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ABSTRACT
Buses are important for public transportation and beneficial for the
environment. However, diesel buses are significant polluters emit-
ting greenhouse gases and particulates. Consequently, with the ad-
vent of electric vehicles there has been a drive to transition to elec-
tric buses. Key to this transition is to optimise electric bus fleets to
reduce distance travelled whilst maintaining service levels. This is
complex due to the added constraint of the limited range of electric
buses. This paper considers the use of a Sequence-based Selection
Hyper Heuristic (SSHH) method to solve this problem. Moreover,
an adaptive SSHH (A-SSHH) technique is introduced which sig-
nificantly improves upon SSHH. Indeed, bus fleet non-service dis-
tances and sizes are reduced by as much as 10% using A-SSHH over
SSHH. Comparing with an optimised diesel bus fleet electric buses
reduce carbon dioxide emissions by over 60% and importantly for
fleet operators, energy costs are similarly reduced.

CCS CONCEPTS
• Computing methodologies → Search methodologies.
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1 INTRODUCTION
The world is facing a climate emergency to ensure that global tem-
perature rises remain below 1.5C from preindustrial levels. A pri-
mary cause is fossil fuel use with transportation a key driver. Inter-
nal combustion engine vehicles (ICEVs) emit significant levels of
CO2 with diesel vehicles the worst polluters also emitting consider-
able particulates which reduce urban air quality. These particulates
can cause breathing problems in the young and the elderly and are
linked to increased rates of cardiovascular disease.

Buses provide a significant public service and can be seen as an
environmental option in reducing road traffic. Buses though are
predominantly diesel ICEVs emitting significant levels of CO2 and
particlates. However, recently a transition to electric vehicles has
begun which emit much less CO2 and no particulates. This tran-
sition is also occurring within bus transportation although using
electric buses adds the additional problem constraint of a range
limit in terms of energy consumption and in most cases, a lack of
accessible charging points and time to recharge in service. A key
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methodology to reduce energy consumptionwithin bus transporta-
tion networks is to optimise the bus use such that the timetable is
serviced but the total distance the bus fleet travels is minimised.

The goal of optimising a fleet of buses is tomaintain the timetable
service level without tardiness whilst minimising the bus fleet dis-
tance traversed. This problem is similar to the Vehicle Routing
Problem (VRP) [6] to assign customers and routes to vehicles min-
imising total distance travelled with the added constraint of the
timetable, the VRP with time windows (VRPTW). Electric buses
add a further constraint with a limited range due to a battery. An
electric bus must be able to perform its assigned routes and return
to the depot without running out of charge. The energy required
to complete a set of assigned trips is the demand and the capacity
is the amount of available battery power of the electric bus.

Electric bus scheduling can be described as a graph G = (V , E),
wherebyV is the vertex set and E the edges between vertices. The
vertex set V is further partitioned, VT = V1, ...,Vn representing
n timetabled trips and VB = Vn+1, ...Vn+p representing p electric
buses. Each trip in V has a service time to be met and start finish
bus stops. Each busvi ∈ VB has a capacity in terms of energy. Each
edge in E has a cost of traversing it represented by matrix ci j . Edge
ei j in c between trips represents the distance from the end bus stop
of Vi and the start bus stop of Vj . If Vj is a depot then the distance
is from the end bus stop of Vi to depot Vj . The objective is to find
a hamiltonian cycle in G of minimal length with all trips serviced
on time and the energy capacities of buses not exceeded.

Meta-heuristics such as the Genetic Algorithm (GA) [8] are com-
monly used to solve bus scheduling problems. Janovec and Kohani
[9] used a grouping GA with bus routes as the groups to min-
imise bus fleet energy use. Wang et al. [16] considered a multi-
depot three line electric bus routing problem from Qingdao China
solving with a column generation GAwhereby columns represent-
ing allocated routes are recombined. Zhang et al. [17] optimise the
costs of operating electric buses using a GA to schedule multiple
vehicle types for a single line in Nanjing, China.

Whereas meta-heuristics search within the space of problem
solutions, hyper-heuristics search within the space of low-level
heuristics that operatewithin the solution space [2]. Hyper-heuristics
can be categorised into two groups, selection which apply a low-
level heuristic at each iteration and generational which attempt to
generate novel low-level heuristics. Early work by Cowling et al.
[5] considered a range of simple hyper-heuristic methods to select
heuristics such as Simple Random (SR) and Random Descent (RD).
Advanced hyper-heuristics consider the application of sequences of
heuristics. Iterated Local Search (ILS) [12] was an early attempt to
create sequences of low-level mutation heuristics and rebuild with
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local search heuristics [13]. AdapHH pairs destructive and con-
structive low-level heuristics [15]. An Evolutionary Programming
Hyper-heuristic (EPH) is population-based whereby a population
of sequences is maintained using diversification and intensifica-
tion operations [14]. Drake et al. provide a recent overview of ad-
vances in selection hyper-heuristics [7]. Regarding bus scheduling,
some hyper-heuristic methods have been applied. Liu et al. [11]
compare GAs and a hyper-heuristic for the dynamic bus schedul-
ing which proved superior to the GA. Hyper-heuristics have been
also used to optimise the bus routes themselves [1].

This paper proposes to optimise electric bus schedules using
the Sequence-based Selection Hyper-Heuristic (SSHH) which gen-
erates sequences of heuristics by learning relationships between
heuristics. [10]. This is achieved by using a hidden Markov model
(HMM) to represent the probability of using one heuristic after an-
other has been previously applied. Moreover, this paper presents
an adaptive modification to SSHH for electric bus scheduling.

2 AN ADAPTIVE SEQUENCE-BASED
SELECTION HYPER-HEURISTIC

The Sequence-based Selection Hyper-Heuristic (SSHH) [10] con-
structs sequences using a hidden Markov model (HMM) whereby
heuristics are states and the HMM provides a probability of transi-
tioning from one to the next. Given a set of n low-level heuristics
[llh0, llh1, ...llhn−1] the transition probabilities ofmoving fromone
heuristic to the next is defined by an n by n matrix. The transition
probabilities are simply the success counts of transitions having
occurred in sequences which improved the current best solution.
SSHH also uses a sequence HMM to decide after a heuristic se-
lection if the sequence should be accepted, an n by 2 matrix. Algo-
rithm 1 provides an overview of the SSHHprocess. The selection of
a low-level heuristic occurs on line 7 whereby a roulette wheel se-
lection is made using the HMM transition probabilitiesTrans from
the last used heuristic curr , Tran[curr ][next]/∑∀j Tran[curr ][j].

Algorithm 1 SSHH
1: S , S ′, Sb = candidate, new and best solutions respectively
2: T ran, Seq = the transition and sequence matrices
3: [l lh0, l lh11, l lh2, ..., l lhn−1] = the low-level heuristics
4: Heur ist icSequence is the current heuristic sequence
5: curr = select random low-level heuristic
6: while iteration less than max iterations do
7: next=SelectNext(T ran,curr )
8: Add toHeur ist icSequence next
9: AcceptStatus=ComputeStatus(Seq ,next )
10: if Status = complete sequence then
11: S ′ = application of Heur ist icSequence
12: if S ′ better than Sb then
13: Sb=S ′
14: Update T ran and Seq success counts
15: end if
16: S=S ′
17: Clear Heur ist icSequence
18: end if
19: curr=next
20: end while

However, it is hypothesised that this HMM transition probabil-
ity has a flaw. If a single heuristic transition has large early success
this can dominate the other heuristics. Indeed, a transitional state
occurs between each heuristic and itself such that it is plausible

that a successful heuristic can be used repeatedly further boosting
its probability of use. The success counts are retained even when
the heuristic is no longer successful. The probabilities are not re-
laxed, the heuristic will continue to be overused and since for other
transitional scores to increase transitions must at least occur, the
transitional probabilities can become effectively locked in.

To remedy this potential flaw an alternative transitional proba-
bility model is proposed whereby the unsuccessful transitions of a
sequence are also accounted for. If a heuristic becomes unsuccess-
ful this reduces the probability of its future selection. This proba-
bility relaxation is achieved by calculating a probability of a heuris-
tic being used based on its success over its usage. The HMM will
count both the successes and occurrences of heuristic transitions.
The probability of a heuristic transition becomes the success rate
divided by the occurrence rate. This adaptive HMM approach for
SSHH will be referred to as Adaptive-SSHH (A-SSHH).

Algorithm 2 Adaptive-SSHH
1: S , S ′, Sb = candidate, new and best solutions respectively
2: T ran, Seq ,T ranOccur , SeqOccur = the transition, sequence and transition

and sequence occurrence matrices
3: [l lh0, l lh11, l lh2, ..., l lhn−1] = the low-level heuristics
4: Heur ist icSequence is the current heuristic sequence
5: curr = select random low-level heuristic
6: while iteration less than max iterations do
7: next=SelectNext(T ran, T ranOccur , curr )
8: Add toHeur ist icSequence next
9: AcceptStatus=ComputeStatus(Seq , SeqOccur , next )
10: if Status = complete sequence then
11: S ′ = application of Heur ist icSequence
12: if S ′ better than Sb then
13: Sb=S ′
14: Update T ran and Seq success counts
15: end if
16: S=S ′
17: Clear Heur ist icSequence
18: end if
19: Update T ranOccur and SeqOccur occurrence counts
20: curr=next
21: end while

Algorithm 2 shows the Adaptive-SSHH method. Note the addi-
tional function at line 19 which always increments the transitional
and sequence occurrence matrices (TranOccur , SeqOccur ) for all
generated sequences. Also, note the new function calls at line 7
and line 9 which use both the success count and occurrence matri-
ces to select the next low-level heuristic and acceptance. A random
proportional rule is now used to select the next heuristic with the
probability of selecting heuristic j after heuristic i defined as:

Pj =
Trani , j

TranOccuri , j
Rj (1)

where Rj is a random value in the range [0, 1] and the heuristic
with the largest P value is selected.

3 EXPERIMENTAL RESULTS
To measure the effectiveness of A-SSHH vs. SSHH for solving the
electric bus scheduling problem both hyper-heuristicswill be tested
using a real-world problem based on actual timetables. A UK bus
operator operates buses throughout a large area with a radius of
50 km. A fleet of electric buses are considered equipped with a
450kWh battery providing a range of 185 km using 2.42kWh of
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Table 1: Real-world electric bus routing problems

Geographic Total Line Available Total Trip
Problem Lines Trips Buses Distance (km)

Scenario A 20 253 150 3112.58
Scenario B 20 223 150 2353.76
Scenario C 20 890 150 13555.99
Scenario D 20 518 150 12145.38
Scenario E 20 676 150 12474.52
Scenario F 24 670 150 7244.83
Scenario G 60 1456 300 21050.11
Scenario H 64 1774 300 29836.56
Scenario I 124 3230 500 50886.67

energy per km. The objective is to assign timetabled trips to elec-
tric buses such that the number of buses required are minimised
with minimum fleet traversal and no tardiness or violating the
range constraint of the electric bus. Hence, a solution with fewer
buses required is considered an improvement over a solution re-
quiring more buses but with a lower traversal distance. A candi-
date solution will consist of a set of unique values representing
buses each followed by unique values representing its assigned
timetabled trips. An electric bus performs these trips in their as-
signed order. A set of routing scenarios have been created from
the UK bus operator varying in size and are described in Table 1.
To apply the SSHH hyper-heuristics to electric bus scheduling a
set of low-level heuristics are used as described in Table 2.

The SSHH and A-SSHH methods are compared using the elec-
tric bus routing problem for the given set of scenarios. Due to
the high degree of complexity of the electric bus scheduling prob-
lem a large degree of 5 million sequences of up to a maximum
length of 10 heuristics are generated with improvements greedily
accepted. An additional simulated annealing acceptance strategy
is used with both methods enabling non-improved solutions to be
accepted as the current solution with a given probability. In these
cases HMM transition success counts are not incremented. Exper-
iments were conducted over 25 random runs.

The results from SSHH and A-SSHH are shown in Table 3 in
terms of the solution quality obtained, non-service distance and
bus fleet sizes. From these results it can be clearly observed that
regarding solution quality A-SSHH achieves significantly superior
average non-service distances and bus fleet sizes for all scenarios.
Note the differences between SSHH and A-SSHH are more pro-
nounced for larger scenarios, A-SSHH achieves an average non-
service distance 15% less for the largest scenario. Also,note there
is considerable variance in the results for SSHH especially in terms
of buses used which provides an underlying reason for the poorer
performance from SSHH.

It was hypothesised that on occasion SSHH could achieve such
high transition counts for a given heuristic transition that all oth-
ers are dominated. SSHH by only considering successes cannot re-
dress this imbalance but A-SSHH by considering heuristic usage
and successes can. Examination of the best and worst obtained re-
sults reinforces this theory. With best found solutions there is lit-
tle to choose between SSHH and A-SSHH. In fact, in two scenarios
SSHH finds lower non-service distances than A-SSHH over the 25
random runs and is equal or better in terms of bus use over all sce-
narios. However, in terms of theworst case solution qualities SSHH
finds considerably poorer solutions than A-SSHH in all scenarios.
This explains the considerable variance in the results from SSHH

Table 2: Available low-level heuristics.

Heuristic Description

Swap Selects two random trips assigned to electric buses and ex-
changes the two trips

Insert Selects random trip assigned to a bus and and inserts into
a random position in a second electric bus schedule

Invert Randomly selects two points within a bus fleet schedule
and reverses all the trips between the two points

Reconstruction Selects up to 30 buses operating in similar geographi-
cal area and rebuilds their schedules using a probabilistic
model based on minimising non-service time lost [3, 4]

Local Search Swap Two electric buses are selected and every bus trip in each
iteratively swapped with improvements retained

Local Search Insert Two electric buses are selected and each trip in second bus
schedule is iteratively inserted into every slot in the first
bus schedule with improvements retained

which will skew the averages in favour of A-SSHH. It should be
noted that whilst A-SSHH is more consistent over a set of random
runs, SSHH can generate solutions similar to A-SSHH.

3.1 Electric vs. Diesel Bus Fleets
To ascertain the benefits of an electric bus fleet a comparison must
bemade to a similarly A-SSHH optimised diesel bus fleet. Clearly, a
diesel bus will not have a range constraint. In addition to consider-
ing the total non-service fleet distance and buses required, the CO2
emissions and energy costs will be reported. For the diesel fleet it is
considered that a typical bus can achieve 1.78 km per litre of diesel
and CO2 emissions are typically 1.35kg1 per km. CO2 emissions
for electric buses are slightly harder to ascertain. However, the UK
energy regulator quoted a figure of 0.181KgCO2/kWh2. In terms of
cost, the current UK price per litre of diesel of £1.75 will be used.
For electric, a cost of £0.19 per kWh is used.

The results from optimised electric and diesel fleets are shown
in Table 4 whereby it can be observed that in all cases the diesel
bus fleet traverses fewer non-service km than an electric fleet. This
is because the diesel bus fleet requires fewer buses as each bus
can operate all day. Electric buses will run out of charge poten-
tially midway through the day meaning more buses and trips to
and from the depot. In many instances a diesel bus fleet uses 30%
fewer buses. However, even with the greater traversal distance, the
CO2 emissions are 67% lower for the electric bus fleet and zero par-
ticulates. Note, the CO2 emissions include the full route distances
described in Table 1 and non-service distances. In terms of energy
costs, for an electric bus fleet there is a 50% reduction. However,
note that significantly more buses are required by an electric bus
fleet incurring additional infrastructure costs, manufacturing car-
bon emissions and driver man hours.

4 CONCLUSIONS
This paper considered a hyper-heuristic methodology to optimise
an electric bus fleet, an important problem as electric buses are
better for the environment but pose problems in terms of range
limitations. A Sequence-Based Selection Hyper-Heuristic (SSHH)
methodology was applied to the optimisation of real-world elec-
tric bus problems. Moreover, an adaptive SSHH (A-SSHH) method
was introduced which accounts for both successes and failures in
1www.carbonindependent.org
2http://www.nationalgrideso.com/news/record-breaking-2020-becomes-greenest
-year-britains-electricity
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Table 3: Non-service distances and fleet sizes when applying SSHH and A-SSHH to each electric bus scheduling scenario.

Scenario
Non-Service Distance (km) Bus Fleet Size

SSHH A-SSHH SSHH A-SSHH

Average Best Worst Average Best Worst Average Best Worst Average Best Worst

A 1187.26±77.48 1118.99 1471.97 1137.56±27.57† 1100.45 1191.79 25.44±1.26 25 30 25.20±0.41 25 26
B 1066.99±80.53 1009.36 1362.47 1033.50±13.91 1011.22 1059.08 22.00±1.87 21 28 21.40±0.50 21 22
C 3067.74±360.07 2722.95 4324.23 2759.73±41.87† 2673.37 2854.32 98.48±10.50 92 143 92.72±0.46† 92 93
D 1922.67±140.16 1746.92 2329.61 1810.33±40.76† 1756.61 1891.91 80.56±3.78 78 94 78.96±0.35† 78 80
E 2039.42±176.63 1798.67 2445.15 1835.03±35.94† 1775.45 1949.60 82.96±2.79 80 91 80.12±0.33† 80 81
F 1138.78±93.06 1032.66 1429.51 1059.09±36.95† 992.90 1147.05 49.36±3.33 47 63 47.80±0.50† 47 49
G 5655.50±516.00 4971.55 7298.06 5104.39±66.03† 4980.73 5216.60 158.92±12.51 147 209 149.60±0.76† 148 151
H 5185.54±307.82 4623.28 5766.66 4615.05±82.52† 4419.20 4770.28 210.92±20.61 194 268 195.24±0.60† 194 196
I 11 673.08±944.97 9999.61 13534.06 9886.87±136.71† 9684.96 10330.09 397.00±48.52 342 499 346.76±1.16† 345 349

†Statistically significant improvement of A-SSHH over SSHH with a p < 0.05 t-test, a two-sided significance level and 24 degrees of freedom

Table 4: Comparison of diesel and electric bus fleets in terms of distance, bus fleet size, CO2 emissions and energy costs.

Scenario Distance (km) Buses Cost (£) CO2 Emissions (kg)

Diesel Electric Diesel Electric Diesel Electric Diesel Electric

A 1008.65±9.63 1137.56±27.57 22.00±0.00 25.20±0.41 4051.77±9.47 1954.22±12.68 5563.66±13.00 1851.36±12.01
B 1053.66±21.74 1033.50±13.91 19.28±0.46 21.40±0.50 3349.61±21.37 1557.28±6.40 4599.50±29.34 1475.32±6.06
C 2210.81±23.45 2759.73±41.87 59.56±1.08 92.72±0.46 15 501.07±23.06 7501.97±19.25 21 285.18±31.66 7107.13±18.24
D 1448.27±20.42 1810.33±40.76 49.04±0.20 78.96±0.35 13 364.54±20.08 6416.83±18.74 18 351.42±27.57 6079.10±17.75
E 1167.22±34.73 1835.03±35.94 44.20±0.65 80.12±0.33 13 411.82±34.14 6579.53±16.53 18 416.34±46.88 6233.24±15.66
F 997.67±27.87 1059.09±36.95 36.08±0.49 47.80±0.50 8103.58±27.40 3818.14±16.99 11 127.37±37.62 3617.19±16.10
G 4463.90±61.47 5104.39±66.03 108.24±0.93 149.60±0.76 25 084.00±60.43 12 025.84±30.36 34 443.92±82.98 11 392.90±28.76
H 3610.26±67.10 4615.05±82.52 122.72±1.14 195.24±0.60 32 883.11±65.97 15 840.85±37.94 45 153.20±90.59 15 007.12±35.94
I 8242.83±95.38 9886.87±136.71 240.28±2.03 346.76±1.16 58 132.94±93.77 27 943.67±62.86 79 824.83±128.76 26 472.95±59.55

low-level heuristics selection. A-SSHH improved the optimisation
results for the electric bus routing scenarios considerably over stan-
dard SSHH. Regarding environmental benefits, optimisation demon-
strated reductions of over 60% in terms of CO2 emissions can be
achieved over diesel bus fleets. Moreover, the energy costs of oper-
ating an electric bus fleet are half those from a diesel bus fleet. How-
ever, due to the range limit of electric buses, significantly more
electric buses are required to service a current bus timetable.

Future work will integrate A-SSHH within the HyFlex frame-
work to measure it against other hyper-heuristics. Regards electric
bus fleet optimisation further research will consider mixed fleets
of diesel and electric buses and also modification of the timetables
and routes themselves to better accommodate electric buses.
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