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Abstract
Modern electronic design automation (EDA) tools can handle the complexity of state‐of‐
the‐art electronic systems by decomposing them into smaller blocks or cells, introducing
different levels of abstraction and staged design flows. However, throughout each inde-
pendently optimised design step, overheads and inefficiencies can accumulate in the
resulting overall design. Performing design‐specific optimisation from a more global
viewpoint requires more time due to the larger search space but has the potential to provide
solutions with improved performanc. In this work, a fully‐automated, multi‐objective (MO)
EDA flow is introduced to address this issue. It specifically tunes drive strength mapping,
prior to physical implementation, through MO population‐based search algorithms. De-
signs are evaluated with respect to their power, performance and area (PPA). The proposed
approach is aimed at digital circuit optimisation at the block level, where it is capable of
expanding the design space and offers a set of trade‐off solutions for different case‐specific
utilisation.We have applied the proposedmulti‐objective electronic design automation flow
(MOEDA) framework to ISCAS‐85 and EPFL benchmark circuits by using a commercial
65 nm standard cell library. The experimental results demonstrate how the MOEDA flow
enhances the solutions initially generated by the standard digital flow and how simulta-
neously a significant improvement in PPA metrics is achieved.

KEYWORD S
circuit optimisation, electronic design automation, integrated circuit design, VLSI

1 | INTRODUCTION

The process of building a digital integrated circuit (IC) using
blocks or cells from a foundry is a common and mature
approach in modern digital VLSI design. Comprehensive
industry‐standard electronic design automation (EDA) flows
are available to tape out digital chips. Technology down‐scaling
enables high‐density integrated circuits, and the EDA tools,
therefore, need to handle a large quantity of cells during the
flow. To find possible optimal trade‐off solutions in regard to
power, performance and area (PPA) using appropriate library
cells while consuming less turnaround time is the challenge of
design optimisation [1].

Standard cell libraries typically contain a large number of
functions, and each function has multiple cells differing in
drive strength. This enables numerous possible combinations

of logic functions or drive strengths depending on the design
specifications and the required loads in circuit paths. The
possible design space is thus huge and complex because a
circuit might be composed of millions of gates. Different
combinations of gates (drive strengths) thus can directly
determine the PPA metrics of a circuit.

In addition, the parameter search space when building and
optimising digital ICs will be further complicated with practical
design rules and constraints in physical implementation. This
can lead to the rise of optimisation difficulty that designs must
meet multiple objectives simultaneously while satisfying all
rules and constraints at the layout level, which might be beyond
what experienced engineers can manually handle. Automatic
efficient design space exploration approaches promise to bal-
ance multiple design objectives. Researchers both from
academia and industry have focussed on investigating design
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space in the synthesis, place and route flow or up to the system
level and applying optimisation in the flow. Several techniques
have been adopted such as heuristic techniques [2], machine
learning (ML) [3, 4] and design‐parameter tuning [5–7].

Population‐basedmetaheuristic optimisation algorithms like
multi‐objective evolutionary algorithms (MOEAs) are widely‐
used existing techniques that can efficiently perform design
space exploration and ultimately find a set of Pareto‐optimised
solutions. Many publications exist on applying EAs or genetic
algorithms (GAs) to the VLSI design process from the system
level down to the physical level, which also includes optimisation
and design space exploration on individual design levels, such as
standard cell library depletion [8], macro‐cell placement opti-
misation [9], gate‐sizing‐based soft error optimisation [10],
netlist partitioning [11], circuit equivalence checking [12] and
system‐on‐chip (SoC) design space optimisation [13, 14].

However, limited research investigates how multi‐objective
(MO) optimisation techniques can fully integrate into industrial
synthesis, place and route flows, and how well MOEAs can
work in optimising designs down to physical layouts. An
automated MO optimisation flow crossing different design
levels from a global perspective is required to recover perfor-
mance which may otherwise be lost in generic overheads
spread across the hierarchical design process.

This paper proposes a population‐based evolutionary search
to maintain the optimisation in multiple objectives through
refining drive strengths of logic gates and applies it to a standard
digital flow to enhance the design solution in the loop.Due to the
scaling behaviour of the problem domain and the optimisation
algorithm, the proposed optimisation approach is best‐suited for
the MO design of IP/block‐level circuits. The main contribu-
tions of this work are summarised as follows: (1) A MO EDA
optimisation framework, fully‐compatible with an industrial
digital flow from logic synthesis to physical implementation. (2)
Global tuning of standard cell drive strength mapping using
parameterised gate‐level circuit netlists. (3) Enhanced trade‐off
design solutions with improved PPA metrics. (4) A methodol-
ogy to seed the MOEA with a solution population across
different circuit topologies for MO design space optimisation.
(5) Improved coverage of the feasible design space providing a
set of Pareto‐optimised solutions.

The paper is structured as follows: Section 2 gives an
overview of related work. Section 3 introduces the proposed
multi‐objective electronic design automation flow (MOEDA).
An experimental setup is described in Section 4. Section 5
presents the MO optimisation results of each benchmark used.
Section 6 presents the analysis of tool‐generated design space
and the MO design space exploration based on it. Section 7
provides conclusions.

2 | RELATED WORK

2.1 | Design flow modifications

Modern digital IC design flow is a mature EDA process
including various steps from register‐transfer level (RTL)

design, logic synthesis to physical implementation. As each step
introduces its own level of abstraction (e.g., from cells to
functions, from functions to blocks), any margin or error
introduced will therefore accumulate and propagate. Hence,
achieving a good solution in each step is crucial for the success
of subsequent design steps and the quality of the overall solu-
tion. In addition, the abstraction introduced in each step may
speed‐up evaluation at the cost of optimal performance.
Furthermore, standard cell libraries from a foundry do not allow
transistor resizing or cell layout modifications when they are
used in the digital flow. These limits may prevent EDA tools
from making full use of the capability of a process technology.

In previous work [15], we introduced a customised MO
automatic design flow to adjust parameterised circuit layouts.
This optimisation flow exploited a method to tune cell drive
strengths using a scripted layout template, which aimed to
achieve improved solutions in delay, energy and area.

Chinnery stated that there is a gap between full‐custom
design and standard digital flow in terms of speed and power
[16, 17] in the 2000s. Digital ICs implemented using the
standard design flow may significantly reduce design cycle time
but have lost possible optimal trade‐off solutions, which full‐
custom design can achieve. But designers in industry still
focus on synthesis‐centred methodology to save design effi-
ciency due to the today's time‐to‐market pressure.

Implementing extra custom design and optimisation tech-
niques compensating to the standard digital flow can achieve
better results [18]. Dally proposed to selectively apply a set of
custom design methods in the digital flow, including custom
floor‐planning, place and route critical signals, to achieve the
most compact layout structure [19]. To accelerate custom
design, [20] introduced an ASIC design methodology with on‐

demand library generation in the digital flow producing cells
with tailored drive strengths from a set of symbolic layouts.

2.2 | Design space exploration using
standard digital flow

Optimisation using steps of an industrial EDA flow in the loop
can be viewed as black‐box design space exploration. While
many of the algorithms used in EDA flows are proprietary and
not accessible by end users, logic synthesis and physical design
tools provide a range of parameters and optimisation options
for designers to choose from, such as logic reconstruction, area
constraints, synthesis effort level, place and route with timing
or power optimisation etc. These parameters can be tuned with
an optimisation or ML approach to fully utilise the optimisa-
tion potential that the tools are capable of.

Kahng presented in Ref. [7] that there is unpredictable
‘noisiness’ in tool‐generated solutions causing variability in the
resulting PPA metrics, and a probability theory was applied in a
fully‐automateddigital flow,which aims to determine the optimal
utilisation (parameter settings) of EDA tools to ‘de‐noise’ the
design results. In Ref. [6], an automated method to explore the
search space via tuning parameters at the synthesis step for MO
optimisation in a rank‐based iterative process is proposed.
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Running through the whole design flow leads to more
computing resource consumption. In Ref. [5], an automated
selection mechanism based on searching the design space in
parallel while pruning non‐competitive solutions at early stage
is exploited, rather than propagating through the entire design
flow. In Ref. [3], ML approaches were employed to bridge the
synthesis solution space to the physical solution space using a
weighted sum cost function for solution evaluation, which aims
to enable Pareto‐driven exploration for high speed and power
efficient adder designs. In Ref. [21], the authors propose ML‐

based methodologies to predict the actual wirelength of de-
signs for a better early‐stage performance analysis. ML‐based
approaches are efficient to search a complex design space.
However, ML techniques heavily rely on huge amounts of
training data, which is not always readily available, possibly due
to confidentiality in the IC design area. Such issues are not
present in the proposed MOEA. In EDA, the training process
of MLs, which is compute and time‐intensive, also cannot be
overlooked and puts requirements of other optimisation ap-
proaches in perspective.

2.3 | Discrete gate sizing for PPA
optimisation

Gate sizing is a crucial step for achieving timing closure and
power minimisation of ICs. It originally refers to determining
transistor widths inside of logic gates to make designs meet
constraints. Modern digital flows synthesise designs using a set
of pre‐defined cells. The optimisation problem thus is shifted
to focussing on cell selection, regarding drive strengths and
threshold voltage assignment, from discretised gate libraries.

A typical goal of gate sizing is to minimise power con-
sumption while meeting timing requirements [22]. Lagrangian
Relaxation (LR) is a recently adapted theory for gate sizing
optimisation [23–25], which moves the timing constraints to
the objective function weighted by multipliers to penalise the
overall results of the objective function. The problem is thus
simplified to find the solution of weight factors.

In regard to the optimisation objectives in these LR‐based
approaches, [23] derived LR associated with finding trade‐offs
between leakage power and circuit timing [24] expanded the
primary objective function (power minimisation) by adding the
area objective using an extra weight factor. More recently, the
authors in Ref. [25] also considered maximum load capacitance
and maximum input slew constraints for simultaneous gate
sizing and clock skew scheduling. Although LR has been
successfully applied to discrete gate‐sizing, it is typically
formulated for continuous problems, where it performs more
optimally [26, 27].

There are alternative MO gate sizing frameworks, like
geometric programming [28, 29], simulated annealing [30],
which have been investigated using weighted sum objective
functions which is a common scalarising method in MO
problems similar to the LR.

In Ref. [26], J. Hu proposed a different way to scalarise the
objectives of leakage power and slacks into a sensitivity guided

function for solution ranking (non‐dominated), and a heuristic‐
based stochastic searching method was applied.

However, limited work completed the gate sizing with
simultaneously handling all PPA metrics through industrial
design flows and libraries, all the way from synthesis and
physical implementation, to investigate how beneficial these
methods can be in practice [27]. The work in Ref. [31] stated
that significant changes in cell sizes, after applying gate sizing
optimisation, require re‐placement and re‐routing for new wire
load parasitics. Therefore, optimising designs with timely
updating corresponding layouts can make evaluations realistic
and achieved solutions feasible.

In earlier work, typical heuristic techniques like GAs were
applied to solving gate sizing problems. The methods for MO
optimisation in Refs. [32, 33] both are still based on scalarised
cost functions. More recently, gate‐sizing‐based soft error
optimisation using MOEAs is proposed in Ref. [10], but its
objectives are soft error rate, critical path delay and area.

2.4 | Summary

VLSI design is MO in nature, often with a need to compromise
between several conflicting design goals. A range of methods
are developed including design flow revamping with custom‐

design techniques, intelligent approaches for design space
exploration or dedicated design steps in EDA flows. In addi-
tion, the weighted sum function is often used in existing gate‐
sizing work as stated in previous literature. It is a popular linear
scalarising approach to decompose the complexity of MO
problems since its high search efficiency, and it is inherently
used for convex problems [34]. However, the physical char-
acteristics of IC devices imply non‐convexities and non‐

linearity [35], so the weighted sum method is not sufficient
to search for feasible Pareto‐optimal solutions [34].

Since solving the discrete gate‐sizing problem still lacks
theoretical guarantees [22] and still has been actively investi-
gating, it is worthwhile to apply global search methods to
optimise such a problem. Deterministic algorithms often used
in EDA tools can always deliver the same solution for a given
input with one execution but might be limited to reach the
possible global optimum. The MOEA, handling multiple
design parameters and objectives inter‐independently is well‐
suited to perform the global search, particularly regarding a
large, complex design space.

3 | MULTI‐OBJECTIVE ELECTRONIC
DESIGN AUTOMATION FRAMEWORK

3.1 | Preliminaries: Evolutionary algorithms

Evolutionary optimisation algorithms are a class of population‐

based metaheuristics using mechanisms inspired by biological
evolution like reproduction, genetics and natural selection. An
initial population, which consists of N individuals (candidate
solutions), is allowed to age with M evolutionary generations.
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The N is referred to the population size. The initial population
can be either initialised randomly or seeded with a set of
specific configurations. During each generation, individuals can
be modified through mutation or crossover (i.e., recombina-
tion with each other) variations on their chromosomes. All
individuals are evaluated using a fitness function at the end of
each generation. Only the fittest individuals survive the selec-
tion process for the subsequent generation. Termination of the
evolution process is triggered when specific criteria are met,
like sufficient quality of solutions or maximum number of
generations.

Applying an EA needs three main preparatory steps:

1) Definition of representation. This is the data structure that
the EA manipulates. It represents individuals as a set of
genes (i.e., a chromosome) comprising all variables and
parameters necessary to describe it.

2) Implementation of genetic operations. Mutation and
crossover are commonly applied in the evolution process.
Mutation modifies genes of individuals, and crossover
combines subsets of genes of multiple individuals to pro-
duce new ones.

3) Definition of a fitness function. This is used to calculate a
fitness score for each individual based on its performance
regarding design objectives. The fitness scores are used
during the ranking and selection process to determine
which individuals survive to form the population for the
next generation.

NSGA‐II [36], one of the most popular MOEAs, has been
adapted as the search tool in this and our related work [37].
The fast non‐dominated sorting approach and diversity pres-
ervation strategies used ensure convergence while achieving a
uniform spread of Pareto‐optimal solutions [38]. A conceptual
example is shown in Figure 1.

Non‐dominated sorting. If one individual p performs
better than another q in at least one objective while not per-
forming worse in any other objectives, then p is said to
dominate q. In non‐dominated sorting, each individual (e.g., p)
has two entities: the first is domination count, the number of
solutions that dominate p, and the second is a set of solutions
that p dominates. The individuals are grouped based on their

domination counts into multiple fronts F = (F1, …, Fi) as
shown in Figure 1a. The non‐dominated individuals which
have the lowest domination counts (i.e., zero) form the first
front F1. The individuals which have the second lowest
domination counts form the second front F2 and this will
continue to the third and following fronts until all individuals
are assigned.

Diversity Preservation. This crowding distance sorting
algorithm estimates the solution density in the vicinity of each
individual based on the Euclidean distance to their nearest
neighbours. It mainly has two steps: the first is to calculate the
distance of each individual to others and assign the value to
each individual; the second is to descendingly re‐sort (Descend‐
Sort) the F according to their distance values, so that if two
individuals belong to the same non‐dominated front, the one
that resides in the less crowded region is preferred. So as an
example shown in Figure 1b, individual p will be preserved.

3.2 | Multi‐objective (MO) electronic design
automation digital flow

The MOEDA digital flow, illustrated in Figure 2, is a fully‐
automated MO design framework compatible with an indus-
trial digital flow. The industrial flow is tapped between the logic
synthesis and the physical implementation stage, where the
MO evolutionary optimisation loop is inserted. The novelty
here lies in the additional level of abstraction that can auto-
matically fine‐tune drive strength mapping during the process
of the flow. The proposed flow involves

1) Parametric netlist. A synthesised netlist is composed of
technology‐specified logic gates and their connectivity. The
MOEA representation encodes the drive strengths of gates

F I GURE 1 The non‐dominated sorting technique is illustrated in
(a) showing the first three non‐dominated frontiers. The diversity
preservation strategy is shown in (b).

F I GURE 2 Multi‐objective electronic design automation flow
(MOEDA) digital flow. The flowchart on the left side is the standard digital
flow, and on the right side the multi‐objective (MO) extension is shown.
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into a set of genes, a string vector g (i.e., instance names),
defining each gate function and its drive strength. This
information is used to produce a parametric netlist from
the synthesis results.

2) MOEA seeding. In this work, initial populations are seeded
from the solutions obtained from the synthesis tool. This is
achieved by converting the output netlists from the stan-
dard tool to parametric netlists, allowing the MOEA to
optimise them.

3) Genetic operations. Only a mutation operator is used in this
work. The mutation operation modifies the drive strength
of components based on a given probability ρ (i.e., deter-
mining how many components out of all will be modified).
This results in a new netlist, which is then ready for physical
implementation. With the pressure to promote beneficial
mutations and discard the others, the evolutionary loop
continues to keep producing increasingly optimised solu-
tions. Crossover is not used because if two circuits with
different topology are selected, it is impossible to guarantee
the preservation of circuit topology or function, with the
direct mapping used here. In this work, focussing on
modifying the drive strengths of logic gates using mutation
only ensures that the overall function is unchanged.
Exclusively applying mutation operation here does not limit
the MOEA technique to a random search because all elite
individuals are kept and evolved to the following genera-
tions using the non‐dominated sorting approach working
on trade‐off solutions across multiple objective dimensions.

4) Evaluation. This calculates the fitness scores of each in-
dividual. MOEA‐optimised netlists are propagated to the
physical implementation step, producing layout instances
for accurate evaluation metrics. Three objectives are used
here which are worst case delay (Dwc), total consumption
power (Ptotal) and area of all logic gates (Agate), and fitness
scores are evaluated at the post‐route stage from the place
and route tool. Fitness scores are then fed back to the
MOEA for ranking and selection using non‐dominated
sorting and diversity preservation strategy of NSGA‐II in
this work.

The optimisation goal in this work is to simultaneously
minimise Dwc, Ptotal and Agate so the fitness function is

f ðgÞ ¼min
�

DwcðgÞ; PtotalðgÞ; AgateðgÞ
�

s:t: g¼
�

g1; g2;…; gi
�

; 3 ≤ gi ≤ 11; ∀gi ∈G
ð1Þ

where the chromosome vector g is the input variables to the
fitness function, which are the drive strengths of gates (gi)
selected from a standard cell library ðGÞ. There are between
three and 11 drive options available for each logic gatein G
according to the commercial library used in this work. Hence,
the average synthesised design space size of, for example, the
log2 circuit (used in the experiment) is between 310,000 and
1110,000.

Figure 3 demonstrates a population example where Pt
consists of N layout individuals (L1, L2,…, Ln). Each L has a

chromosome g comprising a set of genes (g1, g2, …, gi). The
chromosome overall represents the all logic gates of a netlist.
Each single g (Gate.Type.D) represents a logic gate (Gate)
including its properties: function type (Type) and drive strength
size (D). When mutation is triggered, the gates to be mutated
are randomly selected according to the mutation rate ρ. For
each selected gate, it will first identify its function (Gate.Type)
and then perform an online look‐up to achieve the all drive
strength options (D) of this gate function from G and finally
choose one from them to replace the previous one.

The overall optimisation process, presented in Algo-
rithm 1, is continuously producing different circuit layout in-
stances by adjusting the netlists and keeping improved
solutions generation‐by‐generation.

Algorithm 1 Adapted NSGA-II for MOEDA [36]
Procedure:NSGA-II(N,M,f(g))▹ N individua-
ls evolved M generations to solve f(g).
1: Initialise parent population Pt in size

N ▹ Seed with synthesis-optimised
solutions generated by the tool.

2: Offspring population Qt ← Mutation(Pt)
3: for t ← 1 to M do
4: for each population Rt ←Pt [ Qt in size

2N do
5: Fitness evaluation ← f(Rt) ▹ Call

fitness function f(g) for each
individual evaluation.

6: F ← Non-dominated-sorting(Rt)
7: Pt+1 ← Ø
8: i ← 1
9: while |Pt+1| + |Fi| ≤ N do
10: Crowding-Distance-Assignment(Fi)
11: Pt+1 ← Pt+1 [ Fi
12: i ← i + 1
13: end while
14: Fi ← Descend-Sort(Fi)
15: Pt+1 ← Pt+1 [ Fi[1: (N − |Pt+1|)] ▹ Less

crowded individuals from the first to
the (N − |Pt+1|)th of Fi to fill Pt+1.

16: Qt+1 ← Mutation(Pt+1)
17: end for
18: end for

F I GURE 3 A chromosome example of an individual in a population
and how each gene is mutated using a logic gate library. ‘Gate.Type’
represents the logic function of a gate, and ‘D’ represents its drive strength.
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4 | EXPERIMENT SETUP

We implement the proposed algorithm in C++ and conduct
the MOEDA design flow experiments on a 2.2 GHz Xeon E5‐

2650 CPU. The benchmark circuits from ISCAS‐85 [39] and
EPFL [40] are implemented and optimised using the Cadence®

digital flow suite. Benchmark circuits in the form of RTL de-
signs are synthesised into gate‐level netlists using GenusTM

(v17.11). These netlists are then optimised using the proposed
flow in tandem with the physical implementation tool Inno-
vusTM (v17.11) to generate the layouts from the optimised
netlists. The versions of used EDA tools represented the most
up‐to‐date flow when we performed the experiments. We also
have full optimisation licences of Cadence® digital flow. All
experiments are using a TSMC 65 nm 9‐track low‐power core
cell library (TCBN65LP) in standard threshold voltage.

4.1 | Tool environment setup

The MOEDA flow is applied to further enhance designs which
are already well‐optimised by the Cadence® tools. In order to
take advantage of the GenusTM synthesis tool as much as
possible, it is necessary to push it to the limit of what it can
achieve with the user options available. Hence, the synthesis
compile effort is set to high, and ultra optimisation is enabled.
Apart from that, each benchmark is repeatedly synthesised,
tightening its timing constraint bit by bit until it fails timing.
The last working solution before timing failure is the best in
speed, delay or slack that the tool can achieve. This solution is
then chosen as a seed for initialising the MOEA.

In the timing constraint setup, we create an ideal general
clock for all inputs and outputs, which means all paths are
clocked with two ideal flip‐flops at the beginning and the end
of each path shown in Figure 4. The benchmarks used are all
combinational circuits so that the ideal clock was not applied
with any uncertainties or transition delays.

To tighten the timing constraint, shown in Figure 4, the
output delay constraint (Tod) is gradually increased for a given
clock period (Tc). The required time (Tr) is calculated through
Equation (2) in EDA tools, so the required time (Tr) that so-
lutions need to meet is gradually becoming strict.

Tr ¼ Tc − Tod ð2Þ

The circuit path arrival time (Ta) should be less than the
required time (Tr) to meet the timing constraint. The settings
of both the synthesis step and physical implementation step are
summarised in Table 1.

The output load capacitance (set_load) is also specified in
part of the following experiments. In the physical design flow,
all die area is shaped in the ratio of 1.0, and core utilisation is
70%. Timing‐driven placement and routing and signal
integrity‐driven routing are enabled for better performance.

4.2 | Objective evaluation in tools

In this work, the evaluation regarding three objectives takes
place after place‐and‐route with InnovusTM as follows:

Dwc, worst case Ta which is the value of Tr minus the worst
negative slack amongst all path delays. This is achieved by
performing static timing analysis at the post‐route stage.

Ptotal, which is the results reported in InnovusTM by power
analysis. It includes switching power, internal power (short‐
circuit power) and leakage power. Both internal and leakage
power are calculated based on power tables provided in the
Liberty (.lib) file, which contains the specifications and char-
acterisations of the standard cells. Switching power is calcu-
lated based on the equation P = 0.5*CLV2F*A, where CL is the
output capacitive loading, V is the voltage, F is frequency and
A is the average switching activity (the value 0.2 used in this
work is the default from InnovusTM).

Agate, which is calculated by adding the areas of each single
gate used. This is directly reported by InnovusTM.

All evaluations above are performed on a single mode
under typical corner conditions (PVT: TT, 1.2 V, 25°C). The
reason why we only focus on a single corner is that the power‐
sensitive ICs often only apply the standard cell library with one
threshold voltage (Vth) (usually high Vth) to control the
overall power dissipation. Therefore, performing the optimi-
sation with just one Vth cell library will be certainly more
difficult than with multiple Vth libraries since the design space
of using single Vth is limited.

4.3 | Multi‐threads running and runtime

According to the computing resources and licences, we run all
experiments in this work parallelly using 24 threads in an
MOEDA run for evaluating individuals.

F I GURE 4 Conceptual testbench to define the timing constraints in the
electronic design automation tools. Input/output delay constraints are set by
using virtual logic parts and flip‐flops, allowing users to specify clocks and
timing requirements. The Digital Design in the middle is constrained.

TABLE 1 Tool settings for synthesis and physical implementation.

Synthesis setup Place & route setup

syn_generic_effort = high
iopt_ultra_optimisation = true

Die aspect ratio = 1.0

Core utilisation = 0.7

Timing‐driven placement = true

Timing‐driven routing = true

SI‐driven routing = true
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The MO approach requires a larger number of evaluations,
which increases the runtime of the algorithm. The majority of
runtime is spent on completing place and route in this case.
This aims to achieve accurate metrics as close as possible to
sign‐off. Therefore, the runtime is not the primary concern
here.

However, due to the inherent parallelism of the
population‐based approach, this can be overcome using a
larger number of licences and high‐performance computing
resources. So if we run the algorithm in embarrasingly parallel,
twice as many cores, half the time, scales linearly with compute
resources.

In cases where a design is fabricated in very large numbers,
the longer time invested in the optimisation of, for example,
power consumption, will also be justified.

In addition, the MOEDA algorithm feature is able to
deliver a set of trade‐off solutions spanning the feasible design
space in one go, rather than a single, case‐specific solution. In
Ref. [21], the authors proposed ML techniques to improve the
speed and accuracy of MO design space exploration problems.
We also see the most powerful solutions in the future when
combining different methods appropriately at different levels
and stages of the design hierarchy, that is, ML + EA, but this is
not the focus of this work.

5 | MULTI‐OBJECTIVE OPTIMISATION
EXPERIMENTS

5.1 | Experiments with a full foundry library

In this set of experiments, the selected three benchmarks from
ISCAS‐85 suite, in different structures and functions, are a 16‐

bit error detector/corrector (C1908), a 9‐bit ALU (C5315) and
a 16 � 16 multiplier (C6288). One large circuit used from the
EPFL benchmark suite is an arithmetic function for log2
calculation. The statistics of benchmarks are summarised in
Table 2. The reason that we only use combinational circuits is
that all large squential circuits are built from basic combina-
tional blocks, and the optimisation of a sequential circuit will
eventually collapse into the optimisation of its combinational
parts [40]. The longest path of a combinational part is thus
the most critical path of a circuit. In addition, although most
gate‐sizing related research optimises sequential circuits,
they still only manipulate on combinational components
[23, 25–27].

The proposed MOEDA flow can handle the drive strength
optimisation for all types of cells available from the TSMC
TCBN65LP library. Three different seeds are used here to
initialise the MOEDA algorithm, which are obtained from
running synthesis and implementation under three different
timing constraints for each benchmark: the first (named a later)
is the tightest constraint that can just be met, resulting in a
solution with the best delay. In the second case (named c), the
timing constraint is relaxed so that it can be easily met, allowing
the standard flow room to optimise for power and area. The
third timing constraint (named b) is chosen in the middle of the
first and second. The three different solutions obtained will be
used as seeds to perform three independent runs of the
MOEDA flow. This aims to investigate how the synthesis tool
optimises solutions in trading off PPA metrics when setting
different timing goals and how the MOEDA flow further
compensates these tool‐generated solutions.

In this work, we have set EA parameters that are widely‐
used in the MOEA literature [41]. In this set of experi-
ments, all circuits are optimised with running M = 200 gen-
erations with a population size N of 200 individuals, and
output load constraints have not been applied. We have run
preliminary experiments with NSGA‐II to confirm that reliably
converges to similar performance when run multiple times
with the same evaluation budget. Since the focus here is not on
statistical analysis of the MOEA, we run the algorithm once
for each benchmark to manage runtime. The number of syn-
thesised gates and the number of genes are the same shown in
Table 3 because all gates are encoded into chromosomes so
that the MOEDA flow is optimising the drive strength of all
gates. In terms of the number of synthesised gates in each
circuit, it is much less than the number in original benchmarks
shown in Table 2. It is the reason that the TSMC library has a
large range of complex logic cells such as AOI (AND‐OR‐

Inverter), IINR (NOR with 2 Inverted Inputs), full adders etc.,
which are already comprised of few basic simple logic gates like
XOR, NAND, OR etc. In contrast, original benchmarks used
basic simple generic gates. So this makes the synthesis tool to
automatically merge the simple gates into complex ones for the
total transistor count and physical area reduction, to finally
reduce the number of gates.

This may compact the design space and reduce the search
complexity but still increase the difficulty of PPA extra opti-
misation. In real‐world libraries, complex logic cells have less
options of drive strengths (normally no more than five) due to
the layout design complexity, and a large number of complex
cells are used by tools evidenced by the significant decreasing
in gate numbers. This may block the optimisation results for
achieving huge improvements.

Under such difficulties, the MOEDA‐optimised results are
still promising compared to the Syn‐Opt. Solutions which are
obtained by running the synthesis tool with ‘try hard’ mode,
Multi‐objective electronic design automation flow solutions,
demonstrate significant improvements in most test cases (up to
4.9% in Dwc, 6.6% in Ptotal and 4.5% in Agate) as shown in
Table 3. The reported improvement of an objective does not
(or slightly) sacrifice the metrics of other objectives. Although

TABLE 2 Statistics of benchmarks.

Test case No. Inputs No. Outputs No. Gates

C1908 33 25 880

C5315 178 123 2307

C6288 32 32 2406

log2 32 32 32,060
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numbers might be small, even 1% or 2% of improvements
could be helpful for designs under tight constraints and
particularly when they just fail timing [27].

In Figure 5, the final generation of each circuit with three
independent seeding runs is shown, plotting ‘Dwc versus Ptotal’
(upper row), ‘Dwc versus Agate’ (lower row) and the

TABLE 3 Multi‐objective electronic design automation flow design flow with using the full commercial library.

Units: Dwc [ns] Ptotal [uW] Agate [um2] N = 200, M = 200, ρ = 1%, set_load = 0

Test case Clock (Tc) (No.) Tr

No. Syn gates Syn‐opt. MOEDA solution

No. Genes Solution Best Dwc (Δ%) Best Ptotal (Δ%) Best Agate (Δ%)

C1908 250 MHz (a) 0.60 ns 299 Dwc: 0.580 0.569 (1.9%) 0.580 0.580

299 Ptotal: 222.9 221.9 211.0 (5.3%) 211.0

Agate: 1452.96 1451.88 1388.16 1388.16 (4.5%)

(b) 0.76 ns 178 Dwc: 0.697 0.687 (1.4%) 0.688 0.696

178 Ptotal: 111.1 107.9 107.5 (3.2%) 107.8

Agate: 698.04 682.92 682.2 678.96 (2.7%)

(c) 1.50 ns 105 Dwc: 1.263 1.234 (2.3%) 1.249 1.251

105 Ptotal: 42.1 39.69 39.32 (6.6%) 39.51

Agate: 344.52 344.52 343.08 342.72 (0.5%)

C5315 250 MHz (a) 0.74 ns 750 Dwc: 0.723 0.706 (2.4%) 0.715 0.72

750 Ptotal: 472.9 470.5 458.9 (3.0%) 461.2

Agate: 2762.64 2755.44 2729.16 2724.48 (1.4%)

(b) 0.88 ns 516 Dwc: 0.824 0.805 (2.3%) 0.819 0.823

516 Ptotal: 310.9 309.0 304.6 (2.0%) 305.7

Agate: 1873.44 1869.48 1859.76 1852.56 (1.1%)

(c) 1.50 ns 400 Dwc: 1.305 1.241 (4.9%) 1.289 1.302

400 Ptotal: 225.2 222.3 217.4 (3.5%) 220

Agate: 1346.76 1343.52 1343.16 1336.68 (0.8%)

C6288 250 MHz (a) 2.34 ns 2178 Dwc: 2.225 2.204 (0.9%) 2.206 2.204

2178 Ptotal: 5509 5495 5481 (0.5%) 5495

Agate: 9382.32 9364.68 9377.28 9364.68 (0.2%)

(b) 2.90 ns 1555 Dwc: 2.726 2.673 (1.9%) 2.708 2.708

1555 Ptotal: 3829 3785 3732 (2.5%) 3732

Agate: 6363.00 6331.32 6278.76 6278.76 (1.3%)

(c) 4.00 ns 1140 Dwc: 3.591 3.528 (1.8%) 3.59 3.585

1140 Ptotal: 2824 2821 2754 (2.5%) 2777

Agate: 4194.00 4191.84 4183.92 4137.48 (1.3%)

log2 40 MHz (a) 16.4 ns 11,838 Dwc: 16.355 15.839 (3.2%) 16.24 16.355

11,838 Ptotal: 19610 19,090 19070 (2.8%) 19,610

Agate: 38547.0 38728.1 (−0.5%) 38797.6 (−0.6%) 38547.0 (0.0%)

(b) 17.9 ns 11,272 Dwc: 17.751 17.364(2.2%) 17.72 17.751

11,272 Ptotal: 18000 18,000 17890 (0.6%) 18,000

Agate: 36623.9 36840.6 (−0.6%) 36726.8 (−0.3%) 36623.9 (0.0%)

(c) 18.8 ns 11,119 Dwc: 18.435 17.795 (3.5%) 18.357 18.435

11,119 Ptotal: 17590 17,510 17390 (1.1%) 17,590

Agate: 35999.6 36227.5 (−0.6%) 36203.0 (−0.5%) 35999.6 (0.0%)
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corresponding Syn‐Opt. Reference solutions. The three clusters
(a, b and c) correspond to the three seed timing constraints,
listed in Table 3. In all cases, the MOEDA produces a wide
range of useful trade‐off solutions, with improved delay,
reduced power consumption or area, within the boundaries of
the given seed (Syn_Opt. solution) topology.

From these plots, a number of solutions are improved
regarding all objectives in four test circuits. The MOEDA‐

generated Pareto‐driven clusters of C1908, C5315 and C6288
are smooth with good solution spreads, whereas the log2 cir-
cuit's is not. This is because the used algorithm in MOEDA
flow needs to handle the increased size of design, where larger
EA parameters (the number of generations M and population
size N) are required for producing Pareto‐optimised results.
The improved performance of log2 circuit is still promising
and considerable in power and delay objectives under such an
optimisation run with using the same EA parameters as other
smaller test cases used. This implies that the standard digital
flow is also struggling to produce well trade‐off solutions for a
relatively larger design so that the MOEDA flow has more
optimisation room to get improved solutions run with rela-
tively less iterations and a smaller population.

From smaller cases of C1908, C5315 and C6288, the tool's
performance can be further observed when different con-
straints are applied. For timing settings corresponding to
clusters a and b, the tool is operating under tight timing re-
quirements, causing the synthesis tool to spend the most effort
on timing closure and less on power and area, so the MOEDA
flow does not achieve significant improvements on delay (but
much more trade‐offs with less power and area). However, for
relative relaxed timing settings corresponding to clusters c, the
tool does not make the solution trade‐off on timing too much
but spend more efforts on power and area, where the
MOEDA flow enhances the solution particularly in timing.
This can conclude that the MOEDA flow demonstrates the

capability of balancing these three objectives to a greater
extend while the tools have not.

Furthermore, as the circuit size increasing, the improve-
ment of area is hard to be achieved (particularly in log2). This
explicitly shows that area optimisation needs to include tuning
the circuit structure (reducing gate count) instead of only
focussing on drive strength refinement. But it is still worth-
while to take the area as one of the objectives in the optimi-
sation, which otherwise may have much degradation on the
area when optimising other objectives.

5.2 | Comparative analysis with stochastic
search

To demonstrate the optimisation efficiency of the MOEA used
in the proposed MOEDA flow, we performed a comparative
study between the MOEDA search and stochastic search. The
selected test case is C5315‐(a) from Section 5.1, a 9‐bit ALU
with a tight timing constraint (a). For the MOEDA search, we
initially run the NSGA‐II using a 1% mutation rate with a 200‐

individual population size for 200 generations, so 40,000
evaluations are generated in total. The MOEDA optimisation
results (red cluster) shown in Figure 6 are seeded with the tool‐
optimised Syn_Opt solution (the black circle).

Two stochastic search experiments are then run here for
comparison. The first one, referred to a local stochastic search
(grey cluster shown in Figure 6), is to randomly produce 40,000
individuals seeding with the same Syn_Opt solution, and each
of them is achieved by randomly mutating the chromosome
using the same probability (1%). The second one is completely
randomised results referred to a global stochastic search, which
produces 40,000 individuals seeding with the same Syn_Opt
solution, but all genes (i.e., drive strengths of logic gates) of
each individual are modified (100% mutation rate). The results

F I GURE 5 Multi‐objective electronic design automation flow (MOEDA) flow optimisation results using full commercial standard cell library for C1908,
C5315, C6288 and log2 circuits.
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of global stochastic search are the blue cluster shown in
Figure 6.

Based on the observations made from these plots, it
demonstrates that the NSGA‐II algorithm used in the
MOEDA flow has superior optimisation performance when
compared to the stochastic search. Since the focus of this work
is not on investigating which MOEA is the best to achieve the
optimum results in VLSI design optimisation, only NSGA‐II is
used here for experiments.

5.3 | Discussion

The runtime for the largest case optimisation (log2. a) needs
138 h. Although the proposed optimisation method is at the
cost of longer computing time, this investment will be
worthwhile when considering the enhancements in delay and
savings in power consumption or area that could not otherwise
be achieved, particularly for feasible circuit solutions that are
produced in large numbers.

In addition, optimising circuits for a given timing
constraint with one circuit topology solution (single seed) is
not capable enough to offer a larger design space when circuit
structures are changing. Therefore, the next section will
investigate how running synthesis multiple times can be har-
nessed to expand, access and explore the design space with
respect to different circuit topologies.

6 | MULTI‐OBJECTIVE DESIGN SPACE
EXPLORATION

6.1 | Optimisation using multiple seed
designs

Instead of seeding the initial population by using a single
synthesis‐optimised solution for a separate MOEDA run, this
section investigates how the proposed algorithm can explore
the design space simultaneously by using a set of multiple
different seeds. The seeds are a range of different solutions
generated using the standard digital flow under a number of
different timing constraints.

The methodology to obtain different seeds from the
standard design tools is the same as that in Section 5.1.
However, in this case, a more fine‐grained range of timing
constraints are applied in 100 increments from minimum (a
constraint that the tool can easily meet) to maximum (solu-
tions start to fail timing) in order to investigate what design
space coverage they can achieve. Each benchmark has been
synthesised once for each timing constraint setting to generate
the 100 solutions for seeding. Table 4 summarises timing
constraint settings of each test case, including the number of
synthesised gate from minimum to maximum. Different
output load scenarios, including loading with drive strength
D1 and D8, are applied to the outputs of all test cases under
the same set of timing constraints. The output load values
(D1 and D8) are specified as the input pin capacitance of
inverters with drive strength D1 and D8 from the TSMC cell
library. The reason of selecting D1 and D8 as output loads is
that D1 load is a nominal scenario in practice, and D8 load
with larger capacitance is the middle sized one from all
available inverters.

The first column of Figures 7 and 8 illustrates the standard
tool's design space for each benchmark circuit under D1 and
D8 output load scenarios. Their respective optimised design
space from the MOEDA flow is shown in the second and
third columns of Figures 7 and 8. From ‘Standard Flow’
columns, all cross markers represent tool‐generated solutions
in ‘Dwc versus Ptotal’ and their face colours correspond to the
colour bar relating to the area objective Agate ranging from
large (red) to small (blue). Solutions additionally marked with
squares have failed to meet timing constraints. The red line
highlights the Syn‐Opt. ‘elite’ solution front, which is calcu-
lated using the non‐dominated sorting approach in three di-
mensions in regard to Dwc, Ptotal and Agate. All solutions in the
first domination rank are connected with a line to highlight
the ‘Syn‐Frontier’ more clearly. The Syn‐Frontiers shown in
the figures are projections from the 3D objective space onto
the 2D plots.

Looking at the design space of the standard flow, it can be
observed that the 16‐bit error detector/corrector (C1908), the
9‐bit ALU (C5315) and even the log2 circuit can be synthesised
and optimised well by the tool, as the set of solutions forms a

F I GURE 6 multi‐objective electronic design automation flow search
compared to stochastic search, demonstrating the superior optimisation
efficiency of evolutionary algorithms.

TABLE 4 Timing constraints of each benchmark.

Test case Clock (Tc)
Tr (Increment
factor)

Set
load

# Syn gates
# genes

C1908 250 MHz 1.50 − 0.51 ns D1 105–445

(4 ns) (0.01 ns) D8 105–468

C5315 250 MHz 1.50 − 0.51 ns D1 396–1323

(4 ns) (0.01 ns) D8 401–1287

C6288 250 MHz 4.00 − 2.02 ns D1 1105–3208

(4 ns) (0.02 ns) D8 1123–3222

log2 40 MHz 25.00 − 15.10 ns D1 10801–12561

(25 ns) (0.10 ns) D8 10797–12555
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smooth Pareto frontiers. However, the 16 � 16 multiplier
(C6288), which is a highly structured circuit using a number of
adders, yields a less regular frontier with more clustered

solutions. This indicates that the synthesis tool struggles to
effectively trade off multiple objectives when optimising a
complex design with a relatively fixed circuit topology.

F I GURE 7 Design space optimisation results under the drive strength D1 and D8 output load scenarios for C1908 16‐bit error detector/corrector and
C5315 9‐bit ALU. N = 500, M = 100, ρ = 1%, set_load information is labelled in the title at the top of each plot.
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6.2 | Squeeze design space for PPA

The design space comprising the 100 seed solutions, in
different circuit topologies, is the baseline for the MOEDA to

perform optimisation on. All 100 seed solutions are loaded
into the initial population of the MOEDA flow and optimised
generation by generation. All test cases are optimised over
100 generations using a population size of 500, that is, the

F I GURE 8 Design space optimisation results under the drive strength D1 and D8 output load scenarios for C6288 16 � 16 multiplier and log2 calculation
circuit. N = 500, M = 100, ρ = 1%, set_load information is labelled in the title at the top of each plot. The optimised design space of log2 with D1 and D8 loads
is shown with zoom‐in views to present the improvements clearly.

CAO ET AL. - 191

 1
7

5
1

8
6

1
x

, 2
0

2
3

, 3
-4

, D
o

w
n

lo
ad

ed
 fro

m
 h

ttp
s://ietresearch

.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
4

9
/cd

t2
.1

2
0

6
2

 b
y

 T
est, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

0
/0

8
/2

0
2

3
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n
s L

icen
se



initial population comprises five copies of each seed circuit.
The plots in ‘MOEDA Flow’ columns of Figures 7 and 8
show the improved solution space, plotting ‘Dwc versus Ptotal’
and ‘Dwc versus Agate’. The red line shows the Syn‐Frontiers
from the baseline design space. All those seed solutions that
have survived until the last generation, although with modi-
fied drive strengths, are marked with a red cross. The solu-
tions shown as blue crosses are those produced by the
MOEDA flow comprising of all individuals of the final
generation.

The results confirm that the MOEDA flow can push the
baseline frontier further to extend the design space of all test
cases in all three objectives, through different circuit topol-
ogies. For the largest circuit log2, the optimised design space is
shown with additional zoom‐in views to present the quantified
improvements which are still considerable. Furthermore, the
relative improvement looks marginal from the plots due to the
wide axis range, but the total absolute values for saved power
and improved delay are significant.

In the case of circuit C1908, the optimised solutions form a
smooth Pareto frontier, whereas there are some gaps in the
optimised design space of C5315, log2 and particularly of
C6288. The gaps are artefacts from the baseline design space
due to limitations of the tool's optimiser and properties of the
circuit. Although the proposed MOEDA flow could not fully
bridge these large gaps, it has been achieved that the optimised
design space covers the baseline design space and beyond more
uniformly. This makes better choices for design‐specific using
as a richer set of solutions is available.

Only about one‐fourth of the initial seeds survive until the
final generation in design C1908, C5315 and C6288, and about
half of the initial seeds survive in log2 circuit. Most of the
surviving seeds are positioned on the Syn‐Frontier, while
others have been discarded in the evolution process. This in-
dicates that there is ‘noisiness’ inside of standard flows/tools
and not all solutions generated by tools are presumably opti-
mised, which might lose some well trade‐off solutions. This
normally requires iterations with applying modifications in the
design flow achieved by engineers with custom design efforts.
The MOEDA can auto‐iterate designs throughout the whole
flow for better trade‐offs in PPA metrics.

To demonstrate the search efficiency of the MOEDA,
Figures 7 and 8 also include the MOEDA‐optimised non‐

dominated solutions covering all three objectives to show
the relative position of the optimised and the initial tool‐
generated ones. The results clearly show that the optimised
front dominates the initial tool‐generated one. Table 5 further
summarises the quantified quality of the Pareto solution sets
compared to the total number of designs explored. The
number of Pareto solutions presented in the table is the total
non‐dominated solutions of the final MOEDA generation in
each test case. The total number of evaluations is 50,000 which
is the same for all cases. The search efficiency is then obtained
by calculating the ratio of the Pareto solutions in the final
generation to the total number of evaluations. In log2 circuit,
the efficiency is slightly lower than for other designs due to its
larger size.

6.3 | Discussion

The runtime of largest case (log2.D8) is 162 h. The MOEDA
flow needs more computing resources due to the continuous
generation of design layouts. This aims for accurate and real‐
world evaluation. It is possible to speed up the flow through
not updating the physical layout at every iteration of the
MOEA or straightforwardly making design evaluations at
earlier design stage without place and route, but what we are
investigating in this work is whether the proposed MOEDA
flow has generic optimisation capability in an industrial envi-
ronment, and the MOEDA flow has feasibly improved the
performance of block circuit instances used in this work. With
regard to scalability, in terms of design size, an iterative critical
path optimisation for extreme‐large designs (e.g., millions of
gates) using MOEDA flow is also our work in progress, with
the potential aim to solve timing violations faster and still
without increasing the power or area.

The MOEDA flow achieves significant improvements on
PPA over the standard design tool's solutions across the entire
design space with different circuit topologies. However,
although the proposed method is capable of exploiting design
opportunities to refine technology mapping by adjusting drive
strengths at the gate level, circuit topology optimisation is
currently not yet included. This current limitation is likely the
reason that design space gaps cannot be fully closed, which
would provide the best trade‐off design choices. This is
particularly visible in the results for C6288, due to its fixed
topology. From these results it can be envisaged that including
topology modification in our approach could enable further
design optimisation opportunities, particularly in the case of
complex circuits with rigid structure.

7 | CONCLUSIONS

This paper proposes a fully‐automated MO EDA flow
(MOEDA) extension to enhance the current industry‐standard
synthesis and physical implementation flow, primarily suited

TABLE 5 Search efficiency of multi‐objective electronic design
automation flow.

Test case Set load

No. Pareto
solutions
in final
generation

Total no.
evaluations

Search
efficiency (%)

C1908 D1 304 50,000 0.61%

D8 307 0.61%

C5315 D1 254 50,000 0.51%

D8 250 0.50%

C6288 D1 257 50,000 0.51%

D8 259 0.52%

log2 D1 150 50,000 0.30%

D8 166 0.33%
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for IP/block level designs. The MOEDA flow is fully
compatible with commercial design tools and specifically op-
timises drive strength of gates during technology mapping in
such a way that the subsequent physical implementation stage
can achieve designs with better PPA metrics. The proposed
method has been successfully applied to the optimisation of
designs from ISCAS‐85 and EPFL benchmark suite using the
TSMC 65 nm low power standard cell library.

Experimental results show that the proposedMOEDA flow
has operated design optimisation gaining significant improve-
ments on PPA over the standard tool's solutions. It can be
concluded that optimising technology mapping to refine drive
strength selection of cells is beneficial to improving PPA of
circuits. This has not only been shown for a single solution but
across the entire design space with various circuit topologies.

From a designer's point of view, the MO optimisation
approach has the added benefit of producing a set of best
trade‐off solutions which are as uniformly as possible distrib-
uted. This provides designers with a choice and allows to select
designs with the most appropriate objective trade‐off for
different applications.
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