration phase corresponds to an increased prob-
ability of larger coalescence events (see Fig. 6c–e). However, due to
the discrete nature of the patch size growth, in some cases the
acceleration phase is characterized by a large coalescence followed
by a plateau (see n0=hn ¼ 0:1 in Fig. 6a).

Additionally, the three phases (i.e., quasi-static, acceleration and
dynamic) can be related to limits of Eq. (10): (quasi-static) for
amax=hn < 1=r, where the growth can be approximated by a linear
function (i.e., the nonlinear contribution does not exceed 10% of
the linear term); (acceleration) for amax=hn 	 1=r; and (dynamic)
for amax=hn 
 1=r, where the system reaches its ultimate strength,
scr , and amax diverges.

Further, we used the logistic model to predict the strength of
the interface from its early propagation before the onset of insta-
bility (see Fig. 7). The prediction is reliable if the growth of amax

is well advanced. Interestingly, the prediction for an interpolation
interval of 50% the critical nucleation length yields most results
within 10% error. However, for smaller intervals the prediction is
unreliable because the system did not enter the acceleration phase
yet. For very small correlation lengths (n0=hn ¼ 0:025), the predic-
tion works reasonably well, even for a small interpolation range.
However, few outliers deviate significantly more than they do for
interfaces with larger correlation length. This approach provides
an empirical equation of motion for the nucleation of slip patches.
It can be useful to analyze the stability and strength of frictional
interfaces before failure has occurred.

An alternative approach to model nucleation by coalescence
could be based on a self-similar growth model, e.g. (Rubin and
Ampuero, 2005, Appendix B). In this case, one would model the
spatio-temporal evolution of each individual slip patch and semi-
analytically predict the coalescence events up to reaching the crit-
ical size and its corresponding critical loading. Developing this
semi-analytical model and comparing it with the current logistic
model as well as random walk models, will be addressed in future
work.

Albertini et al. (2021) reported discrepancies between simula-
tions and the theoretical model for relatively small correlation
lengths (n0=hnK0:25). Unlike for the deterministic system, we can-
not strictly distinguish between the three nucleation patterns, as
observed in Section 4.1.1. However, the observed trends are com-
parable. For larger correlation lengths, the nucleation process is
most likely following a UR nucleation because coalescence is less
likely. Notably large coalescence events leading to nucleation by
critical coalescence are not likely to occur and hence the analytical
solution by Uenishi and Rice (2003) is expected to work generally
well. However, for correlation lengths in the intermediate range
(the small values in Albertini et al. (2021)), the probability for coa-
lescence increases and, therefore, it is more likely for critical coa-
lescence to cause discrepancies compared to the theoretical
prediction. Finally, for small correlation lengths, coalescence is
ubiquitous and sub-critical coalescence is likely to be the dominant
slip patch growth pattern.
6. Conclusion

We studied the nucleation of slip patches on linear slip-
weakening interfaces with heterogeneous friction properties. We
9

considered a uniform loading and, both, deterministic and stochas-
tic non-uniform local friction properties. In the deterministic setup,
we systematically varied the characteristic length of the interface
strength profile and observed three distinct nucleation patterns:
smooth growth of a slip patch as observed by Uenishi and Rice
(2003), growth by critical coalescence, and sub-critical
coalescence.

A smooth growth of the critical slip patch is observed when the
characteristic length is large compared to the critical nucleation
length. In this case the global interface strength is well represented
by an existing analytical model. For intermediate characteristic
lengths, a sudden increase in the size of the nucleation patch to a
size significantly larger than the critical nucleation length was
caused by the coalescence of two nucleation patches considerably
smaller than the critical nucleation length (critical coalescence).
Since the analytical approach does not account for large coales-
cence, the actual global strength is overestimated. For characteris-
tic lengths considerably smaller than the critical nucleation length,
a series of coalescence events causes a stepwise increase of the
nucleation patch (sub-critical coalescence), which results in a pre-
cise prediction by the analytical model.

We generalized our study by considering a stochastic interface
and showed that for small correlation length the nucleation mech-
anism is similar to the sub-critical coalescence in the deterministic
case. However, the size of each coalescence is a non-stationary ran-
dom variable with respect to the load and can exceed the correla-
tion length. Hence, the nucleation process progresses in a
disordered manner with large coalescence events being more likely
in the late nucleation phase. Therefore, we provide an empirical
formula to describe the sub-critical nucleation process: The expec-
tation of the load as function of the largest slip patch size follows a
logistic function. This simple equation relates the loading stress
with the size of the largest nucleation patch and allows us to
extrapolate for the critical nucleation length. As a result, the global
interface strength can be estimated before failure has occurred.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.ijsolstr.2021.
111059. Raw data from all simulations can be found at
https://doi.org/10.3929/ethz-b-000480333.
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