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Abstract—The reconfigurable intelligent surface (RIS) is an
emerging technology that changes how wireless networks are
perceived, therefore its potential benefits and applications are
currently under intense research and investigation. In this letter,
we focus on electromagnetically consistent models for RISs inher-
iting from a recently proposed model based on mutually coupled
loaded wire dipoles. While existing related research focuses
on free-space wireless channels thereby ignoring interactions
between RIS and scattering objects present in the propagation
environment, we introduce an RIS-aided channel model that is
applicable to more realistic scenarios, where the scattering objects
are modeled as loaded wire dipoles. By adjusting the parameters
of the wire dipoles, the properties of general natural and engi-
neered material objects can be modeled. Based on this model, we
introduce a provably convergent and efficient iterative algorithm
that jointly optimizes the RIS and transmitter configurations
to maximize the system sum-rate. Extensive numerical results
show the net performance improvement provided by the proposed
method compared with existing optimization algorithms.

Index Terms—Reconfigurable intelligent surfaces, dynamic
metasurfaces, loaded wire dipoles, mutually coupled antennas,
scattering objects, discrete dipole approximation, optimization.

I. INTRODUCTION

The reconfigurable intelligent surface (RIS) technology is
gaining growing attention in academia and industry owing
to its ability to turn the stochastic nature of the wireless
propagation channel—always conceived as a black-box—into
an optimizable variable [1]. RISs are dynamic engineered
metasurfaces, which are made of inexpensive scattering el-
ements (unit cells) and low-complex/limited-power electronic
circuits, which are spaced at sub-wavelength distances: the
essentials are their dynamic reconfigurability in terms of scat-
tering parameters performed in a nearly passive manner. In this
context, adequate communication and channel models for RISs
are of paramount importance to obtain a deep understanding of
their achievable performance and to fully exploit their potential
in future wireless networks [2].

Related work. In sub-wavelength implementations, there is
an impelling need of considering the mutual coupling interac-
tions among the unit cells: the discrete dipole approximation
(DDA)—which is an analytical method for modeling the
electromagnetic scattering from arbitrarily shaped objects [3],
[4]—comes to help. In particular, the authors of [5] have
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recently introduced a mutual coupling-aware and electromag-
netically consistent model for RIS with arbitrarily spaced
unit cells, which are modeled as loaded wire dipoles. This
model is based on the concept of mutually coupled antennas
and accounts for near- and far-field channel conditions, thus
offering great analytical tractability while ensuring electro-
magnetic consistency. Indeed, by capitalizing on the DDA, the
polarizabilities of general natural or engineered materials (as
is the case for RISs) are modeled by adjusting the parameters
of the wire dipoles and the loads [3], [4], [6].

In [7], the authors have introduced a closed-form analytical
formulation of the model in [5], while in [8] the model
is exploited to derive the optimal RIS configuration that
maximizes the received power in a single-user and single-
antenna setup. A closed-form expression is given in the
absence of mutual coupling, whereas a convergent iterative
algorithm is proposed in the presence of mutual coupling.
Such optimization framework is generalized in [9] for the
multi-RIS multi-user multiple-input multiple-output (MIMO)
interference channel.

With the exception of [9], such works are applicable to free-
space propagation in the presence of an RIS. On the other
hand, the authors of [9] model the multipath from environ-
mental scattering objects (ESOs) by relying on a statistical
fading model, which is superimposed (additive component)
to the RIS-induced scattering. Inherently, this approach does
not account for the interactions (e.g., multiple reflections)
between the RIS and the scattering objects. Nevertheless,
recent results show that multiple reflections between closely-
located scatterers (engineered or not) cannot be ignored [10].

Contributions. In this letter, we further extend the model
in [5] to account for the multipath propagation originated from
the presence of ESOs, which are modeled as a collection of
loaded wire dipoles according to the DDA. In particular, the
parameters of the dipoles modeling the ESOs (e.g., the length
and the loads) are chosen to match the material properties of
the objects [4], while the RIS loads are tunable on-demand.
The proposed approach inherently captures the interactions
between the RIS and the ESOs unlike the additive model in [9],
which we prove is obtained as a particular case.

Based on the proposed model, we formulate a provably
convergent optimization algorithm for computing the optimal
load impedances of the RIS and the transmit precoding that
maximize the sum mean squared error (SMSE) in a multiple-
input single-output multi-user network, dubbed as SARIS.
Compared with the state-of-the-art optimization algorithm
introduced in [9], SARIS is shown to provide a higher sum-
rate while requiring fewer iterations and less execution time.

Notation. Matrices and vectors are denoted in bold font.
(·)T, (·)H, and tr(·) stand for transposition, Hermitian trans-
position, and trace of a square matrix, respectively. ‖·‖ denotes
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the spectral norm and ‖·‖F the Frobenius norm of a matrix. IN
denotes the identity matrix of size N and 0N×M the all-zero
N ×M matrix, Lastly, j =

√
−1 is the imaginary number.

II. SYSTEM MODEL

We consider a network comprising a transmitter with M
antennas, L single-antenna receivers, and an RIS equipped
with N reconfigurable (through tunable impedances) unit cells.
Also, Ns ESOs are available in the considered propagation
environment. According to the DDA for natural (ESOs) or
engineered (RIS) [3], [4] scatterers, the N unit cells and Ns

ESOs are modeled as loaded wire dipoles. The loads of the
ESOs are not tunable, while the loads of the RIS are tunable
on-demand for enhancing the communication performance.
This allows us to adopt a unified model for RIS and ESOs.

Based on the model in [5], the end-to-end channel that
accounts for the RIS and ESOs is formulated as [9, Eq. (6)]

HE2E =
(
IL + ZRRZ−1

L

)−1
[
ZRT − ZRE

(
ZEE + ZSC

)−1
ZET

]
× (ZTT + ZG)

−1 ∈ CL×M (1)

where {T,R,E} denote the transmitter, the receivers, and
the scattering environment that includes the RIS and ESOs.
Compared with [5] and [9], the contribution of the ESOs is
explicitly taken into account, as detailed next. Specifically,
ZG ∈ CM×M and ZL ∈ CL×L are the diagonal matrices
containing the internal impedances of the voltage generators
at the transmitter and the load impedances at the receivers,
respectively; ZTT ∈ CM×M and ZRR ∈ CL×L are the matrices
containing the self and mutual impedances at the transmitter
and receivers, respectively; and ZRT ∈ CL×M is the channel
matrix of the direct link between the transmitter and receivers.

The term ZRT − ZRE

(
ZEE + ZSC

)−1
ZET accounts for the

signal scattered by the RIS and ESOs. Specifically, ZET ∈
C(N+Ns)×M and ZRE ∈ CL×(N+Ns) are the channel matrices
containing the mutual impedance between the transmitter
and the scattering environment, and between the scattering
environment and the receivers, respectively. Also, ZEE ∈
C(N+Ns)×(N+Ns) is the matrix containing the self and mutual
impedances between the RIS and the ESOs, including the
mutual coupling among the unit cells of the RIS. For further
analysis, it is convenient to separate the contribution from the
RIS and the ESOs. By denoting with the subscripts S and O
the contributions of the RIS and the ESOs, respectively, the
matrix ZEE can be partitioned into four blocks, as follows:

ZEE =

[
ZOO ZOS

ZSO ZSS

]
∈ C(N+Ns)×(N+Ns). (2)

By using a similar notation, the matrices ZET and ZRE can
be partitioned as follows:

ZRE =
[
ZRO ZRS

]
, ZET =

[
ZT

OT ZT
ST

]T
. (3)

Lastly, the diagonal matrix ZSC contains the tunable load
impedances of the RIS and the load impedances of the ESOs
that model their material properties. Similar to ZEE, ZET, and
ZRE, the matrix ZSC can be partitioned as follows:

ZSC =

[
ZUS 0Ns×N

0N×Ns
ZRIS

]
∈ C(N+Ns)×(N+Ns) (4)

where ZUS ∈ CNs×Ns is the diagonal matrix containing the
loads of the ESOs and ZRIS ∈ CN×N is the diagonal matrix
containing the tunable impedances of the unit cells of the RIS.
Each entry of the matrices of self and mutual impedances in (1)
can be computed via the analytical frameworks in [7], [11],
while the matrix ZUS is determined by the material properties,
e.g., the permittivity, of the ESOs, and is thus assumed to be
fixed and given. On the other hand, the matrix ZRIS can be
optimized, and, assuming that the RIS is nearly passive, is
modeled as follows:

ZRIS = diag [R0 + jxn]
N
n=1 (5)

where R0 ≥ 0 is the resistance of each load, which accounts
for the internal losses of the tuning circuits. If R0 = 0, the
RIS is lossless. The constraint R0 ≥ 0 ensures that the RIS
does not amplify the incident signal. It is customary to assume
that R0 is fixed, since it depends on the technology being used
and the best choice is R0 = 0 to minimize the losses. On the
other hand, the reactance xi ∈ Q is tunable, with Q denoting
the set (continuous or discrete) of feasible values for it.

To simplify the writing, we use the notation ZRL , (IL +
ZRRZ−1

L )−1 ∈ CL×L and ZTG , (ZTT + ZG)
−1 ∈ CM×M .

Hence, the received signal at the `-th user equipment (UE),
with ` = 1, . . . , L, is given by

y` = hE2E,d,`Ws + hE2E,`(ZRIS)Ws + n` (6)
=
(
hE2E,d,` + hE2E,`(ZRIS)

)
w`s`

+
∑L

k=1,k 6=`

(
hE2E,d,` + hE2E,`(ZRIS)

)
wksk + n`

where W ∈ CM×L denotes the precoding matrix at the
transmitter, with ‖W‖2F ≤ P and P being the power budget;
s = [s1, . . . , sL]T ∈ CL×1 is the transmit data vector, with
E[‖s‖2] = 1; and n ∼ CN (0, σ2

nIL) is the noise vector at the
receivers. Also, the following equivalent channels for the `-th
UE are introduced:

hE2E,d,` , zRL,`ZRTZTG ∈ C1×M (7)

hE2E,`(ZRIS) , −zRL,`ZRE

(
ZEE + ZSC

)−1
ZETZTG ∈ C1×M

with the lower-case bold letters denoting the `-th row of the
corresponding matrices in (1). With this notation, the sum-rate
is given as follows:

γ` =
|[hE2E,d,`+hE2E,`(ZRIS)]w`|2∑L

k=1,k 6=`

∣∣[hE2E,d,`+hE2E,`(ZRIS)]wk

∣∣2+σ2
n

R =
∑L

`=1
log2 (1 + γ`) . (8)

To simplify the notation and for further analysis, we introduce
the following impedance matrices:

ZOO , ZOO + ZUS ∈ CNs×Ns (9)

ZROT , ZRT − ZROZ
−1

OOZOT ∈ CL×M (10)

ZROS , ZROZ
−1

OOZOS − ZRS ∈ CL×N (11)

ZSOS , −ZSOZ
−1

OOZOS ∈ CN×N (12)

ZSOT , ZSOZ
−1

OOZOT − ZST ∈ CN×M . (13)



[
ZOO ZOS

ZSO ZSS + ZRIS

]−1

=

[
Z
−1
OO + Z

−1
OOZOS(ZRIS + ZSS − ZSOZ

−1
OOZOS)−1ZSOZ

−1
OO −Z

−1
OOZOS(ZRIS + ZSS − ZSOZ

−1
OOZOS)−1

−(ZRIS + ZSS − ZSOZ
−1
OOZOS)−1ZSOZ

−1
OO (ZRIS + ZSS − ZSOZ

−1
OOZOS)−1

]
(15)

As remarked in [8] and [9], the main difficulty when
optimizing the sum-rate in (8) is given by the computation of
the inverse matrix

(
ZEE + ZSC

)−1
, since it is a non-diagonal

matrix in the presence of mutual coupling. To deal with this
matrix inversion, we invoke the Schur complement applied
to block matrices [12]. Specifically, assuming that ZOO is
invertible, the matrix

(
ZEE+ZSC

)−1
can be rewritten as shown

in (15) at the top of this page. Thus, (1) and (7) can be
simplified, respectively, as follows:

HE2E =ZRL

[
ZROT − ZROS

(
ZSS + ZSOS + ZRIS

)−1
ZSOT

]
ZTG,

hE2E,d,` = zRL,`ZROTZTG, (14)

hE2E,`(ZRIS) = −zRL,`ZROS

(
ZSS + ZSOS + ZRIS

)−1
ZSOTZTG.

The analytical expression of the end-to-end channel HE2E

in (14) is conveniently formulated, since the optimization
variables, i.e., the diagonal matrix ZRIS, is decoupled from
the non-diagonal matrices ZSS and ZSOS that account for the
mutual coupling between the unit cells of the RIS and for the
interactions between the unit cells and the ESOs (including
the mutual coupling among the wire dipoles of the ESOs),
respectively. This facilitates the solution of optimization prob-
lems and provides deeper insights into the end-to-end channel.

A. Model Novelty: Modeling the ESOs

The analytical expression of HE2E in (14) clearly unveils the
difference between the proposed model for the ESOs (i.e., the
multipath) and closely related papers. Specifically, the authors
of [9] have considered an additive statistical model for the
multipath based on conventional fading models. The model
in [9] can be retrieved as a special case from our proposed
HE2E in (14) by setting ZSO = ZT

OS = 0N×Ns , which yields
ZROS = −ZRS, ZSOS = 0N×N , and ZSOT = −ZST. As a
result, HE2E in (14) simplifies to

HE2E = ZRL

[
ZROT − ZROS

(
ZSS + ZRIS

)−1
ZSOT

]
ZTG (16)

= ZRL

[
ZRT − ZROZ

−1

OOZOT − ZRS

(
ZSS + ZRIS

)−1
ZST

]
ZTG.

The resulting end-to-end channel in (16) is given by the
summation of the free-space channel in [5] and an additive
multipath component given by ZRLZROZ

−1

OOZOTZTG, which
accounts for the scattering from the ESOs and is independent
of the RIS, similar to the multipath model considered in [9].
However, the channel in (16) inherently ignores the interac-
tions between the RIS and the ESOs, thus resulting in less ac-
curate modeling of the physical propragation environment (see,
e.g., [10]) and suboptimal RIS designs that may fail to fully
exploit its properties. Moreover, since the load impedances
ZUS can be arbitrarily chosen to mimic any natural material,
while all the other self and mutual impedances depend mainly
on the geometry of the scenario (e.g., see [7], [11]), the pro-
posed model subsumes deterministic and statistical multipath
channel models, i.e., in the case where the locations of the
ESOs are assumed to be unknown (e.g., random).

Algorithm 1 SARIS
Input: Threshold ε, channel HE2E, power budget P , noise power σ2

n

1: Initialize i = 1, Z0
RIS = 0, Z1

RIS; SMSE(W, Zi
RIS) defined in (17)

2: while |SMSE(W, Zi
RIS)− SMSE(W, Zi−1

RIS )| > ε do
3: Update W as in (20)
4: Update δ as in (30), ∆ = diag(δH)
5: Zi+1

RIS = Zi
RIS + jIm{∆}

6: Projection of the imaginary part of Zi+1
RIS onto QN

7: i = i+ 1
8: end while

Output: Zi
RIS, W

III. PROBLEM FORMULATION AND SOLUTION

To optimize ZRIS subject to the constraint R0 ≥ 0 in (5)
and W ∈ CM×L subject to the constraint ‖W‖2F ≤ P , we
consider the SMSE as objective function. The motivation for
using the SMSE and its relation with the optimization of the
sum-rate in (8) is detailed in [13]. The SMSE is defined as

SMSE=
∑L

`=1

∑L

k=1
|
(
hE2E,d,` + hE2E,`(ZRIS)

)
wk|2 (17)

− 2
∑L

`=1
Re{
(
hE2E,d,`+hE2E,`(ZRIS)

)
w`}+L(1+σ2

n).

Hence, the optimization problem is formulated as follows:

min
W, ZRIS

∑L

`, k=1
|
(
hE2E,d,` + hE2E,`(ZRIS)

)
wk|2

− 2
∑L

`=1
Re{

(
hE2E,d,` + hE2E,`(ZRIS)

)
w`}

s.t. ‖W‖2F ≤ P, Re{ZRIS}=R0, Im{ZRIS}∈QN. (18)

Due to the presence of the ESOs, the optimization problem
in (18) is more challenging to solve as compared with those
in [8] and [9]. In fact, the matrix ZSOS is, in general, not
a diagonal matrix even if the mutual coupling between the
ESOs is negligible, i.e., ZOO is diagonal. This is because the
matrices ZSO and ZOS are not diagonal matrices, in general.
To tackle the problem in (18), we decouple it into two convex
sub-problems that are solved iteratively, as detailed next.

A. Precoding Optimization
First, we solve the problem in (18) with respect to the opti-

mization variable W while keeping ZRIS fixed. The resulting
problem is convex and its solution is found by evaluating the
KKT conditions. In this regard, let the Lagrangian and its
gradient be

L(W, µ) = ‖HH
E2E(ZRIS)W‖2F − 2tr(Re{HH

E2E(ZRIS)W}
+ µ(‖W‖2F − P ),

∇L(W, µ) =
(
HE2EHH

E2E + µIM
)
W −HE2E, (19)

respectively. Hence, the optimal closed-form solution is given
by letting the expression in (19) to zero as [13, Eqs. (28), (29)]

W(ZRIS)=

(
HH

E2E(ZRIS)HE2E(ZRIS)+
Lσ2

n

P
IM

)−1

HH
E2E(ZRIS)

W(ZRIS)=
√
P W(ZRIS)/(‖W(ZRIS)‖F) ∈ CM×L. (20)



B. RIS Optimization
Then, we solve the problem in (18) with respect to the

optimization variable ZRIS while keeping W fixed. To this
end, we devise an iterative algorithm that, similar to [8] and
[9], leverages the repeated application of the Neumann series
for efficiently tackling the inversion of

(
ZSS + ZSOS + ZRIS

)
.

With respect to [8] and [9], however, we introduce an improved
algorithm that accounts for the necessary conditions to make
the Neumann series accurate by design. This is detailed next.

Specifically, at the (i+ 1)th iteration, the optimization vari-
able ZRIS is set to Zi+1

RIS = Zi
RIS + ∆, where ∆ = diag[δH] ∈

CN×N is a diagonal matrix containing small improvements to
the RIS configuration. With this approximation, we obtain

hi+1
E2E,`(ZRIS) = −zRL,`ZROS

(
ZSS + ZSOS + Zi+1

RIS

)−1
ZSOTZTG

≈ −zRL,`ZROS

[
Gi −Gi∆Gi

]
ZSOTZTG

= δ̄
T[

diag(zRL,`ZROSG
i)Gi−zRL,`ZROSG

i
]
ZSOTZTG (21)

where Gi , (ZSS + ZSOS + Zi
RIS)
−1 and δ̄ ,

[
δT 1

]T
.

Therefore, we have(
hE2E,d,` + hi+1

E2E,`(ZRIS)
)
wj ≈ δ̄

H
H̄i+1

` wj (22)

with

H̄i+1
` ,

[
diag(zRL,`ZROSG

i)GiZSOTZTG

hE2E,d,` − zRL,`ZROSG
iZSOTZTG

]
(23)

=
[
(H̄i+1

R,` )T (h̄i+1
d,` )T

]T ∈ CN+1×M . (24)

As a result, the SMSE can be approximated as follows:

SMSE ≈
L∑

`,k=1

|δ̄H
H̄i+1

` wk|2 − 2

L∑
`=1

Re{δ̄H
H̄i+1

` w`} (25)

The approximation in (21) is accurate provided that the
condition ‖∆Gi‖ � 1 is fulfilled at each iteration. In [8]
and [9], this condition is taken into account by choosing very
small values for the elements of δ. This approach, however,
ignores the actual values of Gi. To ensure that the Neumann
series approximation is accurate by design at each iteration
of the algorithm, we include the condition ‖∆Gi‖ � 1 as a
constraint of the optimization problem to be solved. This leads
to the following simplified and robust problem formulation:

min
δ̄

∑L

`,k=1
|δ̄H

H̄i+1
` wk|2 − 2

∑L

`=1
Re{δ̄H

H̄i+1
` w`}

s.t. δ̄N+1 = 1, |δn| ≤ 1/‖Gi‖, n = 1, . . . , N (26)

where the constraint on |δn| ensures that the Neumann series
approximation is sufficiently accurate at each iteration. As in
(19)–(20), the convex optimization problem in (26) is solved
by setting the gradient of the Lagrangian to zero as

L(δ̄,µ) =
∑L

`=1

(
‖δ̄T

H̄i+1
` W‖2 − 2Re{δ̄T

H̄i+1
` w`}

)
+
∑N

n=1
µn(|δn|2 − 1/‖Gi‖)

∇L(δ̄,µ) =
∑L

`=1

(
H̄i+1

` WWH(H̄i+1
` )Hδ̄ − H̄i+1

` w`

)
+ diag(µ)δ̄, (27)

N!

N"

UE2
Base Station

RIS

Scattering 
cluster

R

r UE1

Fig. 1: Considered deployment scenario (top view).

TABLE I: Simulation parameters.
Parameter Value Parameter Value Parameter Value

Nc 4 pUE2 [20, 24]λ λ 6 cm
R 40λ r λ NO 50
R0 0.2 Ω M 4 Q [−302.50,−19.66] Ω

pUE1 [16, 24]λ pBS [0, 0]λ pRIS [0, 40]λ
ZG 50 IM Ω ZL 50 IL Ω ZUS 0Ns×Ns

which has the following closed-form solution [13, Eq. (22)]:

b =
∑L

`=1

(
H̄i+1

R,` w` − H̄i+1
R,` WWH(h̄i+1

d,` )H
)

(28)

δ̃ =
(∑L

`=1
H̄i+1

R,` WWH(H̄i+1
R,` )H + σ2

nIN

)−1

b (29)

δ = δ̃/
(
max {|δ̃n|}Nn=1 ‖Gi‖

)
∈ CN×1. (30)

The normalization in (30) aims to strike a trade-off between
the accuracy of the Neumann series approximation and the
speed of convergence of the algorithm, i.e., the optimum is
obtained when the inequality constraint in (26) is an equality.
Hence, the small improvements δ are chosen as large as
possible depending on the matrix Gi at each iteration.

The complete algorithm that iterates between the solutions
in (20) and (30), dubbed as SARIS, is provided in Algorithm 1.
Specifically, once (30) is computed, the value of ZRIS is
updated as Zi+1

RIS = Zi
RIS + jIm{∆}, with ∆ = diag(δH), in

order to preserve the constraint on the real part of ZRIS. Also,
the imaginary part of Zi+1

RIS is projected onto the feasible set
QN . Compared with existing solutions, SARIS benefits from
the inherent low-complexity of Algorithm 1, since the latter
iterates between two simple closed-form expressions.

C. Computational Complexity and Convergence Analysis
The computational complexity of (20) and (30) is
O(M2(M+3L)) andO(N(3N2+N(L+1)+3LM+M+L)),
respectively. The complexity of (30) is dominated by the in-
version of an N×N matrix and is greater than the complexity
of (20), since usually N �M . Therefore, the total complexity
of Algorithm 1 is O(N(3N2 +N(L+ 1) + 3LM +M +L))
multiplied by the number of required iterations to converge.

The proposed alternating optimization algorithm decouples
the original non-convex problem in (18) into a series of convex
sub-problems in the two optimization variables taken sepa-
rately. Hence, the global objective function, i.e., the SMSE,
is a non-increasing function across two consecutive iterations.
Moreover, since it is, by definition, lower-bounded by zero,
Algorithm 1 converges to a critical point of the problem in
(18), which is a sufficient but not necessary condition for
optimality [9], [13].

IV. NUMERICAL RESULTS

To evaluate the performance of Algorithm 1, we consider
the scenario sketched in Fig. 1, where L = 2 UEs are present



1000 2000 3000 4000 5000

12

14

16

18

20

22

24

Iteration index

S
u

m
 R

at
e 

[b
p

s/
H

z]
SARIS

BCD wMMSE

Mismatched

d= /2, N = 4

d= /4, N = 16

d= /8, N = 64

d= /16, N = 256

Fig. 2: Convergence of
Algo. 1 vs. d.

2 4 6 8 10 12 14

12

14

16

18

20

22

24

26

Number of scattering clusters N
c

S
u
m

 R
at

e 
[b

p
s/

H
z]

SARIS

BCD wMMSE

Mismatched

d= /2, N = 4

d= /4, N = 16

d= /8, N = 64

d= /16, N = 256

Fig. 3: Average sum-rate vs.
Nc.

TABLE II: Execution times [s].
d Proposed alg. BCD wMMSE d Proposed alg. BCD wMMSE
λ/2 1.17 4.84 λ/8 19.48 67.76
λ/4 2.52 7.64 λ/16 156.1 1138

in the area of interest, unless otherwise stated. The simulation
parameters are listed in Table I, where we remark that ZUS = 0
models lossless metallic scattering objects. The inter-distance
between the unit cells of the RIS is equal to d along both
the x- and y-axis. The number of unit cells along the x- and
y-axis is Nx = Ny =

√
N , respectively. The locations of

the transmitter, UEs, and the midpoint of the RIS are denoted
by pBS, pUE1, pUE2, and pRIS, respectively. The Ns ESOs are
distributed in Nc randomly located scattering clusters within
a semicircle of radius R from the RIS. Each cluster comprises
NO loaded wire dipoles, which are uniformly distributed (at
random) within a disk of radius r centered at the locations of
the clusters. The length of all wire dipoles (RIS and ESOs)
is λ/2, where λ is the wavelength. All wire dipoles (RIS and
ESOs) are aligned along the z-axis, i.e., Fig. 1 is a top view of
the considered scenario, and all wire dipoles are orthogonal to
the xy-plane (z = 0). The obtained sum-rate is averaged over
103 independent realizations for the locations of the scattering
clusters and the loaded wire dipoles therein.

We compare the performance of SARIS against two bench-
mark schemes, namely the method in [9], which is denoted
by BCD-wMMSE in the figures, and a mismatched approach.
The latter is obtained by assuming as objective function HE2E

in (16), which ignores the interactions between the RIS and
the ESOs, and subsequenyly feeding the optimized W and
ZRIS into the objective function in (18). In Fig. 2, we show
the average sum-rate versus the number of iterations for
different values of N and d, thus demonstrating the superior
performance of SARIS both in terms of system sum rate and
execution time to reach convergence, which is reported in
Table. II. In Fig. 3, we illustrate the average sum-rate versus
the number of scattering clusters for different values of N and
d, demonstrating that ignoring the interactions between the
RIS and the ESOs results in a significant degradation of the
average sum-rate, especially as the number of ESOs increases.
In Fig. 4 we show the average sum-rate versus the number of
UEs L for different values of N and d. SARIS achieves higher
performance for a small to moderate number of UEs, while
the system becomes interference-limited for large L.

Finally, Fig. 5 shows the average sum-rate for small values
of R0, assuming N = 64 and d = λ/8. In this case, the
algorithm in [9] exhibits an unstable behavior. The reason is
that the condition ‖∆Gi‖ � 1 for the Neumann series to be
accurate is not included in the formulation of the optimization
problem, whereas it is taken into account at each iteration
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of Algorithm 1. This highlights the importance of adding
the inequality constraint in (26), which makes the proposed
approach robust-by-design when using the Neumann series
approximation for small values of R0. For large values of R0,
the two algorithms provide stable results, with the proposed
algorithm converging faster.

V. CONCLUSIONS

In this letter, we have generalized a recently proposed model
for RISs, based on mutually coupled loaded wire dipoles, to
account for the presence of ESOs, i.e., the multipath from
scattering objects. The proposed approach relies on the DDA
for scattering objects, and the interactions between the RIS
elements and the ESOs are explictly taken into account.
Based on the obtained end-to-end channel model, an efficient
algorithm for optimizing the precoding at the transmitter and
the configuration of the RIS, dubbed as SARIS, has been
proposed. Numerical results demonstrate that it outperforms
benchmark schemes available in the literature.
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