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Risk prediction and stratification of short-term and long-term postoperative outcomes
are growing in importance and scope of application in everyday clinical practice. The
surgical community increasingly acknowledges the benefit in utilizing risk prediction
models to facilitate comparative audits and communication of risks, shared decision-
making and informed consent before surgery. Amongst multiple patient outcomes targeted
by surgical prognostic models, postoperative complications and prognosis of survival in
neoplastic disease are of utmost importance.

Regression-based methods have long been used for developing accurate and inter-
pretable risk prediction models, many of which have established a place in patient manage-
ment. The traditional culture of statistical modelling requires defining model predictors
using subject matter knowledge and pre-specifying an equation formula (such as the logis-
tic model or the Cox proportional hazards model) that dictates how the predictor variables
(patient-related features) affect the predicted risk. However, model- or theory-driven ap-
proaches may not always be feasible or desirable, and more flexible machine learning (ML)
approaches may be preferred.

The ML approach generally downplays the role of context and prior knowledge by
relying heavily on the data alone. A typical ML approach uses a computationally intensive
algorithm to “learn” from the data in a non-parametric manner, so that it lets the data find
the best fitting formula for linking the predictors with the outcome risk. A special form of
ML, artificial intelligence (AI), continues iteratively to learn and train (update) the model
when it senses further improvement is possible. The ML/AI algorithmic framework may
thus range from supervised learning requiring involvement from the analyst to entirely
unsupervised learning that automatically identifies patterns in the data without human
input. Unsupervised learning is commonly implemented as neural networks (also known
as deep learning), which can be considered as a nonlinear extension of logistic regression. In
general, a neural network algorithm uses the predictor variables to construct new variables
called “neurons” in a number of “hidden” layers. The first hidden layer is a weighted
linear combination of the original predictors and the subsequent hidden layers are linear
combinations of the neurons of the previous layers. Non-linearity can be introduced by
means of a function such as the logit function. The neural network learns iteratively from
datasets; the errors from the initial prediction for the patients are fed back into the algorithm
and layer weights are recalculated to minimize the error the next time predictions are made.
This approach is more flexible in recognizing patterns in the data compared to a standard
logistic regression model, but the iterative learning process needs to stop before it produces
overly trained (overfitted) predictions that are tailored too much to the peculiarities of the
training data and may not generalize for future patients. To mitigate the risks of overfitting,
methods that penalize (shrink) the regression weights are frequently employed, such as
ridge regression or least absolute shrinkage and selection (LASSO) regression [1].

Several ML techniques have been employed to predict postoperative mortality and
morbidity outcomes, with authors often testing multiple options in efforts to find the one
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best performing. Recently, Cho et al. used data from two large and diverse cohorts of
patients undergoing general surgeries to develop ML models with various techniques, in-
cluding deep neural networks, extreme gradient boosting (XGB), LASSO logistic regression
and random forest (RF) algorithm [2]. Biomarkers available immediately after surgery were
used as predictors in an effort to identify derangements from the normal postoperative
course on time. RF was superior in predicting 30-day mortality, with the area under the re-
ceiver operating characteristic curve (AUROC) equal to 0.82 in the validation dataset. Apart
from discriminatory ability, the calibration was also examined by the Hosmer–Lemeshow
test and by plotting calibration curves [2]. Large databases of non-cardiac surgery patients
were utilized to derive ML models for 30-day mortality, using XGB, RF, LASSO regression
and naïve Bayes approaches [3]. The XGB model presented high AUROC values of 0.96 and
0.93 in internal and external validation, respectively, and outperformed a traditional logistic
regression model. Calibration curves together with a value of the Integrated Calibration
Index of 0.0017 in external validation indicated a very small weighted average difference
between observed and predicted probabilities [3].

AI-based approaches were recently applied to predict survival probabilities for multi-
ple types of malignancies. A convolutional neural network (CNN) was used in Japan to
derive a prognostic model for recurrence following hepatectomy for solitary hepatocellular
carcinoma [4]. More than 500 patients were enrolled and CT images were used as a pre-
dictor along with several clinical variables. The model had moderate discrimination, with
the CT image being the most discriminative predictor for differentiating between high-
and low-risk patients [4]. Liu et al. sought to find combinations of clinical variables with
treatment modalities that may lead to improved survival in patients with advanced liver
cell cancer [5]. The resultant decision tree used three preoperative variables, the alpha feto-
protein, the glutamic oxaloacetic transaminase and the total bilirubin, to classify patients
in different survival groups. The technique also provided insight into which treatment
options may result in better survival in each group [5]. Similarly, an ML-based model
identified patients who would benefit from upfront surgery or neoadjuvant chemotherapy
followed by surgery for liver metastases in terms of survival [6]. A RF algorithm was used
to identify the best possible treatment for each patient, and classification and regression
trees (CARTs) were employed to identify key preoperative factors affecting allocation to
surgery or chemotherapy [6]. CARTs were also used in a cohort of patients with intra-
hepatic cholangiocarcinoma undergoing hepatectomy to classify them in risk groups for
recurrence-free survival and overall survival [7]. Simple biomarkers, including CRP and
CA 19-9, were used to stratify the patients into three groups and significant differences were
noted between the groups in Kaplan–Meier curves, for recurrence-free and overall survival.
Using similar curves plotted with the use of the AJCC staging system, a lower Akaike
Information Criterion (AIC), implying a better overall model fit and a higher c-index, were
noted with the classification built by machine learning [7]. Lin et al. used a random survival
forest (RSF), a variant of the RF algorithm designed to handle right-censored survival times,
to derive predictions of cancer-specific survival for postoperative pancreatic cancer patients
after applying the LASSO method to select predictor variables [8]. The RSF algorithm
performed favorably compared to a Cox proportional hazards model and a neural network
in terms of discrimination and calibration abilities, as well as in decision curve analysis.
That work enables future external validation studies by making the source code of the RSF
algorithm openly available [8].

The number of publications involving AI-based prognostic models will likely increase
in the coming years, due to increased computing power and storage, advances in AI-
assisted research and interest in incorporating these tools into every aspect of modern
healthcare. Surgeons wishing to use AI-based tools for risk predictions in their practice
should be aware of both their strengths and limitations. ML algorithms have appeared
with surprisingly satisfactory predictive performances in many studies, but head-to-head
comparisons against traditional regression models have generally shown no significant
predictive advantage, if proper methods are applied in both approaches. Moreover, ML
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methods are not immune to small sample sizes and actually may require truly “big data”
to ensure stable predictions [9]. Inadequate sample sizes may have led to overly optimistic
performance measures in many studies, as the issue of overfitting may not have been
properly addressed. Another key issue with ML-based prediction models is transparency
and interpretability by clinicians. The benefit from ML-based approaches is in their ability
to analyze large quantities of high-dimensional, diverse and unstructured data that would
be extremely difficult to analyze with conventional statistics. However, this advantage can
come at the expense of complexity, leading to black box models that are difficult to present
in forms understandable by the practicing surgeon. This is in contrast with regression-
based models and decision trees, which are inherently interpretable approaches. The lack
of transparency and interpretability in AI-based models may additionally hamper the
conduct of external validation studies to assess their generalizability in diverse patient
populations. A framework for structured quality assessment of AI-based prediction models
is still missing, and new research in this domain is needed for improving the quality
of published research and ensuring the safe and responsible application of surgical risk
prediction models in healthcare [10].
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