
Using a Parallel Ensemble of Sequence-Based Selection
Hyper-Heuristics for Electric Bus Scheduling

Darren M. Chitty
Faculty of Environment, Science and

Economy
University of Exeter, UK

darrenchitty@googlemail.com

James Lewis
City Science
Exeter, UK

james.lewis@cityscience.com

Ed Keedwell
Faculty of Environment, Science and

Economy
University of Exeter, UK

E.C.Keedwell@exeter.ac.uk

ABSTRACT
A Sequence-based Selection Hyper-Heuristic (SSHH) utilises a hid-
denMarkovmodel (HMM) to generate sequences of low-level heuris-
tics to apply to a given problem. The HMM represents learnt prob-
abilistic relationships in transitioning from one heuristic to the
next for generating good sequences. However, a single HMM will
only represent one learnt behaviour pattern which may not be
ideal. Furthermore, using a single HMM to generate sequences is
sequential in manner but most processors are parallel in nature.
Consequently, this paper proposes that the effectiveness and speed
of SSHH can be improved by using multiple SSHH, an ensemble.
These will be able to operate in parallel exploiting multi-core pro-
cessor resources facilitating faster optimisation. Two methods of
parallel ensemble SSHH are investigated, sharing the best found so-
lution amongst SSHH instantiations or combining HMM informa-
tion between SSHH models. The effectiveness of the methods are
assessed using a real-world electric bus scheduling optimisation
problem. Sharing best found solutions between ensembles of SSHH
models that have differing sequence behaviours significantly im-
proved upon sequential SSHH results with much lower run-times.

CCS CONCEPTS
• Computing methodologies → Search methodologies.

KEYWORDS
hyper-heuristics, parallelism, ensemble optimisation

1 INTRODUCTION
For complex combinatorial optimisation problems there are a num-
ber of approaches that can be used, simple heuristics, local search
methods or meta-heuristics such as a Genetic Algorithm (GA) [16].
A commonmethodology is a GA combined with local search. How-
ever, in recent years a technique that can be used to solve problems
from multiple domains without tailoring is a hyper-heuristics ap-
proach. Indeed, a hyper-heuristic can be used to select low-level
heuristics to apply to a solution to improve it or even configure
meta-heuristics themselves. Hyper-heuristics can be relatively sim-
ple in nature employing a simple random or greedy method or
more advanced such as generating sequences of low-level heuris-
tics to apply sequentially such as Sequence-Based Selection Hyper-
Heuristics (SSHH) [18].

ISBN 979-8-4007-0120-7/23/07
https://doi.org/10.1145/3583133.3596340

Hyper-heuristics such as SSHH typically operate in a sequen-
tial manner but most processors are parallel in nature with multi-
ple cores such that algorithms should equally be parallel in nature.
This is a key advantage for meta-heuristics many of which are
population-based and hence easily parallelisable increasing their
speed and ability to optimise large problems. Therefore, it can be
concluded that hyper-heuristics themselves also need to be paral-
lel in operation to fully exploit multi-core processor resources. Of
further consideration is that SSHH uses a singular hidden Markov
model (HMM) to generate sequences which is a single learntmodel.
However, a set or ensemble of HMMs may provide improved accu-
racy in terms of optimisation and an easy route to parallelisation.
Consequently, this paper proposes to assess a parallel ensemble
of SSHH models using a large real-world electric bus scheduling
problem. The paper is laid out as follows: Section 2 profiles hyper-
heuristics and associated parallel implementations. Section 3 intro-
duces SSHH and two parallel ensemble models that could be used
to improve both the speed and the accuracy of the optimisation.
Section 4 uses a real-world electric bus scheduling problem to test
and compare SSHH and the two parallel methodologies. Finally
Section 5 summarises the work and future research directions.

2 BACKGROUND AND RELATEDWORK
2.1 Hyper-Heuristics
An approach that has recently gained ground in combinatorial op-
timisation is a hyper-heuristic methodology [7]. Whereas meta-
heuristics search within the space of problem solutions, a hyper-
heuristic searcheswithin the space of heuristics that operatewithin
the solution space to find an improvement [3]. The hyper-heuristic
does not use problem domain knowledge within its operation. The
low-level heuristics utilised range from methods that are simple
such as swapping two vertices in a solution to performing a full lo-
cal search methodology such as 2-opt [8]. Hyper-heuristics can be
generally categorised into two groups, selection hyper-heuristics
which apply a low-level heuristic at each iteration and generational
hyper-heuristics which create novel low-level heuristics.

Cowling et al. [7] considered a range of simple hyper-heuristic
methods to select heuristics. For instance, Simple Random (SR)which
uses uniform probability of selection, RandomDescent (RD) which
is similar to SR but continues to use the same heuristic until no
longer successful, and two permutation methods Random Permu-
tation and Random Permutation Descent which iterate through
a random permutation of heuristics similar to SR and RD respec-
tively. A Greedy method (GR) applies all low-level heuristics and
accepts the heuristic with the best result.



GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Darren M. Chitty, James Lewis, and Ed Keedwell

More advanced hyper-heuristics consider the application of se-
quences of heuristics. In this instancemore than one low level heuris-
tic is applied sequentially to the current solution before testing the
resulting solution for an improvement. A sequence can be benefi-
cial as a number of changes might need to be applied to break a
solution out of a local optima. Iterated Local Search (ILS) [20] was
an early attempt to create sequences of low-level mutation heuris-
tics and then rebuild with local search heuristics [21]. AdapHH is
a state of the art hyper-heuristic which considered the pairings
of destructive and constructive low-level heuristics including GA
crossover operators [23]. An Evolutionary Programming Hyper-
heuristic (EPH) attempts a population-basedmethodologywhereby
a population of low-level heuristic sequences is maintained using
diversification and intensification operations [22]. An alternative
hyper-heuristicmethodology for generating sequences uses aMonte
Carlo tree search whereby the low-level heuristics are represented
as a tree and searched to find the best sequence to apply to the cur-
rent solution [29]. The Sequence-based Selection Hyper-Heuristic
(SSHH) generates sequences of heuristics by attempting to learn
relationships between heuristics. [18]. This is achieved by using a
hidden Markov model (HMM) to represent the probability of us-
ing one heuristic after another has been previously applied. Each
heuristic use is considered as a state and the HMMmodels the tran-
sitional probabilities of moving from one state to the next. The suc-
cess of a heuristic sequence is measured and if an improvement
is found, the success count for each transition in the sequence is
incremented. In terms of the sequence length, a second HMM is
used after each heuristic to determine if the sequence should end
or continue. Drake et. al provide a more complete recent overview
of advances in selection hyper-heuristics [11].

2.2 Parallel Hyper-Heuristics
Parallel multi-core architectures are now commonplace, modern
CPUs have eight to 32 processor cores available for use. Further-
more, a high performance processing architecture known as aGraph-
ical Process Unit (GPU) is commonly found in computing plat-
forms which have thousands of processor cores available. There-
fore, computationally heavy tasks such combinatorial optimisation
need tomake use of these parallel architectures. Indeed, most meta-
heuristics have long exploited parallel processor resources often
due to their population-based nature being easy to parallelise and
achieve significant speedups. For instance, a GA can be implemented
in parallel simply by having each processor core evaluate a popula-
tionmember [14]. Or alternatively, a number of GA sub-populations
can be implemented in parallel with migration occurring between
these parallel populations termed an island model [32]. GPU im-
plementations of GAs have also been implemented, Vidal and Alba
[34] implemented a cellular GA on a GPU reporting a speedup of
up to 25 fold when using very large population sizes in the order of
25,000. The island model for a GA can also be implemented upon
a GPU with Pospichal et al. [26] implementing an island GA on
a GPU with asynchronous migration reporting speedups of up to
8000 fold for numerical optimisation

Consequently, hyper-heuristics should also operate in a paral-
lel manner to achieve best performance for combinatorial optimi-
sation problems but are generally sequential in nature. However,

a limited form of hyper-heuristic parallelism has been achieved
albeit in a master-slave manner. The hyper-heuristic acts a con-
troller or master selecting parallel meta-heuristics to be used and
selecting their associated parameters. The parameters for parallel
implementations of a GA such as an islandmodel can bemore com-
plicated due to specifying parameters such as the sub-population
sizes and the migration rates. For example León et al. [19] used a
hyper-heuristic to deploy parallel island meta-heuristics with the
hyper-heuristic granting more computational resources to promis-
ing meta-heuristics. Dokeroglu and Cosar [9] use similar approach
with a master-slave model whereby the hyper-heuristic controls
the meta-heuristics sending solutions to be evaluated in parallel.
In a second phase the best meta-heuristic is implemented on ev-
ery node in parallel. Segura et al. [30] use a hyper-heuristic with
a parallel island model GA whereby the hyper-heuristic controls
the configurations of each island. Rodriguez et al. [28] exploit par-
allelism by using three differing meta-heuristics, a GA, Ant Colony
Optimisation (ACO) [10] and Simulated Annealing allowing a hy-
per heuristic to select a number of each to operate in parallel. Ber-
tels et al. [2] demonstrated that an asynchronous parallel popu-
lation based evolutionary algorithm could speedup the design of
Boolean satisfiability solvers significantly. Oteiza et al. [25] use
a similar approach with a GA, Simulated Annealing and Particle
SwarmOptimisation (PSO) [12]. Imbernón et al. [17] use GPU clus-
terswith a hyper-heuristic selectingwhich parallel meta-heuristics
to use on the GPU cluster at each step. Alekseeva et al. [1] use
a master-slave hyper-heuristic approach to find the best GRASP
setup with multiple configurations evaluated on differing cores.

This master-slave parallel hyper-heuristic method is easy to im-
plement such that an extension to HyFlex [24], ParHyFlex, enables
users to test hyper-heuristics in parallel [33]. Rattadilok et al. [27]
though do consider the use of a hyper-heuristic in parallel whereby
a choice function hyper-heuristic method executes multiple low-
level heuristics in parallel to effectively speedup the optimisation
search process. A hierarchical scheme is used where the hyper-
heuristic sends low-level heuristics to CPU cores which iteratively
apply them until no improvements whereby solutions are sent to
the controlling hyper-heuristic to use or discard. This is extended
to have multiple hyper-heuristic agents operating in parallel.

3 PARALLEL SEQUENCE-BASED SELECTION
HYPER-HEURISTIC MODELS

The Sequence-based Selection Hyper-Heuristic (SSHH) [18] con-
structs sequences using a hidden Markov model (HMM) whereby
low-level heuristics are considered states and the HMM provides a
probability of transitioning from one heuristic to the next. If a set
of n low-level heuristics is defined as [llh0, llh1, ...llhn−1] then the
transition probabilities of moving from one heuristic to the next
is defined by an n by n matrix. The SSHH transition probabilities
are defined by the success counts of heuristic transitions having
occurred in sequences which improved upon the current best solu-
tion. SSHH also uses a sequence acceptance HMM to decide after
a heuristic selection if the sequence should be accepted or to con-
tinue construction, an n by 2 matrix. Algorithm 1 provides a top-
level overview of the SSHH process. The selection of a low-level
heuristic occurs on line 7 whereby a roulette wheel selection is



Using a Parallel Ensemble of Sequence-Based Selection Hyper-Heuristics for Electric Bus Scheduling GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

made using the HMM transition probabilities Trans from the cur-
rent last used heuristic curr , Tran[curr ][next]/∑∀j Tran[curr ][j].

Algorithm 1 SSHH
1: S , S ′, Sb = candidate, new and best solutions respectively
2: T ran, Seq = the transition and sequence matrices
3: [l lh0, l lh1, l lh2, ..., l lhn−1] = the low-level heuristics
4: Heur ist icSequence is the current heuristic sequence
5: curr = select random low-level heuristic
6: while iteration less than max iterations do
7: next=SelectNext(T ran,curr )
8: Add toHeur ist icSequence next
9: AcceptStatus=ComputeStatus(Seq ,next )
10: if Status = complete sequence then
11: S ′ = application of Heur ist icSequence
12: if S ′ better than Sb then
13: Sb=S ′
14: Update T ran and Seq success counts
15: end if
16: S=S ′
17: Clear Heur ist icSequence
18: end if
19: curr=next
20: end while

However, this operation of SSHH is sequential in manner, a sin-
gle set of transition and acceptance HMMs generating a sequence
of low-level heuristics which are applied to a singular best solu-
tion. Contrasting to popular meta-heuristics such as GAs or ACO
these methods are population-based and hence there are many par-
allel implementations of these approaches. A simplemethod of par-
allelisation of a GA is to evaluate the population of solutions in
parallel [4] or facilitate whole sub-populations in parallel across
multiple processor cores with migration of individuals between
cores [31]. ACO is even more parallelisable as ants constructing
solutions themselves is computationally expensive but ants only
communicate through a pheromone matrix such that they are rel-
atively independent. Consequently, for SSHH to maintain parity
with meta-heuristic approaches it should also be parallel in nature.

Of further consideration is the behaviour of SSHH itself with
just a single transition and acceptance HMM and a single best
found solution for heuristics in a sequence to act upon. This could
impede the performance of SSHH as the learnt transitions in the
HMM may not be ideal. Indeed, the transitions learnt in the early
stages of the optimisation process may be less relevant in the later
stages but there is just a single HMMmodel and changing the tran-
sition probabilities relies on finding new best solutions. However,
in the field of classification, performance of a classifier improves
when using a collection of learnt models, an ensemble approach.
This approach has been used with multiple decision trees forming
a random forest or multiple neural networks. Indeed, an ensem-
ble of classifiers is considered more accurate as long as they are
diverse [15]. Of further consideration is SSHH using a single so-
lution to operate heuristic sequences upon. If there are multiple
solutions, a population effectively, this may enable local optima to
be escaped through diversity of solutions. The advantage of using
multiple instantiations of SSHH in parallel, an ensemble, is that
there should be no additional computational cost. Indeed, if less
iterations are necessary through using parallel SSHH implementa-
tions there could also be an effective speedup. Ensemble optimisa-
tion has been used previously to great effect combining a GA, PSO
and social spider optimisation [13].

Consequently, it is hypothesised that operating multiple paral-
lel implementations of SSHHwill both improve the effectiveness of
the approach and the convergence speed. Clearly, a simple method-
ology would be to just execute multiple instantiations of SSHH in
parallel and then return the best found solution over all parallel
SSHH runs. This is the same as running SSHH for multiple seeded
runs and returning the best result. Clearly this would lead to an
improvement in the results from SSHH with no additional com-
putational cost. However, it is also hypothesised that sharing in-
formation between parallel SSHH models during the optimisation
process would be more effective. Sharing of information between
multiple parallel SSHH models can be achieved in two ways, ei-
ther sharing of the best found solution so far amongst the multi-
ple SSHHmodels or alternatively the HMM transition probabilities
from each SSHH model.

3.1 Shared SSHH Transition Probabilities
With this parallel SSHH model a set of separate instantiations of
SSHH are initiated whereby each SSHH model has its own transi-
tion and sequence acceptance HMMs and its own best found solu-
tion. The parallel SSHHmodels conduct the standard SSHHmodel
as described in Algorithm 1 updating transition probabilities of
their HMMs if a solution derived by a sequence is an improve-
ment on their own best found solution. This process is conducted
in an asynchronous manner with no communication or waiting
for other parallel SSHH models to reach the same iteration. How-
ever, after a set number of these asynchronous iterations the paral-
lel SSHHmodels communicate their HMM transition probabilities,
a synchronisation step whereby parallel threads need to wait un-
til all have reached the same iteration. This model will be termed
ParallelSSHH-SharedHMM.

To combine theHMMs of all the parallel SSHHmodels is straight-
forward. The transitional probabilities of the HMMs in SSHH are
simply the success counts from when a transition from one state
to another occurs in a sequence which improves upon their lo-
cally held best solution. Consequently, for each transitional state in
the HMMs the success counts can be summed. This forms a new
global transitional HMM and sequence acceptance HMM which
when complete are copied over all the local parallel HMMs such
that all threads will have at their next iteration the same HMM be-
haviour. Obviously, with each parallel SSHH model having differ-
ing best found solutions the parallel HMMs will become diverse
until the next synchronisation step. The diversity of the parallel
SSHH model is maintained with each parallel SSHH model having
their own best found solution.

The operation of the parallel shared SSHH transition probabil-
ities model is shown in Algorithm 2. Note that lines 2 to 8 now
set up SSHH for multiple parallel implementations. There is also
now global transition and sequence matrices set up on line 1. Also,
note the additional loops on lines 10 and 11 that run each paral-
lel SSHH model i for a fixed number of asynchronous iterations.
The synchronisation step and combining of SSHH transition prob-
abilities occurs from line 27 onwards whereby for each transition
probability the total success counts are summed across all paral-
lel SSHH models. A record of the new global HMMs are kept in



GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Darren M. Chitty, James Lewis, and Ed Keedwell

Algorithm 2 Parallel SSHH Sharing HMM State Transition Suc-
cess Counts
1: GlobalT ran, GlobalSeq = the global transition and sequence matrices
2: for each parallel SSHH implementation i do
3: Si , S ′i , Sib = candidate, new and best solutions respectively
4: T rani , Seqi = the transition and sequence matrices
5: [l lh0, l lh1, l lh2, ..., l lhn−1] = the low-level heuristics
6: Heur ist icSequencei is the current heuristic sequence
7: curri = select random low-level heuristic
8: end for
9: while total iterations less than max iterations do
10: for each parallel SSHH implementation i do
11: for each asynchronous iteration do
12: nexti=SelectNext(T rani ,curri )
13: Add to Heur ist icSequencei nexti
14: AcceptStatusi=ComputeStatus(Seqi ,nexti )
15: if Statusi = complete sequence then
16: S ′i = application of Heur ist icSequencei
17: if S ′i better than Sib then
18: Sib=S ′i
19: Update T rani and Seqi success counts
20: end if
21: Si=S ′i
22: Clear Heur ist icSequencei
23: end if
24: curri=nexti
25: end for
26: end for
27: for each transition state t do
28: Sum=0
29: for each parallel SSHH implementation i do
30: Sum+=T ranit
31: end for
32: for each parallel SSHH implementation i do
33: T ranit =Sum-GlobalT rant
34: end for
35: GlobalT rant =Sum-GlobalT rant
36: end for
37: for each sequence state s do
38: Sum=0
39: for each parallel SSHH implementation i do
40: Sum+=Seqis
41: end for
42: for each parallel SSHH implementation i do
43: Seqis=Sum-GlobalSeqs
44: end for
45: GlobalSeqs=Sum-GlobalSeqs
46: end for
47: end while

GlobalTrans and GlobalSeq and these are used to measure the in-
crease in transition success counts between synchronisation steps.

3.2 Shared SSHH Best Found Solutions
This proposed parallel SSHH model is similar to the prior model,
ParallelSSHH-SharedHMM. Once again, a set of parallel instanti-
ations of SSHH are initiated using their own heuristic transition
and sequence acceptance HMMs and local best found solutions.
Their process operates the same as described in Algorithm 1 dur-
ing their asynchronous iterations whereby there is no communi-
cation between parallel SSHH models. However, after their set of
asynchronous iterations the parallel SSHH models communicate
their best found solutions so far to the master thread, the synchro-
nisation step whereby all parallel SSHH models reach the same
iteration. This parallel SSHH model will be termed ParallelSSHH-
SharedBest.

To communicate the best found solution from all SSHH mod-
els back to parallel SSHH instantiations, the master thread sim-
ply identifies the best solution from all the local best found solu-
tions. This is then copied over to each parallel thread overwriting
their locally held best found solution. Thus at this point all paral-
lel SSHH instantiations have the same best found solution to apply
their locally generated sequences to. The diversity of this parallel
model is achieved with each parallel SSHH model having differing
behaviours from their HMMs.

Algorithm 3 Parallel SSHH Sharing Best Found Solution Between
Models
1: GlobalBest = the globally best found solution
2: for each parallel SSHH implementation i do
3: Si , S ′i , Sib = candidate, new and best solutions respectively
4: T rani , Seqi = the transition and sequence matrices
5: [l lh0, l lh11, l lh2, ..., l lhn−1] = the low-level heuristics
6: Heur ist icSequencei is the current heuristic sequence
7: curri = select random low-level heuristic
8: end for
9: while total iterations less than max iterations do
10: for each parallel SSHH implementation i do
11: for each asynchronous iteration do
12: nexti=SelectNext(T rani ,curri )
13: Add to Heur ist icSequencei nexti
14: AcceptStatusi=ComputeStatus(Seqi ,nexti )
15: if Statusi = complete sequence then
16: S ′i = application of Heur ist icSequencei
17: if S ′i better than Sib then
18: Sib=S ′i
19: Update T rani and Seqi success counts
20: end if
21: Si=S ′i
22: Clear Heur ist icSequencei
23: end if
24: curri=nexti
25: end for
26: end for
27: for each parallel SSHH implementation i do
28: if S ′ib is better than GlobalBest then
29: GlobalBest=S ′ib
30: end if
31: end for
32: for each parallel SSHH implementation i do
33: S ′ib=GlobalBest
34: Si=GlobalBest
35: end for
36: end while

The operation of ParallelSSHH-SharedBest is shown in Algo-
rithm 3. This is similar to Algorithm 2 but on line 1 there is now
a global track of the best found solution updated at each synchro-
nisation step. Again, synchronisation occurs from line 27 whereby
for each parallel instantiation of SSHH the best solution is tested
against the global best updating if better. Once this is achieved the
global best is communicated back to all the parallel SSHH models
for them to use before the next asynchronous stage begins.

4 EXPERIMENTAL RESULTS
4.1 Real-World Electric Bus Scheduling
To measure the effectiveness of the parallel ensemble SSHH mod-
els vs. the sequential standard SSHH a difficult combinatorial real-
world problemwill be used, the optimal scheduling of electric buses.
The goal of electric bus scheduling is to service all the timetabled
stops with no tardiness whilst minimising the size of the electric
bus fleet required and total fleet distance traversed. A solution



Using a Parallel Ensemble of Sequence-Based Selection Hyper-Heuristics for Electric Bus Scheduling GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

Table 1: Real-world electric bus routing problems

Geographic Total Line Available Total Trip
Problem Lines Trips Buses Distance (km)

Scenario A 20 890 150 13555.99
Scenario B 20 518 150 12145.38
Scenario C 24 670 150 7244.83
Scenario D 60 1456 300 21050.11
Scenario E 64 1774 300 29836.56
Scenario F 124 3230 500 50886.67

which uses fewer buses is considered better than a solution which
uses more buses but a lower traversal distance. In addition to the
timetable constraint, with electric buses an additional constraint
exists in that the buses have a fixed range. Therefore, the schedule
must ensure that each electric bus can service its assigned timetabled
trips and return to the depot without running out of charge other-
wise significant tardiness would occur. For the real-world problem
a UK bus operator operates buses throughout a large area with
a radius of 50 km. Buses run on a range of routes operating to a
given timetable. A fleet of electric buses are used equipped with a
450kWh battery providing a range of 185 km using 2.42kWh of en-
ergy per km. A candidate solutionwill consist of a set of unique val-
ues representing buses each followed by unique values represent-
ing its assigned timetabled trips. An electric bus performs these
trips in their assigned order. A set of routing scenarios have been
created from the UK bus operator as described in Table 1.

To apply the SSHH hyper-heuristic methods to the electric bus
scheduling problem a range of low-level heuristics must be made
available. For this problem six low-level heuristics are used:

Swap: Selects two random trips assigned to differing electric buses
and exchanges these two trips in their schedules.

Insert: Selects random trip assigned to a bus and and inserts into
a random position in a second electric bus schedule.

Invert: Randomly selects two points within a bus fleet schedule
and reverses all the trips between the two points.

Reconstruction: Advanced heuristic which randomly selects up
to 30 buses operating in similar geographical area and rebuilds
their schedules using a probabilistic model based on minimising
non-service time lost [5, 6].

Local Search Swap: Two electric buses are selected and every bus
trip in each iteratively swapped with improvements retained.

Local Search Insert: Two electric buses are selected and each trip
in second bus schedule is iteratively inserted into every slot in the
first bus schedule with improvements retained.

4.2 Comparing SSHH and Parallel Multi-SSHH
To begin with standard SSHH and a parallel implementation of
SSHHwhereby each parallel instantiation executes asynchronously
with no sharing between threads will be tested (Multi-SSHH). This
is the equivalent of simply running SSHH multiple times and re-
porting the best result. Due to the high degree of complexity of

the electric bus scheduling problem a large degree of iterations are
used. Indeed, SSHH will generate 5 million sequences of up to a
maximum length of 10 heuristics with improvements greedily ac-
cepted. With the parallel implementations the same number of se-
quences will be generated so if there are 10 parallel instantiations
of SSHH then each will iterate for just 500,000 iterations. Experi-
ments will use a Ryzen 2700 processor which has eight cores but
via hyper-threading can execute up to sixteen threads simultane-
ously thus an ensemble of sixteen parallel instantiations of SSHH
will be used. Experiments are conducted over 25 random runs.

The results from comparing standard SSHH and Multi-SSHH
are shown in Table 2 in terms of the non-service distance travelled,
the only distance that can be minimised, the electric bus fleet size,
the execution timings and the average length of sequences gener-
ated. These results show that whilst SSHH appears to minimise the
fleet traversal distance better it does so consistently using more
buses than the solutions from Multi-SSHH. In terms of solution
quality, using fewer electric buses is considered the best option. It
is unclear why the traversal distances are much larger for Multi-
SSHH but reduced iterations is the likely cause. Regards execution
time Multi-SSHH is significantly faster by approximately seven
fold. A key reason is the reduction in iterations used inMulti-SSHH
to ensure that the same number of sequences, five million, are gen-
erated for a fair comparison of solution quality. Sequence lengths
are comparable between the two implementations of SSHH.

4.3 Sharing HMM Information Between
Parallel SSHH Models

The next step is to consider the sharing of information between
parallel SSHH implementations. As described in Section 3 after a
set number of asynchronous iterations information needs to be ex-
changed between the parallel SSHH implementations, a synchro-
nisation step. In this case each parallel SSHHmodel communicates
its HMM transition probabilities in the form of the success counts.
The master thread collates these and generates a global heuristic
and sequence acceptance HMM and send this back to each parallel
SSHH model to use. A range of asynchronous iterations between
HMM sharing steps will be tested to assess the best level to use.

The results from these experiments are shown in Table 3 where
it can firstly be observed that for the non-service distances bet-
ter results are achieved when the number of asynchronous genera-
tions is a high number but in terms of the bus fleet size the number
of buses increases as the degree of sharing reduces. Comparing to
Table 2 these results are considerably poorer even than standard
sequential SSHH. A reason for this is that with multiple seeded
runs and standard sequential SSHH, sometimes poor results occur
which is due to the heuristics and sequence acceptance HMM de-
veloping poor transition probabilities that cannot be reversed lead-
ing to low quality sequences and results (note the high degree of
variance). Therefore, it can be postulated that if one parallel SSHH
HMMdevelops a set of poor transition probabilities when these are
combined this contamination could cause the new global HMMs
to be equally bad. In terms of the runtimes note that with a low-
level of asynchronous iterations these are much higher than when
using a large degree of asynchronous iterations. For smaller prob-
lems, 10,000 asynchronous iterations is several fold faster but with



GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Darren M. Chitty, James Lewis, and Ed Keedwell

Table 2: Average optimised fleet non-service distance, bus fleet sizes, runtimes and sequence lengths when using standard
sequential SSHH and parallel Multi-SSHH for each bus routing scenario.

Scenario Average Non-Service Distance Travelled (km) Average Bus Fleet Size Average Execution Time (s) Average Sequence Length

SSHH Multi-SSHH SSHH Multi-SSHH SSHH Multi-SSHH SSHH Multi-SSHH

A 3300.98±351.37 3173.41±101.37 102.40±10.14 97.52±1.00 373.90±156.41 53.04±6.44 3.99±2.76 3.91±0.67
B 2133.24±133.36 2135.47±65.96 84.04±3.31 82.64±0.76 199.41±86.49 29.31±4.16 3.74±2.82 4.05±0.65
C 1107.49±91.69 1183.21±75.83 49.28±1.77 49.16±0.47 630.09±400.31 91.82±6.45 3.83±2.56 3.32±0.63
D 5987.32±476.20 6240.71±266.13 160.64±5.48 160.96±1.43 543.41±143.43 76.95±9.72 4.96±2.75 3.73±0.67
E 5082.30±447.24 5495.26±207.82 207.48±18.86 204.48±1.71 605.12±208.79 87.16±11.89 3.25±2.60 4.02±0.64
F 11 754.19±1084.71 13 740.09±1449.41 397.52±47.09 377.68±7.22 792.12±347.29 168.91±55.29 2.84±2.59 3.05±0.63

Table 3: Average optimised fleet non-service distance, bus fleet sizes, runtimes and sequence lengths when combining HMMs
using a range of asynchronous iterations between parallel sharing of HMMs

Asynchronous
Iterations

Electric Bus Fleet Routing Scenario

A B C D E F

Non-Service
Distance (Km)

5 3342.04±217.50 2132.75±74.43 1172.84±94.32 6594.31±310.14 5941.15±484.51 14 261.54±1638.05
10 3385.62±194.77 2151.34±80.36 1193.85±95.72 6514.87±222.21 5900.98±423.67 13 857.65±1992.43
100 3384.56±144.52 2110.84±55.01 1154.98±66.33 6470.20±243.45 5694.55±341.62 12 606.01±906.44
1000 3342.64±93.03 2123.81±58.05 1151.55±61.18 6533.77±322.88 5376.41±204.04 12 376.34±835.47
10000 3398.84±67.85 2117.45±70.74 1210.97±66.84 6400.70±159.69 5350.66±124.64 12 059.86±522.44

Bus Fleet Size

5 100.52±4.43 82.60±1.26 49.56±1.04 164.88±5.54 212.12±11.90 404.76±32.10
10 101.24±3.92 83.16±1.25 49.96±1.72 165.84±5.71 214.92±10.92 406.88±39.82
100 102.12±2.65 83.40±0.76 49.92±0.76 164.60±3.18 214.92±5.20 395.40±26.91
1000 101.36±1.87 83.32±0.69 50.36±0.70 169.00±2.81 213.72±3.51 397.24±15.71
10000 102.92±1.58 83.72±0.68 51.36±1.04 171.20±4.14 219.24±4.00 409.92±16.24

Execution
Time (s)

5 104.33±28.48 74.54±4.95 148.98±52.12 130.75±25.11 133.95±22.36 176.05±63.32
10 78.72±21.13 54.05±8.65 124.80±54.49 125.26±40.97 110.72±26.58 161.75±55.38
100 66.63±10.58 37.02±5.66 149.53±26.99 89.17±11.20 99.99±15.65 141.60±39.33
1000 65.71±5.26 33.03±3.56 129.73±24.68 75.79±4.35 94.53±6.12 125.27±28.29
10000 56.57±2.33 28.82±1.98 108.47±19.93 72.60±3.55 86.55±6.18 115.97±26.08

Sequence
Length

5 3.68±3.68 3.14±3.14 4.04±2.72 4.43±2.62 3.74±2.77 2.68±2.12
10 4.32±4.32 4.48±4.48 4.16±2.70 5.14±2.50 4.17±2.82 3.57±2.11
100 6.57±6.57 6.60±6.60 6.22±1.25 6.17±1.85 7.13±1.25 5.53±2.21
1000 7.05±7.05 6.71±6.71 6.36±1.07 7.35±0.12 7.41±0.05 6.73±1.31
10000 6.49±6.49 6.32±6.32 6.15±0.53 6.89±0.23 6.97±0.11 6.20±1.06

Table 4: Average fleet non-service distance, sizes, runtimes and sequence lengths when combining HMMs which only update
success scores if new solution better than global best solution using a range of asynchronous iterations between parallel shares

Asynchronous
Iterations

Electric Bus Fleet Routing Scenario

A B C D E F

Non-Service
Distance (Km)

5 3326.61±131.03 2163.78±98.38 1188.37±90.67 6569.20±295.50 5749.26±314.13 14 152.38±1842.35
10 3338.75±155.02 2139.71±80.08 1180.02±70.27 6695.50±336.34 5953.39±428.83 13 444.03±1137.13
100 3320.11±113.48 2094.40±48.63 1136.42±42.38 6359.52±258.80 5493.64±278.17 12 373.57±715.76
1000 3209.28±65.54 2097.93±57.71 1118.61±40.51 6126.90±195.66 5194.06±166.33 11 874.06±653.12
10000 3215.38±47.73 2106.36±67.31 1169.52±46.74 6138.05±138.89 5189.99±137.30 12 093.90±510.49

Bus Fleet Size

5 99.76±2.26 82.96±1.49 49.88±2.09 165.48±5.53 210.80±4.98 407.00±37.31
10 99.80±2.50 83.08±0.86 49.64±0.95 164.96±3.65 211.68±5.47 402.48±31.46
100 100.04±2.19 82.84±0.62 49.72±0.68 161.88±1.33 206.96±2.61 383.16±12.29
1000 98.80±1.32 82.52±0.51 49.20±0.58 160.76±0.97 203.32±1.25 374.72±6.11
10000 98.88±0.83 82.56±0.51 49.60±0.58 161.72±1.06 204.40±0.71 383.64±7.50

Execution
Time (s)

5 97.53±19.65 73.25±3.90 140.46±49.17 121.87±10.77 132.71±18.57 173.69±60.25
10 75.35±20.82 51.19±4.30 121.49±47.18 109.38±22.24 104.26±23.95 160.86±45.03
100 72.06±11.05 36.15±6.05 142.26±35.21 96.25±17.13 109.84±18.20 155.56±27.68
1000 69.68±8.37 35.91±4.09 129.68±20.98 93.01±10.31 114.45±13.58 154.28±40.76
10000 60.78±6.05 31.71±2.81 100.52±17.56 82.97±6.70 100.04±8.02 123.67±24.27

Sequence
Length

5 3.57±3.57 3.46±3.46 3.65±2.44 4.51±2.40 4.45±2.66 3.23±2.64
10 3.03±3.03 3.68±3.68 3.70±2.34 4.04±2.54 3.66±2.70 3.62±2.48
100 5.93±5.93 5.25±5.25 5.23±1.48 5.32±1.87 6.29±1.36 5.00±1.84
1000 6.09±6.09 5.57±5.57 4.94±0.96 5.95±0.79 6.09±0.76 5.26±1.24
10000 5.25±5.25 5.10±5.10 4.64±0.68 5.75±0.53 6.14±0.43 4.97±1.07

larger problems the speedup is lower. The reason is that at the syn-
chronisation step threads must wait for all to catch up as some are
slower as a result of using more intensive heuristics or longer se-
quences. This reduces the CPU occupancy which will increase the
runtime, the more synchronisation steps the lower the CPU occu-
pancy. Note average sequence size tends to be longer with greater

numbers of asynchronous iterations such that the average compu-
tational cost per heuristic executed is further improved. Also note
that when sharing HMM information the execution times for the
larger problems are lower than for Multi-SSHH with no sharing
and complete asynchronous iterations. This is due to Multi-SSHH
waiting until the last SSHH implementation completes.



Using a Parallel Ensemble of Sequence-Based Selection Hyper-Heuristics for Electric Bus Scheduling GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

Table 5: Average optimised fleet non-service distance, bus fleet sizes, runtimes and sequence lengths when sharing the best
solution across parallel threads using a range of asynchronous iterations between parallel shares

Asynchronous
Iterations

Electric Bus Fleet Routing Scenario

A B C D E F

Non-Service
Distance (Km)

5 3040.33±96.30† 2038.28±69.11† 1048.12±58.40† 5444.53±116.24† 4916.97±135.52 10 802.49±330.72†
10 3072.37±73.96† 2051.06±63.85† 1040.87±74.65† 5464.44±116.19† 4864.93±118.58† 10 731.81±358.38†
100 3060.50±75.50† 2036.41±64.27† 1030.71±58.70† 5560.42±119.41† 4891.03±83.00† 10 620.72±215.93†
1000 3087.87±92.72† 2050.88±57.24† 1049.17±55.47† 5688.91±100.60† 4968.05±117.94 11 056.53±262.09†
10000 3141.80±66.85 2033.21±63.16† 1083.14±57.30 5949.61±115.96 5155.17±100.90 12 110.57±389.37

Bus Fleet Size

5 96.44±1.00† 81.68±0.80† 48.28±0.74† 154.64±1.32† 199.96±1.17 358.56±3.14†
10 96.96±0.98† 81.92±0.81† 48.24±0.52† 154.84±1.28† 199.24±1.27† 358.52±3.84†
100 96.92±1.26 81.80±0.65† 48.52±0.65† 155.64±1.35† 199.72±0.84 358.36±2.96†
1000 97.12±1.54 81.96±0.61† 48.52±0.71 156.64±1.15† 200.36±1.44 361.68±2.04†
10000 97.40±0.91 81.84±0.62† 48.84±0.62 158.08±1.29† 201.92±0.91 368.32±2.08†

Execution
Time (s)

5 100.76±4.94 72.60±2.66 165.91±18.56 128.82±6.67 139.14±8.70 195.61±13.07
10 79.42±4.61 49.43±3.90 148.77±15.55 110.18±9.89 120.47±7.46 171.84±11.16
100 69.23±4.39 34.70±3.60 137.72±8.81 90.47±9.89 104.25±9.32 149.49±8.47
1000 65.02±5.05 33.48±5.90 127.98±9.88 83.23±8.14 103.89±16.37 172.82±50.10
10000 59.54±4.51 30.91±4.08 114.70±9.05 78.88±7.87 97.44±15.12 169.07±56.89

Sequence
Length

5 3.13±3.13 3.01±3.01 2.97±0.56 3.33±0.55 3.55±0.69 3.05±0.69
10 3.28±3.28 3.38±3.38 3.05±0.71 3.19±0.73 3.67±0.81 3.02±0.64
100 3.97±3.97 3.69±3.69 3.27±0.67 3.65±0.67 3.95±0.63 2.87±0.47
1000 4.08±4.08 3.78±3.78 3.53±0.76 3.74±0.60 4.07±0.56 2.88±0.57
10000 4.19±4.19 3.87±3.87 3.70±0.70 3.79±0.55 4.09±0.46 2.83±0.68

†Statistically significant improvement over standard SSHH and Multi-SSHH with a p < 0.05 t-test, a two-sided significance level and 24 degrees of freedom

Amethod to reduce the ability for a single parallel SSHHmodel’s
HMMs to skew the success counts when the HMMs are combined
is to only enable parallel SSHH models to update their local HMM
success score when the new solution is better than the global best.
Each parallel SSHH model retains its own best found solution and
updates this if a sequence improves this but will only increment
their transitional success scores if this is better than the global
best. The results from this small adjustment are shown in Table
4 whereby in terms of non-service distance and bus fleet size a sus-
tained improvement is achieved over the results in Table 3. With
this change the results are now a small improvement over a stan-
dard sequential SSHH implementation and Multi-SSHH solution
quality as shown in Table 2. Note that higher numbers of asyn-
chronous iterations leads to both improved non-service distances
and bus fleet sizes, approximately 1000 asynchronous iterations.
Also note that sequence sizes are reduced which may be a reason
behind the improved results as shorter sequences are expected to
have a greater probability of improving the current solution.

4.4 Sharing the Best Solutions
The alternative model to assess is instead of sharing state transi-
tion success counts across parallel SSHH models is to share the
best found solution. A range of diverse behaviours in terms of se-
quence generation will be present in each parallel SSHH model
with the best found solution to execute heuristic sequences upon.
As previously, a range of asynchronous iterations will be tested to
ascertain the best number to use with the results shown in Table 5.
The first observation that can be made in comparison to the results
from sharing HMM information as shown in Table 4 is that shar-
ing the best solution provides a marked improvement in results
both for non-service distance and buses utilised. Furthermore, com-
paring these results to standard sequential SSHH and non-sharing
parallel Multi-SSHH results in Table 2 a significant improvement
can be observed, up to a 10% reduction in non-service distance
and 4% reduction in bus fleet size. Effectively, enabling diversity

in terms of parallel SSHH models with differing HMM behaviours
with access to the best found solution increases the ability to exit
a local optima. Indeed, some of the HMM may not generate par-
ticularly effective sequences of heuristics in terms of general op-
timisation but could be useful in some instances. However, note
that in contrast to sharing HMM information, smaller degrees of
asynchronous iterations provides the best results indicating that
quicker access to a new globally best found solutions is important.
Using a low-level of asynchronous iterations does increase the run-
times, as previously discussed, a higher degree of synchronisation
causes more waiting time for parallel implementations of SSHH to
reach the same iterations reducing CPU occupancy. Consequently,
whilst using a low-level of asynchronous iterations gets the best
results, a higher number could run for more iterations in the same
time potentially getting better results. Also, note the shorter aver-
age sequence lengths in comparison to the results in Table 4 when
sharing HMM information.

4.5 Comparison of Ensemble SSHH Sizes
It has been observed that a parallel SSHH model whereby the best
solution found is sent to each parallel thread to use ismost effective.
The differing behaviours of the individual HMMs operate in the
form of an ensemble approach. Due to the processor used being ca-
pable of 16 simultaneous threads the ensemble size was set to this
number. A question remains as to if this is the best ensemble size
to use or should there be a greater number of parallel SSHH mod-
els in the ensemble or fewer which could then run more iterations.
Subsequently, to answer this question a range of ensemble sizes
of parallel SSHH model will be tested for their effectiveness. The
best solution sharing parallel SSHH model will be used with ten
asynchronous iterations. Note that if the number of parallel mod-
els is increased, the iterations each runs for is similarly reduced
ensuring only five million sequences are generated in total.



GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Darren M. Chitty, James Lewis, and Ed Keedwell

Table 6: Average optimised electric bus fleet non-service distance travelled, bus fleet sizes, runtimes and sequences lengths for
range of permissible asynchronous iterations when sharing best found solutions for range of SSHH parallel ensembles using
10 asynchronous iterations between parallel sharing of best solutions

Parallel SSHH
Implementations

Electric Bus Fleet Routing Scenario

A B C D E F

Non-Service
Distance (Km)

8 3009.18±64.25† 2059.86±70.89† 1045.31±64.31† 5470.45±146.73† 4894.08±122.82† 10 757.27±491.74†
16 3072.37±73.96† 2051.06±63.85† 1040.87±74.65† 5464.44±116.19† 4864.93±118.58† 10 731.81±358.38†
32 3024.91±85.29† 2040.39±61.79† 1052.49±58.23† 5460.12±86.42† 4859.98±134.80† 10 720.98±290.02†
64 3033.35±86.44† 2028.25±76.55† 1046.41±56.87† 5496.55±113.12† 4940.67±120.61 10 833.45±297.85†
128 3042.01±70.91† 2047.58±56.06† 1024.35±44.33† 5494.85±157.45† 4926.86±110.00 11 080.59±238.26†

Bus Fleet Size

8 96.16±1.11† 81.80±0.76† 48.40±0.71† 154.52±1.42† 199.44±1.36† 359.72±5.50†
16 96.96±0.98† 81.92±0.81† 48.24±0.52† 154.84±1.28† 199.24±1.27† 358.52±3.84†
32 96.52±1.16† 81.80±0.76† 48.36±0.64† 154.44±0.96† 199.24±1.48† 358.80±3.25†
64 96.36±0.81† 81.36±0.81† 48.52±0.87† 154.68±1.22† 199.92±1.00 359.64±3.28†
128 96.44±0.92† 81.68±0.69† 48.44±0.65† 154.88±1.36† 199.80±1.26† 361.60±2.84†

Execution
Time (s)

8 113.04±4.15 71.33±7.41 239.50±101.38 143.54±14.02 160.53±14.32 236.80±35.52
16 79.42±4.61 49.43±3.90 148.77±15.55 110.18±9.89 120.47±7.46 171.84±11.16
32 68.21±3.08 43.66±2.39 110.93±10.38 98.78±2.98 106.88±5.90 151.84±11.77
64 62.34±2.66 40.53±1.27 96.38±7.86 92.33±3.98 101.16±3.42 155.81±12.10
128 60.86±2.68 39.10±1.21 88.29±5.62 91.85±3.01 100.34±3.40 159.45±10.94

Sequence
Length

8 3.39±3.39 3.35±3.35 3.04±0.85 3.32±0.87 3.47±1.10 2.96±0.75
16 3.28±3.28 3.38±3.38 3.05±0.71 3.19±0.73 3.67±0.81 3.02±0.64
32 3.35±3.35 3.00±3.00 2.93±0.42 3.17±0.45 3.73±0.32 3.13±0.66
64 3.34±3.34 2.89±2.89 3.08±0.33 3.23±0.35 3.61±0.42 3.37±0.36
128 3.28±3.28 2.87±2.87 2.96±0.25 3.23±0.16 3.60±0.29 3.22±0.34

†Statistically significant improvement over standard SSHH and Multi-SSHH with a p < 0.05 t-test, a two-sided significance level and 24 degrees of freedom

The results from these experiments are shown in Table 6whereby
it can be first observed that in terms of non-service distances and
bus fleet sizes the results are all relatively similar. This indicates
the number of parallel SSHH models is not highly important al-
though note that higher numbers of parallel SSHHmodels use less
iterations. Overall, with the larger problems a size of 16-32 parallel
SSHH models provides the better results. However, in terms of the
execution timings the larger numbers of parallel SSHHmodels use
less time. This is due to greater occupancy of the CPU with more
parallel threads executing and there being fewer synchronisation
steps since less overall iterations are being used but the number of
asynchronous steps remains the same at ten iterations.

5 CONCLUSIONS
In a world of ubiquitous multi-core parallel processors this paper
has considered the sequential nature of the Sequence-Based Selec-
tionHyper-Heuristic (SSHH) algorithm and parallel methods to im-
prove its performance. It was also postulated that multiple SSHH
models could improve upon the optimisation accuracy borrowing
principles from the ensemble methods used to improve classifier
performance. The process of how parallel methods share informa-
tion between themselves is vitally important to performance hence
two parallel SSHH models were considered, sharing of the HMM
state transition probabilities and sharing of the best solution.

For a complex electric bus scheduling optimisation problem the
parallel SSHH model whereby the best solution found is shared to
all parallel SSHH models proved superior to sharing HMM infor-
mation and sequential SSHH. A potential reason for this is that in
some respects key relationship information is lost when combin-
ing the parallel HMMs leading to what could in effect be called an
average HMM. A significant speedup in SSHH is also achieved due
to the parallelism. In terms of how many parallel instantiations of
SSHH should be run when sharing best found solutions, or the size

of the ensemble, a size of 16 or 32 provides the best results. How-
ever, this is most likely dictated by the number of processor cores
available. If there are more processor cores available then it would
make sense to use them. Moreover, the work presented in this pa-
per ensured that five million sequences were always generated by
reducing the iterations of increased SSHH instantiations but this
does not need to be the case if not seeking an algorithmic speedup.

Futureworkwill consider further parallelmodels such as amulti-
test approach to better assess heuristic sequence quality or a pop-
ulation of solutions method common to meta-heuristics. Addition-
ally, an improved broadcast SSHH parallel model could remove the
synchronisation steps which reduced CPU occupancy.

ACKNOWLEDGMENTS
Supported by Innovate UK [grant no. 10007532] and City Science.

REFERENCES
[1] Ekaterina Alekseeva, Mohand Mezmaz, Daniel Tuyttens, and Nouredine Melab.

2017. Parallel multi-core hyper-heuristic GRASP to solve permutation flow-shop
problem. Concurrency and Computation: Practice and Experience 29, 9 (2017),
e3835.

[2] Alex R Bertels and Daniel R Tauritz. 2016. Why asynchronous parallel evolution
is the future of hyper-heuristics: A cdcl sat solver case study. In Proceedings of the
2016 on genetic and evolutionary computation conference companion. 1359–1365.

[3] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela
Ochoa, Ender Özcan, and Rong Qu. 2013. Hyper-heuristics: A survey of the state
of the art. Journal of the Operational Research Society 64, 12 (2013), 1695–1724.

[4] Darren M Chitty. 2021. A partially asynchronous global parallel genetic algo-
rithm. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion. 1771–1778.

[5] Darren M Chitty and Ed Keedwell. 2022. Defining a Quality Measure Within
Crossover: An Electric Bus Scheduling Case Study. In Artificial Evolution, EA
2022. 97–110.

[6] DarrenMChitty,William B Yates, and Ed Keedwell. 2022. An edge quality aware
crossover operator for application to the capacitated vehicle routing problem. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion.
419–422.

[7] Peter Cowling, Graham Kendall, and Eric Soubeiga. 2000. A hyperheuristic ap-
proach to scheduling a sales summit. In International conference on the practice
and theory of automated timetabling. Springer, 176–190.



Using a Parallel Ensemble of Sequence-Based Selection Hyper-Heuristics for Electric Bus Scheduling GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

[8] Georges A Croes. 1958. A method for solving traveling-salesman problems. Op-
erations research 6, 6 (1958), 791–812.

[9] Tansel Dokeroglu and Ahmet Cosar. 2016. A novel multistart hyper-heuristic
algorithm on the grid for the quadratic assignment problem. Engineering Appli-
cations of Artificial Intelligence 52 (2016), 10–25.

[10] Marco Dorigo and Luca Maria Gambardella. 1997. Ant colony system: a coop-
erative learning approach to the traveling salesman problem. IEEE Transactions
on evolutionary computation 1, 1 (1997), 53–66.

[11] John H Drake, Ahmed Kheiri, Ender Özcan, and Edmund K Burke. 2020. Recent
advances in selection hyper-heuristics. European Journal of Operational Research
285, 2 (2020), 405–428.

[12] Russell Eberhart and James Kennedy. 1995. A new optimizer using particle
swarm theory. In Micro Machine and Human Science, 1995. MHS’95., Proceedings
of the Sixth International Symposium on. IEEE, 39–43.

[13] Mohammad Moein Fazeli, Yaghoub Farjami, and Mohsen Nickray. 2019. An
ensemble optimisation approach to service composition in cloud manufacturing.
International Journal of Computer Integrated Manufacturing 32, 1 (2019), 83–91.

[14] John J Grefenstette. 1981. Parallel adaptive algorithms for function optimization.
Vanderbilt University, Nashville, TN, Tech. Rep. CS-81-19 (1981).

[15] Lars Kai Hansen and Peter Salamon. 1990. Neural network ensembles. IEEE
transactions on pattern analysis and machine intelligence 12, 10 (1990), 993–1001.

[16] John H Holland. 1975. Adaptation in natural and artificial systems: An introduc-
tory analysis with applications to biology, control, and artificial intelligence. U
Michigan Press.

[17] Baldomero Imbernón, Antonio Llanes, José-Matías Cutillas-Lozano, and
Domingo Giménez. 2020. HYPERDOCK: Improving virtual screening through
parallel hyperheuristics. The International Journal of High Performance Comput-
ing Applications 34, 1 (2020), 30–41.

[18] Ahmed Kheiri and Ed Keedwell. 2017. A hidden markov model approach to
the problem of heuristic selection in hyper-heuristics with a case study in high
school timetabling problems. Evolutionary computation 25, 3 (2017), 473–501.

[19] Coromoto León, Gara Miranda, and Carlos Segura. 2009. Hyperheuristics
for a dynamic-mapped multi-objective island-based model. In Distributed Com-
puting, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient As-
sisted Living: 10th International Work-Conference on Artificial Neural Networks,
IWANN 2009 Workshops, Salamanca, Spain, June 10-12, 2009. Proceedings, Part II
10. Springer, 41–49.

[20] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. 2003. Iterated local
search. In Handbook of metaheuristics. Springer, 320–353.

[21] Helena Ramalhinho Lourenço, Olivier C Martin, and Thomas Stützle. 2019. It-
erated local search: Framework and applications. In Handbook of metaheuristics.
Springer, 129–168.

[22] David Meignan. 2011. An evolutionary programming hyper-heuristic with co-
evolution for CHeSC11. In The 53rd Annual Conference of the UK Operational
Research Society (OR53), Vol. 3.

[23] Mustafa Misir, Katja Verbeeck, Patrick De Causmaecker, and Greet Van-
den Berghe. 2011. A new hyper-heuristic implementation in HyFlex: a study
on generality. In Proceedings of the 5th Multidisciplinary International Schedul-
ing Conference: Theory & Application. 374–393.

[24] Gabriela Ochoa, Matthew Hyde, Tim Curtois, Jose A Vazquez-Rodriguez, James
Walker, Michel Gendreau, Graham Kendall, Barry McCollum, Andrew J Parkes,
Sanja Petrovic, et al. 2012. Hyflex: A benchmark framework for cross-domain
heuristic search. In Evolutionary Computation in Combinatorial Optimization:
12th European Conference, EvoCOP 2012, Málaga, Spain, April 11-13, 2012. Pro-
ceedings 12. Springer, 136–147.

[25] Paola P Oteiza, Juan I Ardenghi, and Nélida B Brignole. 2021. Parallel hyper-
heuristics for process engineering optimization. Computers & Chemical Engi-
neering 153 (2021), 107440.

[26] Petr Pospichal, Jiri Jaros, and Josef Schwarz. 2010. Parallel genetic algorithm
on the cuda architecture. In Applications of Evolutionary Computation: EvoAppli-
catons 2010: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM,
and EvoSTOC, Istanbul, Turkey, April 7-9, 2010, Proceedings, Part I. Springer, 442–
451.

[27] Prapa Rattadilok, Andy Gaw, and Raymond SK Kwan. 2005. Distributed choice
function hyper-heuristics for timetabling and scheduling. In Practice and Theory
of Automated Timetabling V: 5th International Conference, PATAT 2004, Pittsburgh,
PA, USA, August 18-20, 2004, Revised Selected Papers 5. Springer, 51–67.

[28] Diego A Rodriguez, Paola P Oteiza, and Nélida B Brignole. 2019. An urban trans-
portation problem solved by parallel programming with hyper-heuristics. Engi-
neering Optimization 51, 11 (2019), 1965–1979.

[29] Nasser R Sabar and Graham Kendall. 2015. Population based Monte Carlo tree
search hyper-heuristic for combinatorial optimization problems. Information
Sciences 314 (2015), 225–239.

[30] Carlos Segura, Eduardo Segredo, and Coromoto Leon. 2012. Analysing the adap-
tation level of parallel hyperheuristics applied to multiobjectivised benchmark
problems. In 2012 20th Euromicro International Conference on Parallel, Distributed
and Network-based Processing. IEEE, 138–145.

[31] Reiko Tanese. 1987. Parallel genetic algorithm for a hypercube. In Genetic algo-
rithms and their applications: proceedings of the second International Conference
on Genetic Algorithms: July 28-31, 1987 at the Massachusetts Institute of Technol-
ogy, Cambridge, MA. Hillsdale, NJ: L. Erlhaum Associates, 1987.

[32] Reiko Tanese. 2013. Parallel genetic algorithm for a hypercube. In Genetic Algo-
rithms and Their Applications. Psychology Press, 177–183.

[33] Willem Van Onsem and Bart Demoen. 2013. Parhyflex: A framework for par-
allel hyper-heuristics. In Proceedings of the 25th Benelux Conference on Artificial
Intelligence, Vol. 28. 231–238.

[34] Pablo Vidal and Enrique Alba. 2010. Cellular genetic algorithm on graphic pro-
cessing units. Nature Inspired Cooperative Strategies for Optimization (NICSO
2010) (2010), 223–232.


