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Abstract.

We have developed a deep generative model that can produce accurate optical

emission spectra and colour images of an ICP plasma using only the applied coil

power, electrode power, pressure and gas flows as inputs – essentially an empirical

surrogate collisional radiative model. An autoencoder was trained on a dataset of

812,500 image/spectra pairs in argon, oxygen, Ar/O2, CF4/O2 and SF6/O2 plasmas in

an industrial plasma etch tool, taken across the entire operating space of the tool. The

autoencoder learns to encode the input data into a compressed latent representation

and then decode it back to a reconstruction of the data. We learn to map the plasma

tool’s inputs to the latent space and use the decoder to create a generative model.

The model is very fast, taking just over 10 s to generate 10,000 measurements on

a single GPU. This type of model can become a building block for a wide range of

experiments and simulations. To aid this, we have released the underlying dataset of

812,500 image/spectra pairs used to train the model, the trained models and the model

code for the community to accelerate the development and use of this exciting area of

deep learning. Anyone can try the model, for free, on Google Colab.
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Surrogate collisional radiative models from deep generative autoencoders 2

1. Introduction

Generative models are a type of deep learning model that can produce new, unseen

samples when trained on un-labeled data. These types of models have not been used

previously in the field of low-temperature plasmas, but have been used to great effect

in generating text, images and 3D models. They can offer many benefits by creating

synthetic data for modelling and experiment design, replacing parts of computational

models with fast surrogate models and providing a foundation for models that predict

expensive and difficult to measure parameters from simpler diagnostics.

1.1. Background

Synthetic data can be an extremely useful resource in plasma physics for developing

experiments, understanding diagnostics and training models and controllers for plasma

applications. Synthetic data tools have been used in fusion [1, 2, 3, 4] and laser plasmas

[5, 6, 7, 8, 9] to aid simulations, experiment design and for training Machine Learning

(ML) and Deep Learning (DL) models. However, such approaches have been used less

frequently in low-temperature plasmas [10, 11, 12].

Methods for generating synthetic data, used in plasma physics, can be split into

three main groups – generating synthetic sensor data from simulation or analytic models

[1, 5, 6, 7, 8, 9, 4, 12], inverting analytic methods for extracting parameters from sensor

data [10, 2, 11] and augmenting existing experimental data to create new data [3].

However, DL generative models have not been used for synthetic data generation in

plasma physics. This approach uses DL models, such as autoencoders (AE), generative

adversarial networks, diffusion models or transformers as a generative model that can

create new synthetic data (see [13] for a recent review of the area). Outside the field

these approaches have been used for improving medical image classification [14], drug

design [15], chemical reaction discovery [16], cyber security [17], music generation [18]

and image generation [19], and many other applications besides.

Deep learning approaches have had many successes in the field, applied to

controlling atmospheric pressure plasma jets [20, 21], a fast replacement for computed

tomography for tokamak radiation profiles [22], classifying particle defects on

semiconductor wafers [23, 24, 25], predicting electron energy distribution functions from

optical emission spectra (OES) [26] and creating surrogate models of neutral beam

injection [27], sputtering processes [12] and plasma etching [28].

In this work we demonstrate how deep autoencoders can be used to generate

synthetic sensor data from large amounts of unlabelled experimental data. We show

how to train a deep autoencoder on unlabelled data and then how to train a model to

learn to ‘map’ from an input space of physical variables into the latent space of the

autoencoder to produce a generative model.

In the context of the literature on deep learning, there has been a great deal of

interest in developing generative models for some time, such as variational autoencoders

(VAE) [29], generative adversarial models [30] and diffusion models [31]. Earlier work
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Figure 1: Schematic diagram of a basic autocencoder.

focused on developing models that were capable of generating good outputs through

random sampling, more recent work has focused on how to guide generative models

to produce desired generative outputs. This can be referred to as learning a prompt

for generative output or a map to a latent space. Recent examples include generating

music [18, 32], transforming facial expressions [33] generating energy angle distributions

in sputtering processes [12], and new high quality image generation from prompt models

such as DALL·E 2, Parti and Stable Diffusion [19, 34, 35].

1.2. Autoencoders

Autoencoders are an early type of neural network model that learns to copy its input at

its output [36]. Autoencoders consist of an encoder, z = f(x), that learns to map input

data, x ∈ Rr, into a latent space (z ∈ Rl) and a decoder, x̂ = g(z) that learns to map the

latent space representation back to the input [36], see figure 1. The model is trained to

minimise the reconstruction error between the input data and the reconstructed output.

On the face of it this does not seem like a very useful network, but by making the

latent space much smaller than the input data (l << r), the network is forced to learn a

low dimensional representation of the input data by learning relationships and patterns

within the input data.

VAEs are an extension of ordinary autoencoders, where an additional training

objective, the Kullback–Leibler (KL) divergence, is added to guide the distribution

of the latent space to follow a normal distribution with a diagonal covariance matrix,

z = N (z;0, I). This gives VAEs a continuous latent space that can be easily sampled

from to generate new samples. This has lead to VAEs being widely used in the field of

generative modelling, however, they have had issues from their inception, as they are
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Surrogate collisional radiative models from deep generative autoencoders 4

difficult to train and suffer from mode collapse [37, 38] and that the latent space does not

always end up having the desired property of being a normal distribution [39], such as

in figure 4 of [12]. The VAE prior itself has also been highlighted as a source of many of

these problems due to over-regularisation creating uninformative latent representations

[40, 41].

Recent work in the field of generative modelling has demonstrated that the VAE

process can actually hamper the ability of the model to learn a useful representation

through over-regularisation and that large autoencoders are good generative models,

outperforming VAEs repeatedly [42, 43, 44]. In recent work, Autoencoders have been

used to learn features for virtual metrology models from optical emission spectroscopy

(OES) [45] and defect detection in semiconductor processing [46]. We use autoencoders

in this work as they are easier and more predictable to train than VAEs, while providing

equal or better performance as a generative model, making them more suitable for

widespread use in scientific applications.

Our contributions in this work and the structure of the paper are laid out as follows.

In section 1 we provide a background to synthetic data generation, deep generative

models and how it has been applied in other fields. In section 2 we describe how we

created an experiment to gather 812,500 optical emission spectra and colour images in

fluorocarbon plasmas in an industrial plasma etcher. In section 3 we describe how to

build and train an autoencoder and how to train a small model to map physical tool

inputs to the latent space and turn the decoder into a conditional generative model. In

sections 4 and 5 we look at the structure of the latent space produced by the model

for different sizes of latent space and the difficulty of evaluating generative models. In

section 6 we demonstrate using the generative model to carry out synthetic experiments

looking at line ratios in Argon and Ar/O2 plasmas covering 10,000 points varying power

and pressure in seconds. We consider any limitations of the approach and future work,

and detail the open source release of code and experimental results in sections 7 and 8,

followed by a conclusion to the work in section 9.

The data set we have gathered has been released under a creative commons license

(CC BY-4.0) and can be used by anyone for academic purposes. The model’s code and

pre-trained models have been released as open source under the MIT License.

2. Data collection and experimental design

A dataset of 812,500 optical emission spectra (OES) and RGB images of the bulk plasma

above the wafer surface were gathered from an Oxford Instruments Plasma Technology

PP 100 industrial plasma etcher with a Cobra300 cylindrical ICP source. Quartz

windows were used for all optical diagnostics, for OES an Edmund Optics UV/VIS

collimator (88-173) was used to collect light into a Thorlabs round to linear fibre bundle,

consisting of seven 200 µm solarisation resistant fibres. An Avantes ULS4096CL-EVO-

RM 200-1100 nm spectrometer was used with a 10 µm slit. Optical images were collected

with a FLIR Blackfly 0.4 MP colour camera (BFS-U3-04S2M-CS) and a 6mm focal

Page 4 of 22AUTHOR SUBMITTED MANUSCRIPT - MLST-101111.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Surrogate collisional radiative models from deep generative autoencoders 5

Table 1: Dataset setpoints.

Argon Oxygen Ar/O2 CF4/O2 SF6/O2

ICP / W 480→3000 600→3000 750→3000 600→3000 750→3000

Table / W 0→600 30→600 30→540 30→600 30→600

Pressure / mT 5→90 5→90 5→80 4→90 5→80

1st gas / sccm 3.5→70 2.5→50 2.5→50 4.2→84 2.6→52

2nd gas / sccm 2.5→50 2.5→50 2.5→50

Number of points, n 10,000 10,000 30,000 60,000 70,000

Table 2: Raw measured points.

Argon Oxygen Ar/O2 CF4/O2 SF6/O2

ICP / W 0→2997 0→2996 0→2997 68.1→2996 0→2996

ICP 0.1%→99.9% 464→2985 544→2988 72.2→2988 224→2988 595→2988

Table / W 0→613 0→604 0→544 2.75→614 0→545

Table 0.1%→99.9% 0.2→597 19.7→598 8.9→537 83.2→597 6.6→535

Pressure / mT 5→92 5→91 2.8→91 3.8→85.8 4.3→82.1

1st gas / sccm 3.5→70 0.1→50 2.8→70 4.2→84 0→52

2nd gas / sccm 2.5→50 2.5→50 0→50

Number of points 50,000 50,000 150,000 225,000 337,500

length lens (SV-0614V).

Data was collected across the entire operating region of the plasma source in argon,

oxygen, Ar/O2, CF4/O2 and SF6/O2. The experimental operating space consisted of the

power delivered to the ICP source, the power to the table, the pressure in the chamber

and the flow rate of one or two gases. The operating space varied for each gas due to

differing lower limits on the minimum power and pressure to form a stable plasma or

the requirement to keep the DC bias below 1kV. The operating space is summarised in

table 1.

Our aim was to make measurements at sample points across the operating space

and gather the most amount of information within a fixed budget of samples. Naively,

we could have used a grid search, however, a 10 point grid across 5 dimensions would

require 100,000 points with very poor space filling, i.e there would be only 10 unique

values in each dimension. The next simplest approach would be to sample randomly, for

large numbers of samples – this is quite likely to fill the parameter space, but there is

no guarantee on how efficiently we can fill the operating space. The efficiency of filling

a space and how well the points are separated can be measured by the discrepancy of

the entire set, in particular, we use the L2 discrepancy to measure this [47, 48].

Quasi-random sequences offer a very effective way to generate sets of sample points

that offer some guarantees on efficiency of filling a parameter space while still providing

enough random spread to cover the interactions of many variables [47, 48], i.e. they

have a low discrepancy. Two of the most common quasi-random sequences are Latin
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Surrogate collisional radiative models from deep generative autoencoders 6

Table 3: L2 discrepancy of different sampling methods in 5 dimensions (lower is better,

bold is best).

No. points Grid Random Sobol

103 1.14× 10−1 1.54× 10−3 2.52× 10−5

104 2.87× 10−2 1.08× 10−4 1.83× 10−7

105 1.38× 10−2 1.80× 10−5 4.63× 10−9

106 5.09× 10−3 1.28× 10−6 1.03× 10−10

Figure 2: Ordered sweep from Sobol sequence for CF4/O2, from top to bottom - IPC

power, Table power, O2 flow, CF4 flow, pressure.

Hypercube Sampling (LHS) and Sobol sequences, both have the properties that we

desire, but Sobol sequences have an advantage the you can generate further elements

of the sequence, using the same random seed. This is important if you need to extend

your dataset at a later time point. There is no guarantee that the combination of two

LHS sets does not have a higher discrepancy than one generated with the combined

number of data points and you cannot truncate or randomly sample from a large LHS

and maintain the low discrepancy. However, with a Sobol sequence you have a guarantee

that the extension to your dataset has the same discrepancy as if you had started by

generating the sequence of that length [47, 49].

Using a Sobol sequence, we generated 10,000 points each for argon and oxygen,

30,000 points for Ar/O2 and 60,000 for CF4/O2 and 70,000 for SF6/O2. To actually

cover the entire sequence in our experiment, we sorted each sequence such that pressure

followed a relatively flat ramp over the whole range and other variables followed a

triangle wave shape of increasing speed, as shown in figure 2. This enabled us to

maintain tool stability between sample points and reduced the settling time between

setpoint changes. Setpoints were changed every 5 seconds and a optical image and OES

were taken every second starting at the beginning of the setpoint change. A plain, un-

patterned, silicon wafer was clamped to the table at all times and the process was only

stopped to replace the wafer when it had become too thin from etching.

The dataset consists of 5 image spectra pairs, [in,0, . . . , in,4], [sn,0, . . . , sn,4] and

setpoint readbacks from the tool [tn,0, . . . , tn,4], taken at each setpoint [P0, . . . , Pn] for

each gas mixture. The setpoint readbacks consist of the net power (forward-reflected) on

the ICP coil and table, pressure in the chamber, gas flow from each mass flow controller

and DC bias at the table.
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Figure 4: Autoencoder architecture block diagram.

The experimental points sampled did not perfectly align with our planned sweeps;

some areas had unstable plasmas, could not sustain a plasma or exceeded parts of the

tool’s operational envelope, such as pressure control. The measured data is summarised

in table 2, all of the runs have a small portion of results with momentary high reflected

power, but not for long enough to cause the plasma to extinguish. In CF4/O2 plasma the

high pressure region above 70 mT was unstable due to a combination of reduced plasma

stability and limited control margin of the pressure controller and the sweeps were not

continued above this pressure. In SF6/O2, the minimum power required to sustain a

plasma increased with pressure and so the sequence was extended to 70,000 points and

the minimum ICP power raised to 1500 W above 40 mT to yield more measurement

points. The experiment yielded a total of 812,500 image spectra pairs, at 162,500 unique

setpoints in the operational space of the tool.

The data was split into train, validation and test sets with a 80/10/10 split. However,

since we hold and take 5 measurements at each set point, naively randomly splitting
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Surrogate collisional radiative models from deep generative autoencoders 8

the data would result in leakage from the test data into the train split, i.e. some

measurements at a single setpoint would be present in each split. To avoid this, the

data is kept together in blocks of 5 and the blocks are randomly assigned to the three

sets. The spectra are processed by subtracting the average of the counts at the dark

pixels from each spectra and removing the data from pixels outside the calibrated range

of the spectrometer, this leaves 3072 pixels covering 200-1100 nm. The intensity of

each spectra is min-max scaled to between 0 and 1 and a 5 pixel wide Hann window

[50] is used to smooth out noise in the spectra. The camera produces a 720x540 pixel

image with an RGGB Bayer mask, rather than perform standard Bayer interpolation

to produce a 720x540 colour image, we treat the camera like a hyperspectral camera

with very poor spectral resolution. We take all the red and blue pixels and one of the

green pixels to form three 360x270 images. These are cropped to the central area of

the image, resized and stacked to produce a 128x96x3 image. The pixel intensities are

well controlled by the camera’s autoexposure algorithm and are all clustered around

a 50% grey value, requiring no further normalisation. The camera ADC is set to a

10-bit resolution and values are stored as 16-bit integers, all images are divided by 216

to rescale their pixel intensities between 0 and 1. The values from the tool’s setpoint

readbacks are all in the range of 0-10 V or 0-5 V and are simply divided by 10 to rescale

them between 0 and 1.

This process of the rescaling and normalisation of inputs is a particularly important

step in preparing data for training in any machine learning approach. It speeds up and

stabilises convergence in training the model [51, 52], as gradients in the model will be

within expected bounds for the optimiser and the inputs are within the expected bounds

of activation functions, such as sigmoid and ReLU.

3. Building deep generative autoencoders for synthetic data generation

Our model architecture is based on ConvNeXt, a state of the art convolutional neural

network architecture [53]. We use the base ConvNeXt blocks and stem, with 1D or

2D convolutions for OES or images to form our image and spectra encoding branches,

the basic block is shown in figure 3. Each branch consists of four stages with (2, 2, 6,

2) blocks and (64, 128, 256, 512) filters, at the beginning of each stage a convolutional

downscaling halves the spatial dimensions of the image or spectra. At the end of the last

stage a global average pooling layer reduces all of the spatial dimensions and produces

a single tensor with the size of the last set of filters and this is followed by two densely

connected neural network layers of 1024 neurons and the chosen size of our latent space.

The latent output of each branch is then summed together producing a tensor with the

length of the latent space dimension and finishes in a dense layer with z neurons with a

linear activation function. This is our latent representation of the input data and can be

the combination of any number of input branches. The model was trained on different

sized latent spaces, l = [4, 16, 32, 64, 128], to demonstrate the effect the size of the latent

space has on the model.
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Surrogate collisional radiative models from deep generative autoencoders 9

Table 4: Settings for autoencoder model training and fine-tuning.

config Training Finetune

optimiser Adam Adam

epochs 100 100

base learning rate 2.5× 10−4 1× 10−4

learning rate schedule cosine decay cosine decay

warmup epochs 8 8

warmup schedule linear linear

batch size 2048 2048

blocks 2,2,6,2 2,2,6,2

filters (f) 64, 128, 256, 512 64, 128, 256, 512

In this work we have only used two branches, both based on convolutional networks,

but any number of branches can be used with any kind of network architecture encoding

some input data. The decoder is simply the reverse of the encoder and finishes in a 1D

or 2D convolution that reconstructs the input.

The encoder learns a function to project the input image and spectra in, sn pair into

a latent space, zn = f(in, sn), each decoder branch then learns a function to project

the latent space vector back into the real diagnostic space, în = g(zn), ŝn = h(zn), this

overall structure is shown in figure 4. The loss is a reconstruction loss between input,

in, sn, and reconstructions, în, ŝn. This loss can be weighted to favour one input over

another to embed prior assumptions about the relative importance of each diagnostic.

The model is trained with the Adam optimiser [54], using a cosine decay learning

rate schedule [55] with a linear warmup, and Mean-Squared Error (MSE) as the loss,

using Keras [56]/Tensorflow [57]. Full details of the training and fine-tuning settings

are in table 4. The model was trained on 4 Nvidia A100 GPUs for 100 epochs, taking

roughly 20.5 hours to train.

Table 5: Results of autoencoder model training.

Latent units

(l)

Spectra MSE Image MSE

Train Validation Test Train Validation Test

4 2.09× 10−4 2.09× 10−4 2.06× 10−4 1.06× 10−3 1.10× 10−3 1.09× 10−3

8 4.50× 10−5 4.59× 10−5 4.71× 10−5 1.03× 10−4 1.04× 10−4 1.07× 10−4

16 2.83× 10−5 2.93× 10−5 2.87× 10−5 7.64× 10−5 7.56× 10−5 7.77× 10−5

32 1.29× 10−5 1.30× 10−5 1.31× 10−5 4.22× 10−5 4.19× 10−5 4.30× 10−5

64 (VAE β = 10−2) 1.87× 10−3 1.91× 10−3 1.85× 10−3 2.21× 10−2 2.21× 10−2 2.15× 10−2

64 (VAE β = 10−4) 1.62× 10−4 1.63× 10−4 1.62× 10−4 5.00× 10−4 4.96× 10−4 5.06× 10−4

64 (VAE β = 10−6) 2.13× 10−5 2.17× 10−5 2.16× 10−5 7.33× 10−5 7.25× 10−5 7.43× 10−5

64 8.07× 10−6 8.25× 10−6 8.06× 10−6 3.69× 10−5 3.65× 10−5 3.74× 10−5

128 5.26× 10−6 5.37× 10−6 5.28× 10−6 3.27× 10−5 3.24× 10−5 3.12× 10−5
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z1

z 2

(a) Bad latent space, l = 4

z2

z 1
5

(b) Better latent space, l = 16

z97

z 8
7

(c) Good latent space, l = 128

z4

z 5
9

(d) Bad VAE l = 64, β = 10−4

z4

z 5
9

(e) Better VAE l = 64, β = 10−6

z4

z 5
9

(f) Good latent space, l = 64

Figure 5: Example 2D slices of the latent space with well distributed and poorly distributed points,
(blue - O2, purple - Ar, green - SF6 and orange - CF4).

3.1. Tool to latent model architecture

Our decoder model can be used on its own for generative modelling, by randomly

sampling over values of z we can generate random output spectra and images from

our model, however, this is of limited practical use. To make this model into a synthetic

data generator we need an additional model to learn to map from tool parameters t to

the latent space, z = f(t). This is similar in its way of thinking to text-to-image models,

such as Stable Diffusion [35], where the model is trained with pairs of text descriptions

and images. In this work we train an additional model to produce latent representations,

z, from tool parameters that match the ones from their associated image and spectra

pair. The parameters used were the net power on the ICP coil, table power, gas flows

and pressure.

The model is a multi-layer perceptron, a stack of identical dense neural network

layers, trained with the latent representations, z, as a supervised objective. As we

do not have a reference architecture for this model, and since its small size and low

complexity mean it is fast to train, we used KerasTuner [58] to carry out a multi-

Page 10 of 22AUTHOR SUBMITTED MANUSCRIPT - MLST-101111.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Surrogate collisional radiative models from deep generative autoencoders 11

objective Bayesian-optimisation of the number of dense layers, number of neurons and

the learning rate for each of models with l = [4, 16, 32, 64]. We considered using the top

5 models as an ensemble, but we did not see a discernible improvement.

3.2. Evaluating the quality of unsupervised models

It is inherently difficult to evaluate the quality of unsupervised models as we do not

have direct access to the objective that we are optimising for. In this work we trained

our models to reduce the MSE between the original image and spectra and their

reconstructions. However, this does not tell us if our latent space has useful information,

i.e. if the encoding into this space is a useful empirical model of plasma information

contained in the diagnostic data and/or if the latent representations produces by our

tool model project back to the correct diagnostic information.

To evaluate this we have to create surrogate objectives that we believe provide us

some insight into how well we achieve our underlying objective. The simplest method

is to look at the performance of our models on our hold-out test data, if the model has

simply memorised the input data and cannot generalise and interpolate between the

trained data we will see poor reconstructions of the test data. To evaluate if our latent

representation is useful for generating synthetic data we can look at the distribution

of points in the latent space and make subjective judgements, e.g. large gaps and

spaces between points are areas that cannot be sensibly interpolated across by our

generative decoder. To evaluate the empirical quality of the models we can evaluate

their behaviour around known mode transitions like the E-H mode, comparing trends

to previous experimental data and changes in gas stoichiometry.

4. Properties of the latent space

The overall aim of latent space modelling is to project input data onto a manifold in

the latent space while preserving information and relationships within the data that are

physically real and sensible, whilst not overfitting on spurious relationships that are not

physically real or sensible. To make our latent representation usable we would like it to

have some properties, for points to be close to a normal distribution, for points that are

close in the real space (i.e. two plasmas that are similar to each other) to be close in the

latent space and the reverse to be true, and for the latent space to be interpolatable,

i.e. we can smoothly move through the latent space from one area to another without

sharp discontinuities.

Many of these properties can be gained by simply using a large enough deep learning

model with enough data. Large neural networks are inherently self-regularising [59] and

with increasing size, reach a point where their outputs become Lipschitz continuous

[60]. When training generative models on existing benchmark datasets, it is possible

to use measures of image similarity to evaluate the performance of the model, such as

the Fréchet inception distance [61]. However, these use pre-trained image classification
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(a) l = 4, ICP - 2910.9 W, Table - 392.6 W, Ar -
35.3 sccm, pressure - 14.06 mT
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(b) l = 64, ICP - 1437.7 W, Table - 367.4 W, Ar -
45 sccm, O2 - 5.5 sccm, pressure - 70.3 mT
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(c) l = 64, ICP - 1371.6 W, Table - 398.4 W, O2 -
6.3 sccm, CF4 - 62.8 sccm, pressure - 52.4 mT
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(d) l = 64, ICP - 1924.8 W, Table - 369.5 W, O2 -
20.1 sccm, SF6 - 25.1 sccm, pressure - 8 mT

Figure 6: Measured OES and reconstructions in Ar/O2 for l = 4 and 64, CF4/O2, and SF6/O2 plasmas,
green line is the measured spectrum, blue line is the reconstructed spectrum. Given the difficulty of
telling them apart, the red line below shows the mean squared error at each wavelength.

networks to evaluate the quality of generated images. If our data was similar to the

data used to train the classification network these methods can be used, or if you have

some labelled data you can fine-tune one of these models for this use case. However, an

OES of an Argon plasma has little similarity to images of planes and cats (which are

typically employed in pre-trained networks) so we would not have any guarantee that

these methods would work. This is an area of active research in the field of generative

modelling and so in time new evaluation methods may appear that overcome this issue.

Without a quantitative measure of performance we are left with qualitative

evaluations of our generative capabilities. The simplest is to look at the distribution of

points in the latent space. If our model and dataset are large enough and the model is
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Surrogate collisional radiative models from deep generative autoencoders 13

Figure 7: Measured images and reconstructions in Ar/O2 (l = 4, l = 64), CF4/O2, and

SF6/O2 plasmas. Top row is original images, bottom is reconstructions.

well trained, our latent space should be well behaved – close to a normal distribution

and interpolatable. In figure 5 we show examples of the latent space of trained models,

‘bad’, ‘better’ and ‘good’. The bad example shows a latent space that is extremely

sparse and has significant spikes in the concentration of points, it would be very difficult

to interpolate between points in this space as it has significant discontinuities and no

meaningful representation moving off the central axis the points are stretched across. In

the better example most of the points are reasonably close, although we have a strongly

multimodal distribution and has separated into two clusters that would be extremely

difficult to interpolate between. The good representation shows what we are looking

for, our points are more smoothly distributed and there are no discontinuities within

the latent space itself.

Unfortunately we cannot always expect our data to be perfectly well behaved like our

‘good’ representation. We cannot rely on the assumption that our data is independent

and identically distributed. The conditions of one plasma are affected by the history of

plasmas within that tool and we expect our latent space to encode some physically real

multi-modal distributions, like E-H mode transitions, different gas stoichiometries and

pressure regimes. Figure 5f shows a ‘good’ representation, the latent space is smooth and

interpolatable, but one dimension has a bimodal distribution. We expect to see different

physical modes in the data form independent normal distributions in the latent space

and as long as it is physically possible to transition between these modes, and we have

data covering the mode transition, the latent space can be used to interpolate between

these modes.

In section 1.2 we discussed the VAE in comparison to the ordinary autoencoder. In

figures 5d and 5e we show VAE’s trained with the same architecture and training settings

as the l = 64 model, where β is the weighting factor between the reconstruction error

and the KL divergence. The VAE training objective forces a the latent space to follow

a normal distribution with a diagonal covariance matrix, z = N (z;0, I), which figure 5d

does. But this prior is not the true prior of the underlying data and so enforcing this

degrades the model to the point where the reconstruction error is a high as the l = 4
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Surrogate collisional radiative models from deep generative autoencoders 14

model while having 16 times more parameters in the latent space. When we relax this

condition, by reducing β to 10−6, the reconstruction error begins to improve to the level

of the l = 16 model but, as can be seen in figure 5e, it achieves this by changing the

distribution of the latent space towards that of the l = 64 model.

The requirement of the VAE prior for all dimensions of the latent space to be

independent is also not entirely physically justifiable in real physical data. For example,

if the underlying data contained information about electron density and density of

atomic oxygen in the plasma these are not completely independent variables. An

autoencoder would be able to freely represent the functional relationships between these

two variables. However, a VAE would require a latent dimension for each variable and

each function that describes their relationship. The end result is a VAE that requires a

far larger latent space to represent the relationships in the data and is far more likely

to memorise the data as the latent space is not small enough to force the model to

generalise.

5. Evaluating the generative model

A summary of the results from training the autoencoder model is given in table 5. The

training data split was used for directly training each model, the validation split was

used to independently evaluate model performance for hyperparameter optimisation

of the model learning rate. The optimal hyperparameters found for the training and

fine-tuning step are summarised in table 4. The test split was kept as a holdout set for

final model evaluation and was not used at any time during training and hyperparameter

optimisation. The test and train errors are very close for all latent space sizes, indicating

that the model has not overfit to the training data. In Figures 6 and 7 we show 3 random

examples, from the test split, l = 64, of the original and reconstructed data in each of our

three gas mixtures and l = 4 for the Ar/O2 example. The error on the reconstruction is

extremely low for l = 64, but as can be seen in table 5 and figure 6a, the reconstruction

error decreases significantly for larger latent space size. In particular, figure 6a shows

that the small latent space model makes significant errors in reconstructing the relative

height of peaks in the spectrum and at l = 64 these are greatly minimised.

To evaluate the quality of our model’s latent space we can look at the distribution

of points encoded into the latent space. In figure 8 we can see the type of distributions

we have in our latent space for l = 8 and 64. We can make a qualitative assessment

of the quality of the latent space for generative modelling. For l = 8 the distributions

show some sections that are smoothly and normally distributed, but has a large number

of discontinuities (spikes and troughs) and are all strongly multimodal. For l = 32 and

64 some of our latent dimensions have a uni-modal distribution, but the majority have

multi-modal distributions, and there is some complexity in the distributions. There are

spikes present in l = 32 suggesting that some mode collapse has occurred (e.g. multiple

measurements mapped to the exact same place in the latent space), but not l = 64.

In l = 64 there are no gaps in the latent space, although there are areas of very low
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(a) l = 8

(b) l = 32

(c) l = 64

Figure 8: Histograms of the distribution of points in each latent dimension space for all

image spectra pairs in the test set.

density of points between parts of the distribution in a few of the latent dimensions, but

l = 32 does have two areas of nearly zero density, suggesting a gap in the latent space.

The l = 128 model has lower reconstruction error than the l = 64 model, but the latent

spaces appear to have the same qualitative quality, without a quantitative assessment

we will ere on the side of using the smallest latent space that appears qualitatively good.

These qualitative assessments suggest that our l = 64 model can be used for generative

modelling as we can smoothly interpolate between different areas of the latent without

discontinuities, but the smaller l = 8 is unsuitable and l = 32 would be suitable for

most areas, but would struggle around its discontinuities.
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Figure 9: Sweep across from 400-3000 W ICP power in Argon and Ar/O2, lines are

generated data and crosses are measured points with 10% of the swept values. Sweeps

repeated at 5 mT, 10 mT, 20 mT, 30 mT, 40 mT, 50 mT, 60 mT, 70 mT, 80 mT, 90

mT and 100 mT

6. Results of synthetic experiments

To carry out a synthetic experiment we use our tool-to-latent model, z = f(t), to

produce latent representations, z, and our two decoder branches, i = g(z), s = h(z), to

generate spectra and images. We can generate an image spectra pair for one experiment

point in 0.13 s/0.79 s on GPU/CPU, can compute a batch of 128 points in 0.25 s/51.22 s

and a batch of 1024 in 1.34 s on an A100 GPU. In the simplest form, we can generate the

expected spectra and image at a desired set of powers, pressures and gas mixture. We

can also simply perform more complex experiments where we sweep across parameters

in fine steps very quickly. Figure 9 shows a simple experiment where we sweep from

400-3000 W applied to the ICP source, 1024 steps, in pure argon and 8 sccm Ar, 50

sccm O2 at at different 11 pressures from 5-100 mT. We plot the line ratio of the Ar

811.5 nm and 750.4 nm lines in pure Ar and the ratio of the O2 844.6 nm and Ar 750.4

nm lines in the Ar/O2 mixture.

In figure 9a we show the variation in (I811.5/I750.5) ratio with power at pressures

between 5 and 100 mT, at 10 and 60 mT we also plot the ratio at points in the data

set that are close to the sweep. We can see that the points in the data are reasonably

close to the generated data and follow the same trend. The overall trend in the data is

in agreement with other experimental data by Czerwiec and Graves [62], although their

reactor was a significantly different geometry. The trend in power shows a linear rise

to the E-H mode transition point around 500-600 W and then decreases. Their data
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(b) 40 mT

Figure 10: Generated spectra and first 10 latent coordinates at 2400 W ICP, 300 W Table, 10 sccm O2,
10 sccm CF4 and spectra of 10 nearest points in the dataset. In the upper plots, the solid line is the
generated spectra and the dotted lines are the nearest 10. In the lower plots the first 10 bars are the
latent coordinates of the 10 nearest, the black line is their average and the red is the generated latent.

is at higher pressures, above 100 mT, and shows no change with pressure, our model

shows a strong trend in an increase in (I811.5/I750.5) from 10-40 mT, then showing similar

behaviour with little change with increasing pressure.

In figure 9b we show the variation in (I844.6/I750.5) ratio with power at pressures

between 5 and 100 mT, at 20 and 50 mT we also plot the ratio at points in the data

set that are close to the sweep. The points in the data show general agreement with

the trends in the data, but the scatter in the points is quite high. The overall trend in

the (I844.6/I750.5) ratio is in good agreement with earlier work by Fuller et al. [63] with

a relatively linear rise with applied power.
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7. Limitations of the model and future work

The encoder model is able to embed any image / spectra pair into the latent space

and very accurately decode them back into the real measurement space. Differences

between the real plasma conditions of these measurements are represented by different

coordinates in the latent space. When using the encoder model to monitor a plasma,

the latent space representation will capture dynamic changes in the plasma over time.

However, our tool to latent model is very simplistic, it can only map a set of powers, gas

flows and pressures to their average coordinate in the latent space, it cannot capture

any dynamics.

We show an example of this in figure 10, at two pressures in a CF4/O2 plasma,

we show the spectra generated at the latent coordinate produced by the tool to latent

model and the 10 nearest spectra to this point in the dataset. At 40 mT there is a

high variation around the SiF emission peak at 443 nm as each point will have had a

different history and the etch rate, in this reactor geometry, is more sensitive to input

variations at higher pressures. This is reflected in the latent representations of these

different plasmas, but our tool encoder finds a latent representation that produces an

average of these spectra. At 20 mT, there is much less variation in the SiF emission peak

and latent representation and so there is close agreement between all measurements and

generated spectra.

The autoencoder model itself does not have any sensitivity to variations over time as

it only uses diagnostics that were gathered simultaneously. This limitation is by design.

It allows the process of extracting information from the diagnostics to be separated from

other tasks such as virtual metrology or predicting temporal variations in a plasma etcher

over time. This represents one of the advantages of unsupervised learning, it allows us

to easily separate different parts of a problem and combine the parts of our autoencoder

with different models to achieve different goals. These models can be trained with

different data sources, where data much more limited or measurements more difficult

without compromising the model performance by not having the quantity and diversity

of data to train large deep models.

These tasks can use the latent representation as an input without needing enough

labelled data to train a large model to understand the diagnostics. For example, in

a time-series modelling task, the latent representation, of the image and spectra data,

over time can be used as the model input and will act as a pre-trained feature extractor

for the task. To improve the performance of this generative model we could replace

our simple tool-to-latent model with a more complex model to account for trajectory

of powers and pressures in the experiment. This could be achieved with a sequence-to-

sequence model, with a sequence of tool parameters as the input and the corresponding

sequence of latent representations as their labels.
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8. Open source release of the dataset, trained models and code

The underlying dataset is available at https://doi.org/10.5281/zenodo.7704879,

configured as the train/validation/test splits used in the paper and is released under the

Creative Commons Attribution 4.0 International. The model code and trained models

are available here and are released under the MIT license. An example notebook of

using the model is available here and is released under the MIT license.

9. Conclusion

We have demonstrated that recent advances in generative modelling can be applied to

optical diagnostics in low-temperature plasmas. These approaches require a heavily

automated approach to experiments, to allow large amounts of data to be gathered in

a reasonable amount of time. Large autoencoder models can be trained, using existing

open source libraries and model architectures, for a low cost on cloud GPUs or in a

relatively short time on local GPU clusters.

We have shown that the latent space of autoencoders, trained on real plasma

diagnostic data, is very sensitive to the size of the latent space. Any implicit bias to

produce a model with the smallest number of parameters must be balanced by ensuring

that the latent space is smooth and interpolatable if we want the model to be useful or

have any capacity for generalisation.

Once trained, these autoencoders provide a low-cost method to generate large

volumes of synthetic data for use in other work, such as validating or creating models.

This is achieved by training an additional model to sample the latent space in the way

required for the synthetic experiment. We have demonstrated this capability with a

simple model to map tool inputs into the latent space and generate synthetic data that

shows good agreement with experimental data in Argon and Ar/O2 plasmas.

Large autoencoders can become a foundational building block for a wide array of

plasma physics experiments and models when trained with large datasets of simple,

but information dense diagnostics. The encoder can produce latent representations

of diagnostics that are smoothly interpolatable and sensibly separates similar and

dissimilar plasmas. These latent representations can be used for monitoring experiments

or as inputs for other predictive models. The decoder can produce realistic and accurate

data from latent representations and can be extended with auxiliary models to make a

powerful generative model for synthetic experiments, which we aim to exploit in future

work.
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