A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/177864

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Topolalogical Methods in Group Theory: The Adjunction Problem.

Hamish Buchanan Short

Thesis submitted for the degree of Doctor of Philosophy at the University of Warwick.

Table of Contents

Acknowledgements ii
Declaration ii
Summary iii
Historical Note iv
Terminology v
Chapter 1 Section 1 The Problens 1
Section 2 The Litterature 2
Section 3 Summary of Results 3
Section 4 Some Initial Results 6
Section 5 9
Chapter 2 Section 1 Dehn Diagrams 11
Section 2 Topology : Diagrams 13
Section 3 Special Diagrams 20
Section 4 Examples 30
Chapter 3 A Class of Special Diagrams 33
Chapter 4 41
Section 1 Potential Functions and the Lyndon Lemma 42
Section 2 The Freineitssatz for Locally Indicable Groups 56
Section 3 Exponent-Sum Zero Results 61
References 69

I would like to thank my research supervisor, Dr Colin Rourke, for his encouragement and inspiration, not to mention the healthy outdoor excercise and his wife's fine cooking.

Also I would like to thank Dr. Steve Pride for his many helpful comments on previous versions of this thesis, and I thank him and Dr. Hoit for the time they have taken over examining 1t; I aiso apologise for the t oubles I have caused them. I would also like to thank Peta McAllister for typing one of the early versions (and correcting my spelling).

My family have given me many years of patience and understanding for which I am extremely grateful; I only wish that my father could have lived to see the day.

While originally carrying out this research, I was in receipt of a Science Research Council Grant.

Declaration
I declare that none of the work presented here has been published elsewhere, or been submitted for another degree.

The results of Chapter 1 are well-known (creditted to their original sources where possible) except for the new results quoted from Chapter 4 .

Chapter 2 grew out of work by Dr. Rourke on presentations of the trivial group (see [Rou]) and suggestion that this approach should yield new results on the Adjunction Problem. Chapters 3 and 4 are original except where otherwise is indicated.

The work presented here is a new method of attack on an old group theory problem known as the fdjunction Problem, defined by $B H$ Neumann in 1943 (see $[N]$). The problem is the following : given a group, form a new group by adding one new generator and one new relation ; determine the conditions under which the natural map from the original to the modified group is an injection. (For instance the new relator must not be conjugate to a word in the original group.) The main result obtained using the new methods is that the map is indeed an injection when the original group is locally indicable - a new result independently obtainea by Howie $[\mathrm{H}]$ and Brodskii $[\mathrm{Br}]$.

Chapter l consists of some basic definitions and some of the known results, together with statements of the new results and some instances of where the problem arises in lowdimensional topology.

In Chapter 2 we introduce the new methods - showing that a non-trivisl element in the kernal of the natural map for a given group and added relator (a "counter-example") gives us a labelled, planar graph with certain properties (a "special diagram") and that this special diagram in its turn defines a counter-example (these results are summed up in 2.22). These topologically obtained diagrams turn out (2.10) to be dual to the "Dehn diagrams" of Small Cancellation Theory (see for instance [LS] or [I2]) •

In Chapter 3 a class of such diagrams is constructed and it is shown that none of these corresponds to a counterexample. This class contains the only diagrams known to the author which give potential counter-examples ("triples") such that the new generator appears with exponent-sum non-zero in the added relator.

Chapter 4 begins with the construction of a potential function on a diagram, based on work by Lyndon [L2]. This is then used to prove the main result of the thesis, the Freiheitssatz for locally indicable groups, a new proof of the result which (as noted abose) has been independently obtained by Howie and by Brodskii. Finally it is show that the existence of a counter-example for a given group G and a given relator r depends upon the existence of a counter-example for $G *<s\rangle$ and added relator $r^{\prime \prime}$, where $r^{\prime \prime}$ is one of two words obtained from r using a homomorphism from $G *\langle t\rangle$ to \mathbb{Z} which takes r to zero.

In 1928, Dehn suggested the Freibeitsatz as a research problem to his student Wilhelm Magnus, thinking that Magnus would be able to provide a proof using his (Dehn's) diagrams. Magnus was eventually able to prove the Freiheitssatz and told Dehn so.

Dehn asked him if he has used diagrams in the proof, and on being told that the method was purely algebraic, Dehn said "Da sind Sie also blind gegangen": "So you proceeded blindfolded".
(Reported by Magnus in his article on Dehn in IThe Mathematical Intelligencer', Volume 3, 1978).

Here we shall be proceeding without blindfolds.
\mathbb{C} - the integers
I - the unit interval $[0,1]$
S^{1} - the circle
∂x - the boundary of x
$F(Y)$ - the free group on the set Y
$N_{G}(R)$ - the normal closure of the set R in the group G.
$\langle x ; R\rangle$ - the group $\frac{F(X)}{N_{F}(R)}$
$\operatorname{sbgp}_{G}\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ - the subgroup of G generated by the set $g_{1}, \ldots, 9_{n}$
$G_{1} * G_{2}$ - the free product of the groups G_{1} and G_{2}
$\langle G, t ; r\rangle$ - the group $\frac{G *\langle t\rangle}{N(r)}$ where r is a cyclically reduced
A word $w=b_{1} b_{2} \ldots b_{n}$ in $\langle x ; R\rangle$ where each $b_{i}=c j_{i}^{ \pm 1}$ for some c_{j} in x is reduced if $b_{i}^{-1} \neq b_{i+1}$ in $F(x)$ for each $i<n$; ω is cyclically reduced if in addition $b_{1}^{-1} \neq b_{n}{ }^{\circ} \alpha_{1} \alpha_{2}$ $\sigma_{t}(r)$ - the exponent sum of t in r;if $r=a_{1} t^{\alpha_{1}} a_{2}^{\alpha_{2}} \ldots a_{n} t^{\alpha_{n}}$ then $\sigma_{t}(r)=\sum_{i=1}^{n} \alpha_{i}$
r has a solution over G if G naturally injects into $\langle\mathcal{G}, t ; r\rangle$. $\{G, r, w\}$ is a triple if G is a group, $r \in G *\langle t\rangle$, and ω is an element in the kernal of the natural map G to $\langle G, t ; r\rangle$. A counterexample is a triple where r is a cyclically reduced word containing occurences of t, and w is nontrivial in G .

We open with a description of the problems with which we are concerned in this dissertation. The second section reviews the literature in this and related fields, and in section 3 we give a summary of the principal results of this thesis. Section 4 is a brief collection of some elementary results in the area, some of which we shall require later on, and we conclude with a description of some topological problems which reduce to the group-theoretic problems of section 1 .

Section 1. The Problems
We are concerned with the following problems from combinatorial group theory:
The Adjunction Problem
Let G be a group, and let r be a cyclically reduced word in $G *<t\rangle$ which contains t non-trivially.

Under what conditions is the natural map G to $\langle G, t ; r\rangle$ an injection?

We can think of $\langle G, t ; r\rangle$ as G together with one new generator and one new relation, and the problem is to determine whether any elements of G have been killed. We shall see in section 5 of this chapter that this question arises in low-dimensional topology.

A more general form of the question is:
The Generalised Freiheitssatz
Let $\left\{H_{i}\right\}_{i \in I}$ be a collection of non-trivial groups, and let r be a cyclically reduced word in $H={ }_{i \in I}^{*} H_{i}$, and let I^{\prime} be a proper subset of I such that I contains occurences from H_{j}, for some $j \in I-I^{\prime}$.

Under what conditions is the natural map $\underset{i \in I}{*}, H_{i}$ to $\frac{H}{N(r)}$ an injection?

The classical Freiheitssatz, due to Magnus (see e.g. [MKS]) states that the above map is an injection when the H_{i} are free groups. We say therefore that the Freiheitssatz holds for free groups.

Related to the Adjunction Problem we have two conjectures; the first is usually attributed to Kervaire (see [Kv], pages 116-117, though the conjecture is not explicitly made there) and we shall refer to it by his name. (In [LS] it is also attributed to Laudenbach via Serre : the conjecture was made by Laudenbach during a course on low-dimensional topology, in connection with problem 1.9.)

If $\langle G, t ; r\rangle$ is trivial then G is trivial.
Some partial results on this are given in Section 2 and in Section 4. All known examples of cases where G does not inject into
$\langle G, t ; r\rangle$ have the following two properties: the exponent sum of t in I is zero, and G has elements of finite order ; e.g. in the group $\left\langle\left\langle a, b ; b^{2}\right\rangle, t ; b t a t^{-1}\right\rangle$ a has order two, whereas a has infinite order in $\left\langle a, b ; b^{2}\right\rangle$.

In [Lev 1] Levin conjectures that G injects into $\langle G, t ; r\rangle$ if
G is torsion-free. In view of the above remarks, the obvious conjectures to make are :
Conjecture A : G naturally injects into $\langle G, t ; r\rangle$ when $\sigma_{t}(r) \neq 0$. Conjecture $B: G$ naturally injects into $\langle G, t ; r\rangle$ except when $\sigma_{t}(r)=0$ and G has elements of finite order.

Section 2. The Literature
The Adjunction Problem was first raised in 1943 by B. H. Neumann, [N], in the following form:

Given a set of m equations in n unknowns, i.e. a set of m words $f_{i}\left(x_{1}, x_{2}, \ldots x_{n}\right)$ in $G * F\left(x_{1}, x_{2}, \ldots x_{n}\right)$, does there exist an 'overgroup' G ' containing G and elements $a_{1}, \ldots a_{n}$ in G ' such that $f_{i}\left(a_{1}, a_{2}, \ldots a_{n}\right)=1$ in G^{\prime} ? If so we say that the equations are soluble over G. Neumann shows that the equation $x^{n}=g$ is soluble over any group G with $g \in G$. In [B], Baumslag produces a new proof of this result using wreath products, and Levin uses a similar construction in [Lev 1] to show that any equation of the form $a_{1} t^{\alpha_{1}} a_{2} t^{\alpha_{2}} \ldots a_{n} t^{\alpha_{n}}$ where $a_{i} \in G$ and each α_{i} is a positive integer, is soluble over any group G. In a second paper, [Lev 2], Levin looks at the general case of m equations in n unknowns, and then there is a group generated by G and a single new generator containing solutions to the equations.

Continuing on the general case, in [GR] it is shown that if G is a finite group, and we have n equations f_{j} in n unknowns x_{i}, then the equations have a solution over G if the determinant of the matrix $\left(\sigma_{i, j}\right)$ is non-zero; $\sigma_{i, j}$ is the exponent sum of x_{i} in f_{j}. We shall give the proof of this for the case $n=1$ in 1.4 .

In $[R]$, Rothaus looks at the question of proper injectivity; that is,assuming that the equations have a solution over G, when is the
natural map G to $G * F\left(x_{1}, x_{2}, \ldots x_{n}\right) \quad$ not a surjection ?

Conditions on a certain matrix in the whithead group are obtained to ensure that the injection is proper, thus providing a partial solution to a conjecture of M.Cohen (Conjecture A of M. Cohen, 'Whitehead Torsion Group Extensions and Zeaman's Conjecture in high dimensions', Topology 16, 1977, p 79-97). Also in this paper Rothaus extends the result of [GR] to locally residually finite groups.

As we said in Section 1 , we are here interested in the case of just one equation in one unknown, the Adjunction Problem; Magnus' Freiheitssatz gives the result for free products of free groups, and further results in this come under the heading of 'onemrelator groups' (see e.g. [1.S] chapter 11, page 111 for a comprehensive survey) where there are many results on the form of the relator and whether there is torsion etc. . (See also [5] where the methods of [L2], used in Ehapter 4 Section 1, are used to obtain a 'spelling theorem' for one-relator groups.)

In [L2] Lyndon proved that the Generalised Freiheitssatz holds for sugroups of the group of real numbers under addition, and this result was extended by Gildenhuys in $[G]$ to torsion-free abelian groups. 5.J. Pride has proved in [P] that the Generalised Freineitssatz holds for locally residually free groups, and in Chapter 4 we extend this result,using an adaptation of the techniques of [L2], to locally indicable groups (4.8), a result independently obtained by J. Howie $[H]$ in. Edinburgh and Brodskii in Moscow using completeiy different methods.

On the Kervaire Conjecture, the principal results known are all derived from the above results ; E.g. if G is residually finite then $\langle G, t ; r\rangle$ is non-trivial when G is non-trivial by $[R]$.

Finally we note that Gutierrez has published a proof that if G is residually nilpotent, then 〈G,t;r〉 is non-trivial [Gu]. (He has also produced several close but unsuccessful attempts to prove the Kervaire Conjecture using crossed modules.)

Section 3. Summary of Results
The main contribution of this thesis is the method introduced in Chapter 2 to attack the Adjunction problem. We first obtain a picture, a "special diagram", representing an element in the kernal of the natural map from G to $\langle G, t ; r\rangle$ by omitting some edges and discs from a diagram which is essentially dual to a Dehn diegram of Small Cancellation theory. A brief description of Dehn diagrams is given in 2.1-2.3, and the duality is described in 2.10. A topological derivation of the diagrams, due to Kourke in [Rou], is given in 2.4-2.9, but this can be omitted by the reader who is familiar with Dehn diagrams; in this case the duality description of 2.10 can be taken as a definition. We prefer to work from the topological description as it seems to us to be the more natural method of obtaining the diagrams.

We show that the existence of a non-trivial element w in the kernal of the map from G to $\langle G, t ; r\rangle$ (a "counterexample" $\{G, r, w\}$) implies the existence of a special diagram which in turn defines a counter-example $\left\{G^{\prime}, r^{\prime}, w^{\prime}\right\}$. There is a homomorphism h from $\langle G,, t ; r\rangle$ to $\langle G, t ; r\rangle$ such that $h\left(r^{\prime}\right)=r$, and $\{G, r, h(w)\}$ is a counter-example. (Note also that G, is finitely generated.) This means that the search for a counter-example to Conjecture A is equivalent to the search for a special diagram which defines a counter-example $\left\{G^{\prime}, r^{\prime}, w^{\prime}\right\}$ such that $\sigma_{t}\left(r^{\prime}\right) \neq 0$. We close the chapter with the construction of some counter-examples with $\sigma_{t}\left(r^{\prime}\right)=0$ using the special diagrams we have introduced.

It turns out to be rather difficult to construct reduced special diagrams, and the only class which we have been able to construct where the added relator in the triple defined by
the diagrarn has non-zero exponent sum (in t), is described in Chapter 3, where it is shown that none of these diagrams ever defines a counter-example. The proof is principally group theoretic, reducing a graph theoretic problem to a problem in triangle groups; originally a purely graph theoretic proof was planned.

The main results of this thesis are contained in Chapter 4. In the first section we define a "potential function" on a special diagram, and we construct several such functions. In 4.4 we prove the Lyndon Lemma, adapted from [L2], showing that if a diagram represents a counter-example which is in some sense minimal for a certain class of groups, then any potential function on it satisfies an extra condition. In the proof we take a diagram representing a failure of the theorem; we then add a subscript, whose value is the potential, to the label on some of the edges to give us a new diagram, representing a "smaller" failure of the theorem for the same class of groups.

We now use this lemma to prove the Freiheitssatz for locally indicable groups (a group is locally indicable if any finitely generated subgroup has \mathbb{Z} as a homomorphic image). The class of locally indicable groups contains the locally residually free groups (previously the largest class of groups for which the Freiheitssatz had been established) and the fundamental groups of irreducible 3 -manifolds with boundary. In the final section we use a homomorphism from 〈G,t;r〉 to \mathbb{Z} to define two words $r_{\min }$ and $r_{\max }$ in $G *\langle s\rangle *\langle t\rangle$ and show that if both these words have solutions in $G *\langle s\rangle *$ * \rangle then r has a solution in $G *\langle t\rangle$. It was originally hoped (and claimed) that we could prove a strengthened form of a theorem of Schiek [Sch I] but this is no longer possible.

Section 4. Some Initial Results
We here give a brief collection of some of the elementary results known concerning the Kervaire Conjecture and the Adjunction Problem.

Proposition 1.1

Let r be a cyclically reduced element of $G *\langle t\rangle$, and let r_{0} be r with the t-occurrences omitted. Then :
i) $r_{0}=1$ in G implies that I has a solution in G.
ii) $\langle G, t ; r\rangle$ is trivial implies that $\sigma_{t}(r)= \pm_{1}$ and G is perfect.

Pronf

i) If $\Gamma_{0}=1$ in G, then the composite map $G \rightarrow\langle G, t ; r\rangle \rightarrow \frac{G}{N\left(r_{0}\right)} \cong G$
is an isomorphism.
ii) $\langle G, t ; r\rangle$ is trivial means that $G *\langle t\rangle=N(r)$. Abelianising both sides we have that $\frac{G}{[G, G]} 由\langle t\rangle=\langle s\rangle$
where $s=r_{0} \cdot t \sigma_{t}(r)$. Hence killing t we see that G is perfect, and killing G we see that $\sigma_{t}(r)= \pm 1$.

The next proposition is basically the Higman, Neumann, Neumann theorem, which provides the only fully understood case where $\sigma_{t}(r)=0$.

Proposition 1.2
Let $r=a_{\text {atbt }}{ }^{-1}$ be a cyclically reduced word in $G *\langle t\rangle$.
Then G injects into $\langle G, t ; r\rangle$ if and only if a and b have the same order in G .

Proof

In $\langle G, t ; r\rangle$, a and b have the same orders, as $a^{-1}=t b t^{-1}$, and hence G does not inject into $\langle G, t ; r\rangle$ if they have different orders in G.

Conversely,if a and b have the same order in G, then $\langle G, t ; r\rangle$ is an HNN-extension of G with stable letter t, and hance G injects into <G,t;r> . (See e.g. [LS] or [MKS]; and 2.25.)

The next two results are proved in a similar manner : we try to embed G in another (well-understood) group H in such a way that we can extend this to a map from $G *\langle t\rangle$ to H so that I maps to the identity. In this way we have, in a sense, 'found a solution for $r(t)=0 \quad 1$ regarding r as an equation in t. The first of these results is very easily established.

If G is a subgroup of the group of real numbers under addition, and $\sigma_{t}(r) \neq 0$, then G injects into $\langle G, t ; r\rangle$.
proof
Let ϕ^{\prime} be a homomorphism from G into R^{+}, the group of reals under addition, and extend ϕ to ϕ_{*} on $G *\langle t\rangle$ by
$\phi_{*}^{\prime}(t)=-\frac{\phi\left(r_{0}\right)}{\sigma_{t}(r)}$; note that $\phi\left(r_{0}\right) \neq 0$ as r_{0} is non-trivial by 1.1 .
Then $\phi_{\ddot{*}}: G *\langle t\rangle \rightarrow R^{+}$is a homomorphism and $\phi_{*}(r)=0$; thus we have extended ϕ as required and so the injection $G \rightarrow R^{+}$factors through〈G,t;r>.

We now prove the particular case of Gerstenhaber and Rothaus' result [GRं] :
Proposition 1.4
If G is finite and $\sigma_{t}(r) \neq 0$ then G injects into $\langle G, t ; r\rangle$.

Proof

We can embed G in a compact connected Lie group U. We now extend this to a map $h: G *\langle t\rangle \rightarrow U$ such that $h(I)=i d$. To do this we must define $h(t)$ so that the equation $h(r)=i d$ is satisfied.

As U is arcwise connected, we can define paths $p_{i}:[0,1] \rightarrow U$ such that $p_{i}(0)=$ id, $p_{i}(1)=a_{i}$, where $r=a_{1} t^{\alpha_{1}} a_{2} t^{\alpha_{2}} \ldots a_{n} t^{\alpha_{n}}, a_{i} \in G-\{1\}$ $\alpha_{i} \in \mathbb{Z}-\{0\}$. We now define a homotopy:
$P: U \times[0,1] \rightarrow U$, by $P(u, s)=p_{1}(s) u_{\sigma} \alpha_{1} p_{2}(s) u^{\alpha_{2}} \cdots p_{n}(s) u^{\alpha_{n}}$,
and
$\sigma_{t}(r) \neq 0$ means that $P(u, 0)=u \sigma_{t}(r) \neq 1$.
Hence the map $P(\cdot, 1)$ is homotopic to the map $u \rightarrow u{ }^{\sigma}{ }_{t}(r)$, which is a map of non-zero degree on a compact Lie group,i.e. on a compact manifold, and is therefore onto. (e.g. for a proper map, deg $f=\operatorname{deg}_{Q} f$ for any point Q, using the notation of Dold 'Lectures on Algebraic Topology' pages 267,8. $\operatorname{deg}_{Q} f$ is the degree of the map $H_{n}\left(U, U-f^{-1}(Q)\right) \rightarrow H_{n}(U, U-Q)$ and hence $f^{-1}(Q)$ is non-empty if deg f is non-zero.)

That $P(, 1)$ is onto means that there is a $u_{0} \in U$ such that $P\left(u_{0}, 1\right)=1$, and hence we can define $h(t)=u_{0}$, giving the required $\operatorname{map} G *\langle t\rangle \rightarrow U$.

The above proposition can be extended to cover the case of groups which are residually finite. In fact we can prove a slightly more general result concerning residual properties,but first we need some definitions :

Definition 1.5

Let x be a property of groups, and G (not necessarily finitely generated) group.
G is fully residually x if for any finite set $\left\{w_{1}, w_{2}, \ldots w_{n}\right\}$ of non-trivial wards in G there is a normal subgroup $N \triangleleft G$ such that for each i, $w_{i} f^{\prime} N$, and G / N has the property X 。 G is residually X iffor any word w in G there is a normal subgroup N such that $w d N$ and G / N has property x.

$$
\text { If } r=a_{1} t^{\alpha_{1}} a_{2} t^{\alpha_{2}} \ldots a_{n} t^{\alpha_{n}} \text { with } a_{i} \in G-\{1\}, \quad \mathbb{Z}-\{0\} \text { we say }
$$

r has t-shane $\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right)$.

Proposition 1.6

Let R be a set of t-shapes such that if I has t-shape in R and G has property X, then r has a solution over G

Then if r^{\prime} has t-shape in R, and H is fully residually x, then I^{\prime} has a solution over H.

Proof

Let $r^{\prime}=a_{1} t^{\alpha_{1}} \ldots a_{n} t^{\alpha_{n}}$, with $a_{j} \in H$; assume that w $\in k e r H \rightarrow\left\langle H, t ; r^{\prime}\right\rangle$ and let N be a normal subgroup such that w and $a_{i} \notin N$, and let \varnothing be the natural map $H *\langle t\rangle \rightarrow H / N_{N} *\langle t\rangle$

Then $\phi\left(r^{\prime}\right)=\phi\left(a_{1}\right) t^{\alpha_{1}} \phi\left(a_{2}\right) \ldots \phi\left(a_{n}\right) t^{\alpha_{n}}$, and the t-shape of $\phi\left(r^{\prime}\right)$ is the same as the t-shape of I^{\prime}, as each $\phi\left(a_{i}\right) \neq 1$, and so as H / N has property X, I has a solution over H / N, and hence $\phi(w)=1$ in H / N, contradicting the choice of N .

Notice that if G is residually finite then it is fully residually finite ; for if $w_{1}, \ldots w_{n}$ are non-trivial elements of G, then for each i there is a homomorphism ϕ_{i} from G onto a finite group H_{i} such that $\phi_{i}\left(w_{i}\right) \neq 1$ - Taking cartesian products we have the required map taking the set $\left\{w_{i}\right\}$ to non-trivial elements of a finite group, and hence G is also fully residually finite.

By putting $R=\left\{\right.$ words whose t-shape is $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with $\left.\sum_{i=1}^{n} \alpha_{i} \neq 0\right\}$ and x the property of being finite in 1.6 we get :
Corallary 1.7
Let G be a residually finite group and r a cyclically reduced word in $G *\langle t\rangle$ with $\sigma_{t}(r) \neq 0$.

Then r has a solution over G.

Having given some (mast) of the known results for the Adjunction Problem proved via group-theoretic methods, we shall finish this chapter with some problems in 3 and 4 dimensional topology which raise problems involving the adjoining of generators and relations to groups. 1.8 Gand Sum Problem (1.1 in $[K]$)

Given a knot k in s^{3} and an unlinked, unknotted loop h in $s^{3}-k$, is it possible to band together k and h to obtain $k \not \#_{b} h$ which is the trivial knot in s^{3} ?

$k \not \#_{b} h$ is obtained by : embed a rectangle $b=I \times I$ in s^{3} such $b \cap k=\{0\} \times I, b \cap h=\{1\} \times I$.
$k \not \#_{b} h=\{k-\{0\} \times I\} \cup\{h-\{1\} \times I\} \cup\{I \times\{0,1\}\}$.
Let w be the element of $\pi_{1}\left(s^{3}-k \#_{b} h\right)$ corresponding to the loop around the band as shown, and let t be the element of $\pi r_{1}\left(s^{3}-k \not \#_{0} h\right)$ corresponding to the loop around h. Killing w corresponds to putting a disc across the band b and so we can consider that the band has no knots and does not link k or h, that is, that there is a natural map $\left.\phi: \pi_{1}\left(s^{3}-k \#_{b} h\right)\right) \rightarrow \frac{\pi}{1} \frac{\left(s^{3}-k\right) *\langle t\rangle}{N(w)}$ which is a surjection. But $k \#_{b} h$ is the trivial knot if and only if $\pi_{1}\left(s^{3}-k \not H_{b} h\right)=\mathbb{Z}$.

Hence if we know that if w has a solution over $\pi_{1}\left(5^{3}-k\right)$ for all choices of w, then we know that the answer to the question is 'no', it is not possible to obtain the unknot as the band sum of the unknot with a non-trivial knot.

In fact, by Thurston's recent work $[T]$, it is known that knot groups are residually finite, and we can show that in the above construction the word w has $\sigma_{t}(w) \neq 0$ (e.g. by looking at homology) and hence by 1.7 w always has a solution over $\pi_{1}\left(s^{3}-k\right)$. In fact it can be shown that knot groups are locally indicable (see [Sh]) and hence using 4.8 we also obtain the answer 'no'.
1.9 Property R for Knots (5.7 in $[K]$)

Is it possible to obtain $s^{1} \times s^{2}$ by surgery on a knot in s^{3} ? Let M_{k} denote the manifold obtained by doing D-surgery on the knot k in S^{3}. (It is known that if M_{k} is $S^{1} \times S^{2}$ we must do O-surgery.) If M_{k} is NOT homeomorphic to $5^{1} \times 5^{2}, k$ has property R. There is a natural map $f_{k}: M_{k} \rightarrow s^{1} \times S^{2}$, which induces an isomorphism on integral homology and induces a $\mathbb{Z}[\mathbb{Z}]$-homology isomorphism if and only if the Alexander polynomial of k is trivial.In this case M_{k} is diffeomorphic to $S^{1} \times S^{2} \not \#^{3}$, where H^{3} is a homology 3 -shere. Hence $\pi_{1} \eta_{k}=\mathbb{Z} * \pi_{1} H^{3}$, and killing the element of $\pi_{1} \eta_{k}$ corresponding to the meridian m of k kills the whole group. Thus we have that $\frac{\mathbb{Z} * \pi}{N(m)}=1$. If the Kervaire Conjecture is true, then $\pi H^{3}=1$, i.e. H^{3} is a homotopy 3-sphere.
1.10 Contractible 4-Manifolds with Boundary (4.18 in [K])

Let M be a 3-manifold bounding a contractible 4-manifold H^{4}; can we choose H^{4} to have no 1-handles?

If this were possible, then H^{4} is obtained by adding an equal number of $2-$ and 3 -handles to a 4-ball B^{4}. (We must add an equal number else we get non-trivial higher homology.)

Turning this construction upside down, we find that we get a manifold with two boundary components, M and S^{3} with an equal number of $1-$ and $2-h a n d l e s$, and this corresponds to killing π / M^{3} by adding an equal number of generators and relations.

This is a partial generalisation of the Adjunction Problem, and it is shown in [GR̈] that there are groups which cannot be killed in this manner. Casson has shown that there are therefore 3-manifolds bounding contractible 4-manifolds which must have 1 -handles.

We start with a brief description of 'Small Cancellation Diagrams' which we shall call Dehn-diagrams. These pictures were first used at the beginning of this century by Den and Van Kampen to attack the word problem for certain groups. A full description of Dehn-diagrams is available in Chapter V of Lyndon and Schupp 's book [LS] where they are called Rdiagrams. We go on to give a topological derivation of a diagram (2.7,2.8) which is essentially dual to a Dehn-diagram (2.9). Those who are used to working with Dehn-diagrams may prefer to think of our diagrams as dual Dehn-diagrams and omit the topological section $2.3-2.9$ and use the construction of 2.10 to define the relevant diagram.

We proceed to define the group defined by a diagram, and then, concentrating on the Adjunction Problem, in Section 3 we define special diagrams which are the main tool used in the rest of the thesis. These are essentially diagrams with some edges and discs omitted. It is in this context that it seems easier to think of diagrams rather than Dehn-diagrams as in the dual Dehn-diagram,omitting an edge corresponds to identifying certain edges to points.

We develop some of the properties of special diagrams, the principal results being the construction of 2.18 , and the summing-up of 2.22 .

In Section 4 we use special diagrams to construct some counterexamples with exponent sum zero.

Section 1. Dehn - Diagrams

Definition 2.1

Let $G=\langle X ; R\rangle$ be a group. Let D be a finite planar graph, with $E=\left\{e_{i}\right\}$ the set of edges, and $\left\{R_{j}\right\}$ the set of regions. Suppose that each edge is oriented, and has a label in G, ie. there is a map $\varnothing: E \rightarrow G$ such that $\phi\left(\bar{E}_{i}\right)=\left(\phi\left(e_{i}\right)\right)^{-1}$ where \bar{e}_{i} is e_{i} with the opposite orientation.Let R_{i} be a region of D, and let the oriented boundary of R_{i}, read clockwise, be $f_{1}, f_{2}, \ldots f_{n}$, where for each i, $f_{i} \in E \quad$ or $\quad \mathbf{f}_{i} \in E$.

Define $\phi\left(R_{i}\right)=\phi\left(f_{1}\right) \phi\left(f_{2}\right) \ldots \phi\left(f_{n}\right)$. We say that D is a Dehn-diagram if

$\phi\left(R_{i}\right)$ is trivial in G for each i, ie. if $\phi\left(R_{i}\right) \in N_{F}(X)(R)$ where $G=\langle X ; R\rangle$. The Dehn-diagram then illustrates that $\phi(\partial D)$ is trivial in G, where ∂D is the boundary of the region containing the point at infinity.

We can define reductions of Dehn-diagrams as follows :
i) If there is an edge e_{i} in D with only one end attached to the rest of $D\left(i . e . D-\operatorname{Int}\left(e_{i}\right)\right.$ has two components, one of which is a point) then omit edge e_{i} from D.

ii) If there is a region R_{j} of D which has two consecutive edges
f_{1}, f_{2} on its oriented boundary such that $\phi\left(f_{1}\right)=\phi\left(f_{2}\right)^{-1}$, then
ii) If there is a region R_{j} of D which has two consecutive edges
f_{1}, f_{2} on its oriented boundary such that $\phi\left(f_{1}\right)=\phi\left(f_{2}\right)^{-1}$, then
ii) If there is a region R_{j} of D which has two consecutive edges
f_{1}, f_{2} on its oriented boundary such that $\phi\left(f_{1}\right)=\phi\left(f_{2}\right)^{-1}$, then perform the following alteration :

iii) If there is a region R_{j} with just two edges, such that the label on R_{j} is $a_{j} a_{j}^{-1}$, then we discard one of the edges;e.g. the above becomes

Note that in the above, a 'region' may be the outside region,i.e. the region containing the point at infinity

The changes in the Dehn-diagram D described above are allowed as they correspond to reduction of the labels on regions, or cyclic reduction of the labels.

In i), if e_{i} lies in the region R_{j}, then R_{j} has a label with $\phi\left(e_{i}\right) \cdot \phi\left(e_{i}\right)^{-1}$ as a subword, and so omitting the edge e_{i} corresponds to cancellation in this word, or reduction of this word in G.

In $i i$) we again have a region R_{j} where the label has cancellation as above.

After performing iii) we have not altered the labels on any of the regions, and merely omitted a region with trivial label $a_{j} a_{j}^{-1}, a_{j} \in G$.

We now show that we have a Dehn-diagram for any element of $F(x)$ which is trivial in $G=\langle X ; R\rangle$. This is what is called an R-diagram in [LS], chapter V; the following theorem is given in [LS] as a note on p. 240 . Proposition 2.3

Let w be a cyclically reduced word in $F(x)$ such that $w=1$ in $G=\langle X ; R\rangle$.

Then there is a reduced. Dehn-diagram D such that $\phi(\partial D)=w$, and the label on each interior region R_{i} is a cyclic conjugate of an element of R.

Proof

$w=1$ in G means that $w=\prod_{j=1}^{N} P_{j} s_{j} p_{j}^{-1}$ where $s_{j}^{ \pm 1} \in R$ and $P_{j} \in F(X)$
Let y be a base point in the plane with N radiating finite arcs, labelled P_{1} to P_{N} in anticlockwise order. At the end X_{i} of the arc p_{i} place a circle labelled s_{i} •

We now split the arc P_{i}
into segments corresponding to the generators $x_{i} \in X$ occuring in p_{i}. Similarly split the circumferance of the circle $s_{i}, g o i n g$ round anticlockwise from X_{i}.

This diagram D^{\prime} is such that the label on ∂D^{\prime} read anticlockwise is w.Assuming that the words in R are cyclically reduced, the only place that reduction can occur is on the outside boundary, and this may involve cyclic reduction of w.

We call the above a Deḩmodiagram representing wo in G.
Readers who are not interested in a topological derivation and are familiar with Den diagrams may move directly to 2.10 to define a diagram.

Section 2. Topology: Diagrams
Given a presentation of a group $G=\left\langle X_{n} ; R\right\rangle$, there is a standard method of forming a 2-dimensional CW-complex L such that $K_{1} L=G$, as follows :

Take one o-cell, which will be the base point x of L; take n oriented 1 -cells, which will form a bouquet k of oriented loops $c_{1}, c_{2} \ldots c_{n}$, and $\pi r_{1} k=F_{n}$, the free group on n generators $\left\{a_{1}, \ldots a_{n}\right\}=x_{n}$;
take m 2-cells $\left\{\mathrm{D}_{1}, \mathrm{D}_{2} \ldots \mathrm{D}_{\mathrm{m}}\right\}$ corresponding to the m elements $\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}=R$ of $F\left(X_{n}\right)$, and glue these to K as follows: if $r_{i}=a_{i, 1}^{\varepsilon_{i}, 1} \ldots \ldots a_{i, k}^{\varepsilon_{i, k}}$, where $\varepsilon_{i, j}= \pm 1$, define $h_{i}: \partial D_{i} \rightarrow k$

then define $L=\frac{k \cup \sum_{i=1}^{\mathbb{M}} D_{i}}{\left\{\text { identifications } h_{i}\right\}} ; \quad \pi_{1} L=G$. e.g. we illustrate the example $G=\left\langle a_{1}, a_{2}, a_{3} ; a_{1}{ }^{2}, a_{1} a_{2}^{-1} a_{3} a_{2}\right\rangle$:

Definition 2.4
(L, K) is called the complex associated with the presentation of the group $G=\left\langle X_{n} ; R\right\rangle$, or a complex for G.

Note that a group has many different presentations and there are correspondingly many different complexes associated with a given group. Using complexes associated with group presentations, topological solutions of group-theoretic problems are possible; for instance the proofs of the Nelson-Schreier, Kuros and Grusko subgroup theorems. (See egg [R] pages 258 and 267 for the first twa, and for the third, see Stalling " A Topological Proof of Grusko's theorem on Free Products", Math. Reit. 90 (1965), pages $1-8$) . These proofs use covering-space theory and allied topological techniques, as well as some elements of transversality, which latter we now use as our main tool, using the definition from [BRS] chapter 7 .

Let L be a CW-complex, M a closed pol. manifold. we say that a map $f: M \rightarrow L$ is transverse on the i-cells of L, if for each i-cell. D_{j}^{i} either $f^{-1}\left(D_{j}^{i}\right)=\varnothing$
or there is a commuting diagram :

where $e_{i, j}$ is the characteristic map for ${ }^{*} D_{j}^{i}$, and $t_{i, j}$ is the prodaction of a trivial p.l.bundle, and $c l\left(f^{-1}\left(D_{j}^{i}\right)\right)$ has codimension zero in M.

If $\partial M \neq \varnothing$, then $f: M \rightarrow L$ is transverse if in addition $t_{i, j}^{-1}\left(D^{i}\right) \cap \partial M=T$, where $T C \partial\left(t_{i, j}^{-1}\left(D^{i}\right)\right)$ has codimension zero. This ensures that $\left.f\right|_{\partial M}$ is transverse.

Theorem 2.6 ([B RS] Chapter 7, page 135)
If each attaching map is transverse to the skeleton to which it is attached in the above, and M is a compact $p .1$. manifold and $f \mid \partial M$ is transverse, then f is homotopic relative to ∂M to a transverse map.

We are going to be dealing solely with maps of 2-dimensional complexes into 2-dimensional complexes, and then we have that a transverse map f has the property that f^{-1} (point in the boundary) is a collection of disjoint embedded arcs and loops, f^{-1} (small disc) is a collection of disjoint discs.

Definition 2.7

A diagram is a 2-complex in the plane consisting of a finite number of disjoint 2 -cells $D_{1}, D_{2}, \ldots D_{m}$ in the interior of the disc D, together with a finite number of disjoint,transverse-oriented 1 -cells which are loops or properly embedded arcs in $\operatorname{cl}\left(D-\sum_{i=1}^{m} D_{i}\right)$.

The 2-cells are the discs of the diagram, the 1 -cells are the does, the endpoints of the embedded edges are the vertices.

The diagram is labelled if each edge is labelled by some letter ${ }^{a_{i}}$. Example 2.8

We define a word r_{i} corresponding to a disc D_{i}, or the label r_{i} on the disc D_{i} as follows:

Choose any point on D_{i} - (vertices). Read clockwise round D_{i} writing down, in order, the labels of the edges traversed, with exponent +1 or -1 accordingly as the edge is oriented clockwise or anti-clockwise near D_{i}.

Note that r_{i} is only defined up to cyclic conjugation. In example 2.8 associated words are $a d^{-1} a^{-1}$, adcb , ac $a^{-1} b^{-1}$.

Proposition 2.9

Corresponding to a word w in $F\left(X_{n}\right)$ which is trivial in $G=$ $\left\langle x_{n} ; R\right\rangle$, there is a diagram, which we call a diagram representing $w=1$ in G.

Proof

Let (L, K) be the C W-complex associated with the presentation of $G=\left\langle X_{n} ; R\right\rangle$, chosen such that the 2 -cells are attached to K by transverse maps. Then the word $w \in F\left(X_{n}\right)$ is represented by a loop c in k which bounds a singular disc in L.

Thus we have $f:\left(D^{2}, \partial D^{2}\right) \longrightarrow(L, K), f\left(\partial D^{2}\right)=c$, and we can choose f to be transverse on c.

Now the conditions of theorem 2.6 are fulfilled with $M=2$-ball and so we can homotop f rel do ${ }^{2}$ to get a map, also called f, which is transverse on the 2-cells of L, and thus, for each 2-cell D_{i} of L, $f^{-1}\left(D_{i}\right)=\bigcup_{j} D_{i, j}$ where each $D_{i, j} \subset \operatorname{IntD}^{2}, D_{i, j} \cap D_{k, I}=\phi$ unless $(i, j)=(k, 1)$.

Let $D_{D}=c l\left(D-\bigcup_{i, j} D_{i, j}\right)$; then $\left.f\right|_{D_{0}}$ is transverse on D_{0}, so we can hamotop $\left.f\right|_{D_{0}}\left(r e l \partial D_{0}\right)$ such that $\left.f\right|_{D_{0}}$ is transverse on K. For each 1-cell c_{i} of K, let c_{i}^{*} be the midpoint of L;

Then $f^{-1}\left(c_{i}^{*}\right)$ is an embedded are or loop in D_{0}, with a transverse orientation inherited from the orientation on c_{i}, which we label a_{i} 。

Thus we have a diagram.

So we see that example 2.8 represents decd $^{-1}=1$ in the group $G=\left\langle a, b, c, d, e ; a d c b, a c a^{-1} b^{-1}, a d^{-1} a^{-1}\right\rangle$.

Henceforth we shall assume a diagram is labelled unless otherwise is stated.

2.10 Diagram / Dehn - Diagram Duality

We can now obtain a new proof of a weak form of 2.3 which will illustrate the duality existing between diagrams and Dehn-diagrams:

If $w \in F(X)$ and $w=1$ in $G=\langle X ; R\rangle$, then there is a (reduced) Dehn-diagram representing $w=1$ in G.

Let D be a diagram representing $w=1$ in G obtained by 2.8 . Regarding the discs of D as points, and ignoring ∂D and the outside region, let D^{\prime} be the dual of D. Orient each edge of D^{\prime} by the transuerse orientation on the dual edge of D, and label the edge with the label on the dual edge in D. What we now have is a Dehndiagram representing $w=1$ in G, which we can then reduce.

The inverse proceedure to the above provides the justification for our diagrams for those who are familiar with Dehn-diagrams :

Given a Dehn-diagram D^{\prime} representing $w=1$ in G we form a diagram representing $w=1$ in G as follows :

In each interior region of D^{\prime} draw a small circle, and enclose D^{\prime} inside a large circle. Now whenever two regions of D ' have a common boundary edge, join the corresponding circles by an edge with a transverse orientation and a label inherited from D^{\prime}. The result is a diagram representing $w=1$ in G. This may in fact be taken to be a definition of a diagram representing $w=1$ in G.

Returning to diagrams, we now state a converse to 2.8 which will be slightly improved in 2.13 .

Proposition 2.11
A diagram D defines a group $G=\langle X ; R\rangle$, and D represents $w=1$ in G for some word w in $F(X)$.

Proof

Let X be the set of labels on the edges of D, and let R be the set of labels on the discs of D, we can reverse the construction of
2.7 , to build a complex K for the group $\langle x ; R\rangle$, and we can then see that D represents $w=1$ in $G=\langle X ; R\rangle$ where w is the label on the outside boundary of D.

2.12 Reduction of Diagrams

As with Dehn-diagrams,we now give a set of moves, or alterations, which we can perform on a diagram D, which we shall subsequently show do not alter the properties of D in which we are interested. These changes are analogous to the reduction operations of 2.2 .

We call the following alterations reductions :
i) a) If D contains an edge which is a loop, omit this loop from D.
b) If D contains a disc which meets no edges, then omit this disc.
ii)a) If there is a disc D_{i} in D with two adjacent edges eff e $\neq f$ Where e and f bear the same label and are oppositely oriented Cor are similarly oriented, but e is labelled a, and f is labelled $\left.a^{-1}\right)$ then perform the following move

(We see here that move i)a) is necessary, as free loops may be generated here.)
b) If there is an edge e in D which has as endpoints two adjacent points on a disc D_{i}, then omit e.

iii) If there is a disc D_{i} in D such that D_{i} meats only one edge e , in just one point, and e is labelled by the letter a, then omit all edges labelled a.
(Here we use i)b) to omit the disc D_{i})

We say that a diagram is reduced if none of these moves can be performed.

Proposition 2.13

Let D be a diagram, and let G be the group defined by D (2.11). If D^{\prime} is obtained from D by performing reduction operations, then D^{\prime} defines the group G^{\prime}, where $G=G^{\prime} * F_{m}$ for some m. Proof

We need only show that performing the reduction operations is the same as performing Tietze moves on the presentation of G, and therefore alters the presentation but not the group, except ila) which may forget generators which do not appear elsewhere, thus contributing to the free factor F_{m}.
i) a) -omits a loop which is not involved in showing that w, the label on D, is trivial in G. This alters the map from D to the complex associated with G by a homotopy redD, and may alter G by omitting a generator which does not appear in any relation.
b) -a disc with no edges is the trivial relator 1 , and so can be ignored.
ii) a, b) -this corresponds to trivial reduction of a relator in R, as D_{i} has label $w_{1} a a^{-1} w_{2}$ which can be replaced by $w_{1} w_{2}$.
iii) -here we have the relator $a=1$, and so we can omit a from the diagram, altering the presentation of G,but not G itself.

Hence if we are interested in the group defined by the diagram, we may assume that the diagram is reduced.

Example - The group defined by the unreduced diagram has presentation $\left\langle a, b, c, d, e\right.$; $\left.a d c b, a c a^{-1} b^{-1}, a d^{-1} a^{-1}\right\rangle$ 。

After reduction, the diagram represents $\mathrm{ac}^{2}=1$ in the group $\left\langle a, b, c ; a c b, a c a^{-1} b^{-1}\right\rangle$.
2.14 Special Diagrams

From these（general）diagrams we are now going to define special diagrams，to enable us to look at the Adjunction Problem（of when does G inject into 〈G，t；r〉）．In this case we are particularly interested in the new generator t ，the relation r ，and the words in G which are trivial in the group 〈G，t；r＞，and hence we are interested in diagrams for 〈G，t；r＞ in which no edge labelled t meet the boundary，and the t－edges only meet the discs labelled $\mathrm{r}^{ \pm 1}$ ．With this in mind，we make the following constr－ uction，before giving the definition．

Define a disc with spokes D^{+}of order π to be a disc together with n disjoint，transverse－oriented arcs radiating outwards from D^{+}， O^{+}is labelled + ，and there is a distinguished point P on（ $\mathrm{D}^{+}-(\operatorname{arcs})$ ）． Reflect D^{+}in a planar axis，and call the result D^{-}，labelled－．

Now form a planar complex by taking a finite number of copies of D^{+} $\mathrm{D}_{1}^{+}, \mathrm{D}_{2}^{+}, \ldots \mathrm{D}_{\mathrm{k}}^{+}$，and a number of copies of $\mathrm{D}^{-}, \mathrm{D}_{1}^{-}, \mathrm{D}_{2}^{-} \ldots \mathrm{D}_{\mathrm{k}}^{-}$，lying in the plane such that the end point of an arc of $D_{i}^{ \pm}$is identified with an endpoint of just one arc from $D_{j}^{ \pm}$such that the orientations match． egg．

The disc D^{+}（respectively D^{-}）shall correspond to r（resp r^{-1} ） in $G *\langle t\rangle$ ，and the edges will be labelled t ．

We now give a formal definition of a special diagram，which is what we have just constructed．

An (unlabelled) special diagram is a planar 2-complex D in the interior of a 2-disc D^{2} such that :
i) $\quad D$ contains a finite number of disjoint 2-discs $D_{1}, D_{2} \ldots D_{m}$ in Into ${ }^{2}$, each labelled + or - , and a finite number of transverse oriented arcs and loops embedded in $\mathrm{cl}\left(D^{2}-\sum_{i=1}^{m} D_{i}\right)-\partial D^{2}$.
ii) For each $i, D_{i} \cap\{$ \{dges $\}=\{n$ vertices $\}$. Call n the index of 0 .
iii) On each disc D_{i} we can choose a distinguished point P_{i} on $D_{i}-\{$ edges $\}$ such that reading clockwise round ∂D_{i} from D_{i}, writing +1 (resp. -1) for each arc which we meet that is oriented clockwise (anti-clockwise) near D_{i}, we get the n-tuple $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)$ (resp. $\left(-\varepsilon_{n},-\varepsilon_{n-1}, \ldots,-\varepsilon_{\eta}\right)$) where D_{i} is labelled '+' (resp. '-') .

As before, the D_{i} are called the discs of D, the arcs are called the edoes, and the points where the edges meet the discs are the vertices of D. The n edges meeting the disc D_{i} divide ∂D_{i} into n seoments. We call the region of the plane bounded by ∂D the outside region, and ∂D we call the outside edge of D; the other regions of (plane) - D the inner regions of D.

If each segment of each ∂D_{i} is labelled by a letter (or possibly word) b_{k}, such that reading clockwise (anti-clockwise) round ∂D_{i} if D_{i} is labelled $+(-)$, gives the word $b_{1} \varepsilon^{\varepsilon_{1}} b_{2} \varepsilon^{\varepsilon_{2}} \ldots b_{n} t^{\varepsilon_{n}}$ we say that D is a labelled special diagram.

It is easy to see that an unlabelled special diagram can be made into a labelled special diagram because of condition iii). It is also easy to see that the 'disc with spokes' construction gives an unlabelled special diagram, and if we label the initial disc in the construction we get a labelled special diagram.

We are going to use special diagrams to attack the Adjunction Problem, to alter the group-theoretic problem to a diagram-theoretic one. The following definition will be useful :

Definition 2.16

A triple is a set $\{G, r, w\}$ where G is a group, I is a cyclically reduced word in $G *\langle t\rangle$, and w an element of G which is trivial in $\langle G, t ; r\rangle$.

A triple is a counter-example if r has length greater than 1,i.e. $r \notin G$, and w is non-trivial in G.

Corresponding to a counter-example $\{G, r, w\}$ there is a (labelled) special diagram, which we call a special diagram representing $\{G, r, w\}$. Proof

By Proposition 2.9 there is a diagram D representing $w=1$ in $\langle G, t ; r\rangle$. In fact by 2.11 the diagram may be assumed to be reduced. Now omit from D
i) all edges labelled in G
ii) all discs labelled in G iii) $\partial 0$
to give D^{\prime}.
What remains are
the discs labelled $r^{ \pm 1}$ and edges labelled t. (If an edge is labelled t^{-1} we can reverse the orientation and label it t.

On a disc of D^{\prime}
labelled r^{+1} write $\quad{ }^{+}+$, if
labelled r^{-1} write \quad ' .

On the segments of
each + disc D_{i} in D^{\prime} where a G-edge e of D met D_{i}, write the label of e with exponent +1 if e was oriented clockwise, else with exponent -1 . If D_{i} is a -disc write the label of e with exponent -1 if e was oriented clockwise, else +1 .

What remains is a labelled special diagram.
e. 9.

This starts with a triple $\{G, r, w\}$ where $r=a t c^{-1} b c^{-1} t^{-1}$, $G=\left\langle a, b, c, d, x ; a^{2}, d c^{2}, R\right\rangle$ where x is the set of generators of G which do not appear in D, R the set of relators for G which do not appear in D, and $w=(b d)^{2}$.

The spacial diagram shows that $\left\{G,\left(a t c^{-1} b c^{-1} t^{-1}\right),\left(e^{-2} b\right)^{2}\right\}$ is a counter-example (remember $c^{-2}=d$).

An (unlabelled) special diagram D defines a triple $\{G, r, \omega\}$, which is a counter-example if w is non-trivial in G.

Proof

Label each segment of each + (resp. -) disc D_{i} by proceeding clockwise (anti-clockwise) from p_{i} the distinguished point writing the letters $c_{1}, c_{2}, \ldots c_{n}$ in each segment as in 2.15 . Label any free loops b.

In each region R_{j}, of D draw a disc B_{j}, and draw an arc from B_{j} to each dise D_{k} on R_{j} (if R_{j} is the outside of D, i.e. $\partial R_{j}=\partial D$ then oraw B_{j} around D, i.e. D is inside B_{j}).

If an edge e meets disc D_{i}, give e a clockwise (anti-clockwise) or near D_{i} if it is a $+(-)$ disc, and label e by the label on the segment of ∂D_{i} where e meets ∂D_{i}.

We now have a diagram D^{\prime}, and hence by 2.11 , D^{\prime} defines a group G, and ∂D^{\prime} represents a word $w=1$ in $\langle G, t ; r\rangle$, where $r=c_{1} t^{\varepsilon_{\gamma_{0}}}{ }^{t} \varepsilon_{2} c_{3} \ldots \ldots . c_{n} t^{\varepsilon_{n}}$, with $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots \varepsilon_{n}\right)$ as in definition 2.15 and $c_{1}, c_{2} \ldots, c_{n}$ the labels on the segments of ∂D_{i}.

In fact the method of defining a triple from an unlabelled special diagram can be described and presented as follows :
I label the diagram by $c_{1}, \ldots c_{n}$ written on the segments of the discs going round clockwise (anti-clockwise) from the distinguished point on the $+(-)$ discs, and any free loops label b.

II for each inner region of the diagram R_{i} write the word w_{i} by : choose an edge on ∂R_{j},
read clockwise around ∂R_{i},
when a segment labelled c_{k} of a disc D_{j} is on ∂R_{i} write c_{k}^{-1} if D_{j} is,$+ c_{k}^{+1}$ if D_{j} is - , the loop ∂R_{i} then defines a word $c_{j_{1}} \varepsilon_{j, 1} c_{j_{2}} \varepsilon_{j, 2} \ldots c_{j_{m}} \varepsilon_{m}$, where each $\varepsilon_{i, j}= \pm 1$.
III do the above for the outer edge, ∂D, to give the word w.
Then the triple defined is $\left\{\left\langle c_{1}, \ldots c_{n}, b ;\left\{w_{i}\right\}\right\rangle, r, w\right\}$ where $r=c_{1} t^{\varepsilon_{1}} c_{2} t^{\varepsilon_{2}} \ldots c_{n}{ }^{\varepsilon_{n}},\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)$ is the n-tuple defined in 2.14 .

Continuing as with general diagrams,we now define reduction operations which alter a diagram and the triple defined, but preserve the property of representing a counter-example (and more besides, as we shall see).
2.19 Reduction of (labelled) Special Diagrams

Let D be a labelled special diagram, where the segments of each disc are labelled $c_{q}, c_{2}, \ldots c_{n}$. We call the following alterations of D reductions :
i) Discard loops.
ii) If there is an edge e which has as endpoints two adjacent vertices on some disc D_{i}, with the label a_{k} on the segment between the vertices, do the following operations : on D_{i} omit edge e and label c_{k},

elsewhere do :

Hence one segment is now labelled $c_{k-1} c_{k+1}$.
iii) If two discs D_{1} and D_{2} are connected by an edge e, and D_{1} and D_{2} are oppositely labelled, and the distinguished points of D_{1} and D_{2} lie in the same region, on segments adjacent to e, then do the following opertations :
iii)a

Notice that all the orientations match up by the properties of special diagrams, reading the n-tuple $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots \varepsilon_{n}\right)$ clockwise from p_{1} on O_{1}, and the n-tuple $\left(-\varepsilon_{1},-\varepsilon_{2}, \ldots-\varepsilon_{n}\right)$ reading anticlockwise from P_{2} on D_{2} 。
iii)b If there is a connected component of D which consists of two discs
D_{1} and D_{2} with opposite sign, in which the distinguished points lie
in the same region, discard this component ;
i.e. discard :

Operation III)a followed by III)b is called trivial reduction. We say that a special diagram is reduced if none of these operations can be performed.

Note that operation II) may lead to the reduction process giving different reduced diagrams, egg. suppose we have discs D_{i}, with edge e around label c_{k}, and D_{j} with edge e^{\prime} around label c_{k+1}. Then doing operation II) to edge e, gives a different diagram from doing operation II) to edge e^{\prime} :
A) do II) to edge e:
on D_{i}

on D_{j}

elsewhere

B) do II) to edge e^{\prime} :

on D_{j}
elsewhere

$\xrightarrow{\longrightarrow}$

\longrightarrow

We now strengthen Proposition 2.19 to show that a reduced diagram representing a counter-example defines a sort of 'canonical' counter-example.

Proposition 2.20
Let D be an unlabelled special diagram, representing the triple $\{G, r, \omega\}$.
i) Reduction of D gives a special diagram D^{\prime} which defines a triple $\left\{G^{\prime}, r^{\prime}, w^{\prime}\right\}$ such that there is a homomorphism ϕ such that:

$$
\phi: G^{\prime} *\langle t\rangle \rightarrow G *\langle t\rangle, \quad \phi\left(r^{\prime}\right)=r, \phi\left(w^{\prime}\right)=w
$$

and $\phi\left(G^{\prime}\right)=\operatorname{Sbgp}_{G}\left\langle a_{1}, a_{2}, \ldots a_{n}\right\rangle$, where $r=a_{1} t^{\alpha_{1}} a_{2} t^{\alpha_{2}} \ldots a_{n} t^{\alpha_{n}}$.
ii) If $\left\{G, I, W^{\prime}\right\}$ is a counter-example then $\left\{G^{\prime}, r^{\prime}, W^{\prime}\right\}$ is too.

Proof

1) We show that each reduction operation gives a diagram which defines a new group such that the homomorphism is defined obviously. Suppose that $\{\bar{G}, \bar{r}, \bar{w}\}$ is the triple defined by D as in 2.18 . Operation I) is represented by a homotopy of the map defining D, as in 2.12,i)a. As in 2.9 , omission of this loop does not change \bar{G} as the label on this edge is t.
II) Here we omit from \bar{r} a subword $t c_{k} t^{-i}$ where $c_{k}=1$ is a relation in $\overline{[}$. Also we amalgamate some regions:

If R_{2} is labelled $w_{2} c_{k}$ in U, then in D^{\prime}, tine new diagram, R_{2}^{\prime} is labelled w_{2}; the letter c_{k} has been omitted as $c_{k}=1$. This does not alter $\overline{\mathrm{G}}$.

If R_{1}, R_{3} are labelled w_{1}, w_{3} then in $D^{\prime}, R_{1}^{\prime}$ is labelled $\bar{w}_{1} \bar{w}_{3}$ where \bar{w}_{i} is some cyclic permutation of w_{i}, and $\bar{w}_{1} \bar{w}_{3}=1$ in G. Hence if D^{\prime} defines $\left\{G^{\prime}, r^{\prime}, W^{\prime}\right\}, I^{\prime}$ is the same as r, but with trivial cancellation performed on the subword $t c_{k} t^{-1}$ of r, and w^{\prime} is \bar{w} with occurrences of c_{k} omitted; G^{\prime} may have fewer relators than \bar{G}, as the two relators w_{1} and w_{3} are amalgamated into the single relater $\bar{w}_{1} \bar{w}_{3}$ in G^{\prime}.

Hence there is a natural homomorphism $\varnothing:\left\{G^{\prime}, r^{\prime}, w^{\prime}\right\} \rightarrow\{\bar{G}, \bar{r}, \bar{w}\}$.
III)a Again we amalgamate regions as above, and so we have a homomorphism.
III)b Here we omit a component of a type which only contributes trivial relations $c_{i} c_{i}^{-1}$, so this component may be omitted without altering the triple defined.

Hence reduction gives D^{\prime} and there is a natural homomorphism $\left\{G^{\prime}, \Gamma^{\prime}, w^{\prime}\right\} \rightarrow\{\bar{G}, \bar{\Gamma}, \bar{w}\}$. The map $\notin:\{\bar{G}, \bar{r}, \bar{w}\} \rightarrow\{G, r, w\}$ is defined as : $\bar{r}=c_{1} t^{\varepsilon_{1}} c_{2} t^{\varepsilon_{2}} \ldots c_{m} t^{\varepsilon} m, \varepsilon_{i}= \pm 1 \quad, \quad r=a_{1} t^{\alpha_{1}} a_{2} t^{\alpha_{2}} \ldots a_{n} t^{\alpha_{n}}, \alpha_{i} \in \mathbb{Z}-\{0\}$ where $\quad \varepsilon_{i}=\frac{\alpha_{j}}{\left|\alpha_{j}\right|}$ for $\sum_{k=1}^{j-1}\left|\alpha_{1}\right|<i \leqslant \sum_{k=1}^{j}\left|\alpha_{k}\right|$ and $\phi\left(c_{j}\right)=1$ for $\left(\sum_{k=1}^{j-1}\left|\alpha_{k}\right|\right)+1<i \leqslant \sum_{k=1}^{j}\left|\alpha_{k}\right|$
$\phi\left(c_{p}\right)=a_{j}$ for $p=\left(\sum_{k=0}^{j-1}\left|\alpha_{k}\right|\right)+1$.
Then $\phi(\bar{w})=w$, and $\phi(\bar{r})=r$.
This map is a homomorphism as each interior region of G defines a trivial word in G. And so there is a homomorphism $\left\{G^{\prime}, \Gamma^{\prime}, w^{\prime}\right\} \rightarrow\{\bar{G}, \bar{r}, \bar{w}\} \rightarrow\{G, r, w\}$
ii) Follows immediately from the properties of ϕ.

Recall that reduction of a diagram is not unique, and hence the triple $\left\{G^{\prime}, r^{\prime}, w^{\prime}\right\}$ is not uniquely defined by a diagram D. This is seen in the note after 2.19 , where it is seen that operation II) may be possible at more than one place, at c_{k}, c_{k}, and hence a different order of performing operation II) can give rise to different regions being amalgamated.

Now we shall restrict our attention to connected reduced special diagrams justified by this lemma :

Lemma 2.21

Let D be a reduced special diagram with more than one component representing a counter-example $\{G, r, w\}$. Then
i) Each component D_{i} of D defines a triple $\left\{G_{i}, r_{i}, w_{i}\right\}$ where there is a homomorphism $\phi_{i}: G_{i} *\langle t\rangle \longrightarrow G *\langle t\rangle$ such that $\phi_{i}\left(r_{i}\right)=r$ 。
ii) At least one triple $\left\{G_{i}, r_{i}, w_{i}\right\}$ is a counter-example.

Proof

Each component D_{i} defines a triple by 2.18 . The homomorphism follows as again the regions of $D-D_{i}$ are labelled by trivial words in G, and hence there is a natural homomorphism ϕ_{i}.
ii) Let D_{i} be a component inside another component,i.e. D_{i} is contained in an inner region of D_{j}.If $\left\{G_{i}, r_{i}, w_{i}\right\}$ is a counter-example then we are finished.Else $w_{i}=1$ in G_{i} and
so $\phi_{i}\left(w_{i}\right)=1$ in G. Omit this D_{i}. Now assume that all components contribute to the boundary label. If no component gives a counter-example then the label on the boundary of D is trivial in G, ie. $\{G, r, w\}$ is not a counter-example. Thus at least one component gives a counter-example.

We can sum up the results of this section on special diagrams in the following theorem :

Theorem 2.22

i) Suppose that r does not have a solution over G.

Then there is a connected, reduced, special diagram representing a counter-example $\{G, r, \omega\}$, and D defines a counter-example $\left\{G^{\prime}, r^{\prime}, w^{\prime}\right\}$ such that $] \phi: G^{\prime} *\langle t\rangle \rightarrow G *\langle t\rangle$ with $\phi\left(r^{\prime}\right)=r$, and $\phi\left(w^{\prime}\right)=w^{n}$, a non-trivial element of G.
ii) Let D be a connected, reduced, special diagram.

Then D defines a triple $\{G, r, w\}$ which is a counterexample if w is nontrivial in G.

Thus we have, as promised, moved from the study of groups in general, to the study of groups defined by diagrams, and the study of diagrams in general. The following chart shows the progression we have passed through :

The fact that the map \varnothing is a homomorphism which is not necessarily injective or surjective means that G^{\prime} may have 'fewer' relations than G; e.g. let $\{a, r, w\}=\left\{\left\langle a, b ; a^{3}, b^{2}\right\rangle, a t b t^{-1}, b\right\}$. Then a diagram for this is :

which gives the special diagram
defining the counter-example
$\left\{\left\langle a, b ; a^{3}\right\rangle, a t b t^{-1}, b^{3}\right\}$.
b

As an example of the essential difference between a counterexample and the counterexample defined by a diagram, we have the following proposition which provides a class of groups and added relators which satisfy the kervaire Conjecture.

Proposition 2.23
If $\{G, r, w\}$ is a triple defined by a special diagram, then $\langle G, t ; r\rangle$ is nontrivial.

Proof
By proposition 1.6 we need only consider the case when $\sigma_{t}(r)= \pm 1$.

Let $r=c_{1} t^{\varepsilon_{1}} c_{2} t^{\varepsilon_{2}} \ldots c_{n} t^{\varepsilon_{n}}$ where $\varepsilon_{i}= \pm 1$; as $\sigma_{t}(r)$ is non-zero, we have that $\varepsilon_{i-1}=\varepsilon_{i}$ for some values of i. We shall show that for these values of i, c_{i} is nontrivial in $\langle G, t ; r\rangle$.

Let D be the diagram which defines $\{G, r, w\}$; we now relabel some of the segments of D to obtain a diagram D, as follows : when $\varepsilon_{i-1}=\varepsilon_{i}=+1$, replace c_{i} by d, and when $\varepsilon_{i-1}=\varepsilon_{i}=-1$, replace c_{i} by d^{-1}. D^{\prime} defines the triple $\left\{G^{\prime}, r^{\prime}, w^{\prime}\right\}$ such that G^{\prime} is a homomorphic image of G.

For any region of D^{\prime}, it is clear that its label has as many occurrences of d as it has of d^{-1}; reading anti-clockwise around the boundary of an interior region of D^{\prime}, a series of "inward" oriented t-edges ends when an r' -disc is reached where the label is d
 or d^{-1}, depending upon whether the r^{\prime}-discs are labelled + or - .

Thus the exponent sum of d in any of the defining relations for G ' is zero. Similarly any special diagram representing $\{G, r, w\}$ becomes, after relabeling, a diagram for $\left\{G^{\prime}, r^{\prime}, w^{\prime \prime}\right\}$ where $\sigma_{d}\left(w^{\prime \prime}\right)=0$ so the corresponding c_{i} cannot be killed in $\langle G, t ; r\rangle$.

2.24 Examoles

We can use special diagrams to construct counter-examples. As we noted in 1.1 , the stancard example of a word without a solution over a group has the form $r=a t b t^{-1}$ where a and b are elements of G with different orders. We now show how this, and other examples can be drawn as
diagrams.
i)

$$
\begin{aligned}
& \text { Here } G=\left\langle a_{1}, a_{2}, a_{3}, a_{4} ; a_{1}^{2} a_{3}^{-1}, a_{4} a_{2}, a_{4} a_{2}^{-1}\right\rangle \\
& =\left\langle a_{1}, a_{2} ; a_{2}^{2}\right\rangle . \\
& \langle\varepsilon, t ; \Sigma\rangle=\left\langle a_{1}, a_{2}, t ; a_{2}^{2}, a_{1} t a_{2} t^{-1} a_{1}^{2} t a_{2} t^{-1}\right\rangle \\
& \text { and the counter-example defined is } \\
& \left\{G, a_{1} t a_{2} t^{-1} a_{1}^{2} t a_{2} t^{-1}, a_{1}^{3}\right\} .
\end{aligned}
$$ $\left\langle a_{1}, a_{2}, a_{3} ; a_{1}^{3}\right\rangle$.

$\langle G, t ; r\rangle=\left\langle a_{1}, a_{2}, a_{3}, t ; a_{1}^{3}, a_{1} t a_{2} t^{-1} a_{3} t a_{2}^{-1} t^{-1}\right\rangle$
and the counter-example defined is $\left\{G, a_{1} t a_{2} t^{-1} a_{3} t a_{2}^{-1} t^{-1}, a_{3}^{3}\right\}$.
Note that I has the form $a_{3}=w a_{1} w^{-1}$.
iii)

This last example is a countez-example to a 'theorem' claimed by Schiek [Sch 2]. Schiek claims to show that I has a solution over G if r has the form $a E b E^{-1}$, where $a, b \in G$, and
$E=\left(t^{-s} a_{1} t^{s} 1\right)\left(t^{-s} 2_{a_{2}} t^{s} 2\right) \ldots\left(t^{-s} n_{a_{n}} t^{s} n\right) \quad, \quad n \geqslant 1, \quad a_{i} \in G ; s_{i} \neq 0$.
Levin points out in his review of Schiek's article (Maths. Reviews 55 number 3096) that the theorem is untrue if G contains elements of odd order, and this example shows that it also fails if G has elements of even order.

Note that in $2 l l$ these examples the exponent sum of t in r is

We now give a diagrammatic proof of 1.2. In fact we show something slightly more general :

Note 2.25
If I contains only two t-occuzrences and r is cyclically reducad in $G *\langle t\rangle$, then I has a solution in G, unless $r=a t b t^{-1}$ and a and b have different orders in G.

Proof

i) If $\sigma_{t}(r)= \pm 2$, then look at a reduced special diagram 0 representing some word $w=1$ in $\langle G, t ; r\rangle$.

Then a toisc in D loaks like and nence we can see that a tdisc cannot be joined to another toisc. Therefore a +disc may only be connected to -discs, and one way of doing this will give an

The discs must be joined together so as $=0$ form a loop, such that the label on the inside is the same as the label on the outside, which is (ab-1)k foz some k, and hence the diagram does not give a counter-examole.
ii) If $\sigma_{t}(r)=0$ then the +disc looks like $+\rightarrow$ and if we have
a +disc joined to a -disc they must look like
 and so trivial reduction is possible, and so assuming that the diagram was reduced we have that a tdisc can only be joined to a -disc,and again we get a loop of discs giving the relation $e^{k}=$? in G from the felation
 inside.Hence G injects into $\langle G, t ; r\rangle$ if the orjer of a in G is the same as the order of b in G.If the orders of a and b are different in G, then the diagram shows that b^{k} is trivial in $\langle G, t ; \geqslant\rangle$.

Note that a new proof of the Migman, Neumann, Neumenn theorem that the base group of an HNN extension injects into the HNN extension can be given on the above lines.

ETHOS
Boston Spa, Wetherby
West Yorkshire, LS23 7BQ
www.bl.uk

BLANK PAGE IN ORIGINAL

Attempts to draw special diagrams have not proved fruitful; the conditions on the transverse orientations of the edges make the step from regular planar graph to reduced special diagram difficult. In this section we give a description of a general class of reduced special diagrams which we shall then show (theorem 3.4) does not contain a diagram representing a counter-example. This class of diagrams is interesting because :
a) $\quad \sigma_{t}(r)= \pm 1$ and so they are candidates for representing counterexamples to the Kervaire Conjecture.
b) The high degree of symmetry in the construction means that the number of relations in the group defined by such a diagram appears to be low (in fact the deficiency is $\geqslant(2 n+1)-(2 n+1)=0$) which seems to be a good thing as the more relations we have, the more chance there is that the outside label w is trivial in G, the group defined by the diagram.
c) They are the only reduced diagrams with $\sigma_{t}(r) \neq 0$ which we know how to draw, and so for this reason alone we must show that they do not represent counter-examples.

We start this short chapter with the construction in 3.1 ; the proof that these diagrams do not give counter-examples (3.4) is basically grouptheoretic.

Definition 3.1

Let S be a disc with transverse oriented spokes (2.14) of index $2 n+1$, such that there is an axis x in the plane through a vertex v about which S - (edge at v) is symmetric.

Then we say that 5 has an axis of symmetry.
e.9.

Note that in a special diagram made from these discs, the triple $\{G, r, w\}$ has the property that $\sigma_{t}(r)= \pm \uparrow$, and r has the form :

$$
r=\operatorname{ta}_{n} t^{\varepsilon_{n}} a_{n-1} t^{\varepsilon_{n-1}} \ldots a_{2} t^{\varepsilon_{2}} a_{1} t^{\varepsilon_{1}} a t^{-\varepsilon_{1}} \bar{a}_{1} t^{\varepsilon_{2}} \bar{\varepsilon}_{2} \ldots \bar{a}_{n-1} t^{-\varepsilon_{n}} a_{n+1},
$$

where $\pm 1=\mathcal{E}=\sigma_{t}(r)$.

Definition 3.1 (cont.)
A +unit U in a special diagram D is a collection of k +discs (of index $2 n+1$) such that each disc has an axis of symmetry through v, such that :
i) U is connected to $D-U$ by the k edges through the k points corresponding to v.
ii) if two discs D_{1} and D_{2} in U are connected by an edge, then then they are connected by $2 n$ or n edges, depending on whether U has just two discs or more.
Define -units the same way using -discs.
el.

If U is a +unit with k discs, built using axis of symmetry X_{i} then we draw it as a k-sided polygon with an edge radiating from each vertex, and label it $+_{i}$. If $k=2$ we draw a rectangle with an edge radiating from each of the shorter sides. Then the two examples above become :

and

We say that a diagram is made up of units if each disc is in just one unit, each disc has just two axes of symmetry, and the outside word w defined by the diagram is not in just one unit.

Example 3.2

Let D be the disc with three spokes, as illustrated. We see that there are two axes of symmetry, X_{1} and X_{2}

We see that we can build units using this disc with spokes :

drawn

drawn

For this case the -disc looks like :

and as before we build units :

drawn

Using these units we may draw a special diagram made up of units, by joining units together, egg.:

This diagram defines the triple below, which is not a counterexample, as $\left(a_{2} a_{1} a_{3}^{-1} a_{1}^{-1}\right)=1$ in G :

$$
\left.\left\{<a_{1}, a_{2} a_{3} ; a_{2}^{2}, a_{3}^{3}, a_{2} a_{1} a_{3}^{-1} a_{1}^{-1}\right\rangle, a_{1} t a_{2} t^{-1} a_{3} t,\left(a_{2} a_{1} a_{3}^{-1} a_{1}^{-1}\right)^{4}\right\}
$$

Note that in this example, all the +discs use axis of symmetry x_{1}, all the -units use axis x_{2}. This is because reduction would be possible immediately if we have a tunit and a-unit with the same axis of symmetry which were joined, as we shall sea in Proposition 3.3.

Example 3.2 b

In this diagram we see that the word defined by the outside is $e d a^{-1} b^{-1} e d a^{-1} b^{-1}$, and the word $e d a^{-1} b^{-1}$ is a relation from an inner region e.g. R, and hence $\omega=1$ in the group G defined by the diagram.

The following proposition sums up the properties which a diagram made up of units which represents a counterexample must have. we shall then show that it is not possible to build such a diagram using discs with just two axes of symmetry.

Proposition 3.3

Let D be a reduced, connected non-empty diagram made up of units, which represents a counter-example.

Then:
i) there are no edges joining units of the same sign.
ii) the number of +discs is equal to the number of -discs.
iii) a +disc built using axis of symmetry X_{i} is not connected to a -disc built using axis of symmetry X_{i}.
iv) the orders of the + (resp.-) units have a highest common factor d (resp. d^{\prime}) >1.
v) the numbers of edges bounding interior regions have a highest common factor $4 n$, where $n>1$.
vi) if $4 n^{\prime}$ is the number of edges on the outside of D, then n does not divide n^{\prime}.

Proof

i) If an edge joins a unit to another unit, then it arrives at the other unit with an anticlockwise orientation near that unit, and hence that unit must be a -unit :

ii) This follows from i), as each disc contributes 1 edge to the diagram where the units are drawn as polygons.
iii) This follows as the diagram is assumed to be reduced. Assuming that the two axes of symmetry used to make the units of D are x_{1} and x_{2}, we have that the +units are all built using the axis x_{1} (say), and the -units are built using axis X_{2}, by iii) and the fact that D is connected. let $\left\{G^{\prime}, r^{\prime}, w^{\prime}\right\}$ be the counterexample defined by D. iv) A unit of degree k_{i} contributes a relation $A_{i}=1$ and so if d is the highest common factor of the k_{i}, we have that $A^{d}=1$ in G^{\prime}, and so $(\phi(A))^{d}=1$ in G.
We see that r^{\prime} has the form $a_{2} w A \bar{w} a_{2} t$, and so if $d=1$, $r^{\prime}=a_{1} a_{2} t$ and so $\left\langle G^{\prime}, t ; r^{\prime}\right\rangle=G^{\prime}$, and hence D does not define a counter-example. Similarly we have the same result for -units.

v) vi) An interior region R_{i} of D outside of the units contributes a relation $\left(a_{1} a_{2} b_{2}^{-1} b_{1}^{-1}\right)^{n_{i}}$. So, as above, if n is the highest common factor of the n_{i}, we have the relation $\left(a_{1} a_{2} b_{2}^{-1} b_{1}^{-1}\right)^{n}$ in G^{\prime}. But w is the word $\left(a_{1} a_{2} b_{2}^{-1} b_{1}^{-1}\right)^{n^{\prime}}$ and so if $n=1,0$ does not define counter-example. Note that the number of edges of R_{i} is $4 n_{i}$, and that in fact D represents a counterexample only if n does not divide n^{\prime}.

The point of this chapter is to prove :
Theorem 3.4
A diagram made up of units does not represent a counter-example.

From 3.3 we see that there is a diagram made up of units which represents a counter-example only if there exists a planar graph with certain properties, and so the following graph-theoretic theorem implies 3.4:

Theorem 3.5

Let G be a planar graph with the following properties:

1) G is bipartite with corresponding sets of vertices A and B;
2) The orders of the vertices of A (resp. B) have a highest common factor d (resp. d') >1.
3) The numbers of edges bounding interior regions of G have a highest common factor $2 n, n>1$.

If $2 n^{\prime}$ is the number of edges bounding the outside of G, then n divides n^{\prime}.
3.5 Implies 3.4 : Let D be a diagram made up of units representing a counter-example. Let P be the graph obtained by identifying each unit of D to a point. Then by 3.3 , P fulfills the conditions of 3.5 , and n divides Π^{\prime} and so by $\left.3.3 v i\right)$, D does not represent a counter-example.

Proof of theorem 3.5

The method of proof is, strangely enough, group-theoretic ; having moved from group theory problems to graph-theory constructions, we now
move full-circle, and prove this result by converting a graph which fulfills the conditions into a diagram defining a triple which we shall show is not a counter-example, in fact which has the property that n divides n^{\prime}.

Let G be a planar graph fulfilling 1),2), and 3).
Replace a vertex v in A (respectively v^{\prime} in $日$) of order k_{i} (resp k_{i}^{\prime}) by a unit (resp -unit) with k_{i} (resp k_{i}^{l}) discs with 3 spokes as below :

Then the diagram 0 obtained defines the triple:
$\left\{\left\langle a, b, c ; b^{d}, c^{d^{\prime}},\left(a c a^{-1} b^{-1}\right)^{n}\right\rangle\right.$, att $\left.t^{-1} c t,\left(a c a^{-1} b^{-1}\right)^{n}\right\}$.
As we noted in 3.3 there is a pairing of the discs of 0 induced by the edges joining the units, and so we can replace each (,+-) pair of discs by a single disc labelled $b t^{-1} \mathrm{ca}^{-1} \mathrm{t}^{-1} \mathrm{c}^{-1} \mathrm{t} \mathrm{b}^{-1}$ at :

This new diagram D^{\prime} represents the triple
$\left\{\left\langle a, b, c ; b^{d}, c^{d^{\prime}},\left(a c a^{-1} b^{-1}\right)^{n}\right\rangle, \quad a t b t^{-1} c a^{-1} t^{-1} c^{-1} t b^{-1},\left(a c a^{-1} b^{-1}\right)^{n^{\prime}}\right\}$ that is $w=\left(a c a^{-1} b^{-1}\right)^{n}$ is trivial in $\langle G, t ; r\rangle$,using the usual notation. Adding the relation $a=1=t,\langle G, t ; r\rangle \rightarrow H=\left\langle b, c ; b^{d}, c^{d^{\prime}},\left(c b^{-1}\right)^{n}\right\rangle$ and $w=\left(a c a^{-1} b^{-1}\right)^{n}$ is mapped to $\left(c b^{-1}\right)^{n^{\prime}}$.

But H is the (d, d^{\prime}, n) triangle group (see egg. Coxeter and Mover "Generators and Relations for Discrete Groups", page 67) and hence (co ${ }^{-1}$) has order n, and so n divides n^{\prime} as required.

We can now generalise theorem 3.4 sligntly;we note that in the definition of a diagram made up of units we had the condition that the outside
boundary of the diagram should not be in contained in just one unit. We now effectively remove this condition :

Theorem 3.6
Let D be a diagram representing a triple $\{G, r, w\}$, such that each disc has two axes of symmetry, and each disc of D is in a unit. Then $\{G, r, w\}$ is not a counter-example.

Proof

By 3.4 we can assume that the outside of D is in just one unit which we shall assume is labelled +. If the outside relation is a word other than b^{k}, it occurs elsewhere in the same unit (by the symmetry of each disc). If the outside word is b^{k} then the same proof as 3.5 (mapping to the (d, d^{\prime}, n) triangle group) shows that d divides k and hence we do not have a counterexample.

In this chapter we develop a method based on a paper of Lyndon [L2] wiaich allows us in certain circumstances to relabel a special diagram; this will be used to prove the Freiheitssatz for locally indicable gloups (4.9). This generalises both the result for subgroups of the additive group of reals (obtained by Lyndon in [J2] , and that for locally residually free groups due to Pride in $[P]$. As we noted in Chapter 1 , this result has been obtained independently by Howie $[\mathrm{H}]$, and by a Russian, Brodssii [Br]; Howie's methods are derived from those used to prove Dehn's Lemma and the Loop Theorem, originally due to Papakyriakopoulos, and Howie informs me that he believes Brodskii's methods to be similar to his own.

We first define a potential function on a special diagram (4.1) which shall then be used to relabel the diagram. The principle examples of these functions are given in 4.2 , and repeated use of these constructions is made later. The Lyndon Lemma (4.4), concerning the form such a potential function must have on a diagram representing a kind of failure of the Freiheitssatz for a class of groups, is then proved, and two important corollaries (4.5 and 4.6) are given. This is applied in 4.8 to show that G injects naturally into $\langle G, t ; r\rangle$ if G is locally inaicable, and this gives the Freiheitssatz for locally indicable groups almost immediately in $4_{4} .9$. In the final section we use the methods of the proof of 4.4 to show that G injects into $\langle G, t ; r\rangle$ if $G *\langle s\rangle$ injects into $\langle G, s, t ; r\rangle$ and into $\left\langle G, s, t ; r^{\prime \prime}\right\rangle$, where r, and $r^{\prime \prime}$ are words in $G *\langle s\rangle\rangle$ which are obtained from r using a homomorphism from $\langle G, t ; r\rangle$ to \mathbb{Z}.

Our aim is to put a real-valued continuous function on a special diagram in order to allow a certain type of relabeling process to proceed. Recall here that a special diagram can be viewed (see 2.14) as formed by taking copies of a "disc with spokes" (each copy has label r) and copies of its mirror image (these copies are labelled r^{-1}) ; the free end-points of the spokes are then identified such that the transverse orientations are preserved (giving the t-edges) and, of course, such that the resulting diagram is planar.
Definition 4.1
A Potential Function on a special diagram D is a continuous p.1. map $\Phi: D \rightarrow \mathbb{R}$ such that Φ is constant on any edge of D, and when B_{1} and B_{2} are two discs of D and $\nabla_{1, i}, v_{2, i}$ are corresponding points on B_{1} and B_{2}, we have :
$\Phi\left(v_{1, i}\right)=\Phi\left(v_{2, i}\right)+\Phi\left(p_{1}\right)-\Phi\left(p_{2}\right)$ where p_{1} and p_{2} are the distinguished points on B_{1} and B_{2} respectively.
4.2 Construction of Potential Functions

We now give examples of potential functions on special diagrams; these are arranged in a strict order, introducing step by step the procedures which give the essential construction of the final example $4.2(v)$, to be used in section 2 .
4.2(i) Clearly a constant map, taking the entire diagram to zero, is a potential function (the trivial potential function).
4.2(ii) If we have a connected special diagram D defining a triple $\left\{G^{\prime}, r^{\prime}, w^{\prime}\right\}$ with $\sigma_{t}\left(I^{\prime}\right)=0$, then we can use the homomorphism $\theta=0 * i d: G^{\prime} *\langle t\rangle \rightarrow \mathbb{Z}$ to form a potential function as follows:
4.2 (ii) (cont.) Let $r^{\prime}=c_{1} t^{\varepsilon_{1}} c_{2} t^{\varepsilon_{2}} c_{3} \cdots c_{n} t^{\varepsilon_{n}}, \varepsilon_{j}= \pm 1$, and $c_{i} \in G^{\prime}($ possibly $=1)$.
We construct the potential function Φ by first definning a function of the desired type on the disc with spokes B used to construct the diagram. We then show how to extend the function as the discs with spokes B_{1} (the copies of B and its mirror image) are joined up. Let p be the distinguished point and let v_{i} be the
 vertex where the edge labfled $t^{\mathcal{E}_{i}}$ meets B.

Define the function h on the vertices of B as :
$h(p)=0$
$h\left(v_{1}\right)=\frac{1}{2} \varepsilon_{1}$
$h\left(v_{2}\right)=\varepsilon_{I}+\frac{1}{2} \varepsilon_{2}$
$h\left(v_{j}\right)=\varepsilon_{I}+\varepsilon_{2}+\ldots+\frac{1}{2} \varepsilon_{j}$
Linearly extend h to the rest of the circumference of the disc, and then radially extend to the interior; on the j-th spoke let $h=h\left(v_{j}\right)$.
Let $B_{0}, B_{1}, B_{2}, \ldots, B_{k}$ be the discs with spokes occurring in D, ready equipped with a copy of the function h. Let $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be a set of edges in D forming a maximal tree (regarding each disc as a point), and suppose that e_{l} joins B_{o} to B_{i}, joining vertices $v_{o, j}$ and $v_{i, m}$. ($v_{i, j}$ is the vertex on B_{i} which corresponds to the vertex v_{j} on B) We define the function H on B_{i} using h as : $H\left(w_{0}\right)=h\left(w_{0}\right)$ for any point w_{0} on B_{0}; $H\left(v_{i, m}\right)=H\left(v_{o}, j\right) \quad\left(=h\left(v_{j}\right)\right)=H\left(e_{1}\right)$ and let $k_{i}=H\left(v_{i, m}\right)-h\left(v_{m}\right)$ and define $H\left(w_{i}\right)=h\left(w_{i}\right)+k_{i}$ for all points w_{i} on B_{i}; note that $H\left(p_{i}\right)=k_{i}$.
4.2(ii) (cont.) As we noted earlier, for all points w on the edge e_{l}, we have $H(w)=H\left(v_{o, j}\right)=H\left(v_{i, m}\right)$. In this way we extend H over the maximal tree, from the discs where we already know the values of H, to the rest, proceeding outwards along the edges. It remains to show that adding any edge to the maximal tree joins two vertices of D where H takes the same value, so that we can then extend H over these remaining edges of D 。
Let e be an edge not in the maximal tree; adding e
 forms an interior region of D : call it R; the boundary of R consists of segments of discs and a set of edges. Let $A_{1}, A_{2}, \ldots, A_{j}$ be the discs meeting ∂_{R}, and let $f_{1}, f_{2}, \ldots, f_{j}$ (with $e=f_{j}$) be the edges occurring on ∂R, with f_{i} labelled $t^{\beta_{i}}$ (inwards), in clockwise order. Suppose that the endpoints of $e=\mathbf{f}_{j}$ on A_{\perp} and on A_{j} are u and u respectively. We must show that $H(u)=H\left(u^{\prime}\right)$ in order to extend H along the edge e joining them. But we have :

$$
\begin{aligned}
& H\left(f_{1}\right)=H(u)+\frac{1}{2}\left(\beta_{j}-\beta_{1}\right) \\
& H\left(f_{2}\right)=H\left(f_{1}\right)+\frac{1}{2}\left(\beta_{1}-\beta_{2}\right)=H(u)+\frac{1}{2}\left(\beta_{j}-\beta_{2}\right)
\end{aligned}
$$

etc. proceeding clockwise round ∂R until

$$
H\left(u^{\prime}\right)=H\left(f_{j-1}\right)+\frac{1}{2}\left(\beta_{j-1}-\beta_{j}\right)=H(u) \text {. }
$$

Hence we can extend H over the edge e and hence over all the edges of the special diagram D; as previously, extend radially over the regions (egg. over R above) to give Φ of the required form.
4.2(iii) Let D be a connected special diagram defining the triple $\left\{G^{\prime}, r^{\prime}, w^{\prime}\right\}$ with $r^{\prime}=c_{1} t^{\varepsilon_{1}} c_{2} t^{\varepsilon_{2}} \ldots c_{n} t \varepsilon_{n}, c_{i 1} \in G^{\prime}$, and $\varepsilon_{i}= \pm 1$; as before, use \bar{r}^{\prime} to denote $c_{1} c_{2} \ldots c_{n}$. Suppose that $\sigma_{t}\left(r^{\prime}\right) \neq 0\left(0 \neq \sum_{i=1}^{n} \varepsilon_{i}\right)$, and that there exists a homomorphism q^{\prime} taking G^{\prime} onto \mathbb{Z} such that $q^{\prime}(\bar{r}) \neq 0\left(0 \neq \sum_{i=1}^{n} q^{\prime}\left(c_{i}\right)\right)$. After multiplying by a scaling factor (and thus regarding q^{\prime} as a nontrivial homomorphism from G^{\prime} to \mathbb{R}^{+}, the additive group of reals) we can suppose that $q^{\prime}\left(\bar{r}^{\prime}\right)=-\sigma_{t}\left(r^{\prime}\right)$, so that we have a non-trivial homomorphism θ such that $\theta=q^{\prime} *$ id : $G^{\prime} *\langle t\rangle \rightarrow \mathbb{R}^{+}$with $\theta\left(r^{\prime}\right)=0$. Let B be the disc with spokes used to construct D as in (ii) . Define the function h on the vertices of B (and at p) as: $h(p)=0$

$$
\begin{aligned}
& h\left(v_{1}\right)=q^{\prime}\left(c_{1}\right)+\frac{1}{2} \varepsilon_{1} \\
& h\left(v_{2}\right)=q^{\prime}\left(c_{1}\right)+q^{\prime}\left(c_{2}\right)+\varepsilon_{1}+\frac{1}{2} \varepsilon_{2}
\end{aligned}
$$ etc.

$$
h\left(v_{i}\right)=q^{\prime}\left(c_{1}\right)+\ldots+q^{\prime}\left(c_{i}\right)+\varepsilon_{1}+\varepsilon_{2}+\ldots+\frac{1}{2} \varepsilon_{i}
$$

We extend h to H on a maximal tree for D, as in (ii), such that each disc B_{i} has an associated constant k_{i}. To extend beyond the maximal tree, using the construction and notation of (ii), with b_{i} the label on $A_{i} \cap R\left(\right.$ read anticlockwise on $\left.A_{i}\right)$: $H\left(f_{1}\right)=H(u)+q^{\prime}\left(b_{1}\right)+\frac{1}{2}\left(\beta_{j}-\beta_{1}\right)$
$H\left(f_{2}\right)=H\left(f_{1}\right)+q^{\prime}\left(b_{2}\right)+\frac{1}{2}\left(\beta_{1}-\beta_{2}\right)$ etc., so that :
$H\left(u^{\prime}\right)=H(u)+q^{\prime}\left(b_{1}\right)+q^{\prime}\left(b_{2}\right)+\ldots+q^{\prime}\left(b_{j}\right)$

4.2(iii) (cont.) But the label on the boundary of R, read clockwise is the word $b_{1} b_{2} \ldots b_{j}$, and this is a relation in G^{\prime} by the definition of G^{\prime}, so we have $q^{\prime}\left(b_{1} b_{2} \ldots b_{j}\right)=q^{\prime}\left(b_{1}\right)+q^{\prime}\left(b_{2}\right)+\ldots+q^{\prime}\left(b_{j}\right)=0$ as q^{\prime} is a homomorphism. So $H\left(u^{\prime}\right)=H(u)$ as required, and we can extend H as in (ii), firstly over the remaining edges, and then over the interior regions.
4.2(iv) Let D be a special diagram representing the triple $\{G, r, w\}$ where $r=a_{1} t^{\alpha_{1}}{a_{2}}^{t}{ }^{\alpha} 2_{0} \ldots a_{n} t^{\alpha_{n}}, a_{i} \in G-\{1\}$, $\alpha_{i} \neq 0$; suppose that there exists a homomorphism q taking $\operatorname{sbgp}_{G}\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ onto \mathbb{z} with $q(\bar{r})=0$. Let $\left\{G^{\prime}, r^{\prime}, w^{\prime}\right\}$ be the triple defined by D, where $r^{\prime}=c_{1} t^{\varepsilon_{l_{2}}} t^{\varepsilon_{2}} \ldots c_{m} t^{\varepsilon_{m}}$, and \varnothing the homomorphism from G^{\prime} onto $\operatorname{sbg}_{G}\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ (as in 2.20, 2.21) and let B be the disc with spokes used to construct D as in (ii). Define the function h on the vertices

$$
\begin{aligned}
& \text { of } B \quad(a n d p) \text { as : } \\
& h\left(v_{1}\right)=q \cdot \phi\left(c_{1}\right) \\
& h\left(v_{2}\right)=q \cdot \phi\left(c_{1}\right)+q \cdot \phi\left(c_{2}\right) \\
& h\left(v_{i}\right)=\sum_{j=1}^{i} q \cdot \phi\left(c_{j}\right) \\
& h(p)=0
\end{aligned}
$$

Using this function as in (ii) and (iii), we can define a potential function on D.
4.2(v) It is now easy to see how to put a potential function on a special diagram representing the triple $\{G, r, w\}$, where $r=a_{1} t^{\alpha} l_{a_{2}} t^{\alpha}{ }^{\alpha} \ldots a_{n} t^{\alpha}{ }_{n}$, when there is a nontrivial homomorphism θ taking $\operatorname{Sbg}_{G}\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle *\langle t\rangle$ to \mathbb{R}^{+}such that $\theta(r)=0$; if $\theta(t)=0$, use (iv); else rescale θ so that $\theta(t)=1$, and construct h as in (ii) or (iii) with $q^{\prime}=\theta \circ \varnothing$.

Before proceeding to the statement of the Lyndon Lemma (4.4), several definitions are necessary; their relevance will become evident during the proof of 4.4 , and they occur again and again during this final chapter.

Definition 4.3
(i) A potential function on a special diagram D is univalent if it takes just one value on the distinguished points of $D: p_{1}, p_{2}$ distinguished points of D implies $\bar{\sigma}\left(p_{1}\right)=\Phi\left(p_{2}\right)$. A special diagram D is univalent if all potential functions defined on D are univalent.
(ii) A potential function on a special diagram D is nulvalent if it takes just one value on the t-edges of D. Otherwise the function is polyvalent.

A special diagram D is nulvalent if all potential functions defined on D are nulvalent (or alternatively, if there is no polyvalent function defined on D). Otherwise D is polyvalent.

Note that nulvalent implies univalent (for both functions and diagrams), and also that a univalent diagram is connected (else map each component to a (different) integer).
(iii) A class C of groups is free-product-closed (usually abbreviated to $f-p-c$) if the infinite cyclic group \mathbb{Z} is an element of C, and for any pair of groups G_{l} and G_{2} in C, their free product $G_{1} * G_{2}$ is also in C.

Examples of $\mathrm{f}-\mathrm{p}-\mathrm{c}$ classes are: the class of all free groups (this is a subclass of any f-p-c class), the class of all locally indicable groups (see section 2), and the class of all torsion-free groups.

Definition 4.3 (cont.)

(iv) Let C be a class of groups; a counter-cxample for C is a counter-example $\{G, r, w\}$ such that G is in C. A minimal counter-example for C is a counter-example for C, such that the length of r is minimal over all such counter-examples, and the number of t-occurrences in r is minimal over all such r of minimal length.

Note that a minimal counter-example for a class C is not uniquely defined. We make this definition as the method which we shall use to show that r has a solution over G for any G in a class of groups C, and for any r of cyclically reduced length greater than 1 , is to show that there are no minimal counter-examples.
(v) Let $\left\{G_{i}\right\}$ be a collection of groups, and let $\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$ be a set of cyclically reduced words in 娄 $_{i}$. The set $\left\{r_{j}\right\}$ is staggered with respect to $\left\{H_{k}\right\}$ if $\left\{H_{k}\right\}$ is a subcollection of $\left\{G_{i}\right\}$, and there exist integers $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{m}$ such that $a_{1}<a_{2}<\ldots<a_{m}$, $b_{1}<b_{2}<\ldots<b_{m}, a_{i} \leqslant b_{i}$ for all i, and such that : each r_{j} contains occurrences from both $H_{a_{j}}$ and $H_{b_{j}}$, and if $n \notin\left[a_{j}, b_{j}\right]$, then r_{j} contains no occurrence from H_{n}.

Note that $r \in G *\langle t\rangle$ trivially forms a staggered set with respect to $\langle t\rangle$, as long as r is cyclically reduced and has at least one t-occurrence.

We are now in a position to state and prove the Lyndon Lemma; essentially we use the methods of [L2], but the change from Dehn-diagrams to "diagrams", and the above definitions, help to give us a more general result.

Lemma 4. 4 The Lyndon Lemma (Lyndon [L2])
Let C be an $f-p-c$ class of groups.
Then either (i) there is a nulvalent diagram representing a counter-example for C;
or (ii) for any subset $\left\{G_{i}\right\} \subset C$, and any set of words
 to some subset $\left\{H_{k}\right\} \subset\left\{G_{i}\right\}$, where $H_{a_{k}} \cong Z \mathbb{Z} \cong H_{b_{k}}$ for all k, and for any ordered subset $A \subset\left\{r_{j}\right\}$ $A=\left\{r_{j_{I}}, r_{j_{2}}, \ldots, r_{j_{p}}\right\}$ (with $j_{1}<j<\ldots<j_{p}$) we have that any consequence of A contains occurrences from $H_{a_{1}}$ and from $H_{b_{p}}$.

Note that when $\left\{r_{j}\right\}$ contains just one element, which is the case which interests us, case (ii) says that r has a solution over G for all groups G in C. Hence if there is a counter-example for C, then case (i) holds; this is the form in which we shall use the lemma, and we formulate it as :

Corollary 4.5

Let C be a frp-c class of groups.
If there is a counter-example for C, then there is a nulvalent diagram representing a counter-example for C.

Proof of 4.4
As this lemma is very important, we begin with a sketch description of the proof before proceeding to the technicalities which are required to establish the two main steps. In the construction of the second step we discover the reason behind the introduction of the potential functions.

Proof of 4.4 (cont.)

The failure of case (ii) for the class C implies the existence of certain diagrams; in the first part of the proof we show that a "minimal" such diagram in fact represents a counter-example for C (i.e. a failure of (ii) where A has just one element). In step 2 we show how to relabel this diagram using a polyvalent potential function: this relabelling produces a diagram representing a different counter-example for C, and the length of the new relation is less than that of the original. Repeating this relabelling process reduces the length of the new relator to a minimum, at which stage the diagram does not have a polyvalent potential function, and so the diagram is nulvalent as required.

Proof Proper :
Suppose that case (ii) fails; we shall shew that case (i) holds. There is set A of words $\left\{r_{j}\right\}$ in $*_{i} G_{i}$ staggered with respect to $\left\{\mathrm{H}_{\mathrm{k}}\right\}$ (with the additional conditions given in (ii)) and there is a diagram D representing a consequence w of A where w is not a consequence of a proper subset of A, and such that w omits occurrences from H_{q}, where $q=\max b_{j}$ or $q=\min a_{j}$, where j varies over all values such that r_{j} is in A. Without loss of generality we can suppose that $q=\max b_{j}$. (The condition that w is not a consequence of a proper subset of A implies that each word in A appears as a label on a disc in D.) We suppose in addition that $\left\{G_{i}\right\},\left\{r_{j}\right\}$ and D are chosen such that $d(D)$, the number of discs in D labelled in A, is minimal over all failures of case (ii) for the given class C.

Proof of 4.4 (cont.)
Claim 1 - Such a minimal D represents a counter-example for C.
If not, A contains more than one word and there is more than one label from A occurring on a disc in D : in this case we shall find another diagram D ' contained inside D, such that D^{\prime} also represents a failure of case (ii) for the class C, and $d\left(D^{\prime}\right)<d(D)$, contradicting the choice of D.

If k is the maximum index such that r_{k} is in A (recall that the staggering imposes a strict order on the elements of A) then $q=\max b_{j}$ implies that $q=b_{k} ;$ as w omits occurrences from H_{G}, no edge labelled in H_{q} meets $d D$ 。

Let M^{\prime} be a closed submanifold in Int D such that :
(a) M' is the closure of a 2 -ball with some 2 -balls removed from its interior : M" is a "disc with holes" ;
(b) Int M' contains a disc labelled $\mathrm{r}_{\mathrm{v}}^{ \pm \dagger}$ iff $\mathrm{v}=\mathrm{h}$;
(c) ∂M_{1}, meets no edge from H_{g} for $g<a_{k}$;
(d) ∂M^{\prime} meets no discs, and meets an edge in at most one point; Condition (d) and the fact that ∂_{M}, does not meet ∂D (as M' is in Int D) give that an edge labelled in H_{q} does not meet ∂M^{\prime} (as such an edge does not meet ∂M^{\prime} again, and it does not meet either ∂D or a disc labelled in $A-\left\{r_{k}\right\}$).

If A contains more than one word, there are discs in $D-M$, which are labelled in A, i.e. $M \prime \neq D$.

Proof of 4.4 (cont.)
If M^{\prime} has no holes,i.e. if M ' is a 2-ball, then M is a
 earlier, no edge labelled in H_{q} meets ∂M^{\prime}; so $w^{\prime} \in G$ ' $=$ 米 $_{i \neq j}$, where H_{q} is G_{j}; also $w^{2} \neq 1$ in G, else replace M, in D by a diagram omitting discs labelled in A, thus reducing $d(D)$, which was chosen to be minimal. Regarding H_{q} as $\langle t\rangle, M^{\prime}$ represents a counter-example, and as C is $f-p-c$ and $\left\{G_{i}\right\} \subset$, we have that $\underset{i \neq j}{*} G_{i} \in C$, and M^{2} represents a failure of case (ii). By supposition, $d\left(M^{\prime}\right)<d(D)$, contradicting the minimelity of D. The case when M^{\prime} has holes remains, i.e. when ∂M, has more than one component. In this case we examine $c l\left(D-M^{\prime}\right)=M^{v}$; let B be a component of $M^{\prime \prime}$ which is a 2-ball; if B contains no discs labelled in A, then replace M^{\prime} by ($M^{\prime} \cup B$); a quick check of conditions (a)-(d) on M^{\prime} shows that this change of M^{\prime} does not violate any of them, as no discs labelled in A are introduced, and the new boundary is a subset of the old. We are left with the case when B contains discs labelled in A; we wish to show that B is a diagram representing a failure of case (ii) of the lemma. Let p be the smallest index such that r_{p} is in A, and $r_{p}^{ \pm 1}$ appears as a label on a disc in B 。Then by condition (c) and the fact that $a_{p}<a_{q}$, no edge labelled in $H_{a_{p}}$ meets ∂M, and hence does not meet $\partial B \subset{ }^{\prime} M$; hence B represents a failure of case (ii) as claimed, and as B contains none of the discs labelled $r_{k}^{ \pm 1}, d(B)<d(D)$, contradicting the minimality of D. Hence $D-M$ ' contains no discs labelled in A, and the proof of Claim I is complete.

Proof of 4.4 (cont.)
We have shown that D, our minimal failure of (ii), represents a counter-example for C, say $\{G, r, w\}$ with G in C, and r a cyclically reduced word in $G *\langle t\rangle$ of length not less than 2. By ignoring all edges labelled in G, we can regard D as a special diagram representing a counter-example for C. Step 2 - If D is polyvalent then D can be relabelled.

Let Φ be a polyvalent potential function on D; if no such potential function exists, then D is nulvalent as required. Relabel the edge e with the label $t_{\Phi}(e)$, and replace all the G-edges and G-discs which we removed to regard D as a special diagram. We now have a diagram D^{\prime} where the edges are labelled in G or in $P_{v}=\left\langle t_{V}\right\rangle$, where v varies over the values taken by Φ on the edges of D. The discs of D (which carried the label r) are labelled r_{j}^{\prime} in D^{\prime}, where these labels are obtained from replacing the t-occurrences in r by appropriate t_{∇}-occurrences; there are as many different r_{j}^{\prime} as there are different values taken by Φ on the distinguished points of D, and the conditions on potential functions ensure that $\left\{r_{j}\right\}$ is a staggered set with respect to $\left\{P_{v}\right\}$. Note that if b_{j} and a_{j} are the maximum and minimum values taken by Φ on a disc labelled r_{j} in D^{\prime}, then $b_{j}-a_{j}=b_{i}-a_{i}$ for any disc labelled r_{i}; if $b_{j}-a_{j}=0$, then $\overline{\text { w }}$ was nulvalent. By the above, we now have that D^{\prime} represents a failure of case (ii) for the same class C of groups, as C contains all finitely generated free groups and their free products with elements of G. Also $d\left(D^{\prime}\right)=d(D)$, so that Claim l tells us that the set $A=\left\{r_{j}\right\}$ has just one element, that is Φ is univalent on D_{T} and in D^{\prime} there is just one label obtained from r, call it r^{\prime}.

Proof of 4.4 (cont.)
Let a, b be the minimum and maximum values attained by $\bar{\Phi}$ on the edges at an r-disc. In D^{\prime} replace the label on the edges labelled t_{b} by the label t; $D^{\prime \prime}$ now represents a counter-example $\left\{G_{*}^{*}\left(\underset{v_{\neq b}}{ } P_{V}\right), r^{n}, w\right\}$ and the fact that C is a $\mathrm{f}-\mathrm{p}-\mathrm{c}$ class ensures that $\mathrm{G} *\left({ }_{\mathrm{V} \neq \mathrm{b}} \mathrm{P}_{\mathrm{V}}\right)$ is in C . The new relator r " is obtained from r ' by replacing occurrences of t_{b} by t; therefore the cyclically reduced length of $r^{\prime \prime}$, regarded as a word in $G^{\prime \prime *}\langle\mathrm{t}\rangle, \mathrm{L}\left(\mathrm{r}^{\prime \prime}\right)$ is less than $\mathrm{L}\left(\mathrm{r}^{\prime}\right)$, and is greater than 2. D" thus represents a counter-example for C.

If $D^{\prime \prime}$ is not nulvalent, we can repeat the above proceedure, and in a finite number of steps we arrive at a diagram which is nulvalent, giving the required example for case (i).

This completes the proof of 4.4 .

The principal form in which we shall use the Lyndon Lemma in the next section is a corollary of the method of proof : Corollary 4.6

Let $\{G, r, w\}$ be a minimal counterexample for a $f-p-c$ class of groups C 。

Then there is a nulvalent diagram for a counterexample $\left\{G, r, w^{\prime}\right\}$ and if $r=a_{1} t^{\alpha_{1}} a_{2} t^{\alpha_{2}} \ldots a_{n} t^{\alpha_{n}}$ with $a_{i} \in G-\{I\}$ and $\sigma_{t}(r)=0$, then $\alpha_{i+1}=-\alpha_{i}$ and $\left|\alpha_{i}\right|=1$.

Proof
Let D be a diagram representing $\{G, r, w\}$; if there is a polyvalent potential function on D, we can relabel the edges of D as in the second half of the proof of 4.4 to obtain another counter-example for C in which the new relation is shorter than \mathbf{r}, or the new relation is essentially the same as r, and the diagram is not connected - the polyvalency being due to differently-valued constant potential function on each component. In the second case replace D by a connected component of D which represents a counterexample $\{G, r, w\}$ (as in 2.21). As we chose a minimal counterexample, relabelling as described is not possible, thus the first part of the theorem holds. If $\sigma_{t}(r)=0$, then we can use the method of $4.2(v)$ and (ii) to put a potential function on D; if $\left|\alpha_{i}\right|>1$ or α_{i} has the same sign as α_{i+1}, there is a pair of adjacent edges on a disc with spokes in D with the same orientation. Then the construction of 4.2 (ii) gives a potential function with different values
 on these two edges ; thus the theorem holds.

Section 2 The Freiheitssatz for Locally Indicable Groups
The main application of our potential functions is, as earlier advertised, to prove the Freineitssatz for the class of locally indicable groups. The proof is in two steps : first we show (4.8) that any new relator r is soluble for a locally indicable group G, and then we use this result to obtain (4.9) almost immediately the required version of the Freiheitssatz.

Definition 4.7
A group is locally indicable if any finitely generated subgroup has \mathbb{Z} as a homomorphic image.

Note thet a subgroup of a free product is a free product of (conjugates of) subgroups together with a free group (by the Kuros subgroup theorem), and that each factor is finitely generated if the whole is finitely generated (by Grushko's theorem). This means that: (Defn.4.3(iii))
the class of all locally indicable groups is f-p-c.
This means that we can use the results of the previous section, in particular $4.4,4.5$ and 4.6 .

Proposition 4.8
Let G be a locally indicable group, and let r be a cyclically reduced word in $G *\langle t\rangle$ with t-occurences.

Then G injects into $\langle G, t ; r\rangle$.

Proof
The class C of locally indicable groups is $f-p-c$ (as noted above), so let us suppose that the proposition is false, and that $\{G, r, w\}$ is a minimal counter-example for C (Defn.4.3(iv)), represented by a nulvalent diagram D, given by Corollary 4.6.

Proof of 4.8 (cont.)
The proof now splits into two cases, depending on whether the exponent sum of t in $r, \sigma_{t}(r)$, is or is not equal to zero. Let r be the word $a_{1} t^{\alpha_{1}} a_{2} t^{\alpha_{2}} \ldots a_{n} t^{\alpha_{n}}$ with $a_{i} \in G-\{I\}$ $\alpha_{i} \in z-\{0\}$.

In case la) and case 2 we show how to construct a polyvalent potential function on the diagram D, contradicting the nulvalency. In case lb) we use the nulvalency to obtain another counter-example for C which contradicts the minimality of $\{G, r, w\}$. Case $1 \sigma_{t}(r) \neq 0$.

Subcase a) Suppose that there is a homomorphism q taking $\operatorname{sbg}_{G}\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ onto \mathbb{Z} such that $\sum_{i} q\left(a_{i}\right)$ is equal to zero.

Here we can put a potential function on D as in 4.2(iv) using $q * 0: \operatorname{sbgp}_{G}\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle *(t\rangle \rightarrow Z$. For some $i, q\left(a_{i}\right) \neq 0$ as q is onto, and hence the two edges adjacent to the segment labelled a_{i} on a disc with spokes for D have different potmentrials.

Subcase b) Suppose that no such q as above exists. Then take some $q: \operatorname{Sbgp}_{G}\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ goes onto \mathbb{Z}, such that $\sum_{i} q\left(a_{i}\right)=z \neq 0$; suppose $\sigma_{t}(r)=-s \neq 0$ 。 Using the notation of $4.2(\mathrm{v}$) and 4.2 (iii), we use $\theta=$ s.q*z.id $: \operatorname{sbgp}_{6}\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\langle t\rangle \longrightarrow \mathbb{Z}$; so that $\theta(r)=0$, and $q^{\prime}=q \circ \phi$; with $\theta^{\prime}=s . q^{\prime} * z . i d$ we put a potential function on D as in 4 .2(iii).
subcase lb) (cont.) Let B be a disc with spokes used to con-

D; if for some i we have that $\left|\alpha_{i}\right| \neq 1$, then on D there are two adjacent edges e, e^{\prime} with the same t-orientation. These edges are seperated by a segment of ∂B labelled b such that $\phi(b)=1$; that is, b is trivial in G. Therefore $q^{\prime}(b)=q(\phi(b))=0$, and $h\left(v^{\prime}\right)=h(v)+q^{\prime}(b)+\frac{1}{2} \varepsilon+1 / \varepsilon^{2}=h(v)+\varepsilon$ where $\mathcal{E}= \pm 1$ is the orientation of the edges e and e^{\prime}.

But D is nulvalent, so by the above $\left|\alpha_{i}\right|=1$ for all i. Also when $\alpha_{i-1}=\alpha_{i}$, we must have that $q\left(a_{i}\right)=-\alpha_{i}$ (as $h\left(w^{\prime}\right)=h(w)+q\left(a_{i}\right)+\alpha_{i}$: see picture) and similarly $q\left(a_{i}\right)=0$ if and only if $\alpha_{i-1}=-\alpha_{i}$. As the exponent sum of t in r is nonzero, there is a subword $t a_{j} t$ (or $t^{-1} a_{j} t^{-1}$) in r; by the above, a_{j} is non-trivial in G. We now relabel the t-edges of D by $a_{j}^{-1} t$; this gives a new diagram D^{\prime} in which the labels on the boundaries of the regions are the same as those in D (after trivial cancellations), so that D^{\prime} represents the counterexample $\left\{G, r^{\prime}, W\right\}$ where r, is obtained from r by replacing t (resp. t^{-1}) by $a_{j}^{-1} t$ (resp. $t^{-1} a_{j}$) ; in particular the subword $t a_{j} t$ becomes $a_{j}^{-1} t^{2}$ so that r ' is strictly shorter than r, contradicting the assumed minimality of $\{G, r, w\}$ (see def $4.3(i v)$).

Case 2 $\quad \sigma_{t}(r)=0$.
As $\{G, r, w\}$ is a minimal counter-example for C and as $\sigma_{t}(r)=0$, we can apply Corollary 4.6 to give that r has the form $a_{1} t a n_{2} t^{-1} a_{3} t a_{4} \ldots \operatorname{ta}_{2 m} t^{-1}$. As r has this alternating form, for each region of D, all the t-edges on its boundary have their transverse orientation inwards or they all have their orientation pointing outwards. We can therefore regard D as a special diagram for the counter-example $\left\{G * G^{\prime}, r^{\prime}, w^{\prime}\right\}$, where G is an isomorphic copy of G, and we regard $a_{2 i}$ as being in G, for all i ; because of the restriction on the orientations of the t-edges on the boundary of a region, the relations corresponding to the regions of D (that is the labels on the boundaries of regions) are words in G or in G '. As C is a f-p-c class, $G * G$ is an element of C; also the length of r is equal to the length of r^{\prime}, so that $\left\{G * G^{\prime}, r^{\prime}, W^{\prime}\right\}$ is also a minimal counter-example for C. But as G is a locally indicable group, there are homomorphisms q_{1}, q_{2} such that $\operatorname{sbgp}_{G}\left\langle a_{1}, a_{3}, \ldots, a_{2 m-1}\right\rangle$ and $\operatorname{sbgp}_{G},\left\langle a_{2}, a_{4}, \ldots, a_{2 m}\right\rangle$ go onto \mathbb{Z}. If $\sum_{i=0}^{m-1} q_{i}\left(a_{2 i+1}=0\right.$ then use the homomorphism $\theta=q_{1} * 0$ 兆 0 from $G * G \neq\langle t\rangle$ onto \mathbb{Z} to define a potential function on D, as in 4.2 (iv) : this function is polyvalent. The same construction can be used if $\sum_{i=1}^{m} q_{2}\left(a_{2 i}\right)=0$. If neither of these exist, then rescale each of q_{1} and q_{2} and use $\theta=q_{1} * q_{2} * 0: G * G^{\prime} *\langle t\rangle \rightarrow \mathbb{Z}$ (scaled so that $\theta\left(r^{\prime}\right)=0$) in the construction of $4.2(i v)$. In all cases the potential function resulting is polyvalent as for some $j, \theta\left(a_{j}\right) \neq 0$; this contradicts the nulvalency of D.

Proof of 4.8 (cont.)
We have therefore shown that there does not exist a nulvalent diagram representing a minimal counter-example for the class of locally indicable groups, and therefore there is no counter-example for this class, and the proposition holds.

Theorem 4.9 The Freiheitssatz for Locally Indicable Groups
Let G_{1} and G_{2} be locally indicable groups, and r
a cyclically reduced word in $G_{1} * G_{2}$ of length ≥ 2. Then G_{i} injects into $\frac{G_{1} * G_{2}}{N\langle r\rangle}$ for $i=1,2$. Proof

Suppose that the theorem fails and G_{l} does not inject naturally into $\frac{G_{1} * G_{2}}{N\langle r\rangle}$ where $r=a_{1} b_{1} a_{2} b_{2} \ldots a_{n} b_{n}$, $a_{i} \in G_{1}-\{I\}, b_{i} \in G_{2}-\{I\}$.

Replacing each occurrence of b_{i} by $t b_{i} t^{-1}$, we have that
G_{1} does not inject into $r^{\prime}=a_{1} t b_{1} t^{-1} \ldots a_{n} t b_{n} t^{-1}$.

But $G^{\prime \prime}=G_{1} * G_{2}$ is locally indicable and r, has length greater than 2 (that is free-product length in $G^{\prime \prime} \boldsymbol{*}_{\text {(}}\langle\mathrm{t}\rangle$), so that this contradicts proposition 4.8 .

In 4．2（v），we saw how to put a potential function on a diagram representing a counter－example when we are given a homomorphism fron $\langle G, t ; r\rangle$ onto the integers；the case when $\sigma_{t}(r)=0$ has a particular such homomorphisn associated，as in 4.2 （ii）；in this case，the potential function depends only on the distribution of t－occurrences in r ．

Using these potential functions and the relabelling tech－ niques of section 1 ，we shall show（4．11）that the existence of a counter－example $\{G, r, w\}$ depends upon the existence of an－ other counter－example $\left\{G-*\langle s\rangle, r^{0}, w^{\prime}\right\}$ where r^{0} is one of two words obtained from r（defn 4．10）which are usually＂simpler＂ than r ，in the sense of having fewer t－occurrences．

We then use this result to obtain some results concerning torsion and added relators of a certain form（4．13）．

Definition 4.10

Let r be a cyclically reduced word in $G *\langle t\rangle$ ，and let θ be a homomorphism from $\langle G, t ; r\rangle$ to \mathbb{Z} ．

Writing $r=c_{1} t^{\varepsilon_{1}} c_{2} t^{\varepsilon_{2}} \ldots c_{m} t^{\varepsilon_{m}}$ where $c_{i} \in G$（oossibly $c_{i}=I$ in G ）and $\varepsilon_{i}= \pm 1$ ，define ：

$$
h_{j}=\left(\sum_{i=1}^{j}\left(\theta\left(c_{i}\right)+\varepsilon_{i}\right)\right)-\frac{1}{2} \varepsilon_{j}, \quad \text { for each } j, m \geq j \geq 1
$$

Define $r_{\max }$（respectively $r_{\min }$ ）as the elements of the group G＊〈s＞＊〈〉 obtained from r by ：
replace each occurrence of $t^{\varepsilon_{i}}$ by $s^{\varepsilon_{i}}$ ，except where h_{j} achieves its maximum（resp．mininum）．

N．B．For a given word r in $G *\langle t\rangle$ ，it is to be noted that $r_{\text {max }}$ and $r_{\text {min }}$ depend upon the particular homomorphism chosen．

Example : Let $r=a_{1} \operatorname{ta}_{2} \operatorname{ta}_{3} t^{-1} a_{4} t^{-1}$ with $a_{i} \in G-\{1\}$. Using the usual homomorphism $0 * i d: G *\langle t\rangle \rightarrow \mathbb{Z}$, we have that $h_{1}=\frac{1}{2}, h_{2}=\frac{3}{2}, h_{3}=\frac{3}{2}, h_{4}=\frac{1}{2}$. Thus $r_{\max }=a_{1} \operatorname{sa}_{2} \operatorname{ta}_{3} t^{-1} a_{a_{+}}{ }^{-1}$

$$
r_{\min }=a_{1} \operatorname{ta}_{2} s a_{3} s^{-1} a_{4} t^{-1}
$$

We now use this definition to give the general version of the principal theorem of this section; in practice we shall use only the special case when the exponent-sum of t in r is zero, when a homomorphism as required in 4.10 exists naturally, as we remarked earlier.

Theorem 4.11
Suppose that G does not naturally inject into $\langle G, t ; r\rangle$ and let θ be a homomorphism from $\langle G, t ; r\rangle$ to \mathbb{Z}. Then $G *\langle s\rangle$ does not naturally inject into $\langle G *\langle s\rangle, t ; r\rangle$ where r^{0} is one of $r_{\min }, r_{\max }$.

Proof
Let D be a special diagram representing the counterexample $\{G, r, w\}$. If θ is trivial, then $r=r_{\min }=r_{\max }$, and the theorem holds trivially.

We can therefore suppose that θ is onto. As in $4.2(\mathrm{v})$ we use θ to define a potential function Φ on D, and as in the proof of 4.4 we relabel the t-edges using Φ to obtain the diagram D^{\prime}.

Suppose that Φ was not univalent on D.
Let $v_{m}, v_{m+1}, \ldots, v_{M}$ be the values attained by d on the t-edges of D, with $v_{m}<v_{m+1}<\ldots<v_{M}$. Where e is an edge of D, and $\bar{\Phi}(e)=v_{j}$, we relabel e by $t_{v_{j}}$.

In D^{\prime} the discs which were labelled r, are now labelled in $A=\left\{r_{i},\right\}$, where each r_{i}, is obtained from r by replacing
 of potential functions, we see that the elements of A can be ordered by the lowest (or respectively the highest) index a_{i} (resp. b_{i}) such that $t_{a_{i}}$ (resp. $t_{b_{i}}$) occurs in r_{i}, Thus r_{1}, contains $t_{a l}=t_{m}$. We now have that A is a set of words staggered with respect to $\left\{F\left(t_{V_{i}}\right)\right\}$, and D ' represents $w \in G-\{I\}$ such that $w=1$ in $\frac{G *\left(\frac{M}{\frac{M}{*}} F\left(t_{V_{i}}\right)\right)}{I\langle A\rangle}$

As in 4.4 , let M be a "two-ball with holes" contained in the interior of D^{\prime} containing in its interior all those discs which are labelled r_{I}, and no other r_{i}, discs, such that each edge of D^{\prime} meets ∂M in at most one point etc.. Then no edge labelled t_{m} meets ∂M; if M, is a two-ball ("has no holes") then we may take this to be a diagram D" ; else, as in 4.4 , take a two-ball region in $D^{\prime}-M^{\prime}$ and apply the sane process, this time taking $M^{\prime \prime}$ containing all the discs which are labelled r_{j}, where j is the highest index on the discs in the two-ball region which are labelled in A (and none of the others etc.). Continuing in this way, we shall eventually find a subdiagram $D^{\prime \prime}$ containing just one label from A, r_{x}, say, such that no edge labelled t_{y} meets $\partial D^{\prime \prime}$, where $y=a_{x}$ or b_{x} (the minimum and maximum values of the subscripts on the r_{x} ' discs in $\left.D^{\prime \prime}\right)$; which of the two is relevant depends upon whether we find the diagram D" after an odd or an even number of steps. D" represents a genuine counter-example, and not just a triple, as otherwise we could replace this region of D^{\prime} by a region without r_{j}, discs, and hence in D we could replace the corresponding region by one without r-aiscs.

Proof of 4.11 (cont.)
It remains to replace all the $t_{V_{i}}-1 a b e l s$ by s except for the t_{y}-labels, which we relabel t; this converts $D^{\prime \prime}$ into a diagram representing a counter-example of the type claimed.

Recall that (definition 1.5) when $r=a_{1} t^{\alpha_{1}} a_{2} t^{\alpha_{2}} \ldots a_{n} t^{\alpha_{n}}$ with $a_{i} \in G-\{I\}, \alpha_{i} \in \mathbb{Z}-\{0\}$, the t-shape of r, denoted $[r]$, is the ordered n-tu nile $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.

We say that a t-shape $[r]$ is soluble in a class of groups C, if G injects into $\langle G, t ; u\rangle$, for all groups G in C, and for all words u such that $[u]=[r]$.

Corollary 4.12
Let C be a $f-p-c$ class of groups, and $[r]$ a t-shape such that $\sigma_{t}(r)=0$.
Let $r_{\text {min }}$ and $r_{\max }$ be obtained using $0 * i d: G *\langle t\rangle \rightarrow \mathbb{Z}$.
If $\left[r_{m i n}\right]$ and $\left[r_{\max }\right]$ are soluble in C, then $[r]$ is soluble in C.

Proof
Suppose that the corollary is not true, and let $\{G, r, w\}$ be a counterexample with $G \in C$ and $\sigma_{t}(r)=0$, let D be a special diagram representing $\{G, r, w\}$. Then applying 4.11 , there exists a counterexample $\left\{G *\langle s\rangle, r^{\circ}, w^{\prime}\right\}$, where r° is one of $r_{\min }, r_{\max }$; this is not possible by assumption.

Let $r \in G *\langle t\rangle, r=a_{I} t^{\alpha_{1}} a_{2} t^{\alpha_{2}} \ldots a_{n} t^{\alpha_{n}}$ with $a_{i} \in G-\{I\}, \alpha_{i} \in \mathbb{Z}-\{0\}$ such that $\sigma_{t}(r)=0$. Suppose that there exists a homomorphism from $\langle G, t ; r\rangle$ to \mathbb{Z} such that $r_{\min }$ and $r_{\max }$ contain just two t-occurrences each :

$$
\begin{aligned}
& r_{\min }=a_{1} s^{\alpha_{1}} a_{2} s^{\alpha_{2}} \ldots a_{j-1} s^{\beta_{1}} t_{j} t^{-1} s^{\beta_{2}}{ }_{j+1} \ldots a_{n} s^{\alpha_{n}} \\
& r_{\max }=a_{1} s^{\alpha_{1}} a_{2} s^{\alpha_{2}} \ldots a_{k-1} s^{\beta_{3}} t^{-1} a_{k} t s^{\beta_{4}} a_{k+1} \ldots a_{n} s^{\alpha_{n}}
\end{aligned}
$$

say, where $\beta_{1}=\alpha_{j-1}^{-1}, \beta_{2}=\alpha_{j}+1, \beta_{3}=\alpha_{k-1}+1, \beta_{4}=\alpha_{k}-1$.

Theorem 4.13

Suppose that G does not inject naturally into $\langle G, t ; r\rangle$, with r as described above.

Then
i) one of a_{j}, a_{k} has finite order in G, and ii) if r has a cyclically conjugate form $a_{j} v a_{k} v^{-1}$ then a_{j} and a_{k} have different orders in G.

Proof
The proof is an application of 4.11 : suppose that we have a counterexample $\{G, r, w\}$, with r as described.

The theorem 4.11 gives a counterexample $\left\{G *\langle s\rangle, r^{0}, w^{\prime}\right\}$ where r° is one of $r_{\min }$, $r_{\max }$; without loss of generality, we may suppose that $r^{0}=r_{\text {min }}$.

Let $b=s^{\beta_{2 a_{j+1}}} s^{\alpha_{j+1}} \ldots a_{n} s^{\alpha_{n}} a_{1} s^{\alpha_{1}} \ldots a_{j-1} s^{\beta_{1}}$; then r^{0} is cyclically conjugate to $\mathrm{bta}_{j} \mathrm{t}^{-1}=\mathrm{r}$, and $G *\langle s\rangle$ injects into $\left\langle G *\langle s\rangle, t ; r^{\prime}\right\rangle$ if and only if a_{j} and b have the same order in $G *\langle s\rangle$, as we have an HiN extension (see 2.25).

But b has finite order in $G *\langle s\rangle$ if and only if b has the form $b_{1} a_{i}^{-1}$ and a has finite order in G (see for instance [MK [] 4.1.4) ; as $r_{\max }$ contains just two t-occurrences, b must have the form $u a_{k} u^{-1}$.

Proof of 4.13 (cont.)
In order that $\left\{G *\langle s\rangle, r^{\circ}, w^{\prime}\right\}$ be a counter-example, we must therefore have that either a_{j} or b has finite order in $G *\langle s\rangle$, that is; a_{j} has finite oraer in G, or b has the form $u a_{k} u^{-1}$ and a_{k} has finite order in G.

In either case we see that i) holds, and in the second case we see by returning the s-occurrences in u to t-iabels that r is cyciically conjugate to $u^{\prime} a_{k} u^{-1} t_{j} t^{-1}$, and so ii) holas.

Ar immediate corollary of this is :

Corollary 4.14
Let G De a torsion-free group, and r as in 4.13.
Then G injects into $\langle G, t ; r\rangle$.

Note that the conditions of 4.13 depend to a large extent on the t-shape of the word r, as the condition that $\sigma_{t}(r)=0$ assures the existence of the homomorphism $0 * i d: G *\langle t\rangle \rightarrow \mathbb{Z}$ in which case the t-shapes $\left[r_{\operatorname{mir}}\right]$ and $\left[r_{\max }\right]$ depend solely upon the t-shape $[r]$; of course other homomorphisms may exist in particular cases.

Corollary 4.14 is a somewhat weakened form of a result of Schiek [Sch I]:

Schiek's Theorem
Let $r=t^{s_{1}}{a_{1}} t^{-s_{1}} t^{s_{2}} a_{2} t^{-s_{2}} \ldots \ldots t^{s_{n^{n}}}{ }_{n} t^{-s} n$, where $a_{i} \in G-\{I\}$
and $s_{i}=s_{j}$ if and only if $i=j$.
Then G injects into $\langle G, t ; r\rangle$ if the order of a_{i} in G
is the same as that of $a_{i+1} \ldots a_{n} a_{1} \ldots a_{i-1}$ in G for all i.

It was originally claimed that we could improve on this result of schiek, but this is not possible as the letter s may appear in the word w, given by the minimal diagram representing the counter-oxample $\left\{G *\langle s\rangle, r_{m i n}, w^{\prime}\right\}$ say.

ETHOS
Boston Spa, Wetherby
West Yorkshire, LS23 7BQ
www.bl.uk

BLANK PAGE IN ORIGINAL

[B] Baumslag
[Br] Brodskii
[BP] B.Baumslag and S.J.Pride
[BRS] Bouncristiano, Rourke, Sanderson
[GR] Gerstenhaber and Rothaus
[G] Gildenhuys
[GU] M.Gutierrez
[H] Howie
[k] R.Kirby
[K]] Mokervaire
[Lev1] F.Levin
[Lev2] F.Levin
[L1] ReLyndon
[LS] R.Lyndon and P.E.Schupp
[MKS] W.Magnus, A.Karrass and D.Solitar
[N] B.H.Neumann
[R] J.J.Rotman
[RH] 0.S.Rothaus

Proc.Camb. Phil.Soc.55(1955)
pages 221-231.
Moscow Math.Soc.,Uspekhi 35/4,(1980) page183.
'An Extension of the Freiheitssatz', preprint.
'A Geometric Approach to Homolagy Theory' London Maths. Soc. Lecture Notes, no. 18 (1976)

The Solution of Sets of Equations in Groups', Proc.N.A.S. 48 (1962),153.
'A Generalization of Lyndon's Theorem on the Cohomology of One-Relator Groups' Canadian J.of Maths. 28 (1979) page473-480
'Concordance and Homotopy I',Pacific J. of Math. 82 (1979) page 75-91
'On Pairs of Two-Complexes..',J.f.d.r.a. Mathematik, 324(1981) page 165-17

Problems in Low Dimensional Manifold Theory', Proceedings of Symposia in Pure Mathematics,vol.XXXII,part 2,page273 (Published by A.M.S. 1978)
'On Higher Dimensional Knots';Differential and Combinatorial Topology,Edited S.S. Cairns, Princeton, page105-119.
'Solutions of Equations over Groups',Bull A.M.S. 68 (1964) page 179-188
'One Variable Equations over Groups', Archiv der Math. 15 (1964).
'On the Freiheitssatz', J.London Math.Soc. 5 (1972), page 95
'Combinatorial Group Theory',published Springer-Verlag,1977
'Combinatorial Group Theory',published Dover, 1976

[^0]| [Rou] | C.P.Rourke | 'Presentations and the Trivial Group' Proceedings of the Second Sussex Conference 1977, published Springer-Verlag Notes, no. 722 |
| :---: | :---: | :---: |
| [s] | P.E.Schupp | 'A Strengthened Freiheitssatz', Math.Ann. 221 (1976), page 73-80 |
| [Sch1] | H. Schiek | 'Adjunktionsproblem und Inkompressible Relationen', Math. Ann. 146 (1962), page 134 |
| [Sch2] | H.Schiek | 'Equations over Groups',in "Word Problems" edited by Cannonito,Boone and Lyndon, published North-Holland 1973 |
| [5 h] | H. Shart | 'Knot Groups are Locally Indicable' |
| [T] | W. Thurston | Notes on Hyperbolic Geometry and 3Manifolds, Princeton Notes |
| [VK] | E.R.Van Kampen | 'On Some Lemmas in the Theory of Groups' Ann.J.Math 55 (1933), page 238 |
| [L2] | R.Lyndon | '日n Dehn's Algorithm',Math. Ann.166(1966) page 208. |

FOR USE IN THE LIBRARY ONLY

[^0]: 'Adjunction of Elements to Groups',J. London Math.Soc. 18 (1943), page 4
 'The Theory of Groups : an Introduction' published Allyn \& Bacon, 1965
 'On the Non-Triviality of Some Group Extensions Given by Generators and Relators', Ann.Math. 106 (1977)page 599-612

