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SUMMARY

The work presented here is a new method of attack on an 
old group theory problem known as the Adjunction Problem, def
ined by B H Neumann in 19^3 (see [Nj ). The problem is the 
following : given a group, form a new group by adding one new 
generator and one new relation ; determine the conditions under 
which the natural map from the original to the modified group 
is an injection. (For instance the new relator must not be con
jugate to a word in the original group.) The main result obtain
ed using the new methods is that the map is indeed an injection 
when the original group is locally indicable - a new result 
independently obtained by Howie [HJ and Brodskii [Brj .

Chapter 1 consists of some basic definitions and some 
of the known results, together with statements of the new re
sults and some instances of where the problem arises in low
dimensional topology.

In Chapter 2 we introduce the new methods - showing that 
a non-trivial element in the kernal of the natural map for a 
given group and added relator (a "counter-example") gives us a 
labelled, planar graph with certain properties (a "special 
diagram") and that this special diagram in its turn defines a 
counter-example (these results are summed up in 2.22). These 
topologically obtained diagrams turn out (2.10) to be dual to 
the "Dehn diagrams" of Small Cancellation Theory (see for in
stance [Ls] or l_L2J ) .

In Chapter 3 a class of such diagrams is constructed 
and it is shown that none of these corresponds to a counter
example. This class contains the only diagrams known to the 
author which give potential counter-examples ("triples") such 
that the new generator appears with exponent-sum non-zero in 
the added relator.

Chapter *+ begins with the construction of a potential 
function on a diagram, based on work by Lyndon [L2J . This is 
then used to prove the main result of the thesis, the Freiheits- 
satz for locally indicable groups, a new proof of the result 
which (as noted above) has been independently obtained by Howie 
and by Brodskii. Finally it is show that the existence of a 
counter-example for a given group G and a given relator r 
depends upon the existence of a counter-example for G* <s> 
and added relator r" , where r" is one of two words obtained 
from r using a homomorphism from G-*<t> to 71* which takes 
r to zero.



H i s t o r i c a l  Note

In 1928,Dehn suggested the Freiheitsatz as a research problem to 
his student Wilhelm Magnus, thinking that Magnus would be able to provide 
a proof using his (Dehn's) diagrams. Magnus was eventually able to prove 
the Fre i he i tssatz and told Dehn so.

Dehn asked him if he has used diagrams in the proof, and on being 
told that the method was purely algebraic, Dehn said "Da sind Sie also 
blind gegangen"t "So you proceeded blindfolded".

(.Reported by Magnus in his article on Dehn in 'The Mathematical Intelli
gencer', Volume 3, 1978).

Here we shall be proceeding without blindfolds.



V.

Terminology

*2L- the integers 
I — the unit interval [o,
S1 — the circle
¿X - the boundary of X
F(Y) - the free group on the set Y
N (R) — the normal closure of the set R in the group G.G
^ X 5 R-̂  — the group F( X)

V T r )
sbgp (g , g ,.., g ) - the subgroup of G generated by the set G 1 2 n
G1 * G2 - the free product of the groups Ĝ  and G2
<G,t;r>- the group G * <t> where r is a cyclically reduced

ty(r) word in G * <t> •
A word w = b1b2«.bn in ^X;R^ where each b^= for some cj£
in X is reduced if b̂ "* ^ bi+1 ^ or eac^ ^  n ’
w is cyclically reduced if in addition b̂  5̂ ^
<r̂ (r) - the exponent sum of t in r ; if r = a-|t a2 ***ant 

n
then £F^(r) = °^l .
r has a solution over G if G naturally injects into ^G*t;r^ 
^G,r,w"| is a triple if G is a group , r€ G * ,and w
element in the kernal of the natural map G to ■(G,t;r'̂
A counter-example is a triple where r is a cyclically reduced 
word containing occurences of t ,and w is non—trivial in



1

CHAPTER 1

We open with a description of the problems with which we are 
concerned in this dissertation.The second section reviews the litera
ture in this and related fields,and in section 3 we give a summary of 
the principal results of this thesis.Section 4 is a brief collection of 
some elementary results in the area,some of which we shall require later 
on,and we conclude with a description of some topological problems which 
reduce to the group-theoretic problems of section 1.

Section 1. The Problems

We are concerned with the following problems from combinatorial 
group theory:
The Adjunction Problem

Let G be a group,and let r be a cyclically reduced word in 
G * ^t> which contains t non-trivially.

Under what conditions is the natural map G to <G,t;r> an 
injection?

We can think of <G,t;r> as G together with one new generator 
and one new relation,and the problem is to determine whether any elements 
of G have been killed.Lie shall see in section 5 of this chapter that 
this question arises in low-dimensional topology.

A more general form of the question is:
The Generalised Freiheitssatz

Let {^jJiel ke a collection of non-trivial groups,and let r 
be a cyclically reduced word in H = , and let I' be a proper
subset of I such that r contains occurences from ,for some jeI— 1 1

Under what conditions is the natural map * .  H. to H an
. . , 1,1 1 JiTT)injection?

The classical Freiheitssatz,due to Magnus (see e.g. ) states
that the above map is an injection when the are free groups.We say
therefore that the Freiheitssatz holds for free groups.

Related to the Adjunction Problem we have two conjectures } the 
first is usually attributed to Kervaire (see iKv] ,pages 116-117 »though 
the conjecture is not explicitly made there) and we shall refer to it by 
his name, (in it is also attributed to Laudenbach via Serre : the
conjecture was made by Laudenbach during a course on low-dimensional 
topology,in connection with problem 1.9 .)



The Kervaire Conjecture
If <G,t;r> is trivial then G is trivial

2

Some partial results on this are given in Section 2 and in Section 4.
All known examples of cases where G does not inject into

<G,t;r> have the following two properties : the exponent sum of t in r
is zero , and G has elements of finite order ; e.g. in the group
^<ayb;b^> , t; btat 1^ a has order two,whereas a has infinite order 

2in <a,b;b y .
In [Lev l] Levin conjectures that G injects into <G,t;r^ if 

G is torsion-free.In view of the above remarks,the obvious conjectures 
to make are :
Conjecture fl : G naturally injects into <G,t;r> when â _(r) / 0 •

Conjecture B : G naturally injects into <G,t;r> except when
or^(r) = 0 and G has elements of finite order.

Section 2. The Literature

The Adjunction Problem was firdt raised in 1943 by B.H. Neumann, 
, in the following form:

Given a set of m equations in n unknowns , i.e. a set of m 
words fi(xi»x2» •*xn) in G * f"(x1 »x2> **xn) > does there exist an

'overgroup' G* containing G and elements a ,..an in G' suoh that 
f.(a„,a_,..a ) = 1 in G* ? If so we say that the equations are 
soluble over G . Neumann shows that the equation x = g is soluble 
over any group G with g€G .In [b] ,Baumslag produces a new proof of 
this result using wreath products,and Levin uses a similar construction 
in [Lev l] to show that any equation of the form â  T'a^t*’*.. .a^*** 
where â C-G and each a positive integer,is soluble over any
group G .In a second paper , [Lev 2^ , Levin looks at the general case 
of m equations in n unknowns,and then there is a group generated by 
G and a single new generator containing solutions to the equations.

Continuing on the general case,in [gr} it is shown that if G 
is a finite group,and we have n equations f. in n unknowns x^ , 
then the equations have a solution over G if the determinant of the
matrix (O’. .) is non-zero; <T. . is the exponent sum of x. inx» J x,j 1

f . .Lie
J

shall give the proof of this for the case n = 1 in 1.4 .
In [r] ,Rothaus looks at the question of proper injectivity;that 

is,assuming that the equations have a solution over G,when is the 
natural map G to G * ffx^,x2,..xn) not a surjection ?

N(fi,f2,...fm)
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Conditions on a certain matrix in the Whithead group are obtained 
to ensure that the injection is proper, thus providing a partial solution 
to a conjecture of PI.Cohen (Conjecture A of PI.Cohen,'Whitehead Torsion 
Group Extensions and Zeeman's Conjecture in high dimensionsTopology 16, 
1977,p 79-97). Also in this paper Rothaus extends the result of '¡gR̂ to 
locally residually finite groups.

As me said in Section 1,we are here interested in the case of just 
one equation in one unknown,the Adjunction Problem; Plagnus' Freiheitssatz 
gives the result for free products of free groups,and further results in 
this come under the heading of 'one-relator groups' (see e.g. 0-S] chap
ter 11,page 111 for a comprehensive survey) where there are many results 
on the form of the relator and whether there is torsion etc. .(See also 
£s3 where the methods of \j_¿],used in Chapter 4 Section 1,are used to 
obtain a 'spelling theorem' for one-relator groups.)

In [j.2] Lyndon proved that the Generalised Freiheitssatz holds for 
sugroups of the group of real numbers under addition,and this result was 
extended by Gildenhuys in £g"J to torsion-free abelian groups. S.3. Pride 
has proved in M  that the Generalised Freiheitssatz holds for locally 
residually free groups,and in Chapter 4 we extend this result,using an 
adaptation of the techniques of t¿] ,to locally indicable groups (4.B), 
a result independently obtained by 3.Howie ĵ-f} in. Edinburgh and Brodskii 
in Moscow using completely different methods.

On the Kervaire Conjecture,the principal results known are all 
derived from the above results ; e.g. if G is residually finite then 
<G,t;r> is non-trivial when G is non-trivial by M  •

Finally we note that Gutierrez has published a proof that if G 
is residually nilpotent,then <G,t;r> is non-trivial \j3ul . (He has 
also produced several close but unsuccessful attempts to prove the 
Kervaire Conjecture using crossed modules.)



Section 3* Summary of Results

The main contribution of this thesis is the method intro
duced in Chapter 2 to attack the Adjunction Problem. We first 
obtain a picture, a "special diagram", representing an element 
in the kernal of the natural map from G to <JS,t;r^> by omitt 
ing some edges and discs from a diagram which is essentially 
dual to a De'nn diagram of Small Cancellation theory. A brief 
description of Denn diagrams is given in 2.1 - 2.3 , and the 
duality is described in 2.10. A topological derivation of the 
diagrams, due to Rourtce in Qtou] , is given in 2.*+ - 2.9, but 
this can be omitted by the reader who is familiar with Dehn 
diagrams; in this case the duality description of 2.10 can 
be taken as a definition. We prefer to work from the topo
logical description as it seems to us to be the more natural 
method of obtaining the diagrams.

We show that the existence of a non-trivial element w 
in the kernal of the map from G to <G,t;r> (a "counter
example" {G,r,w} ) implies the existence of a special diagram 
which in turn defines a counter-example ,w’j . There is
a homomorphism h from < G ,,t;r,̂> to <CG, t; r /* such that 
h(r’) = r , and ^G,r,h(w)} is a counter-example. (Note also 
that G; is finitely generated.) This means that the search 
for a counter-example to Conjecture A is equivalent to the 
search for a special diagram which defines a counter-example 
^G’ ,r’ such that o^Cr’) / 0 . We close the chapter with
the construction of some counter-examples with cr̂ (r,) = 0 
using the special diagrams we have introduced.

It turns out to be rather difficult to construct reduced 
special diagrams, and the only class which we have been able 
to construct where the added relator in the triple defined by



the diagram has non-zero exponent sum (in t ), is described 
in Chapter 3, where it is shown that none of these diagrams 
ever defines a counter-example. The proof is principally group 
theoretic, reducing a graph theoretic problem to a problem in 
triangle groups; originally a purely graph theoretic proof was 
planned.

The main results of this thesis are contained in Chapter 
b . In the first section we define a "potential function" on a 
special diagram, and we construct several such functions. In

we prove the Lyndon Lemma, adapted from jL2j , showing that 
if a diagram represents a counter-example which is in some 
sense minimal for a certain class of groups, then any potential 
function on it satisfies an extra condition. In the proof we 
take a diagram representing a failure of the theorem; we then 
add a subscript, whose value is the potential, to the label on 
some of the edges to give us a new diagram, representing a 
"smaller" failure of the theorem for the same class of groups.

We now use this lemma to prove the Freiheitssatz for 
locally indicable groups (a group is locally indicable if any 
finitely generated subgroup has Z as a homomorphic image).
The class of locally indicable groups contains the locally • 
residually free groups (previously the largest class of groups 
for which the Freiheitssatz had been established) and the fun
damental groups of irreducible 3-manifolds with boundary.

In the final section we use a homomorphism from <G,t;r>
to 72- to define two words r . and r in G^-<s>:&<t>m m  max
and show that if both these words have solutions in G^<s>-#<5b'> 
then r has a solution in G^Kt>. It was originally hoped (and 
claimed) that we could prove a strengthened form of a theorem 
of Schiek [Sch lj but this is no longer possible.
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Section 4. Some Initial Results

Ue here give a brief collection of some of the elementary results 
known concerning the Kervaire Conjecture and the Adjunction Problem.

Proposition 1.1

Let r be a cyclically reduced element of G * <t> ,and let ro
be r with the t -occurrences omitted. Then :

i) r = 1 in G implies that r has a solution in G .o
ii) -¿G,t;r> is trivial implies that °"t(r) = and G is perfect.

Proof
i)

ii)

If r = 1 in G , then the composite map G~><G,t;r’> o
is an isomorphism.
<G,t;r> is trivial means that G * <dt> = N(r) .

« <ft> =Abelianisinq both sides we have that G 

» rowhere
and killing G we see that cr^(r)

Hence killing t we see that
±1 .

G
N ( r

<f s>

G is perfect,

The next proposition is basically the Higman,Neumann,Neumann 
theorem,which provides the only fully understood case where cr(r) = 0 •

Proposition 1.2

Let r = atbt be a cyclically reduced word in G * <"t> .
Then G injects into <G,t;r> if and only if a and b have 

the same order in G .

Proof
—  1 m m'IIn <G,t;r>, a and b have the same orders,as a = tbt , 

and hence G does not inject into <G,t;r> if they have different orders 
in G .

Conversely,if a and b have the same order in G ,then <G,t;r>
is an HNN-extension of .G with stable letter t , and hence G injects
into <G,t;r> . (See e.g. [ls3 or [PIKS} *» 2.2.0

■
The next two results are proved in a similar manner : we try to 

embed G in another (well-understood) group H in such a way that we 
can extend this to a map from G * <"t> to H so that r maps to the 
identity.In this way we have,in a sense, ’found a solution for r(t) = 0 ' 
regarding r as an equation in t .The first of these results is very 
easily established.
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Note 1»3

If G is a subgroup of the group of real numbers under addition, 
and O'(r) ^ 0 ,then G injects into <G,t;r> .

Proof , -fLet p be a homomorphism from G into R , the group of reals 
under addition,and extend to on G * <t> by

ef..(t) = - ^(ro} ; note that jzi(r.. ) 4 0 as r_ is non-trivial by 1.1 .
Ill imy — T  Q  0

¿^Tr)

Then eL : G * <Ct> -*R+ is a homomorphism and /„(r) = 0 ; thus we have' vT ^
extended yf as required and so the injection G R factors through 
<'G,t;r> .

■

We now prove the particular case of Gerstenhaber and Rothaus1 
result [Gr] ;
Proposition 1.4

If G is finite and o^(r) 4 0 then G injects into <'G,t;r> .

,Pro.ai
We can embed G in a compact connected Lie group U .We now extend 

this to a map h : G * <t>— such that h(r) = id .To do this we must
define h(t) so that the equation h(r) = id is satisfied.

As U is arcwise connected,we can define paths p^ : £jb,l] ‘— * U
such that Pi(0) = id , p±(l ) = ,where r = a^t 'a2t t ..ant'*r' , afc G-£l}
«•tx-io] . We now define a homotopy:

P : » by p(u»s) = P1(s)u 'p2(s)u x..pn(s)u *,
and o;(r) 4 0 means that P(u,0) = u°t^r '1 ± .

z , . ‘TLfr')Hence the map P(.,1) is homotopic to the map u-*u tv ' ,which
is a map of non-zero degree on a compact Lie group,i.e. on a compact
manifold,and is therefore onto.(e.g. for a proper map, deg f =  deg f foru
any point Q , using the notation of Dold 'Lectures on Algebraic Topology'
pages 267,8. deg f is the degree of the map H (U,U-f-1 (Q))— >H (U,U-Q)
and hence f- (Q) is non-empty if deg f is non-zero.)

That P( ,1) is onto means that there is a u € U such that ' o
p(u ,1 ) = 1 , and hence we can define h(t) = uq , giving the required 
map G * <t> — >U .

m

The above proposition can be extended to cover the case of groups 
which are residually finite.In fact we can prove a slightly more general 
result concerning residual properties,but first we need some definitions :
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Definitian 1.5
Let X be a property of groups,and G a (not necessarily finitely 

generated) group.
G is fully residuallv X if for any finite set .w^ of

non-trivial words in G there is a normal subgroup N <1 G such that for
Geach i , w^f N , and has the property X . G is residually X iffor

any word w in G there is a normal subgroup N such that w 4- N and 
G has property X .

If r = a.t 'a t l..a t n with a .6 G - {l} , 1L- io\ we say1 z n l *
r has t—shape ( «i, * • • ° 0  •

Proposition 1.6

Let R be a set of t-shapes such that if r has t-shape in
R and G has property X , then r has a solution over G

Then if r ' has t-shape in R , and H is fully residually X, 
then r 1 has a solution over H .

Proof
I , . /Let r 1 = a^t ».a^t »with â, e H ; assume that u € ker

and let N be a normal subgroup such that w and a ^ N  ,and let fZ be the
natural map H *<'t> — t >

t** oc
Then fZ(r') = )t 'fZ(â ).. .^(an )t n ,and the t-shape of î( r ’) 

is the same as the t-shape of r',as each a .) / 1 , and so as H/
H 1 **

has property X , r has a solution over / ,and hence ^(w) = 1 in
U/ .contradicting the choice of N .N

■
Notice that if G is residually finite then it is fully residually 

finite ; for if wlf..wn are non-trivial elements of G , then for each 
i there is a homomorphism jẐ from G onto a finite group hL such 
that /i(wi) jZ 1 . Taking cartesian products we have the required map 
taking the set {w^ to non-trivial elements of a finite group,and hence 
G is also fully residually finite.

By putting R = ^ words whose t-shape is ( ° h , w i t h  o]
and X the property of being finite in 1.6 we get :
Corollary 1.7

Let G be a residually finite group and r a cyclically reduced 
word in G * <t> with crt(r ) 4 0 •

Then r has a solution over G .



9.
Section

Having given some (most) of the known results for the Adjunction 
Problem proved via group-theoretic methods,we shall finish this chapter 
with some problems in 3 and 4 dimensional topology which raise 
problems involving the adjoining of generators and relations to groups.

1 .8 Band Sum Problem ( 1.1 in 0<] )
Given a knot k in

(1.1 in
3

S and an unlinked,unknotted loop in
S - k , is it possible to band together k and h to obtain

h.

k# bh

k # bh is obtained by : embed a rectangle b = Ix I in S3 such 

b n k  = £o } x I , b ^ h  = {l} xl .

k #t,h = {k “ {°}x I } u [ h “ [l] x l } u { l  x{o,l}] .

Let w be the element of T^(s - k-^h) corresponding to the 
loop around the band as shown,and let t be the element of 7V (5  ̂_ k^ h) 
corresponding to the loop around h . Killing w corresponds to putting a 
disc across the band b and so we can consider that the band has no knots 
and does not link k or h , that is,that there is a natural map

¡4 : 7^(S _ k ^ h ))— => which is a surjection.

But k # bh is the trivial knot if and only if ^ ( S 3 - k ^ h )  = 1L.
3Hence if we know that if w has a solution over rtj(S - k) for 

all choices of w , then we know that the answer to the question is 'no', 
it is not possible to obtain the unknot as the band sum of the unknot with 
a non-trivial knot.

In fact,by Thurston's recent work [T], it is known that knot groups 
are residually finite,and we can show that in the above construction the 
word w has ^(ui) ^ 0 (e.g. by looking at homology) and hence by 1.7 

w always has a solution over ^ ( S 3 - k).In fact it can be shown 
that knot groups are locally indicable (see [sh] ) and hence using 4.8 

we also obtain the answer 'no'.
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1.9 Property R for Knots (5.7 in D<])
1 2  3Is it possible to obtain S x S by surgery on a knot in S ?

Let n denote the manifold obtained by doing 0-surgery on the knot k
3 * 1 2  in 5 .(It is known that if M is 5 x S we must do O-surgery.)k 1 2

If M is NOT homeomorphic to S x S , k has property R .
* 1 2  There is a natural map f : M —  ̂ S x S , which induces an

isomorphism on integral homology and induces a —homology isomorphism
if and only if the Alexander polynomial of k is trivial.In this case (1k

1 2  3 3is diff eomorpliic to S x S H , where H is a homology 3-shere.
... ^Hence 7^ Pl̂ = 7L * 7^ H , and killing the element of 7̂ 1*1̂  corresp- 

m of k kills the whole group.Thus we have thatonding to the meridian
1Z * 7TH3 

N(mj^
3i.e. H is a homotopy 3-sphere

= 1 .If the Kervaire Conjecture is true,then 7̂  H = 1 ,

1,10 Contractible ¿-Manifolds with Boundary (4.18 in 0<])
Let M be a 3-manifold bounding a contractible 4-manifold H

,4
4

can we choose H to have no 1-handles ?
,4If this were possible,then H is obtained by adding an equal

4number of 2- and 3-handles to a 4-ball B .(We must add an equal 
number else we get non-trivial higher homology.)

IT

Turning this construction upside down,we find that we get a manifold
3

with two boundary components, M and S with an equal number of 1- and
3

2-handles,and this corresponds to killing 7̂ 11 by adding an equal number 
of generators and relations.

This is a partial generalisation of the Adjunction Problem,and it 
is shown in £gr] that there are groups which cannot be killed in this 
manner.Casson has shown that there are therefore 3-manifolds bounding 
contractible 4-manifolds which must have 1-handles.



CHAPTER ' 2

We start with a brief description of 'Small Cancellation Diagrams' 
which we shall call Dehn-diagrams.These pictures were first used at the 
beginning of this century by Dehn and Van Kampen to attack the word problem 
for certain groups.A full description of Dehn—diagrams is available in 
Chapter V of Lyndon and Schupp 's book fcsl where they are called R— 
diagrams.We go on to give a topological derivation of a diagram (2.7,2.8 ) 
which is essentially dual to a Dehn-diagram (2.9) .Those who are used to 
working with Dehn-diagrams may prefer to think of our diagrams as dual 
Dehn-diagrams and omit the topological section 2.3-2.9 and use the constr
uction of 2.10 to define the relevant diagram.

We proceed to define the group defined by a diagram,and then,con
centrating on the Adjunction Problem,in Section 3 we define special 
diagrams which are the main tool used in the rest of the thesis.These are 
essentially diagrams with some edges and discs omitted.lt is in this 
context that it seems easier to think of diagrams rather than Dehn—diagrams 
as in the dual Dehn-diagram,omitting an edge corresponds to identifying 
certain edges to points.

We develop some of the properties of special diagrams ,the principal 
results being the construction of 2.18 , and the summing-up of 2.22 .

In Section 4 we use special diagrams to construct some counter
examples with exponent sum zero.

11.

Section 1. Dehn - Diagrams

Definition 2.1
Let G = <X;R> be a group.Let D be a finite planar graph,with 

E = êfj the set of edges,and {Rj} the set of regions.Suppose that each 
edge is oriented,and has a label in G , i.e. there is a map : E — >G 
such that ^(ei) = (^(e±)) where e± is
ation.Let Ri be a region of D, and let 
the oriented boundary of R^ ,read clock

wise,be f-]»f2,,*fn ’ where for each * *
f. £ El or T.e E .a

Define R±) = /(f 1 )fi( f 2).. ,f!( fR). 
We say that D is a Dehn-diagram if

G = <’X;R> .The Dehn-diagram then illustrates that /(<)D) is trivial in 
G »where ^D is the boundary of the region containing the point at 
infinity.



2 • 2 Reduction of Pehn — Diagrams

i)

Ü )

iii)

We can define reductions of Dehn-diagrams as follows :
If there is an edge e. in D with only one end attatched to the

Note that in the above,a 'region' may be the outside region,i.e. 
the region containing the point at infinity

The changes in the Dehn—diagram D described above are allowed as 
they correspond to reduction of the labels on regions,or cyclic reduction 
of the labels.

In i) , if e. lies in the region R. , then R. has a label
_1 1 J Jwith ^(e^).^(e^)- as a subword,and so omitting the edge e^ corresponds

to cancellation in this word,or reduction of this word in G .
In ii) we again have a region R^ where the label has cancellat

ion as above.
After performing iii) we have not altered the labels on any of

the regions,and merely omitted a region with trivial label ajaj-1 , a^£ G.
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We now show that we have a Dehn-diagram for any element of F(x) 
which is trivial in G = <X;R> .This is what is called an R-diagram in 
QlsQ, chapter V ;the following theorem is given in [is] as a note on p.240.

Proposition 2.3

Let w be a cyclically reduced word in F(x) such that w = 1 in 
G = <X;R> .

Then there is a reduced■Dehn-diagram D such that yi(dD) = w ,and 
the label on each interior region R is a cyclic conjugate of an element 
of R .

Proof
uj = 1 in G means that

Jt= TT
J=1

-1p .s .p .J J J where s±1e R
J and P j C F f X )

Let Y be a base point 
in the plane with N radiating 
finite arcs,labelled p̂  to p^

in anticlockwise order.At the
end X„ of the arc p. place i i
a circle labelled s^ .

We now split the arc p^ 
into segments corresponding to 
Similarly split the circumferance of the circle s^,going round anti
clockwise from X± .

This diagram D' is such that the label on ¿D' read anticlockwise 
is w .Assuming that the words in R are cyclically reduced,the only place 
that reduction can occur is on the outside boundary,and this may involve 
cyclic reduction of w .

e generators x^€X occuring in p^ .

We call the above a Dehn-diagram representing w = 1 in G . 
Readers who are not interested in a topological derivation and are 

familiar with Dehn diagrams may move directly to 2.10 to define a diagram.

Section 2. Topology ; Diagrams

Given a presentation of a group G = < X^; R , there is a standard 
method of forming a 2-dimensional CW-complex L such that 7Z L = G , as 
follows :



Take
take
loops

^a1 * ’ 
take

f v r
if r 

such

one o-cell,which will be the base point x of L
n oriented 1-cells,which will form a bouquet K
c„,c_...c , and 7V„ K = F , the free group on1 ’ 2 n ’ 1 n
n)

2—cells {d. , 02 . . Dm} corresponding 
,.,rm1 = R of (r(xn ) > and glue these

, where £. .i> J
fi,1 ¿i,2 ei,k

m- 
?i, 1 

ai,1 .a. . ±1

that h . (¿D. )l l c . . c . _ • • c . ,1,1 1,2 l,k

to the m 
to K as

, define

of oriented 
n generators

elements 
follows :

h. : ¿D.—l l

then

e.g.

define L = 

we illustrate

„ D.K U  i=1 l_____
{identifications h/J

TV L = G .

the example G = <a^ ̂ ^ a ^ a ^ ,  aTa2 a3a2 > :

(L,K) is called the complex associated with the presentation of 
the group G = <Xn;R> ,or a complex for G .

Note that a group has many different presentations and there are 
correspondingly many different complexes associated with a given group.

Using complexes associated with group presentations,topological 
solutions of group-theoretic problems are possible;for instance the proofs 
of the Nelson-Schreier,Kuros and Grusko subgroup theorems. (See e.g jV] 
pages 258 and 267 for the first two,and for the third,see Stallings "A 
Topological Proof of Grusko's theorem on Free Products",Math. Zeit. 90 
(1965),pages 1-8 ) . These proofs use covering-space theory and allied 
topological techniques,as well as some elements of transversality,which 
latter we now use as our main tool,using the definition from [SRsJ 
chapter 7 .
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Definition 2.5 Transversality

Let L be a CW—complex, PI a closed p.l. manifold.We say that a 
map f : PI— >1 is transverse on the i-cells of L ,if for each i-cell. D ̂ 
either f ^(D^) = ^

or there is a commuting diagram :

where e. . is the characteristic map for D7 , and t. . is the proj- i,J J 1>J
““ ”1 iection of a trivial p.1.bundle,and cl(f (D^)) has codimension zero in M.

If dpi / yf , then f : PI— * L is transverse if in addition
t~1 (D1) = T , where TC^(t~ .(D )) has codimension zero.i,jv ' i.J

This ensures that f ¿PI is transverse.

Theorem 2.6 ( [j3Rs] Chapter 7,page 135)

If each attaching map is transverse to the skeleton to which it is 
attached in the above,and PI is a compact p.l. manifold and r J i s  
transverse,then f is homotopic relative to dpi to a transverse map.

We are going to be dealing solely with maps of 2-dimensional com
plexes into 2-dimensional complexes,and then we have that a transverse
map f has the property that f (point in the boundary) is a collection

—•1of disjoint embedded arcs and loops, f (small disc) is a collection of 
disjoint discs.

Definition 2.7
A diaoram is a 2-complex in the plane consisting of a finite 

number of disjoint 2-cells D.,D2,..Dm in the interior of the disc D, 
together with a finite number of disjoint,transverse-oriented 
1-cells which are loops or properly embedded arcs in cl(D - D^) .

The 2-cells are the discs of the diagram,the 1-cells are the edoes. 
the endpoints of the embedded edges are the vertices.

The diagram is labelled if each edge is labelled by some letter a^. 
Example 2.B
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We define a word corresponding to a disc , or the label

r. on the disc D. as follows : a 1
Choose any point on D.. - (vertices) .Read clockwise round

writing down,in order,the labels of the edges traversed,with exponent +1
or -1 accordingly as the edge is oriented clockwise or anti-clockwise
near D..l

Note that r. is only defined up to cyclic conjugation.In example
1 -1  -1  -1  -12.8 associated words are ad a , adcb , aca b .

Proposition 2.9

Corresponding to a word w in F"(xn ) which is trivial in G = 
<Xn?R>, there is a diagram,which we call a diagram representing w = 1 
in G .

Proof
Let (L,K) be the CW-complex associated with the presentation of

G = <(Xn;R)> , chosen such that the 2-cells are attached to K by transverse
maps.Then the word w£F(Xn) is represented by a loop c in K which
bounds a singular disc in L .

2 2 2Thus we have f : (D ,dD )— >(L,K) , f(^D ) = c , and we can choose 
f to be transverse on c .

Now the conditions of theorem 2.6 are fulfilled with M = 2-ball
2

and so we can homotop f rel^D to get a map,also called f , which is 
transverse on the 2-cells of L , and thus,for each 2—cell of L ,

*1 O
f~ (0.) = V  D. . where each D. .C Into , D. .00, , = unlessv i' J i,J ifJ ’ i,J k,l
(i,j) = (k,1 ) .

Let Do =  d ( »  - W  Dy ) ; then f|0 is transverse on

so we can homotop f 
For each 1—cell

is transverse on K #g (rel ^Oq) such that f 
o *of K , let c  ̂ be the midpoint of L;

mm“] .Then f (c^) is an embedded arc or loop in Dq , with a transverse 
orientation inherited from the orientation on c^ , which we label a^. 

Thus we have a diagram.

So we see that example 2.8 represents dcacd = 1  in the group 
G = ^a,b,c,d,e; adcb , aca b , ad a /.»
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Henceforth ue shall assume a diagram is labelled unless otherwise is stated.

^ ^  Diagram / Pehn — Diagram Duality

We can now obtain a new proof of a weak form of 2.3 which will 
illustrate the duality existing between diagrams and Dehn—diagrams :

If w€F(x) and w = 1 in G = <(X;R) * then there is a (reduced) 
Dehn-diagram representing w = 1 in G .

Let D be a diagram representing w = 1 in G obtained by 2.8 . 
Regarding the discs of D as points,and ignoring ¿D and the outside 
region,let D' be the dual 
of D .Orient each edge of 
D' by the transverse orient
ation on the dual edge of D, 
and label the edge with the 
label on the dual edge in D.
What we now have is a Dehn— 
diagram representing w = 1 
in G , which we can then reduce.

The inverse proceedure to the above provides the justification for 
our diagrams for those who are familiar with Dehn—diagrams :

Given a Dehn—diagram D' representing w = 1 in G we form a 
diagram representing w = 1 in G as follows :

In each interior region of D' draw a small circle,and enclose D' 
inside a large circle.Now whenever two regions of D' have a common boundary 
edge,join the corresponding circles by an edge with a transverse orient
ation and a label inherited from D' . The result is a diagram represent
ing w = 1 in G .This may in fact be taken to be a definition of a diagram 
representing w = 1 in G .

Returning to diagrams,ue now state a converse to 2.8 which will 
be slightly improved in 2.13 .

Proposition 2.11

A diagram D defines a group G = <X;R">, and D represents 
w = 1 in G for some word w in F(x) .

Proof
Let X be the set of labels on the edges of D , and let R be 

the set of labels on the discs of D , we can reverse the construction of
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2.7 , to build a complex K for the group <CX;R/> , and we can then see 
that D represents w = 1 in G = <X;R> where w is the label on the 
outside boundary of D .

2.12 Reduction of Diagrams

As with Dehn-diagrams,we now give a set of moves,or alterations, 
which we can perform on a diagram D ,which we shall subsequently show do 
not alter the properties of D in which we are interested.These changes 
are analagous to the reduction operations of 2.2 .

We call the following alterations reductions :

i) a) If D contains an edge which is a loop,omit this loop from D . 
b) If 0 contains a disc which meets no edges,then omit this disc.

ii) a) If there is a disc in D with two adjacent edges e,f e <¡4 f
where e and f bear the same label and are oppositely oriented

(liJe see here that move i)a) is necessary,as free loops may be 
generated here.)

b) If there is an edge e in D which has as endpoints two adjacent 
points on a disc Di , then omit e .

iii) If there is a disc in D such that meets only one edge
e , in just one point,and e is labelled by the letter a, then 
omit all edges labelled a .
(Here we use i)b) to omit the disc )

Cor are similarly oriented,but e is labelled a , and f is 
labelled a 1 ) then perform the following movemove

bJe say that a diagram is reduced if none of these moves can be performed



Let D be a diagram,and let G be the group defined by D (2.11). 
If D' is obtained from D by performing reduction operations, 

then D* defines the group G' , where G = G ' * for some m .

Proof
UJe need only show that performing the reduction operations is the

same as performing Tietze moves on the presentation of G ,and therefore
alters the presentation but not the group,except i)a) which may forget
generators which do not appear elsewhere,thus contributing to the free
factor F .m
i) a) -omits a loop which is not involved in showing that w , the label

on □ ,is trivial in G .This alters the map from □ to the 
complex associated with G by a homotopy rel3D,and may alter G 
by omitting a generator which does not appear in any relation, 

b) —a disc with no edges is the trivial relator 1 ,and so can be 
ignored.

ii) a,b)-this corresponds to trivial reduction of a relator in ' R , as D.
—1 . 1 has label w^aa w^ which can be replaced by w^w^ .

iii) —here we have the relator a = 1 , and so we can omit a from the 
diagram,altering the presentation of G ,but not G itself.^

Hence if we are interested in the group defined by the diagram,we 
may assume that the diagram is reduced.

Example - The group defined by the unreduced diagram has presentation

Proposition 2.13

— 1 — *] mm'] mm']<a,b,c,d,e ; adcb , aca b , ad a > .

<a,b,c ; acb , aca "'b .
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Section 3

2.14 Special Diagrams

From these (general) diagrams we are now going to define special
diagrams,to enable us to look at the Adjunction Problem (of when does G
inject into <(G,t;r)> ). In this case we are particularly interested in the
new generator t , the relation r , and the words in G which are trivial
in the group <G,t;r> ,and hence we are interested in diagrams for <G,t;r>
in which no edge labelled t meet the boundary,and the t—edges only meet

±1the discs labelled r . With this in mind,we make the following constr
uction, before giving the definition.

-fDefine a disc with spokes D of order n to be a disc together
. , -L.with n disjoint, transverse-onented arcs radiating outwards from D ,

is labelled + , and there is a distinguished point p on ( D+ -(arcsj). 
in a planar axis,and call the result D ,labelled - .

I

D+ 1
Reflect D

Mow form a planar complex by taking a finite number of copies of D’’

D*, , and a number of copies of □” , D” ,D~...D~, , lying in the

plane such that the end point of an arc of D7 is identified with an
± 1endpoint of just one arc from D. such that the orientations match.«3

e.g,

We now give a formal definition of a special diagram,which is what 
we have just constructed.
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An (unlabelled) special diagram is a planar 2-complex D in the 
2interior of a 2-disc D such that :

i) D contains a finite number of disjoint 2-discs D„,D„...D in
2 1 2 m

IntDz , each labelled + or - , and a finite number of transverse
oriented arcs and loops embedded in cl( .

ii) For each i , r\^edges} = £n vertices^. Call n the index of D.

iii) On each disc we can choose a distinguished point p^ on
- {edges'^ such that reading clockwise round from p_̂ ,

writing +1 (resp. -1 ) for each arc which we meet that is oriented 
clockwise (anti-clockwise) near , we get the n-tuple
(£1, **»£n) (resP- ) ) where □i is labelled
'+' (resp. '-' ) .

As before,the are called the discs of D , the arcs are called
the edges.and the points where the edges meet the discs are the vertices 
of D . The n edges meeting the disc divide into n . segments.
U)e call the region of the plane bounded by "»D the outside region,and 
¿D we call the outside edge of D ; the other regions of (plane) - D the 
inner regions of D .

If each segment of each is labelled by a letter (or possibly
word) b , such that reading clockwise (anti-clockwise) round &D. if D.K 3 - X

S'] £ £is labelled + ( - ) , gives the word b̂  t b2t 2 ...bnt n we say that 
D is a labelled special diagram.

It is easy to see that an unlabelled special diagram can be made 
into a labelled special diagram because of condition iii) . It is also 
easy to see that the 'disc with spokes' construction gives an unlabelled 
special diagram,and if we label the initial disc in the construction we 
get a labelled special diagram.

We are going to use special diagrams to attack the Adjunction 
Problem,to alter the group-theoretic problem to a diagram-theoretic one.
The following definition will be useful :

Definition 2.16

A triple is a set {g,t,w} where G is a group , r is a cyclically 
reduced word in G * < t >  , and w an element of G which is trivial in 
<(G, t f r^ .

A triple is a counter-example if r has length greater than 1,i.e. 
r ^ G  , and w is non-trivial in G .

Definition 2.15
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Proposition 2.17

Corresponding to a counter-example {g,t,w^ there is a (labelled) 
special diagram,which we call a special diagram representing {g,t,w} .

Proof
By Proposition 2.9 there is a diagram D representing w = 1 

<G,t;r> . In fact by 2.11 the diagram may be assumed to be reduced.
Now omit from D

in

i) all edges labelled in G
ii) all discs labelled in G
iii) ¿0

to give D'.
What remains are

•the discs labelled r and
edges labelled t . (if an

. — 1 edge is labelled t we
can reverse the orientation
and label it t .

On a disc of D'
labelled r+1 write '+',if 

-1labelled r write .
On the segments of

X .

each + disc in O' where a G—edge e of D met , write the
label of e with exponent +1 if e was oriented clockwise,else with 
exponent —1 .If is a —disc write the label of e with exponent —1
if e was oriented clockwise, else +1 .

What remains is a labelled special diagram.

e. g.

= <a,b,c,d,X; a2 , dc2 , R > where X is the set of generators of
which do not appear in R the set of relators for G which do not
appear in and w = (bd) .

The special diagram shows
_2counter-example (remember c = d) .

that [g, (atc“1bcV),(p”2b)2 } is a
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An (unlabelled) special diagram 0 defines a triple jG,r,w^ , 
which is a counter-example if w is non-trivial in G .

Proposition 2.16

Proof
Label each segment of each + (resp. -) disc D^ by proceeding

clockwise (anti-clockwise) from p^ the distinguished point writing the
letters c^,^,..^ in each segment as in 2.15 .Label any free loops b.

In each region R^ . of D draw a disc Bj , and draw an arc from
B. to each disc D. on R. (if R. is the outside of 0 ,i.e. &R . = 3 d J k j j j
then draw B. around D , i.e. D is inside B.) .J J

If an edge e meets disc , give e a clockwise (anti-clockwise) o<
near D, if it is a + (-) disc , and label e by the label on the seg
ment of ¿0 . where e meets dD. .l i

Lie now have a diagram D' , and hence by 2.11 , D' defines a 
group G , and 3 D 1 represents a word w = 1 in <G,t;r> , where 

£ £ C
r = ĉ  t 1c2t 2c3...... cRt n , with (£,» £2»* * ) as in definition 2.15

and c„,c„..,c the labels on the segments of dD. . 1 2 n i

In fact the method of defining a triple from an unlabelled special 
diagram can be described and presented as follows :
I label the diagram by c^,..c written on the segments of the discs 

going round clockwise (anti-clockwise) from the distinguished point 
on the + (-) discs, and any free loops label b .

II

III

for each inner region of the diagram write the word w^ by
choose an edge on 3>R̂ , , 
read clockwise around 3 ,  
when a segment labelled c. of a disc
if D . J is +1

D.J is on dR.l write c-1

e.
word c . J

j,1 ^j»2

if Dj is - , the loop ¿R.̂  then defines a 

£i.m
c-J.

.c . jhere each z.1» J ±1
1 J 2 “ m

do the above for the outer edge , 3D , to give the word w . 
Then the triple defined is {<c1,..cn,b; [w^> ,r,w] where

C,£ 1 ¿2r = ĉ  t c2t
in 2.14 .

, .c t n (£1,¿2»«*»^n^ is the n-tuPle defined

Continuing as with general diagrams,we now define reduction oper
ations which alter a diagram and the triple defined,but preserve the 
property of representing a counter-example ̂ and more besides,as we shall see J,
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disc

i)

ii)

iii)

iii )a

iii )b

Reduction of (labelled^ Special Diagrams

Let D be a labelled special diagram,where the segments of 
are labelled c^,^,...^ .

We call the following alterations of D reductions :

Discard loops.

24

If there is an edge e which has as endpoints two adjacent

3kvertices on some disc , with the label au on the segment

-- *>

Hence one segment is now labelled 'k—1ck+1

on D. omitl

If two discs and D are connected by an edge
and

D1

°2
and lie in the same region,on segments adjacent to e ,

then do the following opertations

( \ H -------------------- v / -

Notice that all the orientations match up by the properties of 
special diagrams,reading the n-tuple ( ^ ) clockwise from 
P1 on D1 , and the n-tuple (-£,,- 2̂» * •"* reading anticlockwise
from p2 on D2 .
If there is a connected component of D which consists of two discs
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and with opposite sign,in which the distinguished points lie
in the same region,discard this component ; 
i.e. discard :

Operation IIl)a followed by 111)b is called trivial reduction.
We say that a special diagram is reduced if none of these operations can 
be performed.

Note that operation II) may lead to the reduction process giving 
different reduced diagrams, e.g. suppose we have discs , with edge e
around label c^ , and with edge e' around label ck+1.Then doing
operation II) to edge e , gives a different diagram from doing operation
II) to edge e' :
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We now strengthen Proposition 2.19 to show that a reduced 
diagram representing a counter-example defines a sort of 'canonical* 
counter-example.

Proposition 2.20

Let D be an unlabelled special diagram,representing the triple 
{G,r,w} .
i) Reduction of D gives a special diagram D' which defines a 

triple {G',r',w') such that there is a homomorphism fi such that:
jzi : G' * <t> — !>G * <t> , jrf(r') = r , ¿(w') = w 

and jzf(G') = Sbgp(,<a1, a2,. .aR>  , where r = a11 ' .at'**' .

ii) If {g,r ,w} is a counter-example then t',r',w'] is too.

Proof
I) We show that each reduction operation gives a diagram which defines 
a new group such that the homomorphism is defined obviously.Suppose that
(G,r,w} is the triple defined by D as in 2.18 . Operation I) is 
represented by a homotopy of the map defining D , as in 2.12,i)a .
As in 2.9 , omission of this loop does not change G as the label on 
this edge is t .

_ -iII) Here we omit from r a subword t ckt where 
in G .Also we amalgamate some regions:

c^ = 1 is a relation

a "

in u , m e n  in w  , tne new aiagram, 
R£ is labelled w2 ;the letter ck has been omitted as ck = 1 . This 
does not alter G .

If R„,R_ are labelled w ,w then in D' , R* is labelled w„ W„
I o 1 ° _ » 1 *5

where w^ is some cyclic permutation of w^ »and w^w^ = 1 in G .
Hence if D' defines {G',r',w'} , r' is the same as r , but 

with trivial cancellation performed on the subword tckt of r , and 
w' is w with occurrences of ck omitted ; G' may have fewer relators 
than G , as the two relators w1 and w3 are amalgamated into the single 
relator w^w^ G* •

Hence there is a natural homomorphism jzf : {G,,r,,w'}— * ^G,r,w} .
IIl)a Again we amalgamate regions as above,and so we have a homomorphism.
III)b Here we omit a component of
a type which only contributes trivial 

— 1relations c.c. , so this component
I I

may be omitted without altering the 
triple defined.
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Hence reduction gives O' and there is a natural homomorphism
{g •, r •,w'] — > {G,r,w^. The map pi : ^G,r,w) — > ^G,r,w^ is defined as :

o ll 
1 U L  £ £

t c2t 2...c^t ™  , t. = ±11
OC, <Kt, r = a^t a2t ....antWn ,

Where £. = *j f or $ « 1! <L< l«kl

and ¿(cj,) = 1 for (^5 |IV\)+ 1 ̂  1 ̂  kÉ, 

/(cp) = 8j for p = (kjQ lC*vj)+ 1 •

Then î(w) = w , and yf(r) = r .
This map is a homomorphism as each interior region of G defines 

a trivial word in G .And so there is a homomorphism 
{G',r'fu'}-> {g ,7,w} — ■* {c,r,w} .

ii) Follows immediately from the properties of pi .

Recall that reduction of a diagram is not unique,and hence the 
triple {G ', r ', w '} is not uniquely defined by a diagram D .This is seen 
in the note after 2.19 ,where it is seen that operation II) may be poss
ible at more than one place,at ck,ck , , and hence a different order of 
performing operation II) can give rise to different regions being amal
gamated.

Mow we shall restrict our attention to connected reduced special 
diagrams justified by this lemma :

Lemma 2.21

Let D be a reduced special diagram with more than one component 
representing a counter-example ^G,r,wJ . Then
i) Each component of D defines a triple ^"G^,r^,w^J where

there is a homomorphism pi ̂ : G^ * — *G * <"t ̂  such that
pi. (r . ) = r .i' l

ii) At least one triple is a counter-example .

Proof
Each component □i defines a triple by 2.18 . The homomorphism 

follows as again the regions of D - D .  are labelled by trivial words in 
G , and hence there is a natural homomorphism pî .

ii) Let D. be a component inside another component,i.e. D^ is 
contained in an inner region of Dj.If is a counter-example
then we are finished. Else uk = 1 in G.̂  and
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so ^ ( u k ) = 1 in G . Omit this D^.Now assume that all components 
contribute to the boundary label.If no component gives a counter-example 
then the label on the boundary of D is trivial in G , i.e. ^G,r,w} is 
not a counter-example.Thus at least one component gives a counter-example.

■
We can sum up the results of this section on special diagrams in 

the following theorem :

Theorem 2.22

i) Suppose that r does not have a solution over G.
Then there is a connected,reduced,special diagram representing a 
counter-example £g,t,w} , and D defines a counter-example
{G',r',w'} such that ̂  / : G' * <t>— *G * ^t> with (zf(r') = r , 
and f̂(w') = wn , a non-trivial element of G .

ii) Let D be a connected,reduced,special diagram.
Then D defines a triple {g,t,w} which is a counter-example if 
w is non-trivial in G .

Thus we have,as promised,moved from the study of groups in general, 
to the study of groups defined by diagrams,and the study of diagrams in 
general.The following chart shows the progression we have passed through :

Counter-example {g,t ,wJ -- — °..P — >

homomorphism 
from 2.20

V

Counter-example [G'',r',w'}  ̂ >

Diagram

Prop.2.17
NX

Special Diagrams

|  2 . 20, 2.21

Reduced,connected 
Special Diagram

The fact that the map 4 is a homomorphism which is not necessarily 
injective or surjective means that G' may have 'fewer' relations than G; 
e.g. let {g,t ,w } = {^a,b; a3 , b^ ̂ >, atbt 1 , b | .
Then a diagram for this is :
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As an example of the essential difference between a counter
example and the counter-example defined by a diagian, we have the 
following proposition which provides a class of groups and added 
relators which satisfy the Kervaire Conjecture.

Proposition 2.23

If {G,r,w] is a triple defined by a special diagram, 
then <’G,t;r> is non-trivial.

Proof

By proposition 1.6 we need only consider the case when 
crc(r) = 11 .
^ £ £ £

Let r = c-, t 'c2t z... cnt * where 1 ; as <3̂ .(r)
is non-zero, we have that £i_1 = £j_ for some values of i .
We shall show that for these values of i , c. is non-trivial

l
in <G, t;r> .

Let D be the diagram which defines ^G,r,v} ; we now
relabel some of the segments of D to obtain a diagram D1 as
follows : when £. = <£. = +1 , replace c. by d , and when

l-l i 1
<fi_1= £ = -1 , replace c_; by d~~ . D' defines the triple
{G’jr’jW’"̂ such that G’ is a homomorphic image of G.

For any region of D* ,it is clear that its label has
as many occurrences of d as it has of d ; 
reading anti-clockwise around the boundary 
of an interior region of D’, a series of 
"inward" oriented t-edges ends when an 
r’-disc is reached where the label is d 
or d  ̂ , depending upon whether the r’-discs are labelled + or - .

Thus the exponent sum of d in any of the defining relations 
for G> is zero. Similarly any special diagram representing £G,r,w) 
becomes, after relabelling, a diagram for tG ,r ,w j where ®
so the corresponding c^ cannot be killed in <G,t;r>
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Section 4 

2.26 Examoles

We can use special diagrams to construct counter-examples .As we 
noted in 1.1 ,the standard example of a word without a solution over a 
group has the form r = atbt 1 where a and b are elements of G with 
different orders .We now show how this,and other examples can be drawn as 
diagrams.

i) This diagram defines the above counter-
example : G = <Ta,b;a /

2 1<G,t;r)> =• <a,b, t;a , atbt"" >, and the 
counter-example defined is £g , atbt-"1, b^ }• .

This defines G = <’a1 ,a2,a3,a4 ;a^,a2a^> =

<G,t;r> = < a 1 fa2,a3,t ; t a ^ " 1a^ta“1t"1>

and the counter-example defined is

[G»a1
-1 -1 ̂ -1ta^t a3ta2 . ■ n  •

Note that r has the form a_ = wa w3 1
-1

iii) Here G = < a  ̂,a2,a3,a4 ’ ’a4a2’V i T  >

= ^ai»a2 ; a2 ^  *
<G,t;r>= <a^,a2,t; a ^ ^  ta2t“ 1 a^ta^ -1 >

and the counter-example defined is 
(G,a1ta2t“1a^ta2t“1 ,a^ } .

This last example is a counter-example to a 'theorem' claimed by 
Schiek 0?ch 2"].Schiek claims to show that r has a solution over G if 
r has the form aEbE ,where a,b£G ,and

E = (t-S'la1tST)(t"S2a2tS2)....(t_SnantSn) , n »1 , a.£G

Levin points out in his review of Schiek's article 
55 number 3096) that the theorem is untrue if G contains 
order,and this example shows that it also fails if G has 
even order.

Note that in all these examples the exponent sum of

i si 4 0 .

(Maths. Reviews 
elements of odd 
elements of

t in r is
zero.
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We now give a diagrammatic proof of 1 .2.In fact we snow something 
slightly more general :

Note 2.25

If r contains only two t-occurrences and r is cyclically ^  
reduced in G * <t>, then r has a solution in G , unless 
and a and b have different orders in G.
Proof

i) If o-(r) = ±2 , then look at a reduced special diagram 0
W

representing some word u = 1 in <G,t;r7 .
Then a +disc in 0 looks like . ■"« hence ..

see that a +disc cannot be joined to another +disc .Therefore a +disc 
may only be connected to -discs,and one way of doing this will jjivj* an 
unreduced special diagram :

~t--© -? reduced: M - 0 — H i M - ;
a a a b

The discs must be joined together so as to form a loop,such that the label 
on the inside is the same as the label on the outside,which is (ab— 1)** 
for some k ,and hence the diagram does not give a counter-examois.

b
ii) If O^(r) = 0 then the +disc looks like 4 0 - T -  and if we have

a
. . b ba +disc joined to a —disc they must look like ^ -y

a a
and so trivial reduction is possible,and so assuming that the diagram was 
reduced we have that a +disc can only be joined to a —disc,and again 
we get a loop of discs giving the relation ak = 1 in G from the relation

inside.Hence G injects into 
<G,t;r> if the order of a in 
G is the same as the order of 
b in G .If the orders of a 
and b are different in G , 
then the diagram shows that b 
is trivial in <G,t;r> .

Note that a new proof of the Higman,Neumann,Neumann theorem that 
the base group of an HNM extension injects into the HNN extension can be 
given on the above lines.
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CHAPTER ' 3. A Class of Spscial Diagrams

Introduction

Attempts to draw special diagrams have not proved fruitful*the 
conditions on the transverse orientations of the edges make the step from 
regular planar graph to reduced special diagram difficult.In this section 
we give a description of a general class of reduced special diagrams which 
we shall then show (theorem 3.4') does not contain a diagram representing a 
counter-example.This class of diagrams is interesting because :
a ) or̂ (r) = and s° they are cancJidates for representing counter

examples to the Kervaire Conjecture.
b) The high degree of symmetry in the construction means that the 

number of relations in the group defined by such a diagram appears 
to be low (in fact the deficiency is (2n + 1 ) - (2n + 1 ) = 0 ) 
which seems to be a good thing as the more relations we have,the 
more chance there is that the outside label w is trivial in G , 
the group defined by the diagram.

c) They are the only reduced diagrams with ©^(r) ^ 0 which we know 
how to draw,and so for this reason alone we must show that they do 
not represent counter-examples.

We start this short chapter with the construction in 3.1 ; the proof that 
these diagrams do not give counter-examples (3.4) is basically group- 
theoretic.

Definition 3.1

Let S be a disc with transverse oriented spokes (2.14) of index 
2n + 1 , such that there is an axis X in the plane through a vertex v 
about which S — (edge at v) is symmetric .

e.g.
Then we say that S has an axis of symmetry.

Note that in a special diagram made
{ g,r,w]

Îta

±1 = £

r = ta t n
■n £n-1
an-1fc

<rt(r) *

¿2 £i -£i_ "£2.a2t t at â  t a2

from these discs,the triple 
has the property that CT̂ (r) = ¿ 1, 
and t  has the form :

-£n. .a . t n-1 n+1

where
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Definition 3.1 (cont.)

A +unit U in a special diagram D is a collection of k +discs 
(of index 2n + 1) such that each disc has an axis of symmetry through v, 
such that :

LI is connected to D - U by the k edges through the k points 
corresponding to v .

ii) if two discs and in U are connected by an edge,then
then they are connected by 2n or n edges,depending on whether 
U has just two discs or more .

Define —units the same way using —discs.

then we draw it as a k—sided polygon with an edge radiating from each 
vertex,and label it .If k=2 we draw a rectangle with an edge radiat
ing from each of the shorter sides.Then the two examples above become :

4 - C 2 Z U — t

UJe say that a diagram is made up of units if each disc is in just 
one unit,each disc has just two axes of symmetry,and the outside word w 
defined by the diagram is not in just one unit.

Example 3.2
Let D be the disc with 

three spokes,as illustrated.We 
see that there are two axes of 
symmetry, and

X
\
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We see that we can build units using this disc with spokes :
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Using these units ue may draw a special diagram made up of units, 
by joining units together,e.g.:

This diagram defines the triple below,which is not a counter
example,as (a a a“1a“1) = 1 in G ;

r z 1 J ' -)

L ^ a-)>a2a 3> a2 ,a3 ,a2aia 3 ai ai ̂ a2^ a3*" ’ ^a2aia 3 al  ̂ J

Note that in this example,all the +discs use axis of symmetry X1, 
all the —units use axis X^.This is because reduction would be possible 
immediately if we have a +unit and a -unit with the same axis of sym
metry which were joined,as we shall see in Proposition 3.3.

In this diagram u>e see that the word defined by the outside is 
eda-1b-1eda-1b-1, and the word eda-1b-1 is a relation from an inner region 
e.g. R , and hence w = 1 in the group G defined by the diagram.

The following proposition sums up the properties which a diagram 
made up of units which represents a counter-example must have.We shall 
then show that it is not possible to build such a diagram using discs with 
just two axes of symmetry.
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Proposition 3.3

Let D be a reduced,connected non-empty diagram made up of units, 
which represents a counter-example.

Then ;
i) there are no edges joining units of the same sign.
ii) the number of +discs is equal to the number of -discs.
ü i  ) a +disc built using axis of symmetry X^ is not connected to a

-disc built using axis of symmetry X^.
iv) the orders of the +(resp.— ) units have a highest common factor d 

(resp. d') > 1  .
v) the numbers of edges bounding interior regions have a highest common 

factor 4n ,where n > 1 .
) if 4n' is the number of edges on the outside of D ,then n does 

not divide n' .

Proof

i)

ii)

iii)

If an edge joins a +unit to another unit,then it arrives at the 
other unit with an anti-clockwise orientation near that unit,and 
hence that unit must be a -unit :

This follows from i) , as each disc contributes 1 edge to the 
diagram where the units are drawn as polygons.
This follows as the diaoram is assumed to be reduced.

in

Assuming that the two axes of symmetry used to make the units of D are 
X̂  and X^ ,ue have that the +units are all built using the axis X̂
(say) , and the -units are built using axis X^ , by iii) and the fact 
that D is connected.Let ■¿G',r,,w'} be the counter-example defined by D. 
iv) A +unit of degree k. contributes a relation Aki = 1 and so if 

d is the highest common factor of the k.,we have that A = 1  

G' ,and so (/(A))d = 1 in G .
We see that r' has the form a^wAwa^t , and so if d = 1 ,

, and hence D does not define
a counter-example.
Similarly we have the 
same result for -units.

Co

r'= a^a^t and s0 ^G',L;r'^ =
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v)vi) An interior region of D outside of the units contributes a

relation (a^^b,, b̂  ) 1 . So,as above,if n is the highest 
common factor of the n. ,we have the relation (a a b ^ b ”1 )0

_ 'J -«. *] pi »
in G'.But w is the word (a^a^^ b̂  ) and so if n = 1 , D
does not define a counter-example.Note that the number of edges of 

is 4n^ , and that in fact D represents a counter-example 
only if n does not divide n ’ .

The point of this chapter is to prove :

Theorem 3.4

A diagram made up of units does not represent a counter-example.

From 3.3 we see that there is a diagram made up of units which 
represents a counter-example only if there exists a planar graph with 
certain properties,and so the following graph-theoretic theorem implies 3.4:

Theorem 3.5

Let G be a planar graph with the following properties :
1 ) G is bipartite with corresponding sets of vertices A and B;
2) The orders of the vertices of A (resp. B) have a highest common 

factor d (resp. d 1) ^  1 .
3) The numbers of edges bounding interior regions of G have a 

highest common factor 2n , n >1 .

If 2n’ is the number of edges bounding the outside of G , 
then n divides n 1 .

3,5 Implies 3.4 : Let D be a diagram made up of units representing 
a counter-example.Let P be the graph obtained by identifying each unit 
of D to a point.Then by 3.3 ,P fulfills the conditions of 3.5,and 
n divides n 1 and so by 3.3vi) , D does not represent a counter-example.

Proof of theorem 3.5
The method of proof is,strangely enough,group-theoretic ; having 

moved from group theory problems to graph-theory constructions,we now
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move full-circle,and prove this result by converting a graph which fulfills 
the conditions into a diagram defining a triple which we shall show is not 
a counter-example,in fact which has the property that n divides n'.

Let G be a planar graph fulfilling l),2),and 3).
Replace a vertex v in A (respectively v' in B) of order 

(resp k£) by a +unit (resp -unit) with (resp k|) discs with 3

Then the diagram D obtained defines the triple :
■{<^a,b,c ; bd, cd , (aca 1 b 1 )° X  atbt-1ct , (aca-1 b-1 )n J

As we noted in 3.3 there is a pairing of the discs of D induced 
by the edges joining the units,and so we can replace each (+,-) pair of 
discs by a single disc labelled bt 1ca 1t 1c 1tb 1at :

a \A-

This new diagram O' represents the triple 
-1, -1 . n ^  ... -1 -1atbt 'ca 1t 1c 1tb~] (aca 'b

(aca“1b~1)n is trivial in <G, t ; r >, using the usual notation.

S s d d 1 / -1.-1 Nn %L<a,b,c ; b , c , (aca b ) / ,

that is w
Adding the relation a = 1 = t , <Cg , t; r^ — > H = ^ b,c;ba,ca ,(cb 1 )n ^

and w = (aca-1b-1)n is mapped to (cb )° .
But H is the (d,d',n) triangle group (see e.g. Coxeter and noser

—*1"Generators and Relations for Discrete Groups",page 67) and hence (cb )
has order n , and so divides n as required.

We can now generalise theorem 3.4 slightlyjwe note that in the def
inition of a diagram made up of units we had the condition that the outside
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boundary of the diagram should not be in contained in just one unit.We now 
effectively remove this condition :

Theorem 3.6

Let D be a diagram representing a triple {_Gtr,u} , such that 
each disc has two axes of symmetry,and each disc of 0 is in a unit.

Then {g, r,w} is not a counter-example.

Proof
By 3.4 we can assume that the outside of D is in just one

unit which we shall assume is labelled +.
If the outside relation is a word other
than b , it occurs elsewhere in the
same unit (by the symmetry of each disc).

kIf the outside word is b then the same 
proof as 3.5 (mapping to the (d,d',n) 
triangle group)shows that d divides k 
and hence we do not have a counter
example.
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In this chapter we develop a method based on a paper of 
Lyndon [l 2̂  which allows as in certain circumstances to re
label a special diagram ; this will be used to prove the Frei- 
heitssatz for locally indicable groups (^.9 ). This generalises 
both the result for subgroups of the additive group of reals 
(obtained by Lyndon in ), and that for locally residually
free groups due to Pride in [pj . As we noted in Chapter 1, 
this result has been obtained independently by Howie QiJ, and 
by a Russian, Brodskii [Brj ; Howie’s methods are derived from 
those used to prove Dehn’s Lemma and the Loop Theorem , origin
ally due to Papakyriakopoulos, and Howie informs me that he 
believes Brodskii’s methods to be similar to his own.

We first define a potential function on a special diagram 
(m-.I) which shall then be used to relabel the diagram. The 
principle examples of uhese functions are given in M-.2 , and 
repeated use of these constructions is made later. The Lyndon 
Lemma concerning she form such a potential function
must have on a diagram representing a kind of failure of the 
Freiheitssatz for a class of groups, is then proved, and two 
important corollaries (*+.5 and ^.6) are given. This is applied 
in if. 8 to show that G injects naturally into <3},t;r> if 
G is locally indicable, and this gives the Freiheitssatz for 
locally indicable groups almost immediately in If. 9 . In the 
final section we use the methods of the proof of M-.̂f to show 
that G injects into <G,t;r> if G*<s> injects into <G,s,t;r’> 
and into <G, s, tj r'V>, where r’ and r" are words in G*<s>*t> 
which are obtained from r using a homomorphism from <G,t;r> 
to 2L.
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s e c t i o n  1 P o t e n t i a l  F u n c t i o n s  a n d  the Lyndon Lemma

Our aim is to put a real-valued continuous function on a 
special diagram in order to allow a certain type of relabelling 
process to proceed. Recall here that a special diagram can be 
viewed (see 2 .1*+) as formed by taking copies of a "disc with 
spokes" (each copy has label r ) and copies of its mirror 
image (these copies are labelled r~‘L) ; the free end-points 
of the spokes are then identified such that the transverse 
orientations are preserved (giving the t-edges) and,of course, 
such that the resulting diagram is planar.
Definition i+.l

A Potential Function on a special diagram D is a continuous 
p.l. map 4 : D— >11 such that <E is constant on any edge of D, 
and when B]_ and B2 are two discs of D and vl?i > V 2  ̂are 
corresponding points on B^ and B2 , we have :

aKv^ = $(v2 + ^(p^) - <Kp2) where p-̂ and p2 are the
distinguished points on B1 and B2 respectively.

1+ .2 Construction of Potential Functions

We now give examples of potential functions on special 
diagrams; these are arranged in a strict order, introducing 
step by step the procedures which give the essential, construc
tion of the final example *+.2 ^), to be used in section 2 .

M-.2(i) Clearly a constant map, taking the entire diagram to 
zerOj is a potential function (the trivial potential 
function).

-̂.2 (ii) If we have a connected special diagram D defining a 
triple {G*,r1,w*| with ô (i/) = 0 , then we can use the 
homomorphism © = 0 *id : GV<t>-*Z6 to form a potent
ial function as follows:
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*+. 2 (ii )
€r

■ c t^n n , £^= -1 ,(cont.) Let r' = ĉ t xc2t Cc ̂  .
and Cjl€. g* (possibly =1 ) .

We construct the potential function $ by first def
ining a function of the desired type on the disc with 
spokes B used to construct the diagram. We then show 
how to extend the function as the discs with spokes B± 
(the copies of B and its mirror image) are joined up. 
Let p be the distinguished point and let be the

vertex where the edge lab-
felled t 1 meets B.

Define the function h on
the vertices of B as :
h(p) = 0

h(v, ) = l£ 
x 2

h(v2) = £  + lC
1 2 2

h(v ) = £ + £ + .. .+ i£
J 1 2 2 J

Linearly extend h to the rest of the circumference 
of the disc, and then radially extend to the interior;
on the j-th spoke let h = h(v.).

J
Let BQ,B1 ,B2 ,...,B^ be the discs with spokes occurring
in D , ready equipped with a copy of the function h.
Let {e1 ,e2,. ..,ek3 be a set of edges in D forming
a maximal tree (regarding each disc as a point), and
suppose that e1 joins Bq to B^, joining vertices
v and v. . (v.: * is the vertex on B. which o,j X,J i
corresponds to the vertex v. on B )J
We define the function H on B using h as :
H(w0) = h(wQ) for any point wQ on Bo ;
H(v. ) = H(vn ) (= h(v ) ) = H(e ) and let i,m J 1
k. = H(v. ) - h(v ) and define H(w.)= h(w,) + kl i,m m 1 i i
for all points w on B ; note that H(p.) = k .x 1 1 i



^ •2 (ii) (cont.) As we noted earlier, for all points v on the
eage e1? we nave H(w) = H(v .) = H(v, ) .o,j i,m
In this way we extend H over the maximal tree, from 
the discs where we already ¡enow the values of H , to 
the rest, proceeding outwards along the edges.
It remains to show that adding any edge to the maximal
tree joins two vertices of D where H takes the same 
value, so that we can then extend H over these remain
ing edges of D c

*+*+.

Let e be an edge not in the maximal tree; adding e 
forms an interior region of

V>-C
/
/e

D ; call it R ; the boundary
/ of R consists of segments

%

K of discs and a set of edges. 
Let A1 ,A2 ,...,A. be the 
discs meeting &R, and let 
fi,f2 ,...,fJ (with e = f.)

©

be the edges occurring on bR,
with f̂  labelled t (inwards), in clockwise order.
Suppose that the endpoints of e = f. on A and on A.J 1 J
are u and u’ respectively. We must show that 
H(u) = H(u’) in order to extend H along the edge e 
joining them. But we have :

H(f1) = H(u) + 1( /Sj -
H(f2) = H(f1)_ + 1( - A>) = H(u) + 1( ^ )

etc. proceeding clockwise rdund ¿R until
H ( u ’ ) = H ( f  ) + U / 5 .  , - /S ) =  H ( u )  . j-1 j-i j

Hence we can extend H over the edge e and hence over 
all the edges of the special diagram D ; as previously, 
extend radially over the regions (e.g. over R above) 
to give 5 of the required form.



^.2(iii) Let D be a connected special diagram defining the
£ £* £

triple {G',r',w'j with r'= Cj_t 1 c2 t^...cnt n , c^eG',
and £ = 2:1 ; as before, use r' to denote c^c^__cn
Suppose that <r̂ (r') £ 0 (0? jr£f ) , and that there
exists a homomorphism q1 taking G* onto Z such

n
that q’(rO ? 0 (0^ _Ẑ q'(ci) ) . After multiplying by 
a scaling factor (and thus regarding q' as a non
trivial homomorphism from G* to 1R+, the additive 
group of reals) we can suppose that q'(r̂  = - qj.(r) , 
so that we have a non-trivial homomorphism © such

Let B be the disc with 
spokes used to construct 
D as in (ii) . Define 
the function h on the 
vertices of B (and at p) 
as : h(p) = 0

h(v1) = q (Cx) + 1 ^  
h(v2) = q'icj) + q‘(c2) + £1 + l<f2 

etc.
h(v. ) = q*(c,) + . , + q‘(c ) + <f + £ +..+ !£

1 1 2 i
We extend h to H on a maximal tree for D , as in
(ii), such that each disc Bi has an associated const
ant k . To extend beyond the maximal tree, using the 
construction and notation of (ii), with bi the label 
on A ^  R (read anticlockwise on : ..
H(fx) = H(u) + q*(b-L) + 1( /Sj - /s±)
H(f2) = H(fx) + q(b2) + 1(/81 - 

etc.? so that :
H(u») = H(u) + q(b1) + q'(b2) +..+ q'(b



2 (iii) (cont.) But the label on the boundary of R , read 
clockwise is the word bib2 *,t,bj > and this is a 
relation in G1 by the definition of G1 , so we have 
qCbfb^... bj ) = qCbj) + q(b2) + ...+ q'(b̂ ) = 0 as <1* 
is a homomorphism. So H(u’) = H(u) as required, and 
we can extend H as in (ii), firstly over the remain
ing edges, and then over the interior regions.

1+.2(iv) Let D be a special diagram representing the triple
{G, r,w] where r = a - ^ ^ t  2 „..ant n , a±e G - {lj,
t* ^ 0 $ suppose that there exists a homomorphism q
taking SbgpQ^a^,a2>. . . » onto 2 . with q(r) = 0  .
Let {g', r',w'} be the triple defined by D , where
r'= c t; bc2t 2 ...cn]t m , and d the homomorphism
from g ' onto SbgpQ'Ca^*^,.. « (as in 2 .2 0 , 2 .2 1 )
and let B be the disc with spokes used to construct
D as in (ii). Define the function h on the vertices

of B (and p) as :
htv-̂ ) = q®0 (C]_)
h(v2) = q»0 (c^) + q»0 (c^)
h(v.) = S  q*^(Ci)

1 j=l 3

h(p) = 0

Using this function as in (ii) and (iii), we can define 
a potential function on D .

*f.2(v) It is now easy to see how to put a potential function
on a special diagram representing the triple (G,r,w}

*1 <*
where r = a^t a^t .,.ant 1 , when there is a non
trivial homomorphism 6 taking SbgpQ<a1 ,a2,-- ,a >*<t>
to 1R+ such that 6 (r) = 0 ; if 0(t) = 0 , use (iv) ; 
else rescale 0 so that 0(t) = 1  , and construct h 
as in (ii) or (iii) with qf = 0 ° 4 .
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Before proceeding to the statement of the Lyndon Lemma 
(U-.̂ f), several definitions are necessary; their relevance will 
become evident during the proof of >+.>+, and they occur again 
and again during this final chapter.

Definition M-.3
(i) A potential function on a special diagram D is univalent

if it takes just one value on the distinguished points of 
D : P1 ?P2 distinguished points of D implies iB(p1 )=5(p ). 
A special diagram D is univalent if all potential func
tions defined on D are univalent.

(ii) A potential function on a special diagram D is nulvalent 
if it takes just one value on the t-edges of D . Otherwise 
the function is polyvalent.
A special diagram D is nulvalent if all potential func
tions defined on D are nulvalent (or alternatively, if 
there is no polyvalent function defined on D). Otherwise 
D is polyvalent.

Note that nulvalent implies univalent (for both functions and 
diagrams), and also that a univalent diagram is connected (else 
map each component to a (different) integer).

(iii) A class C of groups is free-product-closed (usually 
abbreviated to f-p-c ) if the infinite cyclic group & 
is an element of C , and for any pair of groups Gx and 
G2 in C , their free product G ^  G2 is also in C „

Examples of f-p-c classes are: the class of all free groups 
(this is a subclass of any f-p-c class), the class of all 
locally.indicable groups (see section 2 ), and the class of all 
torsion-free groups.



(iv) Let C be a class of groups; a counter-example for C 
is a counter-example Ĝ,r,w} such that G is in C.
A minimal counter-example for C is a counter-example for 
C, such that the length of r is minimal over all such 
counter-examples, and the number of t-occurrences in r 
is minimal over all such r of minimal length.

Note that a minimal counter-example for a class C is not 
uniquely defined. We make this definition as the method which 
we shall use to show that r has a solution over G for any G 
in a class of groups C, and for any r of cyclically reduced 
length greater than 1 , is to show that there are no minimal 
counter-examples.

(v) Let {gJ  be a collection of groups, and let .. . ,r
be a set of cyclically reduced words in ^ G ^
The set [rj is staggered with respect to if [Hki
is a subcollection of [G^ , and there exist integers 

â fSL2’ * * • ’ am and ^l’^2 ’‘**,̂ m sacd that a-j^a^ . ..^a ,
b ^  b2<C ...<bm j a±^ b± for a 1 1 1 j and such that :

each r, contains occurrences from both HQ and tl
r -i aJ bj '

and if n /  [â  ,b J >  then r. contains no occurrence from Hn

Note that r€G*<t> trivially forms a staggered set with 
respect to <t>,as long as r is cyclically reduced and
has at least one t-occurrence.

»+8

Definition *+. ̂ (cont.)

We are now in a position to state and prove the Lyndon 
Lemma; essentially we use the methods of [L2] , but the change 
from Dehn-diagrams to "diagrams", and the above definitions, 
help to give us a more general result.
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Lemma i+A 
Let C 

Then either

or

The Lyndon Lemma (Lyndon (L2] ) 
be an f-p-c class of groups.
(i) there is a nulvalent diagram representing a 

counter-example for C ;
(ii) for any subset {g^ C C  , and any set of words

(r.j in which is staggered with respect
to some subset (h,)c [g .] , where H- = 7L = H,

*k bk
for all k , and for any ordered subset Ac£r.j

A = frj1 ’r .j2 ’ »rj 1 (witkx
we have that any consequence of A / contains

(\*uJC X* f\ A
occurrences from H and from iL . J

al bp

Note that when {r̂ } contains just one element, which is 
the case which interests us, case (ii) says that r has a sol
ution over G for all groups G in C. Hence if there is a 
counter-example for C , then case (i) holds; this is the form 
in which we shall use the lemma, and we formulate it as :

Corollary M-.5
Let C be a f-p-c class of groups.
If there is a counter-example for C, then there is a 
nulvalent diagram representing a counter-example for C,

Proof of
As this lemma is very important, we begin with a sketch 

description of the proof before proceeding to the technicalities 
which are required to establish the two main steps. In the con
struction of the second step we discover the reason behind the 
introduction of the potential functions.
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The failure of case (ii) for the class C implies the 
existence of certain diagrams; in the first part of the proof 
we show that a "minimal" such diagram in fact represents a 
counter-example for C (i.e. a failure of (ii) where A has 
just one element). In step-2 we show how to relabel this diagram 
using a polyvalent potential function: this relabelling produces 
a diagram representing a different counter-example for C, and 
the length of the new relation is less than that of the original. 
Repeating this relabelling process reduces the length of the 
new relator to a minimum, at which stage the diagram does not 
have a polyvalent potential function, and so the diagram is 
nulvalent as required.
Proof Proper :

Suppose that case (ii) fails; we shall shew that case (i) 
holds. There is set A of words [r^ in •̂ iGi staggered with 
respect to (with the additional conditions given in (ii))
and there is a diagram D representing a consequence w of A 
where w is not a consequence of a proper subset of A, and 
such that w omits occurrences from Hq , where q=max b̂  or 
q=min â  , where j varies over all values such that r̂. is in 
A , Without loss of generality we can suppose that q—max b̂  .
(The condition that w is not a consequence of a proper sub
set of A implies that each word in A appears as a label on 
a disc in D .) We suppose in addition that (gJ  , fr ̂  and 
D are chosen such that d(D), the number of discs in D label
led in A , is minimal over all failures of case (ii) for the

Proof of b.U- (cont. )

given class C .
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Claim 1 - Such a minimal D represents a counter-example for C.
If not, A contains more than one word and there is more 

than one label from A occurring on a disc in D : in this case 
we shall find another diagram D* contained inside D , such 
that D* also represents a failure of case (ii) for the class 
C , and d(D’ )<Cd(D) , contradicting the choice of D .

If k is the maximum index such that r is in A (recall 
that the staggering imposes a strict order on the elements of A) 
then q=max implies that q=b̂ . j as w omits occurrences 
from H , no edge labelled in H meets cl.D 0nL 'tL

Let M* be a closed submanifold in Int D such that :
(a) M ’ is the closure of a 2-ball with some 2-balls removed

from its interior : M* is a "disc with holes" ;
±1(b) Int M* contains a disc labelled r^ iff v=k ;

(c) ¿M’ meets no edge from H for g<a ;
& k

(d) ¿M* meets no discs, and meets an edge in at most one point; 
Condition (d) and the fact that ĉ M’ does not meet V d (as M’
is in Int D ) give that an edge labelled in does not meet 
"b M ’ (as such an edge does not meet b M* again, and it does not 
meet either or a disc labelled in A - ).

If A contains more than one word, there are discs in D-M*

Proof of b.b (cont.)
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If M 7 has no holes,i.e. if M 7 is a 2-ball, then M 7 is a 
diagram representing w,=l in -^G^ for w7£ ̂ rG^ ; as we noted

N(l~k )

earlier, no edge labelled in H_ meets B M ’ ; so w’eG* =
q t« 1 ’

where H is G. : also w*^ 1 in G7 , else replace M 7 in
D by a diagram omitting discs labelled in A, thus reducing
d(D), which was chosen to be minimal. Regarding as <t >, M 7

represents a counter-example, and as C is f-p-c and ■C , we
have that ^ G ^ €  C , and M 7 represents a failure of case (ii).
3y supposition, d(H’)<d(D) ,contradicting the minimality of D.
The case when M 7 has holes remains, i.e. when 3 .M7 has more
than one component. In this case we examine cl(D - M 7 ) - M* ;
let B be a component of M" which is a 2-ball; if B contains
no discs labelled in A, then replace M 7 by (m ’U b); a quick
check of conditions (a)-(d) on M 7 shows that this change of M7

does not violate any of them, as no discs labelled in A are
introduced, and the new boundary is a subset of the old. We are
left with the case when B contains discs labelled in A ; we
wish to show that B is a diagram representing a failure of
case (ii) of the lemma. Let p be the smallest index such that

+1Tp is in A, and r~ appears as a label on a disc in B 0 Then
by condition (c) and the fact that a^< a^ , no edge labelled in

meets 3.M7 and hence does not meet S b c Sm 7 : hence B rep- 
aP

resents a failure of case (ii) as claimed, and as B contains
tit*!none of the discs labelled r^ , d(B)<d(D), contradicting the 

minimality of D. Hence D- M7 contains no discs labelled in A, 
and the proof of Claim 1 is complete.

Proof of (cont.)
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We have shown that D , oar minimal failure of (ii), rep-

Proof of (cont.)

and r a cyclically reduced word in G-#-<t^ of length not less 
than 2 . By ignoring all edges labelled in G , we can regard 
D as a special diagram representing a counter-example far C 
Step 2 - If D is polyvalent then D can be relabelled.

Let 5 be a polyvalent potential function on D j if no 
such potential function exists, then D is nulvalent as re
quired. Relabel the edge e with the label t ^ e) , and re
place all the G-edges and G-discs which we removed to regard 
D as a special diagram. We now have a diagram D’ where the 
edges are labelled in G or in Pv = < t ^  , where v varies 
over the values taken by $ on the edges of D 0 The discs of D
(which carried the label r) are labelled r*. in D* , where

J
these labels are obtained from replacing the t-occurrences in r
by appropriate tv-oceurrences$ there are as many different r* as
there are different values taken by $ on the distinguished
points of D, and the conditions on potential functions ensure
that {r.] is a staggered set with respect to fp  ̂ . Note
that if b. and a. are the maximum and minimum values taken 

J J
by 5 on a disc labelled r, in DJ , then a,= b.- a.

J 1 J J l i
for any disc labelled r ; if b.- a.= 0 , then 2 was nulvalent.i J J

By the above, we now have that D’ represents a failure 
of case (ii) for the same class C of groups, as C contains 
all finitely generated free groups and their free products with 
elements of G . Also d(D’) = d(D) 5 so that Claim 1 tells us 
that the set A = {rjj has just one element, that is 2 is 
univalent on Dr and in D’ there is just one label obtained 
from r , call it r’ .

resents a counter-example for with G in C
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Let a,b be the minimum and maximum values attained by a 
on the edges at an r-disc. In D’ replace the label on the 
edges labelled t,Q by the label t ; D*# now represents a 
counter-example {g^ ( ^ ’dPv) , rn,w] and the fact that C is a 
f-p-c class ensures that G*(^bPy ) is in C . The new relator 
r" is obtained from r’ by replacing occurrences of t^ by t; 
therefore the cyclically reduced length of r" , regarded as a 
word in G" *<’t/>, L(rn) is less than LCr’), and is greater 
than 2 . D" thus represents a counter-example for C .

If D" is not nul'valent, we can repeat the above proceedure, 
and in a finite number of steps we arrive at a diagram which is 
nulvalent, giving the required example for case (i).

This completes the proof of

Proof of b.k- (cont.)
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The principal form in which we shall use the Lyndon Lemma 
in the next section is a corollary of the method of proof :
Corollary ¿f. 6

Let {G,r,w} be a minimal counter-example for a f-p-c
class of groups C 0
Then there is a nulvalent diagram for a counter-example
f L , cx 2. r\ f i{G,r,w’; and if r = apt a2t . ...ant with G- ilj
and <r (r) = 0 , then and \^\ = 1 .

Proof

Let D be a diagram representing £G,r,w} ; if there is 
a polyvalent potential function on D , we can relabel the edges 
of D as in the second half of the proof of to obtain
another counter-example for C in which the new relation is 
shorter than r , or the new relation is essentially the same 
as r , and the diagram is not connected - the polyvalency 
being due to differently-valued constant potential function on 
each component. In the second case replace D by a connected comp
onent of D which represents a counter-example {GjTjW'} (as 
in 2.21) . As we chose a minimal counter-example, relabelling as 
described is not possible, thus the first part of the theorem holds.

If <T̂ (r) = 0 , then we con use the method of H-.2(v) and 
(ii) to put a potential function on D ; if \o(.. t>l or <X1 has 
the same sign as. Ĉ + 1 ? there is a pair 
of adjacent edges on a disc with spokes 
in D with the same orientation. Then 
the construction of U-.2 (ii) gives a 
potential function with different values 

on these two edges ; thus the theorem holds.
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Section 2 The Freiheitssatz for Locally Indicable Groups 

The main application of our potential functions is, as 
earlier advertised, to prove the Freiheitssatz for the class of 
locally indicable groups. The proof is in two steps : first we 
show (^.8 ) that any new relator r is soluble for a locally 
indicable group G , and then we use this result to obtain (*+.9) 
almost immediately the required version of the Freiheitssatz.

Definition *+.7

A group is locally indicable if any finitely generated 
subgroup has 7L as a homomorphic image.

Note that a subgroup of a free product is a free product of 
(conjugates of) subgroups together with a free group (by the 
Kuros subgroup theorem), and that each factor is finitely gen
erated if the whole is finitely generated (by Grushko’s theorem). 
This means that: ( Defndddii) )

the class of all locally indicable groups is f-p-c. 
This means that we can use the results of the previous 

section, in particular *+.5 and ^ . 6  .

Proposition ^ . 8

Let G be a locally indicable group, and let r be a 
cyclically reduced word in G,fc<(t> with t-occurences.

Then G injects into <G,t;r>.

Proof

The class C of locally indicable groups is f-p-c (as noted 
above), so let us suppose that the proposition is false, and that 

{G,r,wj is a minimal counter-example for C ( Defn.d3(iv) )r 
represented by a nulvalent diagram D, given by Corollary b . 6 .
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The proof now splits into two cases, depending on whether
the exponent sum of t in r , <rt(r) , is or is not equal to

CC | OC 2. *C(\ C nizero. Let r be the word a^t a2t ...at with a£ G — \.l̂
oc±e  z - { o \ .

In case la) and case 2 we show how to construct a polyvalent 
potential function on the diagram D, contradicting the nulvalency. 
In case lb) we use the nulvalency to obtain another counter-ex
ample for C which contradicts the minimality of ^G,r,w| .
Case 1 crj_(r) ^ 0 .

Subcase a) Suppose that there is a homomorphism q taking
SbgPjXa^,a2,..., an> onto 7L such that ^  q(a^) 
is equal to zero.
Here we can put a potential function on D as in 
U-.PCiv) using q-fc-0 : Sbgp^a-^,a2 ,...,a ^ * ^ .
For some i , q(a^) ^ Q as q is onto, and hence 
the two edges adjacent to the segment labelled â

Proof of M-.S (cont.)

Subcase b) Suppose that no such q as above exists. Then take 
some q : Sbgp^a1 ,a2, . .. ,an>  goes onto 2 1 , such 
that ¿TqCa^) = z f 0 ; suppose h£(r) = -s f 0 0

Using the notation of U-.2(v) and *+.2(iii), we use
G = s.q-^z.id : Sbgp <a-, ,a ,.. . ,a>&<t>-- ẐtL ; so^  ̂ n
that 0 (r) = 0  , and q’ = q® 0 ; with Q* = s ,q’ z . id 
we put a potential function on D as in i+.2.(iii).
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Proof of *+.8 (cont.)
subcase lb) (cont.) Let B be a disc with spokes used to con- 

, struct D; if for some i we have that |<x[ 8 1 ? then
e , e'on D there are two adjacent edges 

with the same t-orientation. These edges 
are seperated by a segment of ¿B labelled 
b such that 8 (b) = 1 ; that is, b is trivial 
in G. Therefore q’(b) = q(8 (b)) = 0 , and 
h(v’) = h(v) + q’(b) + -̂ £-+ = h(v) + £, where
£= ± 1 is the orientation of the edges e
and

But D is nulvalent, so by the above * . 1= 1 for
all i . Also when cx. = ex we must have that

i-l i
q(a^) = - (as h(w*) = h(w) + q(a^) + oh :see picture) 
and similarly qta^)^ 0 if and only if cx\ = - Cxi

As the exponent sum of t 
there is a subword ta.t (oiJ

m is non-zero.
t"1 ait"1 ) in r ; by 

the above, ai is non-trivial in G . Wè now relabelJ
- 1 ,the t-edges of D by a. t ; this gives a new diag- 

ram DJ in which the labels on the boundaries of the 
regions are the same as those in D (after trivial 
cancellations) , so that D* represents the counter
example {G,r’,w} where r’ is obtained from r by
replacing t (resp. t-1) by a“1! (resp. t_1 a^) ; in

-1  2particular the subword ta.t becomes â  t so that 
r* is strictly shorter than r , contradicting the 
assumed minimality of ■[G,r,w’] (see defn *+.3(iv)) .
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Proof of *+.8 (cont.)

has the form aGta2t-"La2 ta^_.. . t a ^ t  ^

Case 2 rjXr) = 0 .
As {G,r,w] is a minimal counter-example for C and as 

ô -(r) = 0 , we can apply Corollary ^-.6 to give that r

As r has this

alternating form, for each region of D , all the t-edges 

on its boundary have their transverse orientation inwards 

or they all have their orientation pointing outwards.

We can therefore regard D as a special diagram for the 

counter-example G ^ r ’jw’} , where G’ is an iso-

as being in G ’

for all i ; because of the restriction on the orientations 

of the t-edges on the boundary of a region, the relations 

corresponding to the regions of D (that is the labels 

on the boundaries of regions) are words in G or in G ’.
As C is a f-p-c class, G^cG* is an element of C; also 

the length of r is equal to the length of r ’ , .so that 

[Gjk G j ,r> ,w*j is also a minimal courvter-example for C .

But as G is a locally indicable group, there are homo- 

morphisms qG , q^ such that sbgpG<aG ,a^, .. . ,a2m_-ĵ

morphic copy of G, and we regard a

and sbgpG,<a2 »a^>•••, a2m> go onto 2£ . 
n MIf 2C q(a0 .) = 0 then use the homomorphism 0 = qyJfcrOHtO 

i= 0  t x
from G* G ’>Kt> onto 2G to define a potential function 

on D , as in ^f.2(iv) : this function is polyvalent.

The same construction can be used if .T^tq^Ca.^ = 0 .

If neither of these exist, then rescale each of qG and q2 

and use © = q-j^q^O : G^s-G^ <t> 7L (scaled so that 

0(r’) = 0 ) in. the construction of *f.2(iv). In all cases 

the potential function resulting is polyvalent as for some 

j , 0(aj) 1 0 5 this contradicts the nulvalency of D.
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We have therefore shown that there does not exist a ncli

vaient diagram representing a minimal counter-example for the 

class of locally indicable groups, and therefore there is no 

counter-example for this class, and the proposition holds.

Proof of *4-,8 (cont.)

Theorem *+.9 The Freiheitssatz for Locally Indicable Groups

Let G-̂  and Gg be locally indicable groups, and r 

a cyclically reduced word in G^& G2 of length 2 .

Then G^ injects into G1-^G2 for i = 1,2 .

N<r>
Proof

Suppose that the theorem fails and G-̂  does not inject 

naturally into Gl^ G2 where r = a-. b, a0b0 ... a b ,
N<r> 1 ¿ ¿ n n

a.GGi - fl), b.€ G2 - {lj.

Replacing each occurrence of b. by tb^t“1 •, we have that

G-|_ does not inject into Gl~*~ ^ , where
-1 N<r’>

r’ = a1tb1t ...a tbnt

But G" = G-j_-3|t-G2 is locally indicable and r’ has length 
greater than 2 (that is free-product length in G"#Kt> ) , so 

that this contradicts proposition *f.8 .
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Section 3 Exponent-Slim Zero Results

In 1+.2(v ) 5 we saw how to put a potential function on a 

diagram representing a counter-example when we are given a 

homomorphism from ^G,t;r> onto the integers; the case when 

crt(r) = 0 has a particular such homomorphism associated, as 

in -̂.2 (ii) 5 in this case, the potential function depends only 

on the distribution of t-occurrences in r.

Using these potential functions and the relabelling tech

niques of section 1 , we shall show (^.11) that the existence 

of a counter-example {G,r,wj depends upon the existence of an

other counter-example {g -*<s >  , r° , w ’J where r° is one of two 

words obtained from r (defn t̂-.lO) which are usually "simpler'' 

than r , in the sense of having fewer t-occurrences.

We then use this result to obtain some results concerning 

torsion and added relators of a certain form (m-,13).

Definition i+.lO

Let r be a cyclically reduced word in G * < 0  , and let 

9 be a homomorphism from <(G, t; r t o  2L .

Writing r = cqt^ 1 c0 t ^ ...cmt^rn where c^e G (oossibly*  -  V

Cj_ = 1 in G) and = ±1 , define :

hj (0 (ci )+ ) - 1<£\ , for each j 
/ 2 J

, m >j >  1 0

Define rm„„ (respectively r • ) as the elements min' of the group

Gfe<s>#<ifc> obtained from r by :
£. £•

replace each occurrence of t  ̂ by s'" , except where

h. achieves its maximum (resp. minimum).J

N.B. For a given word r in G^r<Tt> , it is to be noted that 

rinax and rmin dePend upon the particular homomorphism
chosen.
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Example : Let r = a1ta2ta^ with aj_ t  C- - {lj .

Using the usual homomorphism 0 * i d  : G*"<t>-*2Z,

we have that hn = l , h = 3 , h = 3. , h . = l  .
1 2 1 2 3 2 ^ 2

Thus rmax = a^ajtajt^a^s'1 
rmin = aita2 sa3s-1alft-1

We now use this definition to give the general version of 

the principal theorem of this section; in practice we shall use 

only the special case when the exponent-sum of t in r is 

zero, when a homomorphism as required in b-.lO exists naturally, 

as we remarked earlier.

Theorem b-.ll

Suppose that G does not naturally inject into <G,t;r^>

and let 8 be a homomorphism from <G,t;r^ to 2£ .

Then G*-< s> does not naturally inject into <^G*< s>, t; r ^

where r° is one of r . , rm m  ’ max
Proof

Let D be a special diagram representing the counter

example {G,r,w} . If 8 is trivial, then r = rmin = rmax , 

and the theorem holds trivially.

We can therefore suppose that 8 is onto. As in b-.2(v) 

we use 8 to define a potential function ¡5 on D , and as 

in the proof of b-.b- we relabel the t-edges using j& to obtain 

the diagram D ’.

Suppose that $ wras not univalent on D.

Let v ,v v be the values attained by 5 on the t-edges

of D , with vm<  v,n+1<  . ...< vM . Where e is an edge of D, 

and 5(e) = v • , we relabel e by tv . .



In D J the discs which were labelled r, are now labelled in 

A = { r ^  • where each in* is obtained from r by replacing 

the t-labels by the relevant tv .-labels: from the definition
J

of potential functions, we see that the elements of A can be

ordered by the lowest (or respectively the highest) index â ^

(resp. b-j ) such that ta . (resp. tu ) occurs in r. ’ . Thus

r-, 5 contains tan = t . We now have that A is a set of words 1 al m
staggered with respect to {V(tv . )J, and D ’ represents w £ u - ^

such that w = 1 in G-Jt( F( tv . ) )
i=m x
N<A>

As in let MJ be a "two-ball with holes" contained

in the interior of D ’ containing in its interior all those

discs which are labelled r » and no other v . ’ discs, such

that each edge of D ’ meets "bM7 in at most one point etc..

Then no edge labelled t meets BM* ; if M ’ is a two-ball

("has no holes") then we may take this to be a diagram D" ;

else, as in b . b , take a two-ball region in D ’-M? and apply

the same process, this time taking M" containing all the

discs which are labelled r.’ where j is the highest index
J

on the discs in the two-ball region which are labelled in A 

(and none of the others etc.). Continuing in this way, we shall 

eventually find a subdiagram D" containing just one label 

from A , r ’ say, such that no edge labelled t meets BD", 

where y = av or bv (the minimum and maximum values of the 
subscripts on the rx > discs in D"); which of the two is 

relevant depends upon whether we find the diagram D" after 

an odd or an even number of steps. D" represents a genuine 

counter-example, and not just a triple, as otherwise we could 

replace this region of by a region without r.’ discs,
J

and hence in D we could replace the corresponding region by 

one without r-aiscs.

63.Proof of >+.11 (cont.)
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It remains to replace all tile tv -labels by s except 

for the t -labels, which we relabel t; this converts D" 

into a diagram representing a counter-example of the type 
claimed.

Proof of h.ll (cont.)

«1
Recall that (definition 1.5 ) when r =,a1t a t  ...at1 2  n

with a.£ G - U } ,  « . t u - i  o} , the t-shape of r , denoted

H  , is the ordered n-tuple (<*,, « 2,... , <*n) .

We say that a t-shape & ]  is soluble in a class of groups 

C , if G injects into <u,t;u)> , for all groups G in C , 

and for all words u such that b d  = [rl •

Corollary H-.12

Let C be a f-p-c class of groups, and H  a t-shape 

such that <T(r) = 0  .
Let r and r be obtained using 0 ^  id : G#<jtb-*Zh. min ciax
If \r "1 and \r \ are soluble in C , then frl L mirr u max-1 '— 1
is soluble in C .

Proof

Suppose that the corollary is not true, and let {G,r,w^ 

be a counter-example with 'G^C and <3̂ (r) = 0 , let D be 

a special diagram representing ^G,r,w}. Then applying h.ll, 

there exists a counter-example £ g *<s>, r°,w’] , where r° is 

one of rmin , rffiax ; this is not possible by assumution.
m



Let r£ G*k<t)r, r 

such that CTL(r) :o
from <G,t;r> to 

two t-occurrences

&Cd-11 a.„t #.. a t with a 6-L 2 n j_
0 . Suppose that there exists

2& such that r and r
m m  max

each :

G -fc],

a homomorphism 

contain just

r .m m

rmax

oC,a, s a0s 7 .. ..a. -, s l ta . t"*~ si ¿ • • • o-i 0 j+1
CX, CXia, s a m fi> _i ä

.a s ’'2 t a, ts ^a, , . .1 2 k-l k k+1

o<. a s n
n

. a s n

say, where &  = -1 , S  - <x. +1 A  = c< +1 £  = o< -1 .
W  v»-v 'a. J ’ r$ kA k

Theorem m- . 13

Suppose that G does not inject naturally into <G,t;r> ,

with r as described above.

Then i) one of a i , a has finite order in G ,

and ii) if r has a cyclically conjugate form a^va^v ^

then a. and a, have different orders in G.0 k

Proof

The proof is an application of U-.ll : suppose that we

have a counter-example {G,r,w} , with r as described.

The theorem ^.11 gives a counter-example £g <s^, r°, w ’J

where r° is one of rmin j rmax } without loss of generality,

we may suppose that r° = r ,* m m
Let b = s ̂ za . , s -*V.. a s^a-, s^'. ., a . .. s 5 then r° is J+J- n __ 1 o-l ’

cyclically conjugate to bta^t-“ = r* , and G»lr<s> injects 

into <Tg * <s>, t; r’̂ > if and only if â. and b have the same

order in G*fr<s> j as we have an HNN extension (see 2 .25).
But b has finite order in G3fr<s> if and only if b

has the form b,ab.-  ̂ and 1 1 a has finite order in G (see for

instance [m k s ] ^ . l A  ) ; as r contains just two max 0 t-occurr

enees, b must have the form ua^u-1 .
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Proof of '*+.13 (cont.)

in order that W < s > ,  r0,v?,j be a counter-example, we

must therefore have that either a. or b has finite order
J

in G*<S/>- , that is, a^ has finite order in G , or b
has the form ua, u“~k

In either case we see'that i) holds, and in the second 

case we see by returning the s-occurrences in u to t-labels

and a has finite order in G . 
k

that r is cyclically conjugate to u*a^u*”^tajt  ̂

ii) holds.

anc so

An immediate corollary of this is :

Corollary *+.l*+

Ler G oe a torsion-free group, and r as in *+.13 .

Then G injects into <G,t;r/> .

Note that the conditions of *+.13 depend to a large extent on 
the t-shape of the word r , as the condition that cr̂ .(r) = 0 

assures the existence of the homomorphism 0 *-id : G *•< t ̂ 2 Z >  

in which case the t-shapes jjmir^ and i^max-l depend solely 
upon the t-shape [r^] ; of course other homomorphisms may exist 

in particular cases.
Corollary *+.1*+ is a somewhat weakened form of a result 

of S chi etc [sch l] :

Schiek’s Theorem
~ S1 “ap -sn rLet r = t xa^t ~t ^a t ..... t nant , where a^e G-[lj

and s . = s . if and only if i = j . 
i 0

Then G injects into <G,t;r)> if the order of a ± in G 

is the same as that of ai+1.. . a ^ . . .. a - ^  in G for all i
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It was originally claimed that we could improve on this 

result of Schieh. but this is not possible as the letter s 
may appear in the word w ? given by the minimal diagram 

representing the counter-example r . say.
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