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A B S T R A C T   

This article details a scheme for approximate Bayesian inference, which has underpinned thousands of neuro-
imaging studies since its introduction 15 years ago. Variational Laplace (VL) provides a generic approach to 
fitting linear or non-linear models, which may be static or dynamic, returning a posterior probability density over 
the model parameters and an approximation of log model evidence, which enables Bayesian model comparison. 
VL applies variational Bayesian inference in conjunction with quadratic or Laplace approximations of the evi-
dence lower bound (free energy). Importantly, update equations do not need to be derived for each model under 
consideration, providing a general method for fitting a broad class of models. This primer is intended for ex-
perimenters and modellers who may wish to fit models to data using variational Bayesian methods, without 
assuming previous experience of variational Bayes or machine learning. Accompanying code demonstrates how 
to fit different kinds of model using the reference implementation of the VL scheme in the open-source Statistical 
Parametric Mapping (SPM) software package. In addition, we provide a standalone software function that does 
not require SPM, in order to ease translation to other fields, together with detailed pseudocode. Finally, the 
supplementary materials provide worked derivations of the key equations.   

1. Introduction 

Scientific enquiry typically involves inferring quantities that cannot 
be directly observed. For example, a neuroscientist may wish to inves-
tigate the activity of neural populations from electrical activity that can 
be measured on the scalp. Similarly, a seismologist may wish to make 
inferences about geophysical events that occur beneath the surface of 
the earth, from seismograph measurements taken at the surface. Both of 
these are examples of ill-posed problems, where multiple configurations 
of the underlying system of interest could lead to similar measurements. 
Consequently, any inferences that are made about the underlying 
mechanisms that generate the data will typically involve uncertainty. 
This uncertainty needs to be quantified when drawing conclusions, 
which is why probabilistic, or Bayesian inference methods are typically 
used. 

This article explains the mathematics behind a scheme for Bayesian 
modelling called Variational Laplace (VL), which is widely used in 
neuroimaging. It is used to test the statistical evidence for competing 
models, and in tandem, to rapidly estimates models’ parameters, 
without the need for computationally demanding sampling procedures 
found in other Bayesian approaches. VL is the cornerstone of Dynamic 
Causal Modelling (DCM) for fMRI and M/EEG - a framework for 

inferring neural connectivity from non-invasive neuroimaging data 
(Friston et al., 2003). A special case of VL, referred to as variational 
Restricted Maximum Likelihood (REML), is applied behind the scenes in 
every Statistical Parametric Mapping (SPM) analysis for estimating 
temporal auto-correlation, as well as for Bayesian source localisation 
with M/EEG data (Friston et al., 2008a). The original implementation of 
VL was in the SPM software package (Friston et al., 2007), and variants 
of the scheme are now provided in other packages for analysing neural 
and psychological data, such as the VBA Toolbox (Daunizeau et al., 
2014) and TAPAS (Frässle et al., 2021). It is also increasingly being 
applied to fields beyond neuroimaging, including theoretical neurobi-
ology (Smith et al., 2022), robotics (Lanillos et al., 2021; Lanillos and 
van Gerven, 2021) and epidemiology (Friston et al., 2020). 

Despite its widespread use, understanding VL can be challenging for 
the uninitiated; the original description of VL assumed some familiarity 
with variational methods, statistical physics and Bayesian inference. 
Here, our aim is didactic. We explain the methodology from first prin-
ciples, which we anticipate will be particularly useful for people inter-
ested in developing new models of neuroimaging data, or new software 
toolboxes for neuroimaging analysis. Additionally, we hope this article 
will be useful for experimenters, who wish to gain a deeper under-
standing of how the analyses they routinely conduct are performed 
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under the hood. Finally, VL may have relevance to other fields, including 
machine learning and other physical / biological sciences. We have 
therefore provided generic pseudocode and MATLAB code with this 
paper, which could ease translation for new applications. This article 
compliments previous tutorial introductions to variational Bayes in 
other contexts (Chappell et al., 2016; Ostwald et al., 2014), and tech-
nical reports which have set out the mathematics of VL in detail (Dau-
nizeau, 2017; Stephan et al., 2005; Friston et al., 2007; Starke and 
Ostwald, 2017). 

1.1. Example problem: modelling neural connectivity 

To motivate the use of VL, we consider the following classic fMRI 
study, which has been used to develop and illustrate many new analysis 
methods in the decades since it was published. Büchel et al. (1998) 
investigated area V5 of the visual cortex, which was known to be sen-
sitive to visual motion. While undergoing fMRI, participants viewed 
white dots on a computer screen, which were either in motion or sta-
tionary. On a subset of the trials with motion, participants were 
instructed to pay attention to the speed of the dots’ motion. The authors 
found that the neural response to visual motion in V5 was enhanced 
when people paid attention to the speed of the moving dots. Attention 
also enhanced the neural response in brain regions lower in the visual 
hierarchy (primary visual cortex) and higher in the hierarchy (superior 
parietal cortex). 

Here, for illustrative purposes, we will use the fMRI data from a 
single participant from Büchel et al. (1998) to address the following 
question: which neural connections explain why V5 was sensitive to 
visual motion? We consider two candidate hypotheses1:  

• H1: Attention modulated bottom-up connectivity from primary visual 
cortex (V1) to V5 

• H2: Attention modulated top-down connectivity from superior pari-
etal cortex (SPC) to V5 

Fig. 1A shows the data – fMRI timeseries that were extracted from 
brain regions V1, V5 and SPC. To formalize the two hypotheses, the next 
step is to specify models that can generate or simulate the fMRI data that 
would be expected under each hypothesis, before using the VL scheme to 
evaluate their evidence. 

1.1.1. From hypothesis to models 
Models commonly used for fMRI analysis, referred to as Dynamic 

Causal Models, are specified as follows. Defining a vector z(t) = (z1(t),
z2(t), z3(t)) to be the overall level of neural activity in V1, V5 and SPC 
respectively at time t, and vector y(t) to be the (concatenated) fMRI 
timeseries from all three regions, either hypothesis H1 or H2 can be 
expressed using the following pair of equations (a state-space model): 

ż(t) = J(t)z(t) + Cu1(t)
y = g(z, θh) + ϵy

(1) 

The first line, which we will call the neural model, describes how the 
rate of change in the three brain regions, ż, depends on a time-varying 
connectivity matrix J(t), which is of dimension [3 × 3], and vector of 
external driving inputs Cu1(t) . The second line of Eq. (1) includes an 
observation model, g, which translates from neural activity z to fMRI data 
y. This part of the model is governed by a vector of parameters θh, which, 
for MRI, includes the rate of blood flow through the venous compart-
ment. This model, together with the Bayesian methods set out here, are 
together referred to as DCM for fMRI (Friston et al., 2003). 

The parameterisation of J(t) determines which connections are 

switched on (informed by the data) and which are switched off (fixed at 
zero). We can therefore formalize our hypotheses by specifying two 
variants of the model, m1 and m2, that differ in which connections can be 
modulated by attention, as illustrated in Fig. 1B. The corresponding 
parametrisation of J(t) for the two models is provided in Appendix 1, 
although this is not required for understanding the rest of this article. 

Given these two hypotheses, H1 and H2, which we have now 
formally stated as mathematical models m1 and m2, we have two overall 
aims:  

1 To estimate the models’ parameters, which includes the strength of 
neural connections and the effects of each experimental condition on 
each connection.  

2 To estimate the probability for each model given the data, P(m1|y)
and P(m2|y), enabling us to select the best model or models (referred 
to as Bayesian model selection). This requires the intermediate step 
of estimating the model evidence, also called the marginal likelihood, 
which is the probability of having seen the data under each model, 
P(y|m1) and P(y|m2). 

Both objectives are fulfilled by the VL scheme, which we will intro-
duce next. 

1.2. VL in a nutshell 

To explain the problem that VL solves from a statistical perspective, 
we begin with Bayes rule. For a model with a vector of parameters θ, we 
start by defining a prior probability density P(θ). This function defines 
our belief about any particular value of the parameters, or range of 
values, before seeing the data. The priors serve to regularize or constrain 
the estimation of the model, making ill-posed problems tractable – in the 
sense there is a unique solution. We also define a likelihood P(y|θ), 
which is a function of the parameters θ and returns the probability of 
observing the data y given those parameters. Together, the priors and 
likelihood form a generative model of the data. The goal of Bayesian 
inference, as introduced above, is two-fold. First, to obtain an updated 
probability density over the parameters after seeing the data – the 
posterior P(θ|y). Second, to obtain the marginal likelihood or model evi-
dence P(y), which scores the quality of the model and enables models to 
be compared. If the data ‘look like’ the kind of data that the model would 
have predicted, then P(y) will be large, whereas if the data are incon-
sistent with the model, then P(y) will be smaller, and thus models can be 
compared on the basis of their evidence. This is called Bayesian model 
comparison and we will return later to why the model evidence is well- 
suited to comparing models. The posterior and evidence are related by 
Bayes rule: 

P(θ|y) = P(y|θ)p(θ)
P(y)

=
P(y, θ)
P(y)

(2)  

Where the model evidence is the integral or sum over possible settings of 
the parameters: 

P(y) =
∫

P(y, θ)dθ (3) 

Thus, calculating the model evidence involves marginalising (sum-
ming or integrating) over the parameters. Unfortunately, this integral 
typically lacks an analytic solution and cannot be calculated directly. 
This is problematic for the calculating model evidence, but also the 
posterior probability (which requires the evidence). 

It is the intractability of the integral in Eq. (3) that necessities 
approximate Bayesian inference. Traditional sampling methods are a 
common approach for approximating the posterior, which eschew the 
need to tackle this integral, however they can be very computationally 
intensive and do not provide a straight-forward way to approximate the 
evidence, thereby precluding Bayesian model comparison. Instead, the 

1 These models are used as teaching examples, which we supply with the SPM 
software package. The dataset and analysis scripts, can be freely downloaded 
from https://www.fil.ion.ucl.ac.uk/spm/data/attention/ . 
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approach described here is to construct a quantity that lower bounds the 
log of the evidence (i.e., is always smaller than or equal to it). This is 
often referred to as an evidence lower bound (ELBO) or a free energy 
functional.2 An algorithm is then derived to maximise this bound – 
making it as close as possible to the log evidence. Methods that involve 
this optimisation of a bound – and therefore ensure that the ELBO or free 
energy approximates the log evidence – are collectively referred to as 
‘Variational Bayes’ (VB). These methods were first introduced by 
Richard Feynman in statistical physics (Feynman, 1972) and terms such 
as ‘free energy’ were retained when it was subsequently applied in 
different fields. Variational methods were introduced into machine 
learning though ensemble learning (Hinton and Van Camp, 1993; 
MacKay, 1995b; MacKay, 1995a). Later, schemes like expectation 
maximisation (EM) were considered in the light of VB (Bishop, 1998; 
Neal and Hinton, 1998; Beal, 2003), which proved particularly useful for 
fitting graphical models (Jordan et al., 1999). 

A key practical challenge for the routine use of VB is deriving the 
necessary model-fitting algorithm for a given model. This is time- 

consuming and requires a certain degree of skill with variational cal-
culus. Approaches have therefore been developed over the years for 
implementing VB for a sufficiently broad class of models that new 
models can be introduced and fitted to data using ‘plug-and-play’ soft-
ware routines. VL is one such approach (Friston et al., 2007), which has 
been employed in a large body of work in neuroscience. The reference 
implementation of VL is a MATLAB function, spm_nlsi_gn,3 implemented 
in the Statistical Parametric Mapping (SPM) software package (https 
://www.fil.ion.ucl.ac.uk/spm/). 

We proceed by deriving a score for the quality of a model: the free 
energy bound on the log evidence. Then, we derive the algorithm that 
optimises this bound, providing estimates of the log evidence and pos-
terior over parameters. We illustrate this with worked examples, 
including the attention to visual motion example above, code for which 
is provided with this paper. Finally, in the discussion, we consider some 
advantages and disadvantages of this scheme and its relation to other 

Fig. 1. Exampling modelling problem. A. 
Timing of three experimental conditions (top) 
and representative timeseries fMRI from three 
brain regions that will be the focus of the 
analysis (bottom). B. Structure of two candidate 
Dynamic Causal Models (DCMs) used to explain 
these fMRI data. The models differ only in 
where Attention has an effect. Each large col-
oured circle is a brain region, with latent level 
of neural activity z1, z2, z3 respectively. Arrows 
between the circles are neural connections 
encoded in matrix A of the model (see Appen-
dix 1). Arrows with rounded ends encode 
modulatory effects of Motion and Attention.   

2 A functional is a function of a function. More specifically - at least for the 
purposes of this paper - it is a mapping whose input is a function and whose 
output is a number. 

3 This routine is particularly useful for fitting continuous data when the 
likelihood has a Gaussian form (whose expectation and covariance may be non- 
linear functions of the parameters). An alternative MATLAB function, spm_nlsi_ 
Newton, allows the specification of generic likelihood functions (for example, it 
could be used for fitting binary data using likelihood densities compatible with 
logistic regression models). 
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variational inference software tools currently in use. An outline of 
mathematical notation appears in the footnote.4 

2. The generative model 

The VL scheme works with models that can be written generically in 
the following form. We have a vector of observed data y of length D and a 
model g(β), where β are the model parameters: 

y = g(β) + ϵy (4) 

In the example above, y are fMRI timeseries data and g is a model of 
how the data were generated, however VL is generic and any data or 
model could be used. The vector of errors or residuals ϵy has a multi-
variate normal density, with mean zero, and precision matrix Πy of 
dimension D (which is the inverse of the covariance matrix): 

ϵy ∼ N
(

0,Π− 1
y

)
(5) 

Elements on the leading diagonal of matrix Πy are the precision 
(inverse variance) of each measurement, and any non-zero off-diagonal 
elements encode the conditional dependencies amongst measurements, 
which determines their correlation. To parameterize Πy – such that it 
can be estimated from the data – we decompose it into a weighted 
mixture of K matrices called precision components, Qk=1,…,K ∈ RD×D, each 
of which has a corresponding scalar hyperparameter λ = (λ1,…λk): 

Πy(λ) = exp(λ1)Q1 + … + exp(λk)Qk (6) 

The exponential of each hyperparameter is taken to enforce posi-
tivity (because precisions and variances cannot be negative). This 
approach provides a convenient method for allowing different mixtures 
of observations to share variance. At its simplest, a single precision 
component can be used, set to the identity matrix, Q1 = ID, in which case 
the corresponding hyperparameter λ1 encodes the log precision of the 
observation noise. 

To make this into a statistical model, we define a likelihood function 
P(y|θ) and a prior probability density P(θ), where the parameters and 
hyperparameters are θ = (β, λ). As set out in the previous section, the 
likelihood P(y|θ) returns the probability of observing the data y given a 
particular setting of the parameters θ. This has a multivariate normal 
density: 

P(y|β, λ) = N
(
g(β),Πy(λ)− 1) (7) 

Eq. (7) states that the observations are expected to be centred on the 
prediction of the model g(β), with the level of observation noise given by 
the precision matrix Πy(λ). Next, the prior density P(θ) quantifies our 
belief about any given value of the parameters before performing the 
analysis. Here, we define multivariate normal densities as priors over the 
parameters and hyperparameters: 

P(β) = N
(

ηβ,Π− 1
β

)

P(λ) = N
(
ηλ,Π− 1

λ
) (8) 

Having defined the model, we next set out methods for approxi-
mating the log of the model evidence lnP(y) and the posterior P(θ|y). 

3. Variational Bayes 

We will convert the difficult problem of calculating the integral in 
Eq. (3) into a simpler optimization or search problem. This begins by 
defining a functional called the free energy, which is a lower bound on 
the log of the model evidence lnP(y). This means that by construction, it 
can only return values that are less than or equal to the log evidence. 
Then we’ll search for a setting of the parameters of the free energy 
(variational parameters) that maximize it, making it as close as possible to 
the unknown log evidence. Helpfully, the parameters that maximize the 
bound will turn out to approximate the posterior P(θ|y). 

3.1. Constructing a lower bound on the log evidence 

The log evidence is defined as: 

ln P(y) = ln
∫

P(y, θ)dθ (9) 

To construct a lower bound on this quantity, we will make use of 
Jensen’s inequality, which says that the average of a log is always less 
than or equal to the log of an average (Fig. 2). That means that if we can 
express ln P(y) as the average of a log, then to construct a lower bound 
we simply need to rearrange terms to get the log of an average. 

To express the log evidence as the average of a log, we first define a 
probability density Q(θ) that will form our approximation of the pos-
terior over parameters. We then introduce this density into the log ev-
idence (from Eq. (9)), multiplying and dividing so that it causes no 
overall change to the evidence: 

ln P(y) = ln
∫ Q(θ)

Q(θ)
P(y, θ) dθ

= ln EQ(θ)

[
P(y, θ)
Q(θ)

] (10) 

Fig. 2. Jensen’s inequality. The curved blue line could be any concave 
function y = f(x). Here as an example, the function f(x) = ln(x) is shown, 
which has been evaluated in the range x = [0, 10]. The straight red secant line 
joints two arbitrary points: f(x1) and f(x2). Any point on the secant line, such as 
yA, is a weighted average of f(x1) and f(x2): yA = af(x1)+ (1 − a)f(x2). Jen-
sen’s inequality says that this average-of-functions will always be less than or 
equal to the corresponding function-of-the-average: yB = f(ax1 + (1 − a)x2). 
Thus, using the notation of expected values, E[f(x)] ≤ f(E[X]). Portrait in the 
public domain via Wikipedia. https://en.wikipedia.org/wiki/Johan_Jensen_ 
(mathematician). 

4 The following mathematical notation is used. Variables: Lower case italic 
text (x) is used for scalar variables, bold uppercase letters (Y) are used for 
matrices and bold lower-case letters are used for vectors (y). The expected value 
or average of variable x under the density Q is written EQ[x]. Calculus: The 
partial derivative of a function h(x) with respect to x is written ∂x h(x), there-
fore ∂x = ∂

∂x 
. The second derivative of h(x) is written ∂xx h(x). Variational 

calculus: The variation of a functional δ may be thought of as the derivative of 
the functional with respect to the function. For instance, for a functional of the 
form A =

∫
S(h(x))dx, the variation of A with respect to h is: δh(x)S. 
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Where E[⋅] is the expected value or average.5 This is the log of an 
average, so (by Jensen’s inequality) a lower bound on this will be the 
average of the log, which is called the free energy F: 

F[Q(θ)] = EQ(θ)

[

ln
P(y, θ)
Q(θ)

]

(11)  

Here, we have written the free energy as a functional (a function of a 
function), with Q(θ) as its input. By construction, for any choice of 
probability density Q(θ), it holds that F[Q(θ)] ≤ ln P(y). Note that the free 
energy is sometimes defined to be the negative of this quantity. We have 
used the terminology typically found in the neuroimaging literature, 
where the free energy is a lower bound on the log evidence, also known 
as the ELBO in statistical and machine learning. The next step will be to 
maximize this lower bound, i.e., find the probability density Q(θ) that 
maximizes the free energy, bringing it close to the log evidence, so F ≈

ln P(y).

3.2. Useful properties of the free energy 

The free energy can be rewritten in different ways to illustrate why it 
serves as a useful score for the quality of a model. First, we can rewrite it 
as the log evidence minus the Kullback-Leibler (KL) divergence between 
the true and approximate posterior: 

F[Q(θ)] = EQ(θ)

[

ln
P(θ|y)P(y)

Q(θ)

]

= EQ(θ)[ln P(θ|y) + ln P(y) − ln Q(θ)]

= ln P(y) + EQ(θ)

[

ln
P(θ|y)
Q(θ)

]

= ln P(y)
Log evidence

− DKL[Q(θ)‖ P(θ|y)]
Approximation error

(12)  

Where DKL[Q ‖ P] is the KL divergence from density P to Q, which is a 
(non-negative) measure of difference between the two densities. The log 
evidence is a fixed (but unknown) quantity, so if we can find a density 
Q(θ) that maximizes the free energy, then we minimize the divergence 
between the true posterior P(θ|y) and the approximation Q(θ). 

We can also re-write the free energy from Eq. (11) as the difference 
between the model’s accuracy and its complexity: 

F[Q(θ)] = EQ(θ)[ln P(y|θ) + ln P(θ) − ln Q(θ)]

= EQ(θ)

[

ln P(y|θ) + ln
P(θ)
Q(θ)

]

= EQ(θ)[ln P(y|θ)]
Accuracy

− DKL[Q(θ)‖ P(θ)]
Complexity

(13) 

Here, the accuracy term is the expected log likelihood, and the 
complexity is how far the parameters have diverged from the prior to the 
approximate posterior. Thus, if we select the model with the most pos-
itive free energy out of several candidate models, then we inherently 
select the model that offers the best trade-off between accuracy and 
complexity (c.f., Occam’s razor). Importantly, this definition of 
complexity takes into account the covariance amongst parameters, and 
thus enables the free energy to serve as a better approximation of the log 
evidence than statistics which discard the covariance – in particular the 
BIC and AIC (Penny, 2012b). 

Finally, we can re-arrange the free energy in Eq. (11) as follows: 

F[Q(θ)] = EQ(θ)[ln P(y, θ)] − EQ(θ)[ln Q(θ)]
= EQ(θ)[ln P(y, θ)]

Expected (negative) energy

+ H[Q(θ)]
Entropy

(14) 

By analogy with its applications in statistical physics, the first term is 
referred to as an energy, and the latter is the Shannon entropy H of the 
posterior density Q(θ). A probability density Q(θ) with high entropy will 
be smooth (or in the limit, flat) over the possible values of θ, whereas a 
probability density with low entropy will have peaks around particular 
values. This means that if we have two candidate Q(θ) densities, both 
equally likely under the priors, to maximize the free energy we would 
select the one that is smoother or, equivalently, with the higher entropy. 
This is referred to as Jaynes’ Principle of Maximum Entropy (Jaynes, 
1957), and means that we select the simplest explanation for the data 
where possible. (A further consequence of Jaynes’ Principle is that as we 
come closer to maximizing the free energy, the free energy forms a 
smoother landscape, aiding the performance of optimization algorithms. 
We will return to the notion of a free energy landscape in Section 5). 

4. Free energy under the Laplace approximation 

We now build up to the definition of the free energy that is used in 
the VL scheme, by first defining the probability densities that appear in 
the definition of the free energy (Eq. (11)) and then by introducing a 
mean-field partition over parameters and hyperparameters. 

4.1. Quadratic approximations 

In what follows, we will approximate the various unknown proba-
bility densities that appear in Eq. (11) using multivariate normal den-
sities, by way of quadratic approximations and Laplace’s method, which 
we will first reprise. A quadratic approximation, also called a second 
order Taylor approximation, approximates any (twice differentiable) 
function g(x) that has vector input x, close to its peak or mode x = x0, 
with the linear function: 

T(x) = g(x0)
Constant

+∇g(x0)⋅(x − x0)
Linear term=0

+
1
2
(x − x0)

T Hg(x0)(x − x0)

Quadratic term

(15)  

= g(x0)
Constant

+
1
2
(x − x0)

T Hg(x0)(x − x0)

Quadratic term

(16)  

where ∇g(x0) is the gradient of function g evaluated at x0 and Hg(x0) is 
the Hessian matrix—a matrix of second derivatives—of g evaluated at 
x0, i.e., [Hg(x0)]i,j = ∂xixj g(x0). At the mode of the density, x = x0, the 
linear term equals zero and thus disappears in Eq. (15). This has a very 
similar form to the log of a normal density, which is utilized in Laplace’s 
method for function approximation. 

4.2. Laplace’s method 

Laplace’s method leverages the quadratic approximation in order to 
approximate a function g near its mode as a (scaled) normal density, as 
detailed in Fig. 3. If g(x) is a function of scalar variable x, the Laplace 
approximation L(x) is: 

g(x) ≈ L(x)∝N(x; μ, π− 1)

μ = x0
π = − ∂x0x0 ln g(x0)

(17)  

where μ is the mean and π is the precision. When g(x) is a function of a 
vector of variables x, the Laplace approximation L(x) returns a (scaled) 
multivariate normal density: 

5 For a probability density function P(x), the expected value E[P(x)] is a 
weighted average over the possible values of x, where each value is weighted by 
its probability, i.e., E[P(x)] =

∫
xP(x)dx. The expected value can also be taken 

with respect to another probability density function Q(x), which we write as 
EQ(x)[P(x)] =

∫
Q(x)P(x)dx. This is a weighted average of P(x), where the 

weighting comes from Q(x). 
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g(x) ≈ L(x)∝N(x;μ,Π− 1)

μ = x0
Π = − ∂x0x0 ln g(x0)

(18)  

Where μ is the mean and Π is the precision matrix, i.e., the inverse of the 
variance-covariance matrix. We will apply this method several times to 
approximate the different quantities that comprise the free energy. 

4.3. Approximating the free energy 

Recall Eq. (11), the definition of the free energy: F[Q(θ)] =

EQ(θ)[ln P(y,θ) − ln Q(θ)]. We will now write expressions for the log joint 
ln P(y, θ) and the approximate posterior (i.e., the choice of Q(θ)). As the 
true form of the posterior is unknown, and the form of the log joint may 
involve analytically difficult nonlinearities, we will use (local) quadratic 
or Laplace approximations to define them in a flexible manner. 

4.3.1. Approximating ln P(y, θ)
We will apply a quadratic approximation for the log joint density, 

which is reasonable because densities tend to look normal close to their 
mode. We define μ to be the mode of the joint probability density, μ =
argmax

θ
P(y, θ). Note that this is the same as the mode of the posterior 

P(θ|y), because the posterior is simply a scaled version of the joint. (Also, 
μ is the mode of the log of these densities, as taking the logarithm does 
not change the mode.) The approximation to the log joint is: 

ln P(y, θ) ≈ ln P(y,μ) + 1
2
(θ − μ)T[∂μμln P(y,μ)

]
(θ − μ)

= ln P(y,μ) − 1
2
(θ − μ)T Σ− 1(θ − μ)

Σ− 1 = − ∂μμln P(y,μ) = − ∂μμln P(μ|y)

(19)  

4.3.2. Choosing an approximate posterior Q 
We will similarly apply a quadratic approximation to the log poste-

rior lnP(θ|y) around the posterior mode μ. Under Laplace’s method, this 
means we will be using a normal density, Q(θ), in order to approximate 
the posterior P(θ|y): 

ln P(θ|y) ≈ ln P(μ|y) − 1
2
(θ − μ)T Σ− 1(θ − μ)

⇒P(θ|y) ≈ Q(θ) = N(μ,Σ)
(20)  

4.3.3. Taking expectations 
Next, we will apply the expectation operator6 from Eq. (11) to the 

previous two densities under the approximate posterior: 

EQ(θ)[ln P(y, θ)] ≈ ln P(y,μ) − 1
2

EQ(θ)
[
(θ − μ)T Σ− 1(θ − μ)

]
(21)  

EQ(θ)[ln Q(θ)] ≈ −
1
2
[ln (|Σ|)+ nln 2π] − 1

2
EQ(θ)

[
(θ − μ)T Σ− 1(θ − μ)

]
(22) 

Where Eq. (22) uses the definition of the log of the multivariate 
normal density for a variable with dimension n. 

To simplify these expressions, note that each quadratic term inside 
the square brackets is a scalar. This means we can use the ‘trace trick’, 
tr(ABC) = tr(CAB). Applying this gives the simpler expressions: 

EQ(θ)[ln P(y, θ)] ≈ ln P(y,μ) − 1
2

EQ(θ)

⎡

⎣tr

⎛

⎝(θ − μ)T

A
Σ− 1

B
(θ − μ)

C

⎞

⎠

⎤

⎦

= ln P(y,μ) − 1
2

tr

⎛

⎝EQ(θ)

⎡

⎣(θ − μ)
C

(θ − μ)T

A

⎤

⎦Σ− 1

B

⎞

⎠

= ln P(y,μ) − 1
2

tr
(
Σ Σ− 1)

= ln P(y,μ) − n
2

(23)  

EQ(θ)[lnQ(θ)] = −
1
2
[ln(|Σ|)+nln2π] − 1

2
EQ(θ)

⎡

⎣(θ − μ)T

A
Σ− 1

B
(θ − μ)

C

⎤

⎦

= −
1
2
[ln(|Σ|)+nln2π] − 1

2
tr

⎛

⎝EQ(θ)

⎡

⎣(θ − μ)
C

(θ − μ)T

A

⎤

⎦Σ− 1

B

⎞

⎠

= −
1
2
[ln(|Σ|)+nln2π] − 1

2
tr
(
ΣΣ− 1)

= −
1
2
[ln(|Σ|)+nln2π] − n

2

= −
1
2
[ln(|Σ|)+nln2πe]

(24) 

Substituting these expectations into Eq. (11), we get the free energy 
under the Laplace approximation: 

F[Q(θ)] = EQ(θ)[ln P(y, θ) − ln Q(θ)]

= ln P(y,μ) − n
2
+

1
2
[ln(|Σ|) + nln 2πe]

(25)  

Where Σ is the posterior covariance and n is the total number of pa-
rameters. 

4.4. Free energy under a mean-field approximation 

The previous section assumed that all parameters are treated equally. 
However, it is often helpful to separate them out into two (or more) 
types. The estimation scheme outlined here alternates between updating 
the estimate of the model’s parameters β and the hyperparameters λ that 
control the precision of the observation noise. We previously lumped 
these two kinds of parameter together as θ but now separate them out. 
We can re-write the joint probability as follows: 

P(y, β,λ) = P(y|β, λ)P(β)P(λ) (26)  

with normal densities for the likelihood and priors Eqs. (7) and (8). The 
approximate posterior is chosen to factorise as follows: 

Q(θ) = Q(β, λ) = Q(β)Q(λ) (27) 

This factorisation is known as a mean-field approximation. Each 
approximate posterior is a multivariate normal density: 

Q(β) = N
(
μβ,Σβ

)

Q(λ) = N(μλ,Σλ) (28) 

The free energy is easily extended for this factorisation (from Eq. 
(25)): 

6 Note that this step ensures the final result is the same regardless of whether 
μ is the mode of P(θ|y) (prior to optimisation of the approximate posterior, it 
may not be). The linear term in the expansion will still disappear under the 
expectation as it includes a factor of EQ(θ)[θ − μ] = 0, recovering Eq. 21. 
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F[Q(θ)] = ln P
(
y,μβ,μλ

)
−

1
2
(p + h)

EQ(θ) [ln P(y,θ)]

+
1
2
[
ln
( ⃒
⃒Σβ

⃒
⃒
)
+ ln(|Σλ|) + (p + h)ln 2πe

]

EQ(θ) [ln Q(θ)]

= ln P
(
y,μβ,μλ

)
+

1
2
[
ln
( ⃒
⃒Σβ

⃒
⃒
)
+ ln(|Σλ|) + (p + h)ln 2π

]

(29)  

Where p is the number of parameters and h is the number of hyper-
parameters. 

So, we now just need to define the log joint, which is the product of 
three normal densities in Eq. (26). The log of a normal density with 
mean m covariance matrix S for a variable of dimension k is defined as: 

ln N(x;m, S) = −
1
2
[
ln|S| + (x − m)

T S− 1(x − m) + kln(2π)
]

= −
1
2
[
ln|S| + ϵT

x S− 1ϵx + kln(2π)
]

(30)  

Where the error term is ϵx = x − μ. Substituting into Eq. (29) (with dim(y)
= k):   

With error terms: 

ϵy = y − g
(
μβ

)

ϵβ = μβ − ηβ  

ϵλ = μλ − ηλ (32)  

Where, to recap, Πβ, Πλ are prior precisions, ηβ, ηλ are prior expecta-
tions, Σβ,Σλ are posterior covariances, μβ, μλ are posterior expectations 
and Πy is the (modelled) precision of the data. We then use Eq. (31) as 
the objective function (i.e., the measure of the model’s quality), which 
we seek to maximize in order to approximate the log evidence and 
identify the model’s parameters. 

5. Estimation scheme 

Next, we derive an algorithm for finding the posterior parameter 
density Q(θ) that maximizes the free energy F[Q(θ)]. Full derivations of 
these equations are provided in the supplementary material. 

5.1. Overview of gradient ascent and Gauss-Newton 

The simplest approach to numerically maximizing the free energy is 
gradient ascent. Conceptually, the free energy forms a landscape, the 
dimensions of which are the parameters. Gradient ascent or descent 
takes small steps in the same direction as the gradient, as if climbing or 
descending a hill. Writing the function to be optimized generically as 
f(μ), the parameters μ are updated on each iteration according to μ 
= μ + Δμ, where: 

Δμ = α∇μ[f (μ)] (33)  

and α is the step size (positive for ascent, and negative for descent). This 
is illustrated in Fig. 4A, for finding the minimum of a function using 
gradient descent. From an initial guess (labelled 1), small steps are taken 
towards a minimum, which in this example happens to be the global 
minimum (shaded green sphere). 

Gradient ascent or descent is rarely sufficient in practice. One issue 
regards its speed: because the update is proportional to the gradient, 
estimates advance very slowly in shallow regions of the landscape (as 
can be seen in Fig. 4A). Conversely, in very steep regions, the estimates 
advance quickly – running the risk of taking too large a step and moving 
away from an optimum. We would ideally like the opposite situation – to 
move quickly in shallow regions, and slowly in steeper regions. 

The Gauss-Newton algorithm takes a different approach and can 
converge far more quickly. To minimize a function, a parabola (or U- 
shaped plane) is fitted to f(μ) at the current estimate of the parameters 
(Fig. 4B). The algorithm then jumps to the minimum of the parabola, 
which becomes the new parameter estimate (labelled 2 in Fig. 4B) and 
the process repeats. This can enable fast progression from the initial 
estimate to the global or local optimum (Fig. 4C). For some vector of 
parameters μ*, the parabola is a second-order quadratic approximation 
of f(μ) at the current estimate of the parameters μ: 

f (μ*) ≈ f (μ) + ∇μf (μ)⋅(μ* − μ) + 1
2
(μ* − μ)Hf (μ)(μ* − μ) (34)  

Where Hf is the Hessian matrix of second derivatives. This approxima-
tion has a unique minimum at μ − Hf (μ)− 1⋅∇μf(μ), which becomes the 
new estimate of the parameters, giving rise to the update equation: 

Δμ = − Hf (μ)− 1⋅∇μ[f (μ)] (35) 

While Gauss-Newton is much faster than gradient ascent, it will 
perform poorly if the quadratic approximation is poor – a particular risk 

F[Q(θ)] = ln P(y|β, λ) + ln P(β) + ln P(λ) +
1
2
[
ln
( ⃒
⃒Σβ

⃒
⃒
)
+ ln(|Σλ|) + (p + h)ln 2π

]

= −
1
2

[
ln
⃒
⃒
⃒Π− 1

y

⃒
⃒
⃒+ ϵT

y Πyϵy

]

Likelihood

−
1
2

[
ln
⃒
⃒
⃒Π− 1

β

⃒
⃒
⃒+ ϵT

β Πβϵβ

]

Prior (parameters)

−
1
2
[
ln
⃒
⃒Π− 1

λ

⃒
⃒+ ϵT

λ Πλϵλ
]

Prior (hyperparameters)

+
1
2
[
ln
( ⃒
⃒Σβ

⃒
⃒
)
+ ln(|Σλ|)

]

Posterior entropy

−
1
2

kln(2π)
Constants

(31)   
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when taking large steps that are far from the current estimate. In these 
situations, it would be ideal to dynamically switch to a gradient ascent 
or descent. A continuous transition between gradient ascent and Gauss- 
Newton like behaviour is achieved by the variational Laplace scheme, as 
we will return to shortly. As a first step towards this, we will derive a 
gradient ascent algorithm for the free energy. 

5.2. Gradient ascent on free energy 

The mean-field approximation Q(θ) = Q(β)Q(λ) naturally gives rise 
to a gradient ascent algorithm that alternates between optimising the 
parameters and hyperparameters. With the mean-field approximation, 
the free energy (Eq. (11)) can be extended to: 

F[Q(θ)] = EQ(β)Q(λ)

[

ln
P(y, β,λ)
Q(β)Q(λ)

]

(36) 

We will use δQ(β)F and δQ(λ)F to denote the variation of the free energy 
with respect to each factor of the approximate posterior, Q(β) and Q(λ), 
respectively. These are functional derivatives, encoding the rate of 
change in F that would result from infinitesimal adjustments to the form 
of each function—where the functions in question here are probability 
densities. Ignoring constants: 

δQ(β)F = − ln Q(β) + EQ(λ)[ln P(y, β, λ)]

δQ(λ)F = − ln Q(λ) + EQ(β)[ln P(y, β,λ)] (37) 

Setting to zero and taking the exponential, we get the optimal 
approximate posteriors on each iteration of the algorithm: 

δQ(β)F = 0 ⇔ Q(β)∝ exp
(
EQ(λ)[ln P(y,β, λ)]

)

δQ(λ)F = 0 ⇔ Q(λ)∝ exp
(
EQ(β)[ln P(y, β,λ)]

)
(38) 

As before (Eq. (23)), quadratic approximations can be used for the 
terms inside the expectations: 

EQ(β)[ln P(y,β, λ)] ≈ ln P
(
y,μβ, λ

)
+

1
2

tr
(

Σβ ∂μβμβ ln P
(
y,μβ,λ

))

EQ(λ)[ln P(y,β, λ)] ≈ ln P(y, β,μλ) +
1
2

tr
(
Σλ ∂μλμλ ln P(y,β,μλ)

)
(39) 

By definition, the modes of the approximate posterior densities over 
parameters μβ and hyperparameters μλ must maximise the above 
quantities (i.e., the logarithms of the approximate posteriors), giving the 
following pair of equations: 

Fig. 3. Laplace approximation of a non- 
normal density. This example illustrates Lap-
lace’s method by approximating a gamma 
probability density function G(x; a, b) over the 
variable x with shape parameter a and inverse 
scale parameter b. The result is a scaled normal 
density N(x; μ, π− 1) with mean μ = x0 and pre-
cision π = − ∂x0x0 lnG(x0), where x0 is the mode 
of lnG. After normalisation to ensure it is a 
proper probability density, the scaling becomes 
irrelevant, and we end up with a normal den-
sity. Portrait by James Posselwhite, in the 
public domain via Wikipedia, https://en. 
wikipedia.org/wiki/Pierre-Simon_Laplace.   
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Fig. 4. Comparison of Gradient ascent and 
Gauss-Newton optimization. The left and 
centre panels illustrate an example function 
with two inputs f(x, y) (the Rosenbrock func-
tion, with hyperparameters a = 1, b = 100). The 
global minimum is at x = 1, y = 1, indicated 
with a shaded green sphere in panel A. White 
spheres are estimates of the parameters (x,y) 
over successive iterations, indexed by the 
numbers in circles. The right panels show the 
evaluation of the function (i.e., the height of the 
surface) over successive iterations.   
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Δμβ = ∇μβ EQ(λ)
[
ln P

(
y,μβ,λ

)]

= ∇μβ ln P
(
y,μβ,μλ

)
+∇μβ

1
2

tr
(
Σλ ∂μλμλ ln P

(
y,μβ,μλ

))

= JT
g Πyϵy

Likelihood

− Πβϵβ
Prior

+
∑h

j=1

[
(Σλ)jjJ

T
g Pjϵy

]

Hyperparameters λ

(Δμλ)i = ∂μλi
EQ(β)[ln P(y, β,μλ)]

= ∂μλi
ln P

(
y,μβ,μλ

)
+ ∂μλi

1
2

tr
(

Σβ∂μβμβ ln P
(
y,μβ,μλ

))

=
1
2

tr
(

PiΠ− 1
y

)
−

1
2

ϵT
y Piϵy

Likelihood

− ∂μλi
(ϵλ)

TΠλϵλ

Prior

−
1
2

tr
(

ΣβJT
g PiJg

)

Parameters β

(40)  

Where vector Δμβ is the change in the parameters at each iteration of the 
algorithm, (Δμλ)i is the change in the i-th hyperparameter at each 
iteration, ∇μβ [⋅] is the gradient with respect to the parameters and Jg is 
the Jacobian matrix7 of first partial derivatives with (Jg)ij = ∂μj gi(μβ) for 
observation i and parameter j. For hyperparameter i, the derivative term 
∂μλi

(ϵλ) is a vector with value of unity in index i and zero elsewhere, and 
Pi = ∂μλi

(Πy) = exp(λi)Πi. Terms including the second derivative of g(θ)
have been omitted on the assumption that it is locally approximately 
linear. Similarly, the final term for the parameters is usually ignored, 
because its contribution is usually trivial in relation to the other terms, 
and is zero when the precision is linear in the hyperparameters. 

These updates depend on first calculating the covariance of the pa-
rameters Σβ and hyperparameters Σλ, which are given by the 
expressions8: 

(
Σβ

)− 1
= − ∂μβμβ EQ(λ)

[
ln P

(
y,μβ, λ

)]

≈ JT
g ΠyJg + Πβ

[
(Σλ)

− 1]

i,i = − ∂μλi μλi
EQ(β)[ln P(y, β,μλ)]

= (Πλ)ii −
1
2

tr
(
PiΣy − PiΣyPiΣy

)
+

1
2
ϵT

y Piϵy +
1
2

tr
(

ΣβJT
g PiJg

)

(41)  

Where Σy = Π− 1
y . The gradient ascent proceeds by alternately applying 

the two updates in Eq. (40). However, as mentioned above, a gradient 
ascent is rarely sufficient for robust performance, motivating an algo-
rithm that dynamically switches between gradient ascent and Gauss- 
Newton-like updates. This is set out in the next section. 

5.3. Updates in continuous time 

Parameter updates in optimization are generally treated as occurring 
in discrete steps, Δμβ and Δμλ, as described above. However, Friston 
et al. (2007) considered updates occurring in continuous time, which 
provides a principled way to transition between gradient ascent and 
Gauss-Newton-like updates. In continuous time, the gradient ascent on 
the parameters can then be written in terms of the time derivative μ̇β(t)
at time t: 

μ̇β(t) = ∇μβ

[
Iβ
(
μβ[t]

)]
(42)  

Where Iβ(μβ) = EQ(λ)[ln P(y,μβ,λ)]. Integrating Eq. (42) over time using 
local linearization (Ozaki, 1985), the update for a time interval t is: 

Δμβ =
(
exp

[
tμ̈β

]
− I

)
μ̈− 1

β μ̇β  

μ̈β = ∇μβ

[
μ̇β
]
= ∂μβμβ Iβ

(
μβ

)
(43) 

And a similar expression is applied to update the hyperparameters. 
When t is small and positive, the algorithm behaves like a gradient 
ascent, because the term (exp[tμ̈β] − I) in Eq. (43) regularizes the update 
(i.e., reduces its size). This follows because the second derivatives ̈μβ are 
negative. As t increases, the matrix exponential term exp[tμ̈β] reduces to 
zero, resulting in a standard Gauss-Newton update (by around t = 2): 

Δμβ = − μ̈− 1
β μ̇β (44) 

The integration time t can therefore be varied dynamically to adjust 
the behaviour of the algorithm. When the algorithm begins, the time is 
set to a small value, causing it to behave like a gradient scheme for 
stability. If the free energy has increased, i.e., improved as a result of an 
update, then regularization is decreased (by increasing t). Conversely, if 
the free energy has decreased, i.e., worsened, then regularization is 
increased (by decreasing t). 

In practice, the step size t is generally specified with a (log) descent 
parameter v that is automatically scaled by the average curvature of the 
landscape α: 

t =
exp(v)

α  

α = exp
[Re

(
ln
⃒
⃒μ̈β

⃒
⃒
)

n

]

(45)  

Here, n is the number of parameters. A cautious, slow descent corre-
sponds to v = − 4 (the default starting value). As the average real 
eigenvalue of μ̈β increases (i.e., the curvature increases), the regular-
isation is increased by decreasing v. The algorithm stops when the 
change in free energy becomes sufficiently small. In more detail, the 
predicted value of Iβ(μβ) after making the step Δμβ is given by: 
∇μβ [Iβ(μβ)]⋅Δμβ . If this is small over a series of iterations, then the al-
gorithm is considered to have converged. Pseudocode for the complete 
VL algorithm is provided in Appendix 2, and MATLAB code accompanies 
this article. 

5.4. Interim summary 

This section described an algorithm that searches for a probability 
density over the parameters Q(θ) that maximizes the free energy. The 
algorithm ascends the free energy landscape, with an adaptive step size. 
Readers experienced with machine learning may note some similarity 
with the Levenberg-Marquardt algorithm, however the continuous time 
approach reviewed here is derived from first principles without 
requiring the introduction of an arbitrary regularization term: see Fris-
ton et al. (2007) for a detailed comparison. 

6. Examples 

This section presents worked examples using simulated data, where 
the same algorithm introduced above is applied to different kinds of 
model. MATLAB code for each example is provided with this paper. 

6.1. Static models 

We start with a simple linear regression model with parameters β: 

y = Xβ + ϵ (46) 

7 In the canonical implementation of the VL scheme (spm_nlsi_gn), the Ja-
cobian is the negative of that defined here. For this reason, the sign of various 
terms is switched here compared to the original implementation.  

8 An important point here is that Σ is treated as constant with respect to the 
posterior expectation (seemingly contradicting the idea that the former is an 
analytic function of the latter). This is consistent with the Laplace approxima-
tion, as the assumption that the log joint is approximately quadratic implies 
that its curvature (and therefore the posterior covariance) is constant. 
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Fig. 5. Example applications of the VL scheme. A-D illustrate the VL scheme applied to different models described in the text. Left panels: The simulated data 
(dashed blue lines) and prediction from the model (solid red lines). Middle and right panels: Parameter or hyperparameter values used to generate the data (grey 
bars without error bars) and posterior estimated values (blue bars with error bars). 

P. Zeidman et al.                                                                                                                                                                                                                                



NeuroImage 279 (2023) 120310

12

For this example, the design matrix X has two columns: the first is a 
column of ones and the second consists of 100 evenly spaced values 
between − 50 and 50. Thus, the parameter β1 encodes the mean and β2 
encodes the regression slope. The observation noise is encoded by a 
single precision component, controlled by log-precision parameter λ: 

ϵ ∼ N
(

0,Π− 1
y

)

Πy = exp(λ)In (47) 

Note that a truly linear model would converge within a single iter-
ation of the VL scheme, whereas here there is an exponential function in 
Eq. (47), in order to ensure positivity of the hyperparameter λ. This 
introduces non-linearity into the model, thereby requiring several iter-
ations to converge. Fig. 5A shows that the parameters and hyper-
parameters used to generate the simulated data (grey bars) were 
successfully recovered (blue bars with 90% credible intervals). Note that 
the covariance amongst (hyper)parameters was also calculated by the 
VL scheme, but is not shown. 

The second example considers the situation where there is hetero-
skedasticity – observations having different levels of observation noise. 
This is a common situation, for example when parts of the data come 
from different measurement channels. This can be modelled by having 
two precision components: 

Πy = exp(λ1)Q1 + exp(λ2)Q2 (48)  

Here, the first precision component matrix, Q1 has values of one on the 
leading diagonal for the first half of the observations, and zeros for the 
second half. It therefore captures the precision of the first half of the 
observations. Similarly, Q2 captures the precision of the second half of 
the observations. As shown in Fig. 5B, the parameters and hyper-
parameters used to generate the data were correctly recovered. Next, we 
illustrate dynamic models, i.e., those modelling continuous changes 
over time. 

6.2. Dynamic models 

A typical application of the VL algorithm is to estimate the param-
eters of dynamic models that are specified as ordinary differential 
equations (ODEs). As introduced in the empirical example in Section 
1.1, this is accomplished by splitting the model into two parts: a model f 
of the dynamics of the unobserved (latent) variables x, and a static 
model g that translates the latent variables into observations y: 

ẋ(t) = f (x(t),β)

y(t) = g(x(t)) + ϵ (49)  

Where x(t) is approximated using a standard numerical integration 
scheme, i.e. 

x(t) =
∫t

0

ẋ(t) dt (50) 

Here, we perform this integration using the local linearization 
approach of Ozaki (1985). A simple example is estimating the rate of an 
exponential decay of a single observed variable x, with rate parameter β, 
for which the model specification corresponds to: 

f (x(t), β) = − exp(β)x(t)

g(x(t)) = x(t) (51) 

The model fit and estimated parameters are shown in Fig. 5C. 
Finally, we consider a more involved example – the haemodynamic 

model of Stephan et al. (2007), which is used in the analysis of func-
tional magnetic resonance imaging (fMRI) data to infer neural 

dynamics. (This forms function g in Eq. (1), Section 1.1). For a detailed 
walkthrough of the physiology, please see Appendix 5 of Zeidman et al. 
(2019a). In brief, there are four hidden states (vasoactive signal s, blood 
inflow fin, blood volume v, deoxyhaemoglobin q) and three 
time-invariant parameters that are estimated from the timeseries data 
(haemodynamic transit time τh, vasoactive signal decay rate κ and 
stimulus efficacy z). The dynamics of the four hidden states are governed 
by the following equations, which together constitute f in Eq. (49): 

ḟ in = s

ṡ = z(t) − κs − γ(fin − 1)

τhv̇ = fin(t) − fout(v, t)

τhq̇ = fin(t)
1 − (1 − E0)

1
fin (t)

E0
−

fout(v, t)q(t)
v(t)

(52)  

Where fout(v, t) = v(t)
1
α and α, γ are fixed parameters. The final part of the 

model translates from the latent variables for blood flow v and deoxy-
haemoglobin q to the fMRI timeseries y: 

y = V0

(
k1(1 − q) + k2

(
1 −

q
v

)
+ k3(1 − v)

)

k1 = 4.3⋅ϑ0⋅E0⋅TE

k2 = ϵh⋅r0⋅E0⋅TE

k3 = 1 − ϵh

(53) 

Where for this example, ϑ0,E0, r0,TE, ϵh are fixed parameters. Fig. 5D 
shows that the parameters were recovered successfully, although the 
precision with which the transit time parameter could be recovered was 
lower than the other two parameters, as reflected in the larger 90% 
credible interval (pink bar). 

6.3. Bayesian model comparison 

The main purpose of the VL scheme is to enable Bayesian model 
comparison, which is comparing the relative evidence for different 
models, where the log evidence is approximated by the free energy. If 
each model encodes a hypothesis for how the data were generated, then 
Bayesian model comparison enables different hypotheses to be 
compared, in terms of how well they trade off accuracy and complexity 
(see Section 3.2). 

Models to be compared can differ in their likelihood – i.e., the defi-
nition of their forward model − and/or in the specification of their 
priors. The only requirement is that all models have been fitted to the 
same data (where this is not the case, an alternative approach referred to 
as Bayesian Data Comparison may be considered, see Zeidman et al. 
(2019c)). Where models differ only in their priors, there is no need to fit 
each model separately to the data using the VL scheme – it is sufficient to 
fit one ‘full’ model, and use Bayesian model reduction to analytically 

Fig. 6. Bayesian model comparison. Three general linear models (GLMs) 
were fitted to the data using the VL scheme, and then compared based on their 
free energy. The models differed in whether they had one, two or three preci-
sion components. Left: The log Bayes factor for each model relative to model 1. 
Right: The same results transformed to a posterior probability for each model. 
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compute the free energy and parameters of the alternative reduced 
models, under Laplace approximations (Friston et al., 2018). Through 
these methods, decisions such as whether to include particular variables 
in the model or how to capture their interactions can be decided in a 
principled manner. 

To illustrate this, we will use GLM example above, where the first 
half of the observations were noisier than the second half (illustrated in 
Fig. 5B, dashed lines, left panel). We will then use Bayesian model 
comparison to ask which is the best explanation for the data: a model 
with one precision component (i.e., all observations had the same level 
of noise), two precision components (the first and second half of the 
observations had different levels of observation noise) or three compo-
nents (each third of the data had a different level of noise). Including 
more precision components could increase the model’s accuracy by 
introducing more degrees of freedom, but would also increase model 
complexity. To assess which of the three models optimized the accuracy 
/ complexity trade-off, we specified each model and calculated their free 
energy using the VL scheme. The values were F1 = − 18.21, F2 = 39.61,
F3 = 14.32, where a more positive free energy is better. 

These free energies can then be compared in terms of the Bayes factor 
(Kass and Raftery, 1995) and posterior probabilities. The Bayes factor is 
the ratio of evidence for a model m1 relative to another model m2: 

B1 =
p(y|m1)

p(y|m2)
(54) 

The larger the ratio, stronger the evidence in favour of model m1. 
Taking the log, division becomes subtraction, therefore the log Bayes 
factor is simply the difference in log evidence. The log Bayes factor in 
favour of model 1 is: 

ln B1 = ln p(y|m1) − ln p(y|m2) ≈ F1 − F2 (55) 

The log Bayes factor can be computed for more than two models by 
selecting a model to serve as the baseline or reference. Here, we chose 
the worst model, m1, as the reference model, and calculated log Bayes 
factor for models m2 and m3 relative to m1, as shown in Fig. 6 (left 
panel). As expected, m2 was the best (as the data were generated using 
two precision components), m3 was the second best, and m1 was the 
worst model. This example also makes a key point, that accuracy is not 
an apt measure of model quality. The third model here would have been 
the most accurate because it has more degrees of freedom. However, its 
added complexity was correctly penalized by the free energy, ensuring it 
would be discarded in favour of the model that is the simplest expla-
nation for the data – but not too simple. 

It can aid interpretation to report not only the log Bayes factor, but 
also the posterior probability for each model, e.g., p(m1|y). Under equal 
prior probability for each model, by application of Bayes rule, the pos-
terior probabilities are given by a softmax function of the log Bayes 
factors: 

p(mi|y) =
p(y|mi)

p(y)

=
1

1 + exp(− ln Bi)

(56) 

This is illustrated in Fig. 6 (right panel). This demonstrates that m2 

had posterior probability close to unity, meaning that we could be 
extremely confident that it provided the best explanation for the data. 
This procedure may be applied with any number of models, and there-
fore forms the basis for hypothesis testing in Bayesian inference. 

7. Empirical example of Bayesian model comparison 

In Section 2 we introduced an example modelling problem, where 
the aim was to compare the evidence for two candidate models, as ex-
planations for why visual region V5 of the brain is enhanced by visual 
attention. Here, we illustrate applying the VL scheme to the two 
candidate models, m1 and m2 and performing Bayesian model 
comparison. 

Fig. 7A shows the free energy over iterations for model m1 (relative 
to the first iteration). The algorithm converged after 17 iterations. The 
resulting free energies for the two models were F1 = − 3277.61 and F2 =

− 3294.20 respectively, where a more positive free energy is better. 
These free energies were then taken forward for Bayesian model 
comparison. 

The log Bayes factor was lnB1 = F1 − F2 = 15.59. Taking the expo-
nential to undo the log, this means there was exp(15.59) = 5,897,269 
times the evidence for m1 than m2 (Fig. 7B). Naturally, therefore, the 
posterior probability in favour of m1 approached unity (Fig. 7C). 

Having reported the probability for each model, studies typically 
report the posterior estimates of the parameters from the winning model 
if there’s a clear winner, or alternatively if there’s no clear winner, the 
(precision-weighted) average of parameters across models (this is called 
Bayesian model averaging). Fig. 7D shows the posterior expected values 
from model m1. It can be seen that under this model, the presence of 
visual motion boosted the connection from brain region V1 to V5 (by 
0.52 Hz), and attention to visual motion further increased the strength of 
this connection (by 0.17 Hz). 

Together, one may conclude that the data were best explained by 
hypothesis H1 – i.e., attentional modulation of V5 could be accounted 
for by bottom-up connectivity from V1. Examining the estimated pa-
rameters of the model demonstrated that attention had a gating effect on 

Fig. 7. Results of applying VL to the fMRI attention example. A. The free 
energy per iteration of the VL model estimation scheme for model m1, relative 
to the free energy of the first iteration (i.e., this shows the increasing log Bayes 
factor). B. The free energy per model relative to m2 which was set to zero. C. 
The posterior probability for each model. D. The expected values of the pa-
rameters. With reference to Appendix 1, which details the parameterisation of 
the model - numbers on the connections relate to parameter matrix A of the 
model, whereas the effects of motion and attention relate to the parameter 
matrices B of the model. 
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feed-forward or ascending connections from primary visual cortex. 

8. Discussion 

The VL scheme described here underwrites thousands of neuro-
imaging studies, and is beginning to find applications in other fields. We 
considered it important, therefore, to clearly explain how it works, what 
assumptions it makes, and how to interpret the outputs. To this end, 
Sections 1-3 set out the key challenge of Bayesian inference – the 
intractable integral within the model evidence (Eq. (3)) – and how this 
can be resolved using variational Bayes (a.k.a., approximate Bayesian 
inference). This involves defining a lower bound on the log evidence (the 
free energy, Eq. (11)), and then identifying a probability density over the 
parameters that maximizes this bound, bringing it as close as possible to 
the log evidence. In effect, variational procedures convert an impossible 
integration or marginalisation problem into a tractable optimisation 
problem. Section 4 set out the implementation of variational Bayes 
typically used in neuroimaging (Eq. (31)), where Laplace approxima-
tions (i.e., normal densities) are used to approximate the free energy 
bound. Section 5 then described an efficient algorithm for maximizing 
this (approximate) free energy, as illustrated for static and dynamic 
models in Section 6. Worked derivations are provided in the supple-
mentary materials, pseudocode is provided in the appendix and stand-
alone MATLAB code accompanies this article. 

This scheme has several advantages over alternative methods, both 
in terms of the free energy approximation of the log evidence and the 
algorithm used to maximize it. First, the free energy serves as a better 
approximation of the log evidence than other commonly used heuristics 
like the AIC and BIC. These approximations can fail dramatically even in 
relatively benign settings – see (Penny, 2012a) for some unsettling ex-
amples. While all three measures can be decomposed into accuracy and 
complexity terms, only the free energy takes into account uncertainty in 
the parameters for the accuracy term, as well as the covariance amongst 
parameters in the complexity term (Penny, 2012b). VL also has advan-
tages over non-variational sampling methods. While sampling is highly 
effective for profiling the shape of a probability density, it does not 
provide a straightforward way to estimate the log evidence (one com-
mon approach, the harmonic mean, has been described as the “Worst 
Monte Carlo Method Ever” for its poor performance9). The lower 
computational cost of VL relative to sampling schemes, together with the 
fact that it is deterministic (so always provides the same results given the 
same data) provide further advantages. Regarding the algorithm 
described here for maximizing the free energy, the closest alternative is 
Expectation Maximization (EM). EM differs from variational Bayes in 
that EM ignores uncertainty about the hyperparameters. Thus, an 
advantage of VL is that it conveys the uncertainty of both the parameters 
and hyperparameters to the next iteration of the algorithm (i.e., EM is a 
special case of the variational Bayes where uncertainty about the 
hyperparameters is ignored.) 

There are potential drawbacks of the VL scheme. First, the Laplace 
assumption may not be suitable for all applications. For instance, a 
Gaussian posterior may not be appropriate where the true posterior is 
multimodal, if a multimodal posterior is important for making in-
ferences. To evaluate this for a particular application, the validity of the 
Laplace assumption can be assessed using sampling methods. This can 
be particularly useful when dealing with highly nonlinear models. 
Typically, variational Laplace accommodates nonlinearities by applying 
gaussian assumptions to nonlinear transformations of the parameters. A 
nice example of this is the treatment of hyperparameters above Eqs. 
(47)-(48). By taking the exponential of the hyperparameter, one is 
effectively assuming a log normal prior, which ensures positivity for 
scale parameters of this sort (a scale parameter is a nonnegative 

parameter, such as a rate or time constant, variance or distance mea-
sure). Using the same device in hierarchical and nonlinear models allows 
one to accommodate a large range of (weakly) non-linear models within 
variational Laplace. However, it is sometimes necessary to check the 
robustness to violations of the Laplace assumption with reference to 
sampling schemes. 

Second, the algorithm presented here is highly likely to converge to 
an optimal value, but only if the initial values of the parameters are well 
chosen (typically, the prior expected values of the parameters are used). 
In other words, if there are multiple local optima, then the algorithm 
may not be able to escape the local optimum that is easiest to reach from 
the starting value (this is sometimes expressed as starting within the 
basin of attraction of a fixed point in the free energy landscape). To 
overcome this, multi-start approaches have been used in conjunction 
with the VL scheme. For example, in the analysis of neuroimaging data 
from multiple test subjects, a common approach is to iteratively restart 
the algorithm from the group average parameter values (Friston et al., 
2015). Finally, it should be noted that variational Bayes methods 
commonly suffer from overconfidence in their posterior parameter es-
timates, as demonstrated in the context of DCM for fMRI by Daunizeau 
et al. (2012). 

Various extensions and variants of the VL scheme have been devel-
oped to handle a broader range of models in the context of neuro-
imaging, which we have not had space to detail in this article. For 
example, VL has been applied to modelling data in the frequency domain 
(complex cross-spectra), which is routinely used in the analysis of 
electrophysiological data (Moran et al., 2009) and resting state fMRI 
data (Friston et al., 2014). Similar approaches have been introduced to 
invert stochastic differential equation models, namely Dynamic Expec-
tation Maximization (DEM) and Generalised Filtering (GF), which esti-
mate a model’s hidden states and parameters, treating both as 
time-dependant random variables (Friston et al., 2010; Friston et al., 
2008b). VL has also been applied to model voxel-wise fMRI data, 
yielding maps of parameters and posterior probabilities (Zeidman et al., 
2018; Puckett et al., 2020). That approach leveraged parallelisation to 
estimate multiple voxels’ timeseries independently; future work could 
improve performance by sharing parameters across voxels, such as those 
relating to haemodynamics or observation noise. More recently, the 
Parametric Empirical Bayes (PEB) framework was introduced to extend 
the VL scheme to hierarchical experimental designs, where for example, 
data have been sampled from multiple subjects at multiple time points 
(Zeidman et al., 2019b; Friston et al., 2016). 

Since the introduction of the VL scheme, other algorithms and soft-
ware tools for variational Bayesian inference have been introduced that 
serve a similar role. The Variational Message Passing (VMP) algorithm 
pre-dates VL (Winn et al., 2005) and is now used in the Microsoft infer. 
NET programming language and the ForneyLab Julia package (Cox 
et al., 2019). Like VL, this is a deterministic algorithm, which inverts 
models that can be expressed as Bayesian networks or Forney Factor 
Graphs (with the prerequisite that nodes are conjugate to their parent). 
The distributed nature of the VMP algorithm has also enabled its use as a 
model for how inference is performed in biological neural networks 
(Parr et al., 2019). Another prominent algorithm is automatic differen-
tiation variational inference (ADVI) (Kucukelbir et al., 2017), which is 
implemented in multiple probabilistic programming frameworks 
including Stan (Kucukelbir et al., 2015), Turing.jl for Julia (Ge et al., 
2018), PyMC3 for Python and Tensorflow Probability (TFP). Like VL, 
ADVI optimizes the free energy, however this is performed without 
Laplace approximations of the free energy functional. Instead, the log 
joint in Eq. (11) is evaluated automatically from a given graphical 
model, and the expected value is approximated using Monte Carlo 
integration methods, when the free energy is evaluated. Having defined 
the free energy functional, the next step is to maximize it, and VL and 
ADVI differ in how they do this. In VL, the gradient of the free energy 
under the Laplace approximation is given by Eq. (40), which depends on 
first computing the gradient of the function to optimized, g(θ), using 

9 https://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of 
-the-likelihood-worst-monte-carlo-method-ever/ 
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numerical methods (finite differences). ADVI estimates the gradient of 
the free energy using Automatic differentiation (AD), which involves 
reducing the free energy into a graph of elemental math operations and 
then repeatedly applying the chain rule (Griewank, 1989; Iri, 1984). 
These gradients are then supplied to a stochastic gradient descent al-
gorithm (Hoffman et al., 2013). An interesting future direction would be 
to compare the performance of the VL scheme against VMP and ADVI for 
the kind of models typically applied in neuroimaging. We would predict 
that VL and VMP would be significantly faster because they eschew 
sampling, however ADVI would offer the most accurate posteriors in 
situations where the Laplace approximation is violated. Finally, VL and 
ADVI may also be compared against a recently developed scheme called 
Stochastic VB (sVB), which was introduced in the neuroimaging litera-
ture and also features stochastic gradient descent. It has been applied to 
discovering functional modes in neuroimaging data using hidden Mar-
kov models (Vidaurre et al., 2017) and quantifying variability in resting 
state networks across a large sample of the population in the UK Biobank 
(Farahibozorg et al., 2021). 

The code accompanying this paper illustrates applications of the VL 
scheme with a variety of models. Readers interested in learning more 
about the applications of VL may wish to proceed to recent tutorials on 
modelling neuroimaging data using dynamic causal modelling (DCM) 
(Zeidman et al., 2019a) and behavioural data using active inference 
(Smith et al., 2022). 

9. Code availability 

MATLAB code accompanying this paper can be downloaded from 
https://github.com/pzeidman/vl-tutorial. 

10. Data and code availability 

All MATLAB code accompanying this paper can be downloaded from 
Github at https://github.com/pzeidman/vl-tutorial. 
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Appendix 1. DCM for fMRI 

This appendix details the parameterisation of connectivity matrices used in the attention to visual motion example. The neural connectivity matrix 
in Eq. (1) is defined as: 

J(t) :=
(
A+ u2(t)B(MOTION) + u3(t)B(ATTENTION)

)

Where binary indicator variables u2(t) and u3(t) denote, respectively, whether stimuli were in motion at time t and whether participants were 
instructed to pay attention to speed of the motion (Fig. 1A, top). The other terms are matrices of connectivity parameters, which have units of Hertz 
(s− 1) and need to be estimated from the data. For the first hypothesis, H1, the connectivity matrices are parameterised as follows: 

A :=

⎡

⎣
a11 a12 0
a21 a22 a32
0 a23 a33

⎤

⎦

B(MOTION) :=

⎡

⎢
⎢
⎣

0 0 0
b(MOTION)

21 0 0
0 0 0

⎤

⎥
⎥
⎦

B(ATTENTION) :=

⎡

⎢
⎢
⎣

0 0 0
b(ATTENTION)

21 0 0
0 0 0

⎤

⎥
⎥
⎦

In detail, matrix A encodes the coupling strength amongst brain regions, where element ai,j is the strength of the connection from region j to region i 
in units of hertz (s− 1). Thus, the columns of matrix A correspond to outgoing connections from regions V1, V5 and SPC, and the rows correspond to 
incoming connections. Parameters b(MOTION)

21 and b(ATTENTION)

21 encode the change in the V1→V5 connection due to motion and attention respectively. 
Finally, parameter matrix C encodes the sensitivity of each brain region to the driving effect of visual stimuli to region V1: 

C :=

⎡

⎣
c11 0 0
0 0 0
0 0 0

⎤

⎦

A model corresponding to the second hypothesis, H2, may be specified through a minor modification to the parameter matrix B(ATTENTION), to 
indicate that attention should modulate the SPC→V5 connection rather than the V1→SPC connection: 
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B(ATTENTION) :=

⎡

⎢
⎢
⎣

0 0 0
0 0 b(ATTENTION)

23

0 0 0

⎤

⎥
⎥
⎦

This second model is illustrated in Fig. 1B (right). In practice, the elements of these parameter matrices were either switched on (i.e., informed by 
the data) or switched off (fixed at zero) by selecting appropriate prior means and variances. 

Appendix 2. Variational Laplace pseudocode  

Inputs: 

Generative model g(μβ)

Data vector y 
Starting values for (hyper)parameters μβ and μλ 

Prior expected values ηβand ηλ 

Prior precision matrices Πβ and Πλ 

Precision component matrices Q1…Qk 
Outputs: 

Posterior expected values μβ and μλ 

Posterior covariances Σβ and Σλ 

Data precision matrix Πy 

Free energy F 
// Initialize to a high level of regularization 

v = − 4 

until convergence 

// Compute numerical derivative of g wrt parameters 

(Jg)ij = ∂μj gi(μβ)

/* Optionally, if the Jacobian is unstable, make small parameter updates and re-try computing 
the Jacobian */ 
// Optimize hyperparameters 

until convergence 

// Compute data precision Πy and data precision per component Pi 

Pi = exp(μλ)iQi 
Πy =

∑

i
Pi 

// Compute posterior covariance over parameters 

Σβ = (JT
g ΠyJg + Πβ)

− 1 

// Compute error terms 

ϵλ = μλ − ηλ 
ϵy = y − g(μβ)

// Compute 1st and 2nd derivatives of the expected hyperparameters wrt g 

μ̇λ = ∂μλi
EQ(β)[lnP(y,β,λ)]

=
1
2

tr(PiΠ− 1
y ) −

1
2

ϵT
y Piϵy − ∂μλi

(ϵλ)
TΠλϵλ −

1
2

tr(ΣβJT
g PiJg)

μ̈λ = ∂μλi
μλi

EQ(β)[lnP(y,β,λ)]

= − (Πλ)ii +
1
2

tr(PiΣy − PiΣyPiΣy) −
1
2

ϵT
y Piϵy −

1
2

tr(ΣβJT
g PiJg)

// Scale a relaxed regularization value (v = 4) by the curvature 

t = exp(4 − Re(ln|μ̈λ|)/n)
// Update hyperparameters 

μλ = μλ + (exp[t × μ̈λ] − I)μ̈− 1
λ μ̇λ(t)

end 

// Calculate free energy 

F = … // (see Eq. (30)) 
// Assess performance 

if F has improved or we’re early in the optimization then 
// Compute errors 

ϵβ = μβ − ηβ 

ϵy = y − g(μβ)

/* Compute 1st and 2nd derivatives of the expected parameters wrt g for parameter update */ 
μ̇β = JT

g Πyϵy − Πβϵβ 

μ̈β = − JT
g ΠyJg − Πβ 

// Decrease regularization 

v = v + 1/2 

else 

// Free energy has got worse 

μβ,μλ← restore previous parameter estimates 
// Increase regularization 

v = v - 2 

end 

// Scale the log-regularization v by the curvature 

t = exp(v − Re(ln|μ̈β|)/n)
// Update parameters 

μβ = μβ + (exp[t × μ̈β] − I)μ̈− 1
β μ̇β 

(continued on next page) 
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(continued ) 

if the change in F is repeatedly below criterion 

// convergence 

Return 

end 

End  
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