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Abstract
The wetting and dewetting of solid surfaces is ubiquitous in
physical systems across a range of length scales, and it is well
known that there are maximum speeds at which these pro-
cesses are stable. Past this maximum, flow transitions occur,
with films deposited on solids (dewetting) and the outer fluid
entrained into the advancing one (wetting). These new flow
states may be desirable, or not, and significant research effort
has focused on understanding when and how they occur. Up
until recently, numerical simulations captured these transitions
by focussing on steady calculations. This review concentrates
on advances made in the computation of the time-dependent
problem, utilising dynamical systems theory. Facilitated via a
linear stability analysis, unstable solutions act as ‘edge states’,
which form the ‘point of no return’ for which perturbations from
stable flow cease decaying and, significantly, show the system
can become unstable before the maximum speed is achieved.
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Introduction
In this review article, we will overview recent advances
in the understanding of the instability of a liquidefluid
interface traveling across a solid substrate; the so-called
www.sciencedirect.com
dynamic-wetting or moving contact-line problem. This
flow forms the foundation of a broad array of industrial
and natural processes, including in microfluidics [1],
liquid-coating and printing operations [2], petroleum
recovery [3], plant protection [4], groundwater hydrol-
ogy [5], and biological processes [6], to name but a few.

Often, in applications, it is undesirable for the contact-

line to become unstabledfor example, in coating pro-
cesses, it is well known that when the liquideairesolid
contact line moves too fast, air is entrained into the
coating liquid as the system becomes unstable [8e10],
and the quality of the coating film is poor. Therefore,
understanding when and how these instabilities occur,
and therefore how to prevent them, is an important
practical problem that deserves scientific attention.

This article’s primary aim is to discuss the aforemen-
tioned instability using a dynamical systems interpretation
of the problem to offer fresh perspectives on a topic that
has been the subject of multiple other review articles,
e.g., recent ones including Afkhami, Gambaryan-Rois-
man, and Pismen [11]; Semenov, Starov, Velarde, and
Rubio [12]; Andreotti and Snoeijer [13]; and Semenov,
Starov, Velarde, and Rubio [14]. Various computational
frameworks have been proposed to capture this class of
flows, e.g., Volume-of-Fluid (VoF) [15,16], but the new
approaches developed to analyse the instability are
largely agnostic to these choices. This renewed emphasis
on the dynamical systems approach emanates from a

landmark study in Christodoulou and Scriven [17],
which described how computational dynamical systems
theory can be utilised in viscous flows with free-surfaces
and also Severtson and Aidun [18], which examined two-
layer flow in inclined channels using a normal-mode
analysis. The renewed interest in using this framework
stems from recent advancements in applying dynamical
systems theory to complex fluid dynamics systems to
help understand transition to instability phenomena,
including classical turbulence in pipe flow [19], droplet
breakup [20], and air bubble propagation [21,22].

Coupled with these are advances in computational effi-
ciency and power, which make a wide range of problems
accessible. Therefore, a new focus of these techniques
on dynamic (de)wetting phenomena is timely.

Dynamical systems theory has a long and rich history,
with contributions from leading scientific figures such
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Figure 1
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The upper row of panels shows the three regimes in an advancing
contact-line problem, i.e., stable, critical, and air entrainment. The lower
row of panels shows the receding contact-line problem, where a thin film
develops instead. Taken from Keeler et al. [7].

2 Wetting and Spreading (2023)
as Poincaré [23] and Kolmogorov [24], amongst others.
The basic aim is to understand how the system evolves
from an initial condition, and how certain objects, called
invariant objects, can influence this transient journey
(see, for example [25]). In the language of fluid dy-
namics, these invariant objects are typically steady states;
flow configurations that don’t change in time. However,
other more exotic invariant objects can also exist, for

example, time-periodic flow configurations, and probing
the stability properties of these objects is a funda-
mental pursuit that the dynamical systems perspective
allows. This theoretical framework, therefore, has
immense potential in the context of the moving
contact-line problem. Furthermore, whilst it is primarily
viewed as a mathematical subject, recent developments
in machine learning and concepts of ‘big data’, obtained
from numerical simulations and/or experiments, have
thrust dynamical systems’ ideas into the limelight
across a range of fields (see, for example [amongst many

others], [26e28]) as finding the ‘dominant modes’ of a
system containing sometimes millions of unknowns, or
an experiment with noisy data, can now be found using
increasingly sophisticated computational techniques,
such as iterative eigensolvers [29], dynamic-mode-
decomposition [30], and Koopman analysis [31]. This
article will focus on how finding the ‘dominant modes’
of the dynamical wetting problem can be achieved
by a linear stability analysis, using the correspond-
ing eigenmodes.

The aims of this review are to illustrate the dynamical
systems framework and methodology and to highlight a
number of open questions and challenges that this
methodology could help answer. We shall highlight a
recent article that illustrates these ideas, Keeler et al.
[7], while in x5, we shall give examples of experimental
systems which could benefit from the dynamical sys-
tems framework reviewed here.
Instabilities in dynamic wetting
We now provide some detail of the instabilities present
in (i) dynamic-wetting, where an advancing contact-line
(ACL) ‘wets’ a solid as a liquid phase displaces a fluid
(often air, though could be a second immiscible
liquid but, for the sake of exposition, shall be referred to
as the ‘gas phase’ in this article) and (ii) dynamic-
dewetting, where a receding contact-line (RCL) ‘dewets’ a
solid as the liquid phase retreats and is replaced by the
gas phase, see Figure 1. In both cases, if the wetting
speed is sufficiently small, a stable flow configuration is
possible, but beyond a critical (de-)wetting speed the
system becomes unstable; for example, in coating
technologies, air entrainment occurs in the ACL and a
growing thin-film is deposited on the solid in the RCL
[7]. The principal aim of studies of this instability is to
understand the physical conditions associated with this
critical speed.
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In the ACL, the maximum speed of wetting occurs
when a stable branch of solutions, as viewed in a suitable
projection plane, e.g., by plotting a solution measure (for

example, the length of the interface) against the sub-
strate speed, joins an unstable branch of solutions (see
Figure 4). This maximum speed of wetting can also be
referred to as the critical speed of wetting, and both
expressions shall be used in this article. This is a typical
type of flow bifurcation in fluid dynamics denoted
sometimes as a ‘limit-point’ bifurcation or as a ‘fold’
bifurcation (as it shall be referred to in this article). The
speed at which the fold bifurcation occurs indicates the
speed at which the system departs from steady flow and
where air entrainment occurs, as visualised in a range of

physical experiments, e.g., He [32]; Blake and Ruschak
[33]; Simpkins and Kuck [34]; Duez, Ybert, Clanet, and
Bocquet [35]; Pack, Kaneelil, Kim, and Sun [36]; and
Vandre, Carvalho, and Kumar [37], by the emergence of
a three-dimensional (3D) saw-tooth pattern, see
Figure 2. In contrast, in the RCL the fold bifurcation
indicates the emergence of thin-film formation [38,39].
These instabilities occur in a wide range of phenomena,
for example, this instability is also visualised in droplets
sliding down a substrate [40], but in what follows, we
focus on coating-flow geometries where there is a

moving substrate and unbounded fluid and gas phases.
Interestingly, although fully-developed flow past the
fold has intrinsic 3D structures [32,41], the critical
value of the speed for the two-dimensional (2D) system
often provides an excellent prediction to the onset of
this behaviour (see, for example [42e44]); an observa-
tion which is yet to be fully understood. Three-
dimensional perturbations, ‘into the page’ for the RCL
www.sciencedirect.com
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Figure 2

Top panel: Figure 7.14 taken reproduced with permission from Vandre [46]
showing air entrainment (via bubbles emanating from the tips of the
sawtooth ‘vees’) in the advancing contact-line in a coating-flow geometry.
Bottom panel: Figure 2 adapted and reproduced with permission from
Pack et al. [36] Copyright 2008 American Chemical Society. This experi-
ment investigated the contact line instability caused by air rim formation
under (nonsplashing) impacting droplets.

Figure 3
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A liquid-bridge geometry, showing the difference between the apparent
angle, measured a small finite difference away from the contact-point and
the ‘true’ contact angle, qcl. Taken from Keeler et al. [59].

Dynamical systems and the contact-line instability Keeler and Sprittles 3
were investigated in [45] and for the ACL in Vandre
[46], both using lubrication models and thus leaving
plenty of scope for improvement in the ACL, where
such models cannot accurately capture both phases;
extensions will be discussed in section Open problems
and new horizons.

Conventional modelling approaches
A range of different approaches have been proposed to
describe the physics of the moving contact-line, but two
of the most popular ways in which to describe the
experimentally observed dynamics of the angle are (i)

the hydrodynamic theory [47e49], based entirely on a
macroscopic picture and (ii) the Molecular-Kinetic
theory [50], in which the contact-line jumps across energy
barriers in the substrate by thermally-activated molecu-
lar events [51,52]. One of the key differences that we
highlight between these approaches is the treatment of
the ‘true’ contact angle, qcl, see Figure 3. In (i) qcl is a
constant, typically the equilibrium value which measures
the wettability of the solid substrate. In (ii) however, qcl
is determined using a formula that can relate the slip
length, angle, and speed (see, recent articles [53]; [55]).

It is still hotly debated which interpretation is correct, if
both need to be combined, or whether more complex
frameworks such as the interface formation model are
required [56], but the arguments for and against will not
be reviewed in this article as it has been the attention of
numerous other review articles including Karim and
Suszynski [57]; Afkhami et al. [11]; Semenov et al. [12];
Andreotti and Snoeijer [13]; and Bonn, Eggers, Indekeu,
Meunier, and Rolley [58]. We shall take the simplest
model, approach (i), and note that the techniques
developed here can easily be applied to the other cases.
www.sciencedirect.com
Importantly, any ‘viscous bending’, leading to apparent
dynamic angles, is resolved by our computations.

Often, modelling approaches are simplified by employ-
ing a lubrication (or ‘thin film’) approximation to the
NaviereStokes (NS) equations to allow a suite of ana-
lytic mathematical methods, for example, matched as-
ymptotics, to be applied and to enable quantitative
theoretical results and predictions can be made
[38,45,48,49,60e67]. These analyses have provided
invaluable insight, but they fail when (i) the contact
angle is large and (ii) the viscosity of the upper fluid has
to be taken into account as both fluids cannot be
simultaneously ‘thin’. The latter situation described is
ubiquitous in the ACL problem, and thus the lubrica-

tion approximation is particularly poor in this case as
observed in Vandre [46]. To avoid these parameter re-
strictions, the full NS equations have to be solved,
which, historically, has been used as a ‘last resort’ due to
the computational expense of calculation. However, due
to the ever-advancing progress in scientific computing
and numerical analysis (see, for example, [68,69]), these
calculations have become increasingly more efficient,
and calculating free-surface flows with the full NS
equations is becoming less of a barrier [70,71]. Due to
these advances, time-dependent solutions to the NS

equations can be efficiently calculated in two di-
mensions (and also, albeit more expensively, in three
dimensions) as long as the problem is not sufficiently
multiscale, and this article will showcase these methods
and results. In addition, as we shall show the linear
stability algorithm, as described in Christodoulou and
Scriven [17] and applied in Keeler et al. [7], is now far
more tractable from a computational viewpoint due to
the plethora of advanced linear algebra routines that can
accurately and efficiently solve generalised eigenvalue
problems (see, for example, [29,72]). Finally, the NS
Current Opinion in Colloid & Interface Science 2023, 67:101724
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Figure 4
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Panel (a): A fold-bifurcation solution structure. The horizontal axis represents a control parameter, and the vertical axis is a system measurement. As the
control parameter is increased, two branches of steady states exist, meeting at a critical value of the control parameter called a fold bifurcation. Panel (b):
A typical phase-plane sketch showing the stable ‘attractor’ and unstable ‘saddle-node’. Lines with arrows represent trajectories that take the system from
one state to another. The stable and unstable manifolds represent the boundaries of initial conditions that result in stable and unstable behaviour. Taken
from Keeler et al. [59].

4 Wetting and Spreading (2023)
paradigm is often able to incorporate ‘additional
physics’ as shall be discussed.

In the literature, for the hydrodynamic interpretation,
which we henceforth focus on, there have been many
studies that have calculated steady-state solutions
(equilibria of the system) to the NS equations. Most of
the original articles which uncovered and analysed the
so-called ‘moving contact-line problem’, e.g., Huh and

Scriven [73] and Dussan [74,75], focused on the steady
case as did attempts to connect the actual and macro-
scopically observed (or ‘apparent’, see Figure 3) contact
angles [48,76], where it was shown that three asymp-
totic regions exist, with, notably, an intermediate region
where viscous bending of the interface occurs.

For the RCL, in a lubrication framework which assumes
the outer phase is dynamically passive, a sequence of
insightful articles, [60,61,77], showed that the inner
region and outer regions can only be asymptotically
matched when the speed of the solid, measured as a

capillary number, Ca = mU/g (m is the liquid’s dynamic
viscosity, U is speed of the substrate, g is the surface
tension), was less than a critical value, i.e., Ca< Cacrit. In
these papers, it was shown that the value of Cacrit co-
incides with a fold bifurcation in the steady solution
space, which is simply the location in parameter space
where two branches of solutions meet (as seen in
Figure 4; see Kuznetsov [25] for a detailed mathematical
description of fold bifurcations in dynamical systems).
In general dynamical systems, steady states on one
branch (say the lower without loss of generality) are
Current Opinion in Colloid & Interface Science 2023, 67:101724
often stable and on the other (say upper) are unstable,
although this is not always necessarily the case; they
could both be unstable (although they could not be both
stable). The stable and unstable branches of the RCL
were then analysed using a lubrication model by Chan
et al. [62]. However, this approach fails for the ACL,
where if the outer fluid is assumed to be dynamically
passive, a finite Cacrit cannot be found.

More recently, the preceding analysis has been extended
to general liquidegas systems for lubrication models,
where the gas phase has nonzero viscosity [65,78], free-
surface cusp theory [64,79], and also for the NS model
[43,46,80]. The addition of a dynamically active gas
phase (nonzero pressure gradients) drastically alters the
solution space for the ACL, and, similar to the RCL, a
fold bifurcation then occurs at a finite Ca. Vandre et al.
[80] showed that, physically, Cacrit in the ACL occurs
when the air-pressure gradient along the interface
matches the strength of the capillary-stress gradient
near the contact point. It was also demonstrated that

the prediction of the value of Cacrit for the ACL system
is inaccurate when using the lubrication model as an
approximation to the full NS equations[43,46,80]. The
inclusion of additional physics, such as inertia, Maran-
goni flow, gravity, shear thinning/thickening, and ther-
mal effects keep the fold-bifurcation solution structure
intact [42,80]; [null]; [83e85] (these references will
henceforth be attributed to the ‘Minnesota group’).
Another important development is that of the so-called
hybrid model, where the liquid domain is modelled using
the NS equations and the gas domain is accurately
www.sciencedirect.com
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b A simple example is this system of ODE’s: _x ¼ � 2exþ y; _y ¼ � ey, the eigen-

modes are stable but initial conditions are possible for transient growth.
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modelled using lubrication theory (see [42,44,81e83,
86]). This has the added computational advantage that
only approximately 50% of the domain has to be
discretised, vastly reducing the computational demands,
whilst still providing an excellent approximation to the
full system.

Dynamical systems approach
Consider now how dynamical systems theory can be
applied to this problem (and indeed any problem with
fold bifurcations present). Central to dynamical systems
theory is the investigation of the stability properties of
fixed points, which, in fluid dynamics problems, are
precisely steady states of the governing equation. There
is a hierarchy of stability classifications that a steady
state can possess. The strongest type of stability is
asymptotic stability which implies that provided an initial

condition is in the basin boundary of attraction, then the
system will tend to the steady state as time tends to
infinity. A weaker concept is Lyapunov stability that
states if an initial condition lies sufficiently close to the
steady state, then the system will remain in the vicinity
of this steady state for all time. These definitions have
no restrictions on the size of the initial deviation of the
system away from the steady state and are often inter-
preted as nonlinear stability. Linear stability refers to
asymptotic stability of the linearised equations; meaning
that the results are only valid for sufficiently small

perturbations away from the steady state. This is the
most popular approach in fluid dynamics problems
because the linearised system is far easier to deal with
mathematically and to identify the stability properties
(as discussed in the next paragraph). Also, small per-
turbations are often the most relevant class of pertur-
bations for a given problem, especially if attempting to
understand the response of the system to small amounts
of noise, for example. Finally, we note that if a system is
linearly unstable, then by definition it is also nonlinearly
unstable, but the converse is not true; systems could be

linearly stable but nonlinearly unstable. See Kuznetsov
[25] and Holm, Marsden, Ratiu, and Weinstein [87] for
a technical discussion of these ideas and some examples.

At a fold bifurcation, the steady state is no longer, what is
termed, a hyperbolic fixed point of the system (not to be
confused with a type of partial differential equation),
which means that the Jacobian of the system at the
steady state is singular. The Jacobian of the system is a
matrix that describes the linear dynamics near to a so-
lution, and thus, all of the (linear) stability properties

are encoded in this matrix and, in particular, in the ei-
genvalues of the matrix [25,88]. Any eigenvalue with a
positive real part represents unstable modes and any with a
negative real part represents stable modes. At a fold
bifurcation, an eigenvalue of the Jacobian crosses the
imaginary axis (so that its real part changes sign),
resulting in a switch of stability properties; indeed, a lot
of the dynamics of the system can be summarised by
www.sciencedirect.com
solely looking at the behaviour of the system near a
bifurcation point. The dynamical systems approach then
proceeds in two stages. The first is to calculate families
of steady states and utilise the information stored in the
Jacobian matrix of the system in order to obtain their
stability. The second step is to run simulations in time
using the eigenmodes as initial conditions to see what
effect the steady states (stable or unstable) have on the

transient dynamics and eventual outcome of the system.
The eigenmodes corresponding to the least stable ei-
genmodes can be thought as the ‘dominant modes’ in
the dynamics near the steady state, but other algo-
rithms, such as dynamic-mode-decomposition [30] and
Koopman analysis [31], reveal ‘dominant modes’ of an
entirely transient evolution of the system. However,
often in experiments, the disturbance to the steady-
state is not a ‘clean eigenmode’ and consists of experi-
mental noise. One way to analyse this theoretically is to
perturb the steady state by a linear combination of

different eigenmodes and analyse the resulting time-
dependent behaviour. It is possible for a disturbance
consisting of a combination of entirely stable eigen-
modes to become unstable through initial transient
growth.b The amplification of small disturbances in this
way is due to the non-normality of the eigenvectors
which causes initial transient growth before nonlinearity
can ‘kick in’ if the growth is sufficiently large. This has
been explored in a number of fluid-dynamics problems
(see, for example, [89e93]) and for the ACL problem
(see Figure 13 in Keeler et al. [7]).

This approach has only recently been applied to (de-)
wetting problems, where instead of focussing solely on
the steady-state solutions of the NS equations, a 2D
time-dependent computational framework was formu-
lated to understand the effect of the stable/unstable
states on the time-dependent evolution of the moving
contact-line Keeler et al. [7]. The stability of the so-
lution branches for both the RCL and ACL were
probed using a linear stability analysis, and it was
confirmed, as suspected, that one of the branches is
unstable and the other stable. For values of Ca > Cacrit,
time-dependent simulations showed that for the RCL a
thin film was deposited on the solid, whereas for the
ACL, the second fluid was entrained along the solid
‘into’ the liquid, as expected. However, crucially, the
system could also become unstable when
Ca < Cacrit due to finite-amplitude perturbations of the
steady-state (see, for example [94]), and the new
theoretical framework allowed this effect to be fully
explored. This work was extended to include
a Molecular Kinetic theoryebased description of the
contact line in Keeler et al. [59] and showed excellent

agreement with recent molecular dynamics simulations
in Fernádez-Tolendano et al. [54].
Current Opinion in Colloid & Interface Science 2023, 67:101724
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6 Wetting and Spreading (2023)
In this review, we will focus on time-dependent solu-
tions of the NS system, leading to a detailed description
of the dynamical systems approach to the moving
contact-line problem. Fundamental to this is the exis-
tence of a fold bifurcation as the capillary number is
increased. We will review what minimal physical ingredients
are required in order for this fold bifurcation to be
present. The dynamical systems interpretation is inde-
pendent of the physics employed, and therefore, the au-
thors believe it could be a useful new tool in the myriad
of different physical models currently in the zeitgeist.

In x3, we will describe the common NS paradigm used
in recent works, focussing on a list of basic assumption
that produces the desired dynamics; in particular, we
shall focus on the hybrid model that has great promise as
an efficient scheme for this class of flows. In xA, we shall
describe some features of the numerical models which
may act as a guide for the reader when deciding how to

implement their own moving contact-line code. In x4,
we shall give a description of the recent new develop-
ment of using a dynamical systems interpretation to the
problem before discussing a number of open problems
and challenges in x5.
Maximum speed of (de-) wetting
The aim of this section is to describe the main features
of the governing equations which result in a maximum,
or critical, speed of (de-) wetting and hence a fold
bifurcation for the RCL/ACL problem. The equations
are stated more thoroughly in Vandre [46]; Keeler et al.
[7]; and Sprittles and Shikhmurzaev [95], and we refer
the reader to these works (among others) for a full
problem formulation of the NS equations.

Full hydrodynamic model
We demonstrate the model in the context of an idealised
experiment: two-dimensional flow between two parallel

plates, although other geometries have also been stud-
ied, including curtain-coating [42] and liquid bridges
[59]. It is important to define a number of nondimen-
sional parameters before proceeding; all dimensional
quantities are denoted with stars. Quantities in the
liquid, for example, the liquid in Figure 1, are denoted
with a subscript 1, whilst the gas phase has subscripts 2.
We define the viscosity ratio c ¼ m�2=m

�
1, the Reynolds

number, Re ¼ r�1U
�H�=m�1, with reference to typical

speeds U* and length-scales H*, density r1*, and the
dimensionless slip length l = l*/H*. By assuming

Re ≪ 1 and the Froude number Fr ¼ U�=
ffiffiffiffiffiffiffiffiffiffiffi
g�H�p

[1
(where g* is the gravitational constant), the dimen-
sionless fluid (i = 1), and gas (i = 2) velocity and
pressure ui and pi, respectively, satisfy Stokes flow
equations in each phase:

0 ¼ �Vpi þ diV
2ui; V$ui ¼ 0; d1 ¼ 1; d2 ¼ c:

(1)
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For a dynamically passive gas, assuming the surface tension

coefficient g* of the liquidefluid interface is constant, the

dynamic and kinematic boundary conditions on the inter-

face take the form

t2$n� t1$n ¼ 1

Ca
kn;

vr
vt
$n ¼ u$n (2)

where ti = �piI þ di (Vu þ (Vu)T) is the dimensionless

stress tensor of the liquid and the gas, k is the curvature of

the interface, n is the outward normal vector (pointing

towards the fluid phase) of the interface, and r = (xs, ys) is
the unknown position of the interface. On the walls, we

have a no-penetration condition and employ a Navier-slip

model i.e.,

lðti $nÞ$t ¼ ðui �UÞ$t; ui$n ¼ 0; (3)

where n, t are the vectors normal/tangential to the sub-

strate, respectively, and U = (0, �U) on the moving wall

and U = 0 on other walls, and appropriate far-field con-

ditions are applied on the inflow/outflow boundaries.

Finally, we assume the contact angle is constant. For the

ACL we have to take into account the fluid velocities and

pressures in both phases as the air’s ‘strength’ is increased

when it forms thin layers near the contact line. In

contrast, for the RCL problem, as shown in Vandre et al.

[80] and Keeler et al. [7], air as an outer phase is typi-

cally passive, and, provided the contact angle is smaller

than 90�, a lubrication approximation often works

well (see [60e62,77]).

Notably, the presence of gravity does not significantly
change the value of Cacrit, but as the branch is traversed
upwards, extra ‘wiggles’ in the curve occur, corre-
sponding to extra oscillations on the interface, see Chan
et al. [62] and bottom panel of Figure 8.

Finally, we note these are the minimal physical ingredients
required to ensure that a critical capillary occuring in
both the RCL and ACL exists. TheMinnesota group has
included numerous additional physics in their NS
models, but all share the common feature that a fold
bifurcation is observed in the solution structure.

Hybrid model
For the ACL, the velocities and pressures in the upper
gas phase have to be resolved. However, the computa-
tional cost of a two-layer problem can be drastically
reduced by implementing a thin-film approximation in
the phases for which it is valid [49,66,67], which leads to

a hybrid model (see [42,81e84,86]) that approximately
halves the number of unknowns in the problem and
avoids meshing very small elements in the outer
phase as variables in the upper gas phase are only
computed on the interface between the gas and liquid.
An additional assumption this model makes is that the

ratio bh=Y≪1 (see Figure 1), resulting in the flow
www.sciencedirect.com
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Dynamical systems and the contact-line instability Keeler and Sprittles 7
becoming approximately parallel to the substrate. Then,
instead of solving Stokes flow in the gas phase, a lubri-
cation model is applied to determine the pressure on the
interface. Mathematically, one solves a surface Partial
Differential Equation (PDE) for the pressure in the gas
phase only, along the interface, which can then be
coupled to liquid phase via the boundary conditions (see
Keeler et al. [7]; Vandre [46]; Liu et al. [82] for details),

namely we solve

vr
vt
$n� 1

c

vQ2

vs
¼ 0; Q2 ¼ 1

6

vp2
vs

h3 þ 1

2
Ah2 þ Bh (4)

where s is the arclength along the interface measured from

the contact point, p2 is the dimensionless pressure of the

gas along the interface, the � sign indicates the ACL/RCL

problems, respectively, h is the perpendicular distance of

the interface from the moving solid, and A and B are

functions of the system parameters (see Keeler et al. [7] for

a detailed description).

There has been extensive validation of the hybrid model
for the steady ACL against the full system and experi-
ment [42,82] and for the time-dependent hybrid model
[7]. Here, we do not use the hybrid model for the RCL
as the outer phase is considered dynamically pas-

sive anyway.

As shown in a large number of research articles [42, 45,
59, 61, 64, 77, 81, 82, 82e84, 86], steady solution curves
can be traced extensively for a wide range of physical
parameters, and the solution structure broadly looks like
that in Figure 5. The main difficulties in computing the
lower and upper bifurcation curves are that (i) as the
fold bifurcation is approached, pressure gradients can
become large [80,83] so that the mesh needs to be
sufficiently resolved around the contact line and (ii) as
the upper branch is traced, the interface becomes

multivalued [7,62], i.e., the interface develops a sta-
tionary inflection point, see panels A3 and R3 in
Figure 5. The first difficulty is overcome by mesh
refinement, and the second difficulty can be resolved by
choosing to parameterise the interface as a function of
the arc length, i.e., r= (xs(s), ys(s)). See appendix A for a
discussion of these points.

Edge states of the moving contact-line
problem
Now that the physical conditions for a maximum speed
of (de-)wetting and the existence of a fold bifurcation
have been established, we discuss recent progress by
Keeler et al. [7] in applying dynamical systems theory to
the moving contact-line problem. Whilst the approaches
outlined in the previous section focus on steady flow, in
Keeler et al. [7,59], the time-dependent stability
properties of the steady states were probed systemati-
cally. We note that this is not the first time these ideas

have been used in this class of flows, for example, Chan
www.sciencedirect.com
et al. [62] used bifurcation theory to approximate the
unstable branch near the fold bifurcation using a lubri-
cation model. However, the chief novelty of Keeler et al.
[7] is the implementation of a full hydrodynamical
model that captures the RCL and ACL as subsets of the
same problem; thus, treating them within a single
theoretical and computational framework. This work
was in the same spirit as the study by Christodoulou and

Scriven [17] who numerically calculated the eigen-
modes of a free-surface coating flow and also Severtson
and Aidun [18] who calculated normal modes of a
viscous two-layer shear flow.

The approach considered is inspired by ideas from
dynamical systems theory (see, for example, [25]) which
have successfully been applied to a number of other
different fluid dynamics problems. In this interpreta-
tion, the governing equations can be written in the form

Rð _w;wÞ ¼ 0; (5)

where the vector w represents all of the unknowns in the

problem, (i.e., w = [u, p, r] in this problem), R is a

nonlinear operator, and _w represent time derivatives in the

system. We again emphasise that equation (5) is a

completely general representation of a physical system and,

e.g., is independent of the physics chosen for a particular

dynamic wetting model.

The geometric interpretation of this system is that
steady states (and other invariant objects) of the govern-
ing equations are located in a finite space of the infinite-

dimensional phase space of the system, see Figure 6. A
given initial condition will result in a trajectory through
this phase space and can potentially interact with the
collection of invariant objects which will alter its final
dynamical outcome; steady states could be stable and
act as an ‘attractor’ to the system or so-called ‘edge-
states’, weakly unstable invariant objects, could act
subtly, ‘directing’ trajectories to different dynamical
outcomes. These ideas are shown in the top panel of
Figure 6 where the phase space is shown as a 2D pro-
jection in a plane parameterised by two solution mea-

sures; these could be, for example, the length of the
interface, i.e., L = !ds, where the integral is over the
interface, and s is the arclength, and the height of the
interface, i.e., Y = y(1) � y(0) see Figure 1. Therefore,
the calculation of these objects, and hence revealing
their location in parameter space, is crucial in under-
standing the eventual dynamical outcome of the system.

This interpretation is pertinent to the moving-contact-
line problem because of the existence of the fold
bifurcation at the critical capillary number and the ex-

istence of an upper branch of solutions, which have
always been viewed as being unstable but never
explicitly investigated. The methodology described can
now be used to determine quantitative stability
Current Opinion in Colloid & Interface Science 2023, 67:101724
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properties. Furthermore, by explicitly calculating the
unstable branch of solutions by slightly perturbing these
unstable states (impossible to do in a physical experi-
ment), the influence of these states on the overall dy-
namics of the system can be found. In Keeler et al. [7],
these dynamical systems ideas were deployed to address
the following three questions:
Figure 5

The bifurcation structures of (a): advancing contact-line problem and (b): rece
solutions, respectively. The vertical measure is the height of the interface, Y,
indicated by markers on the solution curve in the main panel. The eigenspec
Keeler et al. [7].

Current Opinion in Colloid & Interface Science 2023, 67:101724
(Q1) : Is the upper branch of solutions unstable as
suspected but never shown mathematically?

(Q2) : What effect does this upper branch of solutions
have on the dynamics of the system; if any, when
Ca < Cacrit?

(Q3) : What happens when Ca > Cacrit?
ding contact-line problem. The solid/dashed lines indicate stable/unstable
as shown in figure 1. Inset figures are interface profiles with streamlines
tra are also displayed as red markers in the inset diagrams. Taken from

www.sciencedirect.com
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To answer (Q1), a steady state, denoted by w+, is
perturbed by an eigenmode which has a spatial depen-
dence g and a time dependent exponential, est, i.e.,
we insert

w ¼ w+ þ egest (6)

into (5), where e is a small parameter. We emphasise that

we are not assuming normal modes and that g is unknown a
priori. At leading order, (in e) the equations in (5) are

simply the equations for the steady state, but at the next

order, the linearisation procedure results in a generalised

eigenvalue problem stated as

sMðw+Þg þ Jðw+Þg ¼ 0 (7)

that has to be solved for the spectrum of eigenvalues s,
corresponding to growth rates and corresponding eigen-

modes g, whereM(w+) and J (w+) are the mass-matrix and
Figure 6

Current Opinion in Colloid & Interface Science

Top panel: Phase-space sketch for the advancing contact-line and
receding contact-line in the (Y, L) plane. The stable and unstable states
are denoted as circular markers. The red arrowed lines indicate trajec-
tories that eventually relax to the stable state (solid line) and those that
become unstable (dashed line). The thick blue arrows in the inset figures
indicate the direction of motion of the moving substrate. Bottom panel:
The time plot of three trajectories that become stable (solid red line),
unstable (dashed red line), and one that ‘walks the tightrope’ and stays in
the vicinity of the ‘edge’ state for an arbitrary amount of time (solid green
line) are shown. The inset diagram shows the initial condition (in green) of
the trajectory that ‘walks the tightrope’ with the stable (solid blue) and
unstable (dashed blue) states also plotted.

www.sciencedirect.com
Jacobian-matrix evaluated at the steady state w+, respec-

tively. If Real(s)<0, then the steady state is linearly stable

as all perturbations decay, if Real(s) > 0, the steady state is

unstable as perturbations grow, and if Real(s) = 0, then a

bifurcation has been located as discussed earlier. This

approach, as implemented in Keeler et al. [7], demon-

strated that the lower branch is stable and the upper branch

is unstable by calculating the values of s as the steady-state
solution branch was traced out, thus answering (Q1); the

results are shown in Figure 5.

The computed eigenmodes, g, from this stability anal-

ysis also helped answer (Q2). An initial condition for the
system can be composed of the steady state plus a linear
combination of these eigenmodes. This is a convenient
way of perturbing the interface that allows all of the
boundary conditions to be satisfied as the form of the
perturbation satisfies these conditions by design. The
eigenmode associated with the most unstable eigen-
mode effectively ‘stretches’ the interface of the steady
state in the vertical direction, whilst other eigenmodes
create ‘wobbles’ on the interface. Thus, an initial con-
dition based on a linear combination of these eigen-

modes can represent physical perturbations to the
system, if known, or could be considered as a crude
approximation to ‘noise’ in the system.

By solving the time-dependent model for Ca < Cacrit, it
was found that sufficiently small ‘stretch’ perturbations
return to the steady state, and the unstable state on the
upper branch (at the same capillary number) acts as the
‘point of no return’; if the stable state gets perturbed
beyond this, then the system becomes transient and air
entrainment/thin-film development occurs. The unsta-
ble state on the upper branch is thus an ‘edge state’, a

state that separates trajectories that return to the steady
state from those which will evolve transiently for all
time. The main consequence of this is that the system
can become unstable if Ca < Cacrit due to finite-
amplitude perturbations from the steady state. This is
significant as the identification of Cacrit in experiments
is based on when the system becomes unstable; if this
occurs before the actual critical point, then the experi-
ment is only identifying a lower bound for the critical
value. The concepts of ‘edge states’ have been used
extensively in the transition to turbulence problem [19]

and other fluid dynamics problems (see, for example,
[20,21]), but the identification of an ‘edge state’ in this
system is novel and has the potential to open up new
avenues of research in this problem. For example, an
interesting feature of ‘edge states’ is that the system can
‘walk the tightrope’ by staying in the vicinity of the
‘edge state’ for an arbitrarily long time before it will
eventually leave the influence, see Figure 6.

Finally (Q3) can be answered by solving an Initial Value
Problem (IVP), for example, for simplicity, with the

interface initially flat and the fluids initially at rest.
Current Opinion in Colloid & Interface Science 2023, 67:101724
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Keeler et al. [7] were unable to find any other solution
branches in this parameter regime, and the calculations
based on the hybrid method showed how air entrain-
ment and thin-film development occurs, see Figure 4.
This does not discount the existence of other solution
branches; it just confirms that starting from rest, a
different steady state is not reached; other initial con-
ditions which are not at rest may evolve to a different

steady state, although there is no evidence for the ex-
istence of such a state.

In Keeler et al. [7], the answers to (Q1)e(Q3) were
verified for the ACL and RCL, and the qualitative
behaviour of the stability of each system was identical
(notwithstanding the fact that ACL develops into air
entrainment, and the RCL develops into a thin film). A
follow-up paper [59] concentrated on the RCL in a
liquid-bridge geometry and explored the thin-film
development further by using the theory of Landau

and Levich [96], but in principle, the stability algorithm
of Keeler et al. [7] can be applied to include any addi-
tional physics or domain geometry and has the potential
to be applied to an untold number of different problems.

One obvious extension to the work of Keeler et al.
[7,59] is to introduce inertia. Steady solutions with
inertia have been calculated before [80], but the dy-
namics of the system will be expected to be more
complex than the Stokes-flow scenario investigated in
Keeler et al. [7]. Although it was shown in Vandre et al.

[80] that inertia does not change the qualitative struc-
ture of the fold-bifurcation solution structure, it is not
unreasonable to suggest, based on the transition to
turbulence problem, that more exotic invariant objects,
such as periodic orbits and heteroclinic orbits (trajec-
tories in phase space that connect different steady
states), may populate phase space and have subtle yet
important effects on the dynamics.

Finally, we note that it is convenient to measure the
apparent angle, qapp as the angle the interface makes to
the vertical at the inflection point (i.e., when k= 0). We

emphasise that the fold bifurcation does not in general
coincide with where qapp = 0 as shown in panels A1eA3
and R1eR3 of Figure 5, which show that qapp first van-
ishes on the upper branch, past the fold bifurcation.
This result has been reported before by the Minnesota
group (see Figure 6 of [80]) for the ACL and by Keeler
et al. [7,59] for the RCL, yet it is not uncommon for the
critical Ca to be estimated in experimental studies using
the fact that qapp = 0. This is true, mathematically, in
the asymptotic limit as the (dimensionless) slip length
tends to zero as demonstrated in Eggers [61,77] and

others. In other geometries, particularly on the nano-
scale, the slip length can be comparable to the domain
size, and hence, we would not expect the onset of
instability to coincide with the location in parameter
space where the interface develops an inflection point.
Current Opinion in Colloid & Interface Science 2023, 67:101724
We also note that this has been seen in recent experi-
ments where an interface angle of around 10� is
observed near the critical capillary number [97].
Open problems and new horizons
We now highlight three physical systems where
computationally efficient numerics combined with a
dynamical systems approach could help resolve some
experimentally discovered open problems.

Thick-film formation
For plate withdrawal geometry (RCL), Snoeijer et al.
[39] predicted that in addition to a LandaueLevich thin
film, another thicker film could also develop. More
recently, as shown in their PhD thesis and a recent
article by Hayoun [98] and Hayoun, Letailleur, Teis-

seire, Lequeux, Verneuil, and Barthe [99], these thick-
film solutions were also identified using techniques
shown in Figure 7 in experiments and theoretically using
a lubrication model. Due to the development of the
RCL time-dependent model in Keeler et al. [59], the
calculation of these steady states and a corresponding
stability analysis could identify how the thick film de-
velops and whether unstable states guide the system to
the formation of a thick film. As shown in Keeler et al.
[59], a thick-film solution is not produced when solving
a purely pressure-driven flow, so there must be addi-

tional physics required for this type of interface to form.
Recent proof-of-concept calculations performed by the
authors have shown that the thick-film steady states are
possible in the computational framework of Keeler et al.
[59], provided that the flow is body-force driven (for
example, a gravity-driven problem; usually important in
experiments on the macro scale) as opposed to pressure-
driven, see Figure 8. In this formulation, the momentum
equation in the liquid phase, (1), is replaced by

0 ¼ �Vpþ V2uþ F; (8)

where F = (0,F)T, and F is a parameter that represents the

strength of the force. Further investigations have shown

that, in contrast to the pressure-driven problem, the

volume of the liquid plays an important role and that a cusp
bifurcation occurs as the volume is varied, see Figure 8,

which is where two fold bifurcations collide and is

commonly associated with catastrophe theory (see, for

example [100]), which was popular in the 1970s and 80s.

Interestingly, the solutions shown in Figure 8 are stable in
the sense that the vertical extent of the thick-film state

remains fixed once the system has settled to it. In contrast,

thin-film formation which is typically associated with this

problem is intrinsically unstable as demonstrated in Keeler

et al. [59], where the vertical extent of the thin film in-

creases with time. We remark that in Hayoun et al. [99] the

thick films visualised are also time-dependent, and it was

remarked that the thickness of this film can be tuned by

the pressure; how these observations (which is a pressure-

driven problem) and the steady thick-film solution
www.sciencedirect.com
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calculated in Figure 8 (which is a force-driven problem)

relate is not known and deserves further study.

Furthermore, different bifurcation structures have been
reported before, for example, in the presence of gravity,
Chan et al. [62] have shown that the bifurcation curve
oscillates around a fixed value of Ca (see our yellow curve
in Figure 8). However, our preliminary calculations show
that as the body force, F, is varied (and therefore also Ca),
the curve appears to persist past for large Ca, see red
curve in bottom panel of Figure 8. This feature of the
bifurcation curve for the force-driven problem, which
departs from well-established results in the literature,
warrants further investigation, and renewed attention on
the force-driven problem is required.

Capillary peeling
In a recent experimental paper, Khodaparast, Boulogne,
Poulard, and Stone [101] showed how the ink of a
Figure 7

Figure and caption adapted from Hayoun et al. [99] with permission. (a):
Schematics of the liquid meniscus and matching film. (b): A series of 20
snapshots in which a liquid bridge (dark) is forced down a tube (light grey).
The medium grey level is the liquid film, and the space– time variations of
the film thickness can be measured after calibration of the optical ab-
sorption. (c) Space– time plot showing film thickness; inset: three suc-
cessive thickness profiles at 0.5-s time increment, shown in the reference
frame of the bridge. As vd < v, the trailing film extends and is seen to do so
at constant thickness.
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permanent ‘Sharpie’ marker can be ‘peeled’ off from a
solid substrate as the substrate is slowly lowered into a
bath of fluid. The flow field was visualised, and it was
hypothesised that one of the key features of the flow
that facilitates the peeling process is the existence of a
stagnation point at the contact line and a split-injection
flow pattern, see Figure 9. This has some potentially
interesting applications, including 3D fabrication of

objects based on 2D drawing, see Song, Lee, Choe, Kim,
Kang, Lee, Choi, Choi, Jeong, Lee, et al. [102].

A computational framework based on the NS system is
essential to investigate the flow-patterns associated
with this phenomenon, which cannot be resolved with a
lubrication model. The peeling process was highly
dependent on the flow in the liquid phase [101], where
inertial effects were prominent. This means that a full
resolution of the flow field in the liquid phase, and
therefore full computations of the NS system, is

required as a starting point to investigate this process.
Modelling the detachable layer on the substrate would
be challenging, but as an initial avenue of research,
understanding the inertial dynamics in the vicinity of
the moving contact-line would be of interest. In
particular, as seen in Figure 9, there are regions of flow
reversal in the liquid phase, and understanding the
origin of this, i.e., is it because of surfactants, inertia, or
something else, can be determined using the techniques
discussed earlier.

3D instability
Highlighting another recent paper, He [32]; He and
Nagel [41], remarkable experiments have quantified the
3D structure of the contact-line region observed when a
plate is plunged (ACL) or withdrawn (RCL) from a
liquid bath, see Figure 10, taken and from He [32]. The
formation of the striking ‘V-shaped’ structure is dy-
namic, and therefore, a natural test-bed for 3D numer-
ical simulations is to attempt to mimic the phenomenon

displayed. In this study, the authors identified two
distinct film widths, a thin (LandaueLevich type) and a
thick film with increasingly complex coherent structures
visible in the systemdthere may be links to the thick-
film structures seen in Hayoun et al. [99] as discussed
earlier. We note that this 3D structure was also observed
as far back as in Blake and Ruschak [33], where a
maximum speed of wetting was hypothesised and the
idea that the contact line ‘tilts’ itself to reduce the
speed normal to the substrate was mentioned. This
mechanism leads to corners where drops are ‘left

behind’ in the RCL, and it appears to be responsible for
the sawtooth pattern/bubbles emerging in the ACL as
shown in Vandre et al. [37], see Figure 2. These corner
singularities have been analysed using lubrication theory
in, for example, Snoeijer, Rio, Le Grand and Limat [103]
and Limat and Stone [104], but a full 3D computation
using the NS system would provide fresh insight into
how the structures observed in He [32] can form, in
Current Opinion in Colloid & Interface Science 2023, 67:101724
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Figure 8

Top left panel: A computed thick-film solution of the Navier–Stokes system with a body force. The two different film thicknesses are indicated with double
arrows, and the direction of motion of the solid is also indicated by a single arrow. Top right panel: The bifurcation curves in the (Force, Length of interface)
plane for different volumes. The inset shows a zoom of the bifurcation curve showing the cusp bifurcation. Bottom panel: Bifurcation diagram for the
pressure-driven (blue curve), pressure-driven with gravity (yellow curve), and force-driven (red curve) with stable/unstable parts indicated by solid/dashed
lines, respectively. We note that in this system, the geometry is a plate being withdrawn from an infinite bath (and hence unbounded as x / N.).
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particular, the calculation of the eigenmodes of any
steady state may reveal important information on which
structures and patterns become dominant as

time progresses.

The sawtooth patterns seen in the ACL (see Figure 2)
are also intrinsically 3D, and an open challenge,
Current Opinion in Colloid & Interface Science 2023, 67:101724
therefore, is to extend the computational model into a
third dimension. In principle, the Finite Element
Method (FEM) is conducive to increasing the dimen-

sionality of the problem and in principle can be as
simple as changing a 2 to 3 into the code. However, the
choice of mesh, as discussed in section A, and mesh-
update strategy will be vitally important as the
www.sciencedirect.com
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Figure 9

Experimental images of the capillary peeling phenomena. Figure taken
from Khodaparast et al. [101] with permission.
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Jacobian assembly will scale exponentially with the
dimension and computational efficiency will be a key
Figure 10

Top panels: Experimental photograph of the three-dimensional structure
visible in the advancing contact-line [(a) and (A)] and receding contact-line
[(b) and (B)]. Lower panels show the development of a distinctive double-
thickness triangular film in the receding contact-line. Figure taken from He
[32] with permission.
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consideration when deciding on the final computa-
tional framework.

Thus far, solutions in 3D have been calculated using
both diffuse interface models (see, for example
[66,97,105,106]) and sharp interface approaches (see,
for example [107e109]), but finding eigenmodes and
using a dynamical systems approach is yet to be imple-

mented and would represent a significant advance on
existing computational capabilities. Calculating 3D
steady solutions would be the initial goal, with the
intention of determining, from a stability analysis,
whether 2D or 3Dmodes are most unstable, i.e., when is
(if at all):

Cacrit;2D ¼ Cacrit;3D? (9)

Answering this question would be of fundamental
importance to understanding the dynamic wetting
instability; whilst we know that the final unsteady states
are often 3D, it is not clear how the system got there-
de.g., was it via a 3D linear instability whose growth

rate is greater than the 2D modes or by some 3D finite-
sized perturbation to a 2D solution? Furthermore, it is
not unreasonable to expect further solution branches to
exist in the full 3D system, and any time-dependent
computational model may be able to visualise
these and then, using the dynamical systems approach
promoted in Keeler et al. [7], be able to understand the
significance of these steady states.
Final remarks
This is an exciting time in the development of compu-
tational models of dynamic wetting, and we are at the
cusp of new discoveries in the field. Opening the door to
3D calculations and using the full arsenal of dynamical
systems theory has the potential to create new surpris-
ing avenues of research. The dynamical systems

perspective is a perfect foil for the moving contact-line
problem, and the potential to calculate different
invariant objects of the system will help us gain valuable
insight into how the dynamics of the system evolve in a
wide range of physical (de)wetting problems.

Numerical approaches
A range of different numerical approaches have been
proposed for capturing free-surface flows described by
the conventional equations of fluid mechanics. Arguably
the most popular approach is to use the VoFapproach, as
reviewed in general in Popinet [70] and specifically for
wetting problems in Afkhami [15], where interfaces cut
through cells and topological changes are ‘automatically’

handled. In contrast, finite-element approaches that
implement an arbitrary Lagrangian Eulerian (ALE)-
FEM approach, reviewed recently in Anthony et al. [71],
track the interface with nodes to yield high-accuracy
Current Opinion in Colloid & Interface Science 2023, 67:101724
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Figure 11

Comparison of the computational solution at the same time-step (t = 15.0)
with identical error estimates using an unstructured triangular mesh (left
figure) and a structured rectangular mesh (right figure) (only a portion of
the domain shown). Other parameters are Ca = 0.4, l = 0.1, c = 0, qcl = p,
and the time-step is Dt = 0. The initial condition is a flat interface over a
fluid at rest with computational area 10.
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representations of the dynamics there at the expense of
flexibility. Notably, both approaches have strong open-
source codes that are widely used in the community;
e.g., Basilisk (formerly Gerris) for VoF [http://basilisk.fr/
src/vof.h] (for ALE-FEM, see further in this article).

We will focus on the ALE-FEM implementation of the
NS system, whose application to dynamic-wetting

phenomena has been reviewed and described in Sprit-
tles and Shikhmurzaev [110]. In this case, accuracy is
relatively easily achieved, and resolving a sharp interface
means that including additional physics, such assurface
dynamics [42,82,83] or gas kinetic effects [44,111] can
also be easily added. Then, the challenge becomes one
of ‘meshing’ the domain with elements in a computa-
tionally tractable manner.

In this section, we will focus on the key choices and
decisions that have to be made when designing a FEM

code to solve a particular dynamic-wetting problem. The
first decision to be made is which package to use if at all.
One may decide to use a commercial FEM package
(such as COMSOL�Multiphysics [112]) and ‘throw the
kitchen sink’ at the problem, but although commercial
software offers technical support and is well docu-
mented, the advantages of an open-source FEM package
is that bespoke physics and equations can more easily be
implemented as the source code is easily available and
adaptable; the learning curve is steeper, but there is less
of ceiling as to what one can achieve. There are many

open-source FEM packages that are available; in this
article, we note the GOMA package [69], which has
been implemented by the Minnesota group and the
oomph-lib package [68], (available on https://github.
com/oomph-lib/oomph-lib) which has been used in
Keeler et al. [7,59].

Once a package has been chosen, there are four main
considerations when deciding on what features are
required for an individual application: (i) the choice of
finite element type, (ii) the mesh-update strategy, (iii)
the contact-angle implementation, and (iv) the nu-

merical continuation method. We shall discuss each
separately and justify the choices based on new calcu-
lations made with the oomph-lib package.

Domain geometry
The fundamental primary consideration is to decide on
the shape and structure of the geometric element in the
mesh. For a 2D mesh, this means either structured/un-

structured quadrilateral or triangular elements, see
Figure 11. In principle, a mixture of a structured or
unstructured grid can be implemented, but it is signif-
icantly easier to choose an element and mesh-type and
persist with it throughout the computational domain.
Sprittles and Shikhmurzaev [110] implemented a
structured triangular mesh, Vandre et al. [80]; Liu et al.
[42,81e83]; Charitatos et al. [84]; and Mhatre et al.
Current Opinion in Colloid & Interface Science 2023, 67:101724
[85] implemented a structured quadrilateral mesh, and
Keeler et al. [7,59] implemented an unstructured
triangular mesh. There are advantages and disadvan-
tages to each method. Triangular meshes are more
suited for acute contact angles as the a triangle will more
naturally ‘fit’ into the angle required, but for quadrilat-
eral structured meshes, it is easier to identify individual
elements that need to be refined so that the accuracy of

the solution remains intact; unstructured meshes
require an error estimator (in oomph-lib, a ZZ error
estimator is used Zienkiewicz and Zhu [113]), which
www.sciencedirect.com
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Figure 12

Taken from Vandre [46]. The top panel is the computational mesh that is
fixed and mapped to the physical domain in panels b and c by solving a
set of nonlinear equations.
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means there is less control over which elements can be
refined/unrefined. As a ‘like for like’ test, we have
performed two time simulations at a value of Ca > Cacrit
for the RCL from a fluid initially at rest with a flat
interface on an unstructured triangular grid and a
structured rectangular grid using an identical mesh-
update strategy (see below). To make the test ‘fair’,
the adaptivity targets for each mesh test was chosen to

be identical as well as the frequency at which the mesh
was adapted. At the final time-step, the triangular mesh
displayed a far more plausible mesh, see left panel of
Figure 11, whereas the quadrilateral mesh was very
poorly resolved near the contact line, and it is difficult to
even call the resulting profile a ‘solution’. Furthermore,
as can be seen by the stats in the figure, compared to the
quadrilateral mesh, the triangular mesh took less than
half the CPU-time, used more elements but less nodal
unknowns, and hence, demonstrated its superiority over
the quadrilateral mesh. Interestingly, the maximum Z2

error for both meshes is of the same magnitude despite
the quadrilateral mesh clearly being less resolved; the
minimum error is several orders of magnitude less for
the triangular mesh, further highlighting the advantages
of this domain geometry.

Mesh-update strategy
The secondary consideration in the design is how the
position of the interface is updated as the solution curve
is traced or as time advances. In the FEM formulation,
the kinematic condition, (2), has to be satisfied and
determines the position of the interface. The main
difficulty is that the shape of the interface is itself an
unknown in the problem. In Vandre et al. [80]; Liu et al.

[42,81e83]; and Charitatos et al. [84], an elliptic mesh
generation technique (see, for example Spekreuse [114]) is
implemented where the nodal positions of the entire
mesh are mapped to a fixed rectangular domain (see
Figure 12) via an unknown map, which determines the
location of the interface. In Sprittles and Shikhmurzaev
[110] and Kamal et al. [64], a spine method is used,
where a finite number of ‘spines’ are placed evenly in
the mesh where nodes are placed according to a simple
rule, and the only unknown is the height of the
interface or more generally, the length of the spine. The

last mesh-update strategy which we will discuss is the
pseudo-solid elastic mesh [115], where all nodal posi-
tions are made unknowns in the problem and the mesh
moves according to the equations of solid deformations.
The advantages of the spine method is that the Jacobian
matrix is less sparse, and hence, the linear solve at each
Newton step is less costly than the elliptic-mesh and
pseudo-elastic methods, but a key disadvantage is that
for straight spines, multivalued interfaces are not
possible, and the simulations will fail when air entrain-
ment of thin-film development occurs. Even for

nonstraight spine meshes, the approach lacks flexibility,
and the solution shape needs to be known a priori before
www.sciencedirect.com
constructing the mesh. The elastic mesh is the most
flexible method when simulating the time-dependent
problem as it the shape of the mesh that evolves natu-
rally as a response to the shape of the interface and does
not require any a priori mesh design.

Contact-angle implementation
Sprittles and Shikhmurzaev [110] describes three
possible implementations for the contact angle, each of
which, in the limit of shrinking grid size, gives the same
result. In the first two approaches, for (Aea) the contact
angle is imposed as a ‘natural condition’ with one
component of the momentum equation ‘dropped’,
whereas for (A-b) the contact angle is imposed as an
‘essential condition’ with two components of the mo-
mentum equation ‘dropped’. However, in approach B of
Sprittles and Shikhmurzaev [110], the angle is imple-
mented as a ‘natural condition’, and an extra set of un-
knowns are added to the moving wall, which act as
Lagrange multipliers to the no-penetration condition
and ensure that curved walls can be treated as easily as
flat ones. The key difference in this approach is that all

NS equations can be implemented at the contact line
(so that on curved surfaces no rotation of momentum
equations is required in order to establish which one
should be ‘dropped’ to enforce impermeability). As
shown in Sprittles and Shikhmurzaev [110], for a given
mesh, approach B is more accurate, and this has conse-
quently been implemented in the recent work of Keeler
et al. [7,59].
Current Opinion in Colloid & Interface Science 2023, 67:101724
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Continuation procedure
When calculating the full steady solution space, i.e.,
the stable and unstable solution branches, it is natural
to start at a very small Ca so that the interface has
small curvature, and hence, a good initial guess for the
nonlinear solver is simply a flat interface. Presuming
that a converged solution is found for a suitably small
Ca, any naı̈ve attempt to incrementally increase the
value of Ca is doomed to fail as eventually the system
will encounter Cacrit and it will be impossible to in-
crease Ca any further as no steady state exists. To

traverse the fold bifurcation and start calculating the
unstable branch of solutions, a user has to let Ca come
as part of the solution and be determined by an
additional constraint. The most general approach is to
use a pseudo-arclength constraint that ensures the
next solution is a fixed distance further along the
bifurcation curve from the current solution (see, for
example [116]). However, an easier approach is to use
a system measure as a continuation parameter and a
new constraint that controls this value that implicitly
determines the value of Ca. For example, the overall

length of the interface increases monotonically as the
solution curve is traced around the fold, and therefore,
by controlling the length of the interface and letting
Ca be implicitly determined by this constraint, the
fold bifurcation can be traced out and the unstable
branch of solutions can be found. This approach was
used in Keeler et al. [7,59].

Finally, we note that, for this dynamic-wetting problem,
a direct comparison between different FEM frame-
works, for example between oomph-lib and GOMA, and

different VoF frameworks would be of considerable in-
terest for researchers when making a choice of what
framework to implement (similar to Hysing, Turek,
Kuzmin, Parolini, Burman, Ganesan, and Tobiska [117]
for the rising bubble problem). Such a comparison is
beyond the scope of this review article, but we propose
the calculation in Figure 11 as suitable benchmark
calculation that can be used to compare with
other frameworks.
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