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We study the non-perturbative evolution of inflationary fluctuations during preheating using fully
non-linear general-relativistic field-theory simulations. We choose a single-field inflationary model
that is consistent with observational constraints and start the simulations at the end of inflation with
fluctuations both in the field and its conjugate momentum. Gravity enhances the growth of density
perturbations, which then collapse and virialize, forming long-lived stable oscillon-like stars that
reach compactnesses C ≡ GM/R ∼ 10−3 − 10−2. We find that C increases for larger field models,
until it peaks due to the interplay between the overdensity growth and Hubble expansion rates.
Whilst gravitational effects can play an important role in the formation of compact oscillons during
preheating, the objects are unlikely to collapse into primordial black holes without an additional
enhancement of the initial inflationary fluctuations.

I. INTRODUCTION

Cosmic inflation [1–4] is a period of accelerated ex-
pansion of the very early Universe that solves several
puzzles in the standard hot Big Bang theory and pro-
vides an elegant mechanism for the production of the
anisotropies observed in the Cosmic Microwave Back-
ground (CMB)[5]. In the simplest models, the acceler-
ated expansion is driven by a single slowly-rolling scalar
field ϕ, called the inflaton. Current constraints [6] favour
plateau-like potentials that open-up away from the min-
imum where inflation ends, such as the so-called α-
attractor models [7, 8]

V (ϕ) =
m2µ2

2

(
1− eϕ/µ

)2

, (1)

where µ can vary over a wide range of scales and param-
eterises whether the potential is small field (µ ≪ MPl)
or large field (µ ∼ MPl). One poorly understood aspect
of the early Universe is the period that connects infla-
tion to Big Bang Nucleosynthesis (BBN). In particular,
the details of reheating [9, 10], the mechanism by which
the energy density stored in the inflaton is transferred
into the Standard Model (SM) sector, are unclear. The
simplest channel is through the perturbative decay of the
inflaton ϕ to SM particle(s) ψ, e.g. mediated by ∝ ϕψ̄ψ
couplings in the Lagrangian.

It is possible that some additional non-perturbative
dynamics take place between the end of inflation and re-
heating, featuring resonances that lead to exponentially
growing solutions for ϕ. This process, known as preheat-
ing [11], has been extensively studied using both analyt-
ical and numerical techniques [12–33]. These large fluc-
tuations in the field can collapse into stable scalar field
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FIG. 1. Compactness C = GM/R of oscillons formed during
inflationary preheating for different scales of the potential µ
and initial amplitude fluctuations ⟨δϕ2⟩. The interplay be-
tween the overdensity growth and Hubble rate results in a
maximum compactness for each combination (µ, ⟨δϕ2⟩).

configurations known as oscillons1 [34–46] and source a
stochastic background of gravitational waves (GWs) [47–
63], which could be probed by future detectors targeting
the MHz−GHz frequency band [64]. Given that the
Universe is opaque to light before the release of the CMB
photons, GWs might be the only way to directly probe
such early epochs.
Our goal in this paper is to study to what extent grav-

ity plays a role in the formation of (compact) oscillons
during preheating, and to quantify the maximum com-

1 We will collectively use the term oscillon to denote all real scalar
field pseudo-stable compact objects.
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FIG. 2. Non-perturbative evolution of inflationary fluctuations during preheating. We plot the spatial slices of the density
contrast δ ≡ ρ/ρ̄ − 1 in our simulation coordinates at three e-foldings ln(a) = {0, 0.8, 1.0}, where a is the spatially-averaged
scale factor. Overdensities grow rapidly and collapse into stable oscillon-like objects. Movie: https://youtu.be/vTl9agMfPB0.

pactness that can be achieved. Our results are sum-
marised in Fig. 1, where we see that the interplay be-
tween the overdensity growth and Hubble rate results in
a maximum compactness for each combination (µ, ⟨δϕ2⟩).
We focus on what is (arguably) the minimal case – when
the only field involved is the inflaton – and investigate
scales of the potential µ, with self-consistent fluctuations
δϕ(t,x) in both the field and momentum that recover val-
ues of the spectral index and tensor-to-scalar ratio that
are allowed by current Planck bounds [6]2.

Preheating has been extensively studied using lattice
field theory simulations [65–68] that evolve the scalar
field equations on a homogeneous Friedmann-Lemâıtre-
Robertson-Walker (FLRW) background, and neglect the
backreaction of inhomogeneities on the local spacetime
metric. These effects become important when overden-
sities grow large enough for gravity to be of the same
order as self interactions in the field. As a first approx-
imation, this can be accounted for by evolving a New-
tonian potential with a Poisson equation sourced by the
energy density [69, 70]. Recently, a few works [71–73] in-
cluded the effects of the gravitational backreaction at the
fully non-linear level of general relativity showing inter-
esting phenomenological effects, that deviated from the
evolution in a spatially constant expanding metric back-
ground.

In this paper we use numerical relativity to study a
simple inflationary model with consistent fluctuations
in both the scalar field and conjugate momentum at

2 Preheating could also involve an extra field that is not responsible
for inflation, e.g. a string modulus [52], in which case parameters
are not dictated by the observational constraints on inflation.

the end of inflation. In particular, we aim to quantify
the compactnesses of the oscillons that are formed for
different scales µ of the potential. For larger µ, gravity
enhances the growth of small overdensities during
inflationary preheating, which then decouple from the
Hubble flow, collapse and virialize, forming stable
long-lived oscillon-like stars that reach compactnesses
C ≡ GM/R ∼ 10−3 − 10−2. We find that C increases
with the potential scale µ, until it reaches a maximum
value due to a balance between the overdensity growth
rate and dilution due to the universe’s expansion rate.
This maximum compactness depends on the initial
amplitude of the fluctuations and for ⟨δϕ2⟩ ≈ 10−8M2

Pl
is max(C) ≈ 10−2. These compactnesses result in a
significant backreaction on the local spacetime met-
ric that may have implications for the amplitude of
the gravitational-wave background but they are insuf-
ficient to collapse the objects into primordial black holes.

The paper is structured as follows: in Sec. II we de-
scribe the key points of the methods used to set up and
simulate the post-inflationary spacetime and track the
evolution of perturbations. In Sec. III we characterise
the non-linear growth of the overdensities for different
initial amplitudes ⟨δϕ2⟩ and potential scales µ. In Sec.
IV we describe their endpoint as stable gravitationally
bound objects and comment on their masses, radii and
compactnesses. We conclude and suggest future direc-
tions in Sec. V. Additional details of the numerics and
testing are included in the Appendices A, B and C.

https://youtu.be/vTl9agMfPB0
https://youtu.be/vTl9agMfPB0
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II. SIMULATING INFLATIONARY
PREHEATING

The simplest single-field inflationary mechanism can
be generated via the action

S =

∫
d4x

√−g
(
M2

Pl

2
R− 1

2
∇µϕ∇µϕ− V (ϕ)

)
, (2)

where MPl =
√

1/8πG is the reduced Planck mass. The
evolution of the scalar field is given by the Klein-Gordon
equation

∇µ∇µϕ− V ′(ϕ) = 0 , (3)

where V (ϕ) is the inflationary potential. The preheating
mechanism can be understood by splitting the inflaton
field in a homogeneous component and a perturbation,
ϕ(t,x) = ϕ̄(t) + δϕ(t,x). While the field is oscillating
around the minimum of its potential, the equation of mo-
tion for the perturbation mode δϕk(t) (in Fourier space)
becomes

δϕ̈k +
(
k2 + V ′′ (ϕ(t))

)
δϕk(t) = 0 , (4)

where the prime and dot denote differentiation with re-
spect to the field ϕ and time, respectively. Here k is the
wavemode considered and k = |k|. Depending on the
wavemode and details of V (ϕ), the equations of motion
can feature resonances that lead to exponentially growing
solutions for δϕ:

• If ϕ̄(t) is a periodic function of time, V (ϕ) can act as
driving force leading to a phenomenon called paramet-
ric resonance.

• If ϕ̄(t) repeatedly probes regions of the scalar potential
where V ′′ < 0, perturbations can grow exponentially
via tachyonic resonance.

In this work we will study these resonances within the
inflaton field for the α-attractor model in Eqn. (1), where
µ can vary over a wide range of scales3 and parameterises
whether the potential is small or large field, that is, how
far in field space is the inflationary region from the re-
heating minimum, compared to MPl. Near the reheating
minimum

V (ϕ) ≈ m2ϕ2

2

(
1 +

ϕ

µ
+

7

12

ϕ2

µ2

)
+O(ϕ5) . (5)

The average field value ϕ̄(t) oscillates around the
minimum at ϕ = 0, giving rise to a matter dominated
era. The odd powers of ϕ in the expansion in Eqn. (5)
ensure that the potential is shallower than quadratic

3 The Starobinsky model is a particular example where the scale
µ and the Planck scale share a common origin µ =

√
3/2MPl.

for ϕ < 0, so that ϕ particles feel an attractive force
when the average field value is probing that region of
the potential. Such an attractive force can stabilise
overdensities in the field against dispersion, allowing the
existence of oscillon-like solutions.

To describe the metric sector, we decompose the four-
dimensional line element into the 3+1D ADM form

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt), (6)

where α and βi are the lapse and shift gauge func-
tions, and γij is the three-dimensional spatial metric.
We also evolve the extrinsic curvature tensor Kij =
∂tγij + 2D(iβj), which can be decomposed into a trace

K = γijKij and a traceless part Aij . In numerical rela-
tivity simulations it is common to decompose the spatial
metric γij = χ−1γ̃ij with a conformally related metric
γ̃ij that has unit determinant γ̃ = 1, whilst the trace-
less part of the extrinsic curvature is similarly rescaled
as Ãij = χAij . In the FLRW limit, the conformal fac-
tor is χ−1 = a(t)2 and the expansion K is related to
the Hubble parameter as K = −3H. In addition, the
traceless part of the extrinsic curvature tensor contains
details about the energy density in gravitational waves4

as ρGW ∝ ÃijÃ
ij .

A. Initial conditions

We study different α-attractor models parameterised
by the scale µ. We set the homogeneous value of the
scalar field prior to inflation ϕinf = ϕ(tinf) by requiring
inflation to last N = ln(a) ≈ 50 e-folds. The mass m is
fixed such that fluctuations are consistent with the scalar
power spectrum observed in the CMB [6]

∆2
R =

H2
inf

8π2M2
Plϵ(ϕinf)

≈ 2× 10−9 , (7)

where R is the curvature perturbation. We solve the
ODE for the homogeneous equations of motion until the
end of inflation (which corresponds to the beginning of
reheating treh), see Appendix A for more details. We

identify ϕreh = ϕ(treh) and ϕ̇reh = ϕ̇(treh), which we use
as the background on which to construct the inhomoge-
neous initial conditions for our scalar field and momen-
tum

ϕ(x) = ϕreh + δϕ(x) ϕ̇(x) = ϕ̇reh + δϕ̇(x) . (8)

Assuming a random Gaussian field, the spectrum of sub-
horizon scalar perturbations at the end of inflation is de-

4 This is equivalent to the energy density of the Isaacson energy
momentum tensor t00 = ⟨ḣµν ḣµν⟩/32πG when the perturbations
are small and one can average over one period in spacetime [74].
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termined by quantum vacuum fluctuations, i.e.

P(k) =
λ

2a2rehω
2
k

, (9)

⟨δϕkδϕk′⟩ = (2π)3P(k)δ(k− k′) , (10)

where ωk =
√
k2 + a2rehV

′′(ϕreh), λ = 1 and we choose
the initial scale factor areh = a(treh) = 1. The spectrum
in Eq. (9) determines the variance of the field perturba-
tions through the relation

⟨δϕ2⟩ =
∫
d log k

k3

2π2
P(k) , (11)

which will be one of the quantities varied in our simu-
lation by considering the three cases λ ∈ {1, 102, 104}.
Note that we are considering modes that are sub-horizon
at the end of inflation and never exited the horizon
during the inflationary stage. These modes correspond
to physical scales that are not constrained by CMB
observations, but one may expect they have standard
quantum vacuum fluctuation amplitudes. See Ref. [67]
and Appendix A for more details about the lattice
implementation.

The fluctuations source both the energy and momen-
tum density components of the stress-energy tensor mea-
sured by the normal observers

ρ =
1

2
(∂iϕ)

2 +
1

2
ϕ̇2 + V (ϕ) , (12)

Si = −ϕ̇∂iϕ . (13)

We solve both the Hamiltonian and momentum con-
straints to construct valid initial data for the scalar and
gravitational sectors. We formulate the coupled system
of non-linear elliptic equations using the CTTK method
[75], which assumes an initially conformally flat metric
γ̃ij = δij and chooses an initial conformal (or equiva-
lently, scale) factor. In this case we have chosen χ = 1
initially (equivalent to choosing a(treh) = 1 in the homo-
geneous case). The method then solves the constraints as
an algebraic equation5 and a Poisson-like equation that
in the case in which initially χ = 1, reduce to

K2 =
3ρ

M2
Pl

+
3

2
AijA

ij , (14)

δjk∂kAij =
2

3
∂iK +

Si

M2
Pl

. (15)

In some previous works ϕ̇ is set to zero in order to simplify
the solution of the constraints. We find that including

5 Note that in the absence of inhomogeneities, this Hamiltonian
constraint in the CTTK method reduces to the usual form of the
Friedmann constraint H2 = ρ/3M2

Pl, since K = −3H.

the homogeneous component of the scalar field momen-
tum ϕ̇reh is crucial, because it allows the field to explore
the tachyonic part of the potential during the first few
oscillations, which significantly enhances the growth rate
of overdensities. However, including fluctuations in the
conjugate momenta of the field perturbations – whilst
technically correct – does not appear to significantly im-
pact the results.

B. Evolution

We evolve the BSSN formulation of the Einstein equa-
tions of general relativity [76–78] using the publicly avail-
able numerical relativity (NR) code grchombo [79, 80],
together with a modified version of the integrated moving
puncture gauge [71, 72, 81, 82]

∂tα =
α

2

(
K −K

)
+ βi∂iα , (16)

where K is the proper-volume-averaged trace of the ex-
trinsic curvature tensor. This gauge choice approxi-
mately ensures that simulation time is identified with the
cosmic time coordinate rather than conformal time. For
the latter choice (which has been used in previous works
on early universe phenomena e.g. [83–86]), the lapse
function grows with the expansion, and as a result the
timescale of the oscillation of the field around the reheat-
ing minimum becomes under resolved as dτ = αdt. Note
that in simulations of strongly inhomogeneous space-
times, gauge dependence of the physical quantities mea-
sured is practically unavoidable, so we need to take care
in interpreting our results.

We consider the growth of density perturbations for
a range of potential scales µ summarised in table I. We
choose the size of our numerical domain to be approxi-
mately the Hubble length L ≈ H(treh)

−1, which is mostly
determined by the homogeneous components of the initial
conditions. This choice introduces an infrared cutoff scale
kIR = 2π/L of the modes that can be studied. Likewise,
we enforce an ultraviolet cutoff kUV = 4kIR to ensure
that modes in the lattice have good spatial resolution.
We fix L = 64m−1 for all simulations6, which includes a
range of modes k/m ⊂ {0.1, 0.4} that experience para-
metric resonance. We evolve the perturbations until we
see that either they collapse into compact objects and
stabilise, or the growth saturates without forming com-
pact structures.

6 This value corresponds to the largest Hubble length of the stud-
ied models (see table I), and is thus the most conservative choice
to avoid artificial boundary effects (that is, imposing unwanted
periodicity on scales that are in causal contact.
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C. Diagnostics

We focus on diagnostics that give us information about
the local behaviour of the perturbations, such as the local
density contrast

δc ≡
ρc
ρ̄

− 1 , (17)

where ρc is the central value of the overdensities and ρ̄
is the mean energy density across the box, which ap-
proximately tracks the evolution of a matter-dominated
spacetime ρ̄ ∼ a−3 due to the harmonic oscillations in
the averaged field. Note that whilst δc can be calculated
locally it does have a dependence on the global and local
slicing (gauge choice) of the spacetime, since ρ = α2T 00

is defined to be the value measured by the normal ob-
servers to the spatial slice (not in any rest frame of the
fluid), and the averaging of ρ̄ across the slice also de-
pends on the gauge. Whilst one might worry that local
measures are more sensitive to gauge dependence, partic-
ularly in highly dynamical regions, we have nevertheless
found these useful in understanding the behaviour of the
locally collapsing regions, especially once they decouple
from the Hubble flow. Globally averaged measures do not
distinguish between regions that are expanding with the
Hubble flow and regions that are decoupled and form sta-
ble gravitationally bound objects, where the behaviour
differs significantly.

Another local quantity that we will track is the com-
pactness of the formed gravitating objects

C ≡ GM

R
, (18)

where the limit C = 1/2 corresponds to black holes. Di-
rectly measuring the mass and radius of the compact ob-
jects is non trivial in our inhomogeneous simulations. We
search for maximum densities ρcosc to identify the oscil-
lons and define their surface as the region for which the
energy density is 5% of the central value ρcosc. We then
calculate their mass and proper volume as the following
integrals over regions Ω = {xi : ρ/ρcosc > 5%}

M =

∫
Ω

d3x
√
γ ρ , (19)

V =

∫
Ω

d3x
√
γ , (20)

where
√
γ corresponds to the volume factor of the spa-

tial metric which can be written solely in terms of the
conformal factor

√
γ = χ−3/2. We then approximate the

radius of the oscillon in terms of its proper volume (in
the t = constant spatial hypersurface of the simulation)
as R = 3V 1/3/4π.

III. GROWTH OF OVERDENSITIES

In this section we describe the evolution of the den-
sity contrast over time, as shown in the top panel of Fig.

3, where we plot δc (a(t)) versus time (as measured by
the scale factor a, which is obtained from the proper vol-
ume averaged conformal factor). We parameterise their
initial growth as δ ∝ a(t)σ, where σ is a numerical fac-
tor that we fit from our simulations. In the cases stud-
ied, the fast growth of perturbations with σ ≫ 1 is due
to a combination of the parametric and tachyonic res-
onances together with the gravitational interaction. In
Fig. B.1 in Appendix B, we compare the results – using
the same set of parameters – from the numerical rela-
tivity simulations to those that evolve the initial per-
turbations on a simple spatially-averaged FLRW back-
ground. For ⟨δϕ2⟩ ≈ 10−12M2

Pl, the disagreement beyond
µ ⪆ 0.06MPl is large enough for FLRW background to
not capture the collapse of overdensities.
We find that the rate of growth of perturbations σ dur-

ing the resonant phase most strongly depends on the scale
of the potential µ, whilst it seems largely insensitive to
the initial amplitude of the perturbations δreh = δc(treh).
The values of σ are larger for smaller field models (smaller
µ), meaning the resonance is stronger and overdensities
grow faster. We can relate this to smaller field models
exploring more of the tachyonic (concave) part of the po-
tential after inflation.
We parameterize the evolution of the central values of

the overdensity ρc as

ρc (a(t)) =
ρ̄reh
a3

(δreha
σ + 1) . (21)

The central density decays as it expands with the back-
ground until it decouples from the Hubble flow at the
turn-around time adec = a(tdec) and starts to collapse.
We can estimate adec as when dρc/da = 0, which yields

ln adec =
1

σ

[
ln

(
3

σ − 3

)
− ln δreh

]
. (22)

These two terms show that adec decreases for larger ini-
tial perturbations δreh and faster growth rates (larger σ),
confirming the results in the bottom panel of Fig. 3. Note
that we only expect this estimate to be accurate in the
case in which the overdensities decouple from the Hubble
flow before the growth rate σ changes. As the universe
expands, the Hubble friction damps the amplitude of the
homogeneous oscillations, reducing the resonance. This
drives σ to smaller values, and thus Eqn. (22) only pro-
vides a lower bound for adec.
After decoupling, overdensities follow their own

field and gravitational dynamics, with a characteristic
timescale for the collapse that seems to be mostly depen-
dent on ρcdec = ρc(adec) via the free-fall timescale. During
the collapse, the central densities ρc bounce back to larger
values until the overdensities virialize and saturate at a
roughly constant density ρcosc = ρc(aosc), forming stable
scalar field configurations – oscillons. This can be seen
in Fig. 3, with the central density oscillating about some
roughly constant value and giving rise to a density con-
trast scaling as δc ∝ a3 due to the matter dominated
average density decay ρ̄ ∝ a−3. It should be noted that,



6

−2

0

2

4
lo

g(
δ c

)
µ = 0.04MPl µ = 0.05MPl µ = 0.06MPl

0 1 2
ln(a)

−5

−4

−3

−2

lo
g(
ρ
c/
m

2 M
2 P
l)

〈δφ2〉 ≈ 10−8M 2
Pl

〈δφ2〉 ≈ 10−10M 2
Pl

〈δφ2〉 ≈ 10−12M 2
Pl

0 1 2 3
ln(a)

0 1 2 3
ln(a)

FIG. 3. Growth of the maximum density contrast δc ≡ ρc/ρ̄ − 1 (top panel) and evolution of central densities ρc (bottom
panel) for a range of potential scales µ and initial amplitude of fluctuations ⟨δϕ2⟩. We see that the initial rate of growth of
perturbations δc is largely insensitive to the initial amplitude of the fluctuations ⟨δϕ2⟩, with a stronger dependence on the scale
of the potential µ. The central value of the overdensities decays until they decouple and turn-around. When they collapse and
virialize, oscillons form and the central densities stay at roughly constant values ρcosc. These final central densities are mainly
determined by the initial average densities ρ̄reh and the growth rate of perturbations during parameteric resonance.

while in this paper we have collectively denoted pseudo-
stable real scalar field configuration with the term os-
cillon, when the pseudo-stability is due to gravitational
effects, these configurations are more properly known as
oscillatons [87–101].

IV. OSCILLON FORMATION

We expect that the interplay between the overdensity
growth rate and the Hubble expansion rate dictates the
final values of the central densities ρcosc, which in turn
determine the properties of the oscillons that are formed.
These depend on two factors:

(i) The central density decays until decoupling at adec:
The smaller adec, the larger ρcosc.

(ii) Initially, the central density is approximately ρ̄reh:
The larger ρ̄reh, the larger ρcosc.

We can check (i) by looking at the results for a given
model µ, as those share the same initial density ρ̄reh.
The bottom panels of Fig. 3 confirm that overdensities
that decouple the earlier (smaller adec) have larger final
densities ρcosc.

Checking (ii) is more difficult as both ρ̄reh and adec
play a role in a non-trivial manner. Larger field models
start from larger initial densities ρ̄reh, but experience
weaker resonances with slower growth rates σ, resulting
in longer decoupling times adec. There is therefore
competition between these effects, such that larger
initial ρ̄reh can balance the extra decay from larger adec,

resulting in ρcosc growing with µ.

Let us assume that the oscillon central density ρcosc is
approximately determined by the densities at decoupling
ρcdec, which scale via Eqns. (21-22) as

ρcosc ∝ ρcdec = ρ̄rehδ
1−x
reh x

−x , (23)

where we have defined x ≡ (σ − 3)/σ for convenience.
Since ρcosc ∝ ρ̄reh, then ρcosc ∝ m2µ2. The function
δ1−x
reh x

−x has a strong dependence on σ, which itself is
very sensitive to the scale of the inflationary model µ.
We therefore expect that ρcosc will grow with µ if σ ≫ 3,
whereas the expansion will overtake (and ρcosc decay with
µ) as σ → 3. Based on these arguments, the oscillon
density ρcosc should peak at some value (µ, ⟨δϕ2⟩). We
confirm this in the top panel of Fig. 4, where an initially
increasing trend in the density can be observed up to a
critical (µ, ⟨δϕ2⟩), after which ρcosc decays.
Once the location of final central densities ρcosc is iden-

tified, we can compute other oscillon properties such as
their mass and volume using Eqns. (19-20). The mass is
related to the final central density of the oscillon, which
depends on the details of the formation process as dis-
cussed above. It therefore also shows a peak for each
model value µ, as shown in the middle panel of Fig. 4.
The radius R, on the other hand, is mainly determined by
the massm around the reheating minimum asR ≈ 2π/m,
bottom panel of Fig. 4. Hence the peak in the resulting
compactnesses shown in Fig. 1. The values and error
bars in Figs. 1 and 4 are estimated by computing the
average and standard deviation of these properties over
the last 0.2 e-folds of the simulation.
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FIG. 4. Central energy densities, masses and radii of oscillons
versus scale of the potential µ, for different initial fluctuations
⟨δϕ2⟩. The central densities and masses increase until they
peak at a critical µ, whilst the radii remain at a roughly con-
stant value R ≈ 2π/m. The values and error bars are esti-
mated by computing the average and standard deviation of
the evolution of ρcosc, M and R over the last 0.2 e-foldings of
the simulation.

V. CONCLUSIONS

In this work we have shown that perturbations from
the most minimal preheating scenario – that of resonance
in a single field inflationary model that is consistent with
current CMB observations – can grow and collapse to
form oscillons with compactnesses C ∼ O(10−3). In par-
ticular, we have observed that the interplay between the
overdensity growth and Hubble expansion rates results
in a maximum compactness that depends on ⟨δϕ2⟩ and
can reach C ≈ 10−2 in the regime we have studied.

This is not sufficient to drive the oscillons to collapse to
black holes, and it seems likely that increasing the initial
amplitudes ⟨δϕ2⟩ is the only way one could reach black
hole formation7. However, that would take us outside of
the values expected from our minimal inflationary pre-
heating scenario as δreh → 1. Hence, we conclude that
inflationary preheating is not enough to form primordial
black holes without an additional enhancement mecha-
nism of the perturbations.

Constraints on the scalar power spectrum fix the mass
of the field m ≈ 10−5MPl and set the size and mass of
these relics to be R ≈ 10−33 km and M ≈ 10−3 g. They
are not suitable dark matter candidates as they will de-
cay into standard model particles if they have additional
couplings8. However, they can leave an observational im-
print on the stochastic background of gravitational waves
during their formation process and subsequent evolution.
We have observed that this can appear rather chaotic,
with some oscillons fragmenting into multiple objects.
Naively, we expect the radiation from such processes to
increase with the compactness of oscillons, as was ob-
served in the context of oscillaton collisions [109], but we
leave a systematic study of the precise gravitational-wave
spectrum for future work.
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Appendix A: Numerical methodology

Here we describe the methodology used to obtain ini-
tial conditions that are consistent with constraints on in-
flation from the CMB. In the absence of inhomogeneities,
we take the spacetime to be well described by the (flat)
FLRW metric

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2) , (A1)

where a(t) is the scale factor that evolves as

ä

a
= − 1

3M2
Pl

(
1

2
ϕ̇2 − V (ϕ)

)
. (A2)

The inflaton is driven by the Klein-Gordon equation

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , (A3)

where H ≡ ȧ/a is the Hubble parameter. We choose the
initial value of the scalar field ϕinf = ϕ(tinf) by requiring
inflation to last N ≈ 50 e-folds, see Fig. A.1. We solve
the FLRW evolution equations and define the end of in-
flation (and beginning of reheating) when ä(treh) = 0. At
this point, we extract the values of the scalar field and
momentum ϕreh = ϕ(treh) and ϕ̇reh = ϕ̇(treh), which will
be used as the homogeneous components of the initial
conditions in our simulations. We set the size of our nu-
merical domain to be approximately the Hubble length
at the end of inflation, L ≈ H(treh)

−1. We factor out
the mass m in Eqn. (1) and measure everything in units
of m, which is fixed by constraints on the scalar power
spectrum.

To obtain the perturbations we follow closely the meth-
ods of [67]. Assuming a random Gaussian field, the spec-
trum of sub-horizon scalar perturbations at the end of
inflation is determined by quantum vacuum fluctuations

P(k) =
λ

2a2rehω
2
k

, (A4)

⟨δϕkδϕk′⟩ = (2π)3P(k)δ(k− k′) , (A5)

where ωk =
√
k2 + a2rehV

′′(ϕreh) and we will take the
initial scale factor to be areh = 1. The spectrum in
Eq. (A4) determines the variance of the field perturba-
tions through the relation

⟨δϕ2⟩ =
∫
d log k

k3

2π2
P(k) , (A6)

where we study the impact of varying λ by a few orders
of magnitude.

In order to mimic such a spectrum in the simula-
tions, we consider a box of physical size L and N grid-
points in each of the three spatial directions, without
adaptive mesh refinement initially. Then, the grid con-
tains N3 points labeled as n = (n1, n2, n3), with ni =
{0, . . . , N − 1} (i = 1, 2, 3). The physical distance be-
tween adjacent gridpoints is ∆x = L/N . The reciprocal

1× 10−13

V (φ)

0

−2

−4

φ
[M

P
l]

×10−1

φcc

φreh

φinf

0 20 40

ln(a)

52.5 53.0

tachyonic resonance

FIG. A.1. Solution of the homogeneous case that is used to
set the initial values of the field in our simulations. The left
panel shows the potential (seen ‘on its side’) and the right
panel shows the evolution of the field over time within it.
Our simulations start at ϕreh, where inflation ends and the
reheating phase begins. The shape of the potential changes
from concave to convex at ϕcc = −µ ln 2. In the inset panel
we see that the initial oscillations in the field probe the tachy-
onic part of the potential (shaded in red). At later times the
resonance is purely parametric.

lattice is then given by ñ = (ñ1, ñ2, ñ3), where ñi =
{−N/2 + 1,−N/2, . . . ,−1, 0, 1, . . . , N/2 − 1, N/2} (i =
1, 2, 3), so that the wavenumber corresponding to each
point on the reciprocal lattice is k(ñ) = 2πñ/(N∆x).
Note that every continuous function f(x) becomes a func-
tion of n on the grid, and can be Fourier transformed as
f(n) = 1

N3

∑
ñ e

−i 2π
N n·ñf(ñ). We mimic the spectrum in

Eq. (A4), building the pointwise perturbations at each
point in the reciprocal lattice as in [67]

δϕ(ñ) =
1√
2

(
|δϕ(l)(ñ)|eiθ(l)(ñ) + |δϕ(r)(ñ)|eiθ(r)(ñ)

)
mδϕ̇(ñ) =

1

areh

[
iωk√
2

(
|δϕ(l)(ñ)|eiθ(l)(ñ) − |δϕ(r)(ñ)|eiθ(r)(ñ)

)]
−H δϕ(ñ) .

We draw θ(l)(ñ) and θ(r)(ñ) from a uniform distribu-
tion in [0, 2π), and we generate the amplitudes δϕ(l)(ñ),
and δϕ(r)(ñ) from a Rayleigh distribution with expected
square amplitude given by

|δϕ(ñ)|2 =

(
N

∆x

)3
λ

2a2reh
√

(k(ñ))2 + a2rehV
′′(ϕreh)

.

(A7)
Note that the maximum wavenumber that we are

able to capture is π/∆x, corresponding to the minimum
wavelength equal to the distance between two adjacent
gridpoints in the box. However, in order to avoid in-



11
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ln(a)

−2

0
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lo
g(
δ)
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FIG. B.1. Comparison of the growth of perturbations evolved
using NR and a spatially-averaged FLRW evolution code for
µ = 0.01MPl (top) and µ = 0.05MPl, with initial ⟨δϕ2⟩ ≈
10−12. The dynamics of overdensities for smaller field models
is well-captured with FLRW, whereas for µ ⪆ 0.05MPl over-
densities do not collapse and form oscillons.

cluding these underresolved modes in the initial condi-
tions, we mask the spectrum with an ultraviolet cutoff
kUV = 4kIR = 4(2π/L). Including frequencies that ex-
perience parametric resonance is clearly important, but
provided such modes are included, the precise value of the
cut off does not lead to significantly different behaviour.

We then evolve the BSSN system of equations [76–
78] together with the Einstein-Klein-Gordon equation (3)
decomposed into two first order equations, as

∂tϕ =αΠ+ βi∂iϕ , (A8)

∂tΠ =βi∂iΠ+ αγij(∂i∂jϕ+ ∂iϕ∂jα)

+ α

(
KΠ− γijΓk

ij∂kϕ− dV

dϕ

)
. (A9)

Appendix B: Impact of backreaction:
Numerical relativity versus FLRW

Comparing the evolution in FLRW simulations and our
fully non linear simulations is inherently difficult due to
the potential for gauge ambiguities (in particular, the ab-
sence of a well defined background evolution for the inho-
mogeneous case). However, to get an idea of the potential
differences, we adapt grchombo in a simple manner to
evolve the scalar field equations of motion (A8-A9) in
a spatially-constant FLRW background. We evolve cos-
mic time slices, enforcing isotropy and homogeneity in
the metric sector and fixing the gauge variables α = 1
and βi = 0. The BSSN equations of motion are then

0.0

0.5

1.0

1.5

ρ
[m

2 M
2 P
l]

×10−4

−2 −1 0 1 2

x [1/am]

−8

−6

−4

lo
g(

er
ro

r[
ρ

])

medium – low

high – medium

2nd to 4th order

FIG. C.1. Convergence test of an oscillon density profile (top
panel) formed for µ = 0.1MPl and ⟨δϕ2⟩ ≈ 10−8, consistent
with 2nd to 4th order convergence, as expected. The error
in the bottom panel is calculated by subtracting the density
profiles ρ for low (N = 64), medium (N = 128) and high (N =
256) resolutions, with 5 levels of adaptive mesh refinement.

simplified to

∂tχ =
2

3
χK (B1)

∂tK =
1

3
K2 +

1

2M2
Pl

(ρ̄+ S̄) , (B2)

where ρ̄ and S̄ correspond to the volume-averaged energy
density and trace of the spatial stress components of the
stress-energy tensor. We initially set χ = 1 and enforce
that the trace of the extrinsic curvature tensor satisfies
the Hamiltonian (Friedmann) constraint K2 = 3ρ̄/M2

Pl.
Noting that χ = a−2, K = −3H and S̄ = 3p, these
two equations are equivalent to solving H = ȧ/a and

Ḣ = −H2 − (ρ̄+ S̄)/6M2
Pl, respectively, which in turn is

the usual Friedmann equation ä/a = −(ρ̄+ 3p)/6M2
Pl.

Results for two scales µ of the potential are shown in
Fig. B.1. In agreement with previous studies [71], we
find that for smaller field models the dynamics can be
well captured by a spatially-averaged FLRW code. For
larger field models, on the other hand, taking into ac-
count gravitational effects can be crucial for the collapse
of overdensities and formation of oscillons.

Appendix C: Summary of simulations and
convergence tests

A summary table of the simulation parameters is given
in table I. We have chosen a box size of length L = 64m−1

for all simulations, which would correspond to the largest
Hubble length studied, corresponding to µ = 0.04MPl.
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µ [MPl] m [MPl] ϕinf [MPl] Hinf [m] ϕreh [MPl] ϕ̇reh [mMPl] Hreh [m] H−1
reh [m−1]

0.1 1.50501×10−5 −9.2125×10−1 4.08208×10−2 −1.32906×10−1 5.19917×10−2 3.67637×10−2 27.2008

0.09 1.50536×10−5 −8.4807×10−1 3.67394×10−2 −1.21893×10−1 4.72136×10−2 3.33851×10−2 29.9535

0.08 1.50571×10−5 −7.7266×10−1 3.26578×10−2 −1.10495×10−1 4.2354×10−2 2.99488×10−2 33.3903

0.07 1.50604×10−5 −6.94755×10−1 2.8576×10−2 −9.86792×10−2 3.74094×10−2 2.64525×10−2 37.8037

0.06 1.50636×10−5 −6.13988×10−1 2.4494×10−2 −8.64102×10−2 3.23761×10−2 2.28934×10−2 43.6807

0.05 1.50666×10−5 −5.29877×10−1 2.04119×10−2 −7.36454×10−2 2.72499×10−2 1.92686×10−2 51.898

0.04 1.50696×10−5 −4.41745×10−1 1.63297×10−2 −6.03334×10−2 2.20256×10−2 1.55744×10−2 64.2078

TABLE I. Summary of simulations: We freely choose the scale of the potential µ, whilst the mass of the field m is fixed
by the scalar index measurements from the Planck Collaboration [6]. The values of the scalar field ϕinf and Hubble parameter
Hinf at the beginning of inflation would result in ln(a) ≈ 50 e-folds until the start of reheating with ϕreh and Hreh. We choose
the size of the simulation box to be of order the Hubble length at the end of inflation L = O(H−1

reh) = 64m−1.

For convergence testing, our high, medium and low reso-
lution runs have N3 = {2563, 1283, 643} number of coarse
grid points respectively, in addition to 5 level of refine-
ments. A convergence test of one of the oscillon density

profiles (for the largest µ = 0.1MPl case) is shown in Fig.
C.1. This shows clear 2nd to 4th order convergence, as
expected from the finite difference schemes in the initial
condition and evolution codes.
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