
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Hyperspectral Blind Unmixing using a Double
Deep Image Prior

Chao Zhou, Student Member, IEEE, and Miguel R.D. Rodrigues, Senior Member, IEEE

Abstract—With the rise of machine learning, hyperspectral im-
age (HSI) unmixing problems have been tackled using learning-
based methods. However, physically meaningful unmixing results
are not guaranteed without proper guidance. In this work, we
propose an unsupervised framework inspired by Deep-Image-
Prior (DIP) that can be used for both linear and nonlinear blind
unmixing models. The framework consists of three modules:
(1) an Endmember estimation module using DIP (EDIP), (2)
an Abundance estimation module using DIP (ADIP), and (3)
a Mixing module (MM). EDIP and ADIP modules generate
endmembers and abundances, respectively, while MM produces
a reconstruction of the HSI observations based on the postulated
unmixing model. We introduce a composite loss function that
applies to both linear and nonlinear unmixing models to generate
meaningful unmixing results. Additionally, we propose an adap-
tive loss weight strategy for better unmixing results in nonlinear
mixing scenarios. The proposed methods outperform state-of-art
unmixing algorithms in extensive experiments conducted on both
synthetic and real datasets.

Index Terms—Hyperspectral image (HSI), linear unmixing,
nonlinear unmixing, convolutional neural networks (CNN), Deep
Image Prior (DIP)

I. INTRODUCTION

In hyperspectral imaging (HSI) technology, sensors are able
to capture the spectral reflectance of every pixel in a scene
across hundreds or thousands of spectral channels [1]. This
wealth of spectral information enables more accurate material
identification compared to RGB imaging [2]. However, the
observed reflectance is usually a mixture of the spectral
signatures of the materials present in the scene due to the
heterogeneity of the scene [3]. Consequently, there is a need
for methods that can quantitatively decompose, or unmix, the
captured spectral signature into its spectral components, also
referred to as ”endmembers,” and their corresponding propor-
tions within the mixture, referred to as ”abundances” [4], [5].

The linear mixture model (LMM), shown in Fig. 1a, ide-
ally models observed HSI signatures as a linear combination
of endmembers’ signatures weighted by their corresponding
abundances [1]. However, when there are nonlinear effects
such as multiple scattering, LMM is no longer applicable,
because the signatures captured by sensors result from inter-
actions with various materials at different levels/layers [3].

To address this nonlinearity, a nonlinear mixing model
(NLMM) is proposed [3]. Two popular NLMMs are intimate
mixture and multilayered mixture, illustrated in Fig. 1b and
Fig. 1c, respectively. In intimate mixture, different materials
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are close to each other, while in multilayered mixture, interac-
tions with different materials occur in different layers. Under
both LMM and NLMM, the HSI blind unmixing problem
involves two tasks [3]: (a) endmember estimation and (b)
abundance estimation.

Generally, endmember estimation methods are based on
geometrical approaches, assuming that the data is embedded
in a simplex whose vertices correspond to the endmembers.
Two widely used methods that fall under this category are
vertex component analysis (VCA) [6] and simplex volume
maximization (SiVM) [7]. Conversely, most abundance es-
timation methods in the literature are based on LMM [1].
For example, when the endmembers have been estimated by
endmember estimation methods, the linear unmixing problem
can be reduced to a least square problem, which can be solved
using a fully constrained least squares (FCLS) [8] solver. If
the endmembers are known in the form of a rich spectral
library, the abundance estimation problem can be formulated
as a linear sparse regression (SR) problem [9], which has
been tackled by methods such as sparse unmixing by variable
splitting and augmented Lagrangian (SunSAL) [9] and collab-
orative SUnSAL (CLSunSAL) [10]. There are also abundance
estimation methods that take into account NLMM, such as
the hierarchical Bayesian algorithm [11], where the unknown
model parameters are estimated using the Metropolis-within-
Gibbs sampling algorithm. Recently, a robust sparse unmixing
(RSU) method with ℓ2,1-norm based loss function [12] has
been proposed by considering the nonlinear terms as outliers.
RSU is solved by the alternative direction method of multipli-
ers (ADMM) [13].

Some methods perform endmember estimation and abun-
dance estimation simultaneously, known as blind unmixing
(BU). Nonnegative Matrix Factorization (NMF) [14]–[16] is
an example of such a method, which decomposes a nonnega-
tive observations matrix into two nonnegative matrices, where
the endmember signature matrix and abundance matrix are
interpreted as the endmembers and abundances, respectively,
in the context of HSI. Another widely used BU method is
Entropic Descent Archetypal Analysis (EDAA) [17], which is
based on the concept that HSI data is generated by a linear
combination of a small number of archetypes, representing
the extreme points of the HSI data, and these archetypes are
interpreted as endmembers. Some BU algorithms inspired by
Nonnegative Blind Source Separation (nBSS) techniques [18]–
[21] have been proposed by incorporating various constraints.
For example, HiSun [22] introduces the John ellipsoid (JE)
in nBSS to tackle ill-conditioned BU problems. However,
these traditional approaches can be computationally complex.
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Fig. 1. Hyperspectral linear and nonlinear mixing scenarios. (a) Linear mixing. The image pixel is composed of 3 endmembers, e1, e2, e3. (b) Nonlinear
mixing: intimate mixture. The image pixel is composed of a microscopic mixture of 3 endmembers, e1, e2, e3. (c) Nonlinear mixing: multilayered mixture.
The image pixel is composed of 2 endmembers, tree and e1. Both individual reflection and interacted reflection reach the sensor.

HyperCSI [23] proposes a fast BU algorithm by exploiting the
fact that the simplest simplex of N vertices can be defined by
N associated hyperplanes.

More recently, machine learning techniques, particularly
neural networks, have been utilized to tackle HSI unmixing
tasks, resulting in numerous learning-based approaches [24]–
[27]. These methods can be broadly classified into two cate-
gories: supervised and unsupervised. Supervised methods are
trained using pairs of HSI reflectances and their corresponding
abundances [27], [28], which enables the models to map HSI
spectra to corresponding abundances. In contrast, unsupervised
methods learn a function to estimate endmembers and abun-
dances from only the HSI reflectances, without knowledge
of true abundances. These blind unmixing methods [29]–[33]
utilize an autoencoder network structure with a linear decoder
to reconstruct HSI spectra. The bottleneck of the autoencoder
provides the abundance estimation, while the weights of the
linear decoder give the endmember estimation. However, these
methods are only effective in solving the linear blind unmixing
problem, and cannot be applied to nonlinear blind unmixing
problems [24].

Recently, [24] proposed a deep autoencoder to address the
nonlinear blind unmixing problem that involves an additive
nonlinear mixture component. Similarly, [26] introduced a
novel nonlinear autoencoder structure by incorporating a cross-
product layer to account for nonlinear mixing mechanisms. In
contrast, EGU-Net [2] models the nonlinear mixing of materi-
als as spectral variability and solves the unmixing problem
using a two-stream deep network that learns an additional
network from the (nearly) pure endmembers extracted from
HSI data via existing endmember extraction methods.

However, deep learning-based methods may produce un-
mixing results that lack physical meaning without appropriate
guidance [2]. To address this issue, UnDIP [34] has proposed
using the simplex volume maximization algorithm to extract
endmembers, which are then utilized as guidance to train an
abundance estimation network using a deep image prior (DIP).

Despite these developments, the quality of guidance remains
a bottleneck for unmixing networks trained with guidance, as
we demonstrate later. Furthermore, most learning algorithms
are unable to generalize from linear to nonlinear unmixing

problems, as they rely on the autoencoder structure to solve
either linear or nonlinear problems. To address these issues,
we propose a novel guidance-based framework that utilizes
double deep image prior techniques, which can overcome the
performance limitations of existing guidance-based methods.
Furthermore, the proposed method does not rely on the popular
autoencoder structure and can be applied to both linear and
nonlinear blind unmixing problems. We refer to our method
as BUDDIP, and it offers the following contributions:

1) A novel framework, BUDDIP, is proposed that builds
on the deep image prior (DIP) technique [35]. Unlike
the commonly used autoencoder structure, BUDDIP
consists of three modules: an endmember estimation DIP
(EDIP) module, an abundance estimation DIP (ADIP)
module, and a mixing module (MM). BUDDIP has
the flexibility to solve both linear and nonlinear blind
unmixing problems.

2) Instead of using random noise as input like other DIP
based methods [34], [35], the proposed framework takes
meaningful input by exploiting existing unmixing meth-
ods such as SiVM. A novel DIP network structure that is
more efficient than the common one used in DIP based
methods [34] is designed based on this input strategy.

3) Inspired by training guidance, we propose a new com-
posite loss function that can be applied to both linear and
nonlinear blind unmixing cases. From the perspective
of unmixing, the proposed loss function ensures that
the network produces physically meaningful unmixing
results and yields better endmember and abundance
estimation than the guidance. From the perspective of
network training, the proposed loss terms can be viewed
as regularizations that alleviate overfitting problems in
DIP techniques.

4) In the nonlinear blind unmixing case, due to the com-
plexity of nonlinear unmixing, we also propose an
adaptive loss weight strategy to yield better unmixing
results.

5) Extensive numerical experiments on both synthetic and
real datasets show that the proposed methods outper-
form state-of-the-art methods such as EGU-Net [2],
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UnDIP [34] and others [14], [36], [37], under both linear
and nonlinear unmixing cases.

The paper is structured as follows: Section II introduces
related works. Section III describes the construction of each
module of the proposed networks and how to train the appa-
ratus in an entirely unsupervised manner. Section IV presents
extensive experimental comparisons with competing methods.
Finally, Section V concludes the paper.

II. RELATED WORK

We now overview some related works.

A. Linear Mixing Model (LMM)

The linear mixing model (LMM) is one of the most popular
unmixing models in hyperspectral unmixing literature, which
assumes that, for each pixel, the reflectance spectrum is a lin-
ear combination of the spectrum of the endmembers weighted
by the corresponding abundances [1], [4]. This model can be
described as follows:

Y = EA+N (1)

where Y = [y1, ...,yn] ∈ Rp×n is a HSI data cube containing
the reflectance spectra of n pixels across p spectral bands, i.e.,,
yi ∈ Rp×1 is the spectra of ith pixel; E = [e1, ..., er] ∈ Rp×r

is the endmember matrix containing the spectral signatures of
r endmembers across p spectral bands, i.e., ei ∈ Rp×1 models
the spectra signature of the ith endmember (i = 1, ..., r); A =
[a1, ...,an] ∈ Rr×n is the corresponding fractional abundance
matrix, i.e., ai ∈ Rr×1 is the abundance vector containing
the abundances of r different endmembers present in the ith

pixel; and N ∈ Rp×n represents additive white gaussian noise.
It should be noted that we discuss with flattened HSI image
Y ∈ Rp×n, flattened abundance map A ∈ Rr×n, and flattened
noise N ∈ Rp×n for the purpose of simpler notation, but
we actually work with the HSI image of size n1 × n2, i.e.,
Y ∈ Rp×n1×n2 , A ∈ Rr×n1×n2 , and N ∈ Rp×n1×n2 .

Generally, the abundance is subjected to the non-negative
constraint (ANC) and sum-to-one constraint (ASC), i.e., all
the elements are equal to or greater than zero, A ≥ 0 1 and the
abundance of each pixel should sum up to one, AT1r = 1n,
where 1r is the all one vector with size r × 1. Similarly, the
endmember matrix is also subjected to non-negative constraint
(ENC), E ≥ 0, in order to be physically meaningful.

The goal of blind linear unmixing is to estimate E and A
given only Y. A popular approach to address this type of
problem involves solving [38]:

Ê, Â = argmin
E,A

1

2
∥Y −EA∥2F +R(A)

s.t.,E ≥ 0,A ≥ 0,AT1r = 1n

(2)

where, R(A) is a regularizer depending on abundance matrix
A, such as total variation (TV) [38]. Generally, the choice
of R is heavily dependent on the prior knowledge about the
task at hand. The optimisation problem (2) is typically solved

1In this work, A ≥ 0 is used to denote that A is a matrix in which all
elements are nonnegative.

by the multiplicative update rule [15] or a two-stage cyclic
descent method [38], which alternates between optimising A
for fixed E, and vice versa.

Despite its popularity and simplicity, the linear model can
not handle more complex hyperspectral unmixing scenarios [2]
such as those depicted in Fig. 1b and Fig. 1c.

B. Nonlinear Mixing Model

As an alternative to LMM, the nonlinear mixing model
(NLMM) [11], [12], [39], [40] accounts for the presence of
nonlinear effects by introducing additional nonlinear interac-
tion terms in the LMM. Generally, a NLMM can be expressed
as follows:

Y = EA+O+N (3)

where Y,E,A,N are akin to the same quantities appearing
in (1) and O denotes the additional term accounting for
nonlinear mixing effects. (3) is also known as robust LMM
(rLMM), and O is used to denote the outlier terms in [14].
NLMM has been widely proposed in hyperspectral imaging
literature, that differ from one another depending on how O
is modelled.

For example, the Bilinear model [39] is one of the most
popular variants of NLMM, which models the observed spec-
tra yk for the kth pixel as follows:

yk = Eak +

r−1∑
i=1

r∑
j=i+1

βi,j,kei ⊙ ej + nk (4)

where, yk,ak,nk correspond to the kth column vector of
Y,A,N in (3). ⊙ is the element-wise (Hadamard) product.
The coefficient βi,j,k captures the degree of nonlinear interac-
tions between the endmember ei and ej . For more compre-
hensive discussions regarding the Bilinear model, please refer
to the Supplementary.

The goal of blind nonlinear unmixing is also to estimate
E and A (sometimes the outlier/nonlinear terms O) given
only Y. Recently, this problem has been solved in [14] via
minimising the following objective:

min
E,A,O

1

2
∥Y −EA+O∥2F +R(O)

s.t.,E ≥ 0,O ≥ 0,A ≥ 0,AT1r = 1n

(5)

The objective (5) defines a robust nonnegative matrix factorisa-
tion (NMF) problem and can be solved via an iterative block-
coordinate descent algorithm [14], which update each of the
parameters E,A,O in turn while the other parameters are
fixed.

C. Deep Image Prior (DIP)

DIP [35] was originally proposed to solve inverse problems
such as denoising, given by:

x∗ = argmin
x
∥x− x0∥22 +R(x) (6)

where, x0 is a noisy image, and R is a regularizer explicitly
capturing the prior information about the clean image x. Many
contributions have concentrated on designing good regularis-
ers, for example, Total Variation (TV) makes regions in the
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Fig. 2. (a) The general architecture of the proposed BUDDIP. It consists of three modules: endmember estimation DIP (EDIP), abundance estimation DIP
(ADIP) and mixing module (MM). The output of EDIP is denoted by the green arrow while that of ADIP by the blue arrow. (b) when MM performs LMM
as defined in (12), we coined the whole model in (a) as L-BUDDIP, which can solve the linear blind unmixing problem. (c) While MM performs NLMM as
defined in (13), we coined the whole model in (a) as NL-BUDDIP, which can solve the nonlinear blind unmixing problem. fL and fNL are defined in (14)
and (15), respectively.

image more uniform and plug-and-play prior [41] connects
image inverse problems with well-developed image denoiser.
DIP however solves the optimization problem given by:

θ∗ = argmin
θ
∥fθ(z)− x0∥22 (7)

where, fθ(z) is a neural network parameterized by θ, with
random input z. That is, DIP effectively replaces the reg-
ularizer R in (6) with a neural network. According to the
DIP techniques [34], [35], the optimisation problem (7) can
be solved by randomly initialising the parameter θ, and
using a network optimiser such as gradient descent to update
θ iteratively until a predetermined number of iterations is
reached. After learning, the network parameterization would
implicitly capture the prior and output the restored image given
by x∗ = fθ∗(z).

The DIP technique has been used to solve linear unmixing
problems in UnDIP [34], where the endmember matrix is es-
timated via the existing method SiVM, which is used to guide
the training of an abundance estimation network using a DIP
network. However, UnDIP itself does not provide endmember
estimation and the quality of its abundance estimation is
limited by the quality of the guidance. Another problem of DIP
techniques is that they often suffered from overfitting, which
is usually solved by regularisation techniques such as the early
stopping technique [35] and exponentially weighted averaging
over the outputs from different runs [34], respectively. We next
describe how we adapt the DIP technique to solve these issues.

III. BUDDIP

We now introduce the proposed general framework for blind
hyperspectral linear and nonlinear unmixing tasks using the
double deep image prior (BUDDIP).

The proposed BUDDIP network is a self-supervised end-
to-end network, which consists of three modules: EDIP, ADIP
and MM, as shown in Fig. 2(a). EDIP is responsible for
endmember estimation, whereas ADIP is responsible for abun-
dance estimation. After obtaining the estimation of endmem-
bers and abundances, the output of EDIP and ADIP modules

will then be injected into MM to generate a reconstruction of
the observed hyperspectral spectrum.

The ability to choose the MM module leads to the flexibility
of the proposed BUDDIP. When MM is chosen to be an LMM,
the proposed BUDDIP becomes linear BUDDIP (L-BUDDIP),
which is capable of solving linear unmixing tasks. Similarly,
when MM is chosen to be an NLMM, the proposed BUDDIP
becomes non-linear BUDDIP (NL-BUDDIP), which can be
used to solve non-linear unmixing tasks. In order to generate
meaningful unmixing results, the proposed BUDDIP is trained
with the guidance of endmembers and abundances, which
are generated using any existing unmixing methods such as
SiVM [7]+FCLS [8]. However, different from other unmixing
networks trained with guidance such as UnDIP [34] or EGU-
Net [2], the performance of the proposed BUDDIP can surpass
that of the guidance.

A. Endmember Estimation using DIP

We now introduce how to solve the endmember estima-
tion problem using DIP. Like the two-stage cyclic descent
method [38], let us first assume that, at the endmember
estimation stage, we are given access to an estimate of the
abundance matrix AG. This could be achieved by using some
existing algorithms such as FCLS [8]. Then, the optimization
problem (2) would reduce to:

Ê = argmin
E

1

2
∥Y −EAG∥2F s.t.,E ≥ 0 (8)

In this work, following the idea of DIP, we propose to
estimate the endmembers using a DIP network (EDIP) fθE

with learnable parameters θE and an input TE . This leads to
the optimization problem given by:

θ∗
E = argmin

θE

1

2
∥Y − fθE

(TE)AG∥2F (9)

In the original DIP [35] and unmixing work using DIP
UnDIP [34], the network is fed with a random input, i.e.,
TE = zE , where zE is Gaussian noise in [34] and uniform
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Fig. 3. The architecture of the proposed EDIP. We propose to give a meaningful input TE = EI , where EI is an estimation of endmember generated by
existing methods, such as SiVM [7]. The outputs of the main branch and the skipped input are added and forwarded to the final output block.

noise between zero and 0.1 in [35]. However, there are signif-
icant drawbacks to using random input as it does not contain
any relevant information about the task or data that the network
is designed to process. Another observation in [42] is that,
when the network is given simultaneously a noisy observation
and random noise, the network tends to ignore the noise. To
address these drawbacks, we propose to give the DIP network
a more meaningful input. Since there are many impressive
unmixing works in the hyperspectral literature, we propose
to use existing unmixing algorithms, such as SiVM [7], to
generate an estimate of endmembers, EI , and use it as input
to the proposed EDIP network, TE = EI . This can be viewed
as a noisy estimation of the ground truth endmembers.

With the proposed input strategy, the network would already
have a reasonable starting point and only need to learn the
difference between the desired output and the input. This
further motivates the design of the architecture of the proposed
EDIP network fθE

. In particular, we use the ResNet [43] like
structure, because the skip-connections proposed in ResNet
can force the network to learn the difference between the input
and output. Different from the common ResNet structure used
in DIP and UnDIP, in this paper, we use a simpler network
shown in Fig. 3.

The proposed EDIP network fθE
is built upon a block that

consists of a Convolutional layer, a Batch normalisation layer,
and an Activation layer. This type of block is very popular
in neural network architectures like ResNet in literature [35],
[44]. However, different from the common 2D convolutional
layer used in literature, we use the 1D convolutional layer in
the proposed EDIP, because 2D convolutional networks are
commonly used to tackle image related problems, where the
image is represented as a 3D tensor. However, in the proposed
EDIP network, the input and output are the endmember
signatures represented as a 2D matrix. The 1D convolution
will be performed over the spectral band dimension p in
order to capture the spectral information as there is no spatial
information in the endmember matrix. This block is repeated
twice in the middle. As mentioned before, we want the
network to learn the difference between the input and desired
output, which is achieved via a skip connection shown in the
side branch of Fig. 3. The output of the main branch and the
skip connection will be added and injected into the final output
block. The structure of the output block is the same as before
except that the activation layer is replaced with the Sigmoid

activation layer in order to meet the ENC constraint. After
learning the parameter θ∗

E , the estimated endmember is given
by Ê = fθ∗

E
(EI).

B. Abundance Estimation using DIP

We now introduce how to derive the DIP network for abun-
dance estimation. Let us now assume that, at the abundance
estimation stage, we are given access to an estimate of the
endmembers EG, using some algorithm such as SiVM [7].
Then, the optimization problem (2) would reduce to:

Â = argmin
A

1

2
∥Y −EGA∥2F +R(A)

s.t.,A ≥ 0,AT1r = 1n

(10)

We also propose to generate the estimation of the abun-
dances using a DIP network (ADIP) fθA

with an input TA

and learnable parameters θA. This leads to the optimization
problem given by:

θ∗
A = argmin

θA

1

2
∥Y −EGfθA

(TA)∥2F (11)

Similar to EDIP, we give the proposed ADIP a more mean-
ingful input instead of random noise zA. We propose to
use existing unmixing algorithms to generate an estimate of
abundance AI , and use it as the input of the proposed ADIP
network, TA = AI .

Akin to EDIP, the core of designing the architecture of the
ADIP network is to force the network to learn the difference
between the input and desired output. As a result, we use a
similar structure as EDIP with several modifications, which
are shown in Fig. 4. First of all, the ADIP network is
used to estimate the abundances, which is represented as a
3D tensor like an image. Thus, the convolutional layer in
the ADIP network is a 2D convolution, which can capture
spatial information via various convolutional kernels. Because
the abundance maps are more complex than the endmember
matrix, we use four blocks to capture the rich information in
abundance maps. Another difference is that, in order to meet
ASC and ANC, we use softmax as the output layer of the
ADIP network. After learning the parameter θ∗

A, the estimated
abundance is given by Â = fθ∗

A
(AI).
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Fig. 4. The architecture of the proposed ADIP. We propose to give a meaningful input TA = AI , where AI is an estimation of abundances generated by
existing methods, such as FCLS [8]. The outputs of the skip connection and the main branch are concatenated and forwarded to the final output block.

C. Blind Unmixing using Double DIP

Finally, we will introduce how to construct the proposed
general framework for blind unmixing using double DIP
(BUDDIP).

After obtaining an estimation of endmember and abundance,
Ê and Â, using EDIP and ADIP respectively, we can immedi-
ately generate a reconstruction of the observed HSI image by
feeding Ê and Â into a Mixture Module (MM). The structure
of the MM, which we will introduce later, is very flexible
and dependent on which physical model is selected. After
combining MM with EDIP and ADIP, the architecture of the
proposed general BUDDIP framework is shown in Fig. 2.
This general framework can be used to solve both linear and
nonlinear unmixing problems, by applying different MM.

1) Linear BUDDIP (L-BUDDIP): In the LMM case, ac-
cording to (1), the MM would perform the linear mixing
process as follows:

ŶM = ÊÂ (12)

where ŶM is the reconstructed HSI observation. This is
illustrated in Fig.2(a)&(b). We coined it L-BUDDIP.

2) Nonlinear BUDDIP (NL-BUDDIP): In the NLMM case,
according to the model (3), we can generate a reconstruction of
the observed HSI image by feeding Ê, Â into the MM, which
would perform the nonlinear mixing process as follows:

ŶM = fL(Ê, Â) + fNL(Ê, Â) (13)

where,
fL(Ê, Â) = ÊÂ (14)

is responsible for the linear effects in NLMM, and

fNL(Ê, Â) = Ô (15)

would account for the nonlinear effects in NLMM, where Ô =
[ô1, ..., ôn] ∈ Rp×n. The choice of fNL is very flexible and
dependent on which nonlinear model is selected. For example,
in the FM model [45], according to (4), fNL would output Ô
as follows:

ôk =

r−1∑
i=1

r∑
j=i+1

ai,kaj,kei ⊙ ej (16)

An illustration of the proposed NL-BUDDIP is shown in
Fig. 2(a)&(c). Note that for other models such as GBM with
extra parameters, those parameters can be learned via another
DIP network according to [44].

TABLE I
SUMMARY OF SOME NOTATIONS.

EI , AI meaningful input for EDIP and ADIP respectively

EG, AG training guidance for ADIP and EDIP respectively

Ê, Â estimation of endmembers and abundances by the

proposed network

Y, ŶM , HSI observation and its reconstruction by the

ŶE ,ŶA MM, EDIP, ADIP module, respectively

θE , θA learnable parameters of proposed EDIP and ADIP network

D. Training Details

We now elaborate on how we optimize the various param-
eters associated with BUDDIP.

1) Loss function: According to the discussion above, the
network has generated three estimations: Ê for endmembers,
Â for abundances, and ŶM for reconstructed HSI observation,
as shown in Fig. 2. Correspondingly, we propose to train
our BUDDIP network using six loss functions (two for each
output). To make the notations used later clear, we summarise
some notations in Table. I.

First, for endmember estimation Ê by EDIP fθE
(EI),

motivated by the optimization problem (9) and the angle
distance loss [37], we propose to use the loss function given
by:

LEDIP (θE) = α1 · LEMSE + α2 · LEAng (17)

where,

LEMSE =
1

2
∥Y − ŶE∥2F

LEAng =
1

n

n∑
k=1

180

π
cos−1

(
yT
k ŷ

E
k

∥yk∥2∥ŷE
k ∥2

)
ŶE = fθE

(EI)AG

(18)

α1 and α2 in (17) are the hyperparameters that control the
relative importance of the corresponding loss term. ŶE is
the HSI reconstruction by EDIP fθE

(EI), given the guidance
AG. yk, ŷ

E
k are the kth pixel of HSI observation Y and HSI

reconstruction ŶE , respectively. The proposed loss function
in (17) is an extension of (9) that includes an additional angle
distance loss. The first loss term, LEMSE , in (17) minimizes
the discrepancy between Y and ŶE in Euclidean distance,
similar to the optimization problem in Eq. (9). The second
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loss term, LEAng , provides a measure of disparity from a
geometric perspective. As demonstrated in [37], the inclusion
of this additional angle loss term can enhance the performance
of the unmixing network.

As discussed before, in (18), the EDIP network fθE
is

fed with a meaningful input EI , where EI is an estimate
of endmembers generated via some existing unmixing algo-
rithms. Similarly, AG is an estimate of abundances generated
by some existing unmixing algorithms, which would serve as
the guide to the training of the EDIP network. The guidance
AG would guarantee the EDIP network to yield a meaningful
estimation of endmembers. In this paper, EI and AG are
generated by existing unmixing methods such as SiVM [7]
and FCLS respectively.

Similarly, for abundance estimation Â by ADIP fθA
(AI),

we propose to use the loss function given by:

LADIP (θA) = α3 · LAMSE + α4 · LAAng (19)

where,

LAMSE =
1

2
∥Y − ŶA∥2F

LAAng =
1

n

n∑
k=1

180

π
cos−1

(
yT
k ŷ

A
k

∥yk∥2∥ŷA
k ∥2

)
ŶA = EGfθA

(AI)

(20)

and α3 and α4 are loss weights of LAMSE and LAAng . ŶA is
the HSI reconstruction by ADIP fθA

(AI), given the guidance
EG. yk, ŷ

A
k are the kth pixel of HSI observation Y and HSI

reconstruction ŶA, respectively. Again, in (20), we need a pair
of estimations AI and EG in order to provide ADIP network
with a meaningful input and training guidance. Like before,
AI and EG are generated by existing unmixing methods such
as SiVM [7] and FCLS respectively.

Moreover, for reconstructed HSI observation ŶM , which is
defined in (12) and (13), we also impose an additional loss
function – the blind unmixing (BU) loss – given by:

LBU (θE ,θA) = α5 · LBUMSE + α6 · LBUAng (21)

where,

LBUMSE =
1

2
∥Y − ŶM∥2F

LBUAng =
1

n

n∑
k=1

180

π
cos−1

(
yT
k ŷ

M
k

∥yk∥2∥ŷM
k ∥2

) (22)

and α5 and α6 are the loss weights. yk, ŷ
M
k are the kth pixel of

HSI observation Y and HSI reconstruction ŶM , respectively.
This additional loss LBU is necessary because otherwise EDIP
and ADIP would yield endmember and abundance estimates
close to guidance EG and AG, respectively.

The final loss function for linear blind unmixing is a
combination of the above losses, as follows:

L(θE ,θA) = LEDIP + LADIP + LBU (23)

where, LEDIP , LADIP , LBU are defined in (17), (19)
and (21). From the perspective of unmixing, the terms LEDIP

and LADIP in the composite loss function ensure that the

network produces meaningful endmembers and abundances, in
the sense that Ê, Â cannot deviate too much from EG,AG. At
the same time, LBU allows the network to have the freedom to
search for better estimations than the guidance EG,AG. From
the perspective of network training, LEDIP and LADIP can
be interpreted as regularizations on the outputs of the BUDDIP
network, Ê and Â, with LBU serving as the data fidelity term.
This composite loss function can therefore alleviate the need
for techniques such as early stopping [35] and exponentially
averaging over different runs [34]. By properly choosing the
hyperparameters α1∼6, the network outputs will eventually
reach an equilibrium state between inducing small fitting error
(LBU ), and regularisation penalty, (LEDIP and LADIP ).

In this paper, the proposed loss function (23) is applied to
both linear and nonlinear scenarios. While it is possible to
modify the form of ŶA and ŶE to accommodate nonlinear
reconstruction of hyperspectral data, we choose to retain the
linear form of these terms in the nonlinear case for the sake
of simplicity and consistency between the linear and nonlinear
cases. However, the purpose of LEDIP and LADIP is to
ensure that the network produces meaningful output, which
is still valid under nonlinear conditions without the need for
modification. This is because the nonlinear model (3) still
contains a linear component. For this reason, the meaningful
input EI ,AI , and training guidance EG,AG are generated
using the same unmixing algorithms (SiVM+FCLS) for both
linear and nonlinear cases.

Different from the two-stage-cyclic descent method [38], the
proposed network is trained in an end-to-end manner. Given
only the HSI image Y, the learnable parameters {θE ,θA}
are learned by minimizing the composite loss in (23), using a
variant of gradient descent optimizer, ADAM [46].

Algorithm 1 Adaptive Loss Weight Strategy.

INPUT :
• αinit

1∼6 - the initial value of loss weights
• γ1, γ2 - the rate of updating loss weights
• αmin, αmax - the boundary of loss weights
• g - update gap
• J - the number of training epochs.

TRAIN :
Initialise α1∼6 ← αinit

1∼6

for i = 0 : J do
train the proposed network with α1∼6;
if i mod g == 0 then

[α1∼4, α5∼6]← [α1∼4 ∗ γ1, α5∼6/γ2]
α1∼6 ← Clip (α1∼6, αmin, αmax)

end if
end for
return

2) Adaptive loss weight strategy for NL-BUDDIP: To fur-
ther improve the nonlinear unmixing performance, we also
propose an adaptive loss weight strategy. If α1∼4 are rela-
tively larger than α5∼6, the network would simply mimic the
guidance EG and AG. On the contrary, if α5∼6 is larger,
the network would simply output meaningless endmembers
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and abundances. Thus, for the nonlinear case, we propose
an adaptive loss weight strategy. The motivation is that, at
the beginning of the training, we would like the network to
converge to the guidance fast, so the loss weight of EDIP and
ADIP, α1∼4 should be larger. After approaching the guidance,
the network should have more freedom to explore for a better
solution, so we need to reduce α1∼4 whilst increasing α5∼6.
Finally, to avoid the weight exploding and vanishing problems,
we need to set a threshold for the loss weights. This strategy
is summarised in Alg. 1.

IV. EXPERIMENTS

We now conduct various experiments on both synthetic and
real datasets, for linear and nonlinear unmixing tasks, to show
the effectiveness of the proposed methods. In view of the
space constraints, we have included more experiments in the
supplementary materials.

A. Performance Metrics

We adopt some of the most popular metrics in literature
to evaluate the unmixing performance of various algorithms.
In particular, we employ root mean square error (RMSE),
and abundance angle distance (AAD) [16], between the true
abundance vector ak for kth pixel and the corresponding
estimation âk, to measure the quality of abundance estimation.
These metrics are given by:

RMSEk =

√√√√1

r

r∑
i=1

(ai,k − âi,k)2 (24)

AADk =
180

π
cos−1

(
aTk âk

∥ak∥2∥âk∥2

)
(25)

These metrics are then further averaged over the number of
pixels to yield the final scalar quantities.

As for the endmember estimation, we also adopt the well-
known spectral angle distance (SAD) to measure the dis-
similarity between a true endmember signature ei and the
corresponding estimate êi, where SAD is given by:

SADi =
180

π
cos−1

(
eTi êi

∥ei∥2∥êi∥2

)
(26)

This metric is instead averaged over the various endmembers
to give the final scalar quantity.

B. Data

We also use both synthetic and real datasets to evaluate the
performance of various unmixing algorithms.

1) Synthetic Dataset 1: We adopt the popular procedure
in [27] to generate the synthetic HSI dataset for the linear
unmixing problem. For the nonlinear unmixing case, we only
need to modify the final linear mixing process with the
corresponding nonlinear mixing counterpart. The procedure is
as follows:

• Endmember generation. The endmembers are generated
by selecting mineral signatures from the famous USGS
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Fig. 5. Endmember signatures for synthetic data.

spectral library known as splib06 [47]. The library con-
tains values of spectral reflectance associated with dif-
ferent minerals over 224 channels, ranging from 0.4 µm
to 2.5 µm. Six spectral signatures are randomly selected
from the library, resulting in a 224×6 endmember matrix.
These endmember signatures are shown in Fig. 5.

• Abundance generation. The abundances underlying the
synthetic data is generated as follows. First, we divide a
synthetic image of size a2 × a2 pixels into a2 disjoint
patches of size a × a pixels. Second, for all pixels of a
given patch, we randomly select two endmembers out of
the six spectral signatures, and assign them with fractions
γ and 1 − γ, while the remaining four endmembers are
assigned with value 0. Finally, the abundance map is
convolved with a Gaussian filter of size (a+1)×(a+1),
with variance set to be 2, followed by pixel-wisely re-
scaling to meet the ASC constraint. In this paper, we set
a = 10 and γ = 0.8.

• Mixing process. According to different mixing models (1)
or (3), we generate correspondingly linear or nonlinear
mixing synthetic data.

• Noise contamination. Finally, the generated HSI data
is contaminated with additive white gaussian noise
(AWGN). The signal-to-noise ratio (SNR) is defined as
SNR = 10 log10

(
E[xTx]/E[nTn]

)
, where x is the

clean HSI data, and n is the noise.

2) Synthetic Dataset 2: To test the effectiveness of the
proposed methods when there is no pure pixel in HSI dataset,
we also adopt the synthetic procedure in [23], [48]–[50], where
a purity measure for an observed pixel yk is defined as ρk =
∥ak∥2 ∈ [1/

√
r, 1] (due to the ANC and ASC constraint).

The larger ρk is, the higher the purity of the pixel yk is. A
set of n observed pixels {yk}nk=1 with ρ − 0.1 ≤ ρk ≤ ρ is
called a dataset with purity level of ρ. The synthetic generation
procedure is basically the same as the procedure of synthetic
dataset 1 except for the abundance generation, which is as
follows:

• Randomly sampling K = 10n abundance vectors from a
Dirichlet distribution D(µ) where µ = (1/r)1r, that is,

Ω = {ak|ak ∼ D(µ),∀k = 1, ...,K} (27)

and calculate the corresponding purity ρk for all k.
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• Construct a set of n abundance vectors with purity level
ρ by randomly choosing n samples from Ω subject to
ρk ∈ [ρ− 0.1, ρ].

3) Real Dataset: We also adopt the commonly used real
HSI datasets Jasper Ridge [51], which contains 512 × 614
pixels associated with 224 spectral bands ranging from 380
nm up to 2500 nm with a spectral resolution of 9.46 nm.
There are four endmembers in the scene: Road, Soil, Water,
and Tree. A 100×100 pixels sub-images of the original images
is considered in this article to lift the computational burden and
deploy faster experimental studies. Due to dense water vapour
and atmospheric effects, We also eliminate 26 spectral bands:
channels 1-3, 108-112, 154-166 and 220-224, leaving only 198
out of the 224 bands for unmixing purposes. A representative
image – associated with the 80th spectral band – is shown in
Fig. 6.

Fig. 6. HSI image Jasper Ridge at 80th channel.

C. Evaluation on synthetic data

1) Linear Unmixing: We now compare the performance of
our approaches under the linear mixing model using synthetic
datasets, with that of some state-of-art learning-based methods,
UnDIP [34], EGU-Net-ss [2], MNN-BU-2 [36], U-ADMM-
BUNet-II [37], CNNAEU [52] and MiSiCNet [53]. We also
include the traditional method SiVM [7]+FCLS [8], Hyper-
CSI [23], HiSun [22], and EDAA [17], where SiVM+FCLS is
used to generate the training guide for some of the learning-
based methods. Unless explicitly mentioned, the experiments
are conducted under the default setting, where the structure of
the proposed network is summarised in Table. II. The proposed
network is trained using the Adam optimizer with a learning
rate set to 5e− 3, and the number of epochs set to 6000. The
synthetic HSI image dataset for both synthetic dataset 1&2 is
constructed under the linear mixing model, which consists of
100× 100 pixels. We also contaminate these HSI reflectances
with AWGN leading to SNR = 30 dB.

Hyperparameter Tuning: In this section, we evaluate
the impact of hyperparameters α1∼6 on unmixing perfor-
mance using synthetic dataset 1. We retain the default ex-
periment settings except that the hyperparameters vary in
{0.0, 0.001, 0.01, 0.1, 1.0}. The results are shown in Fig. 7.
It is clear that, when α1∼4 = 0, that is LEDIP and
LADIP are deactivated, the network generates meaning-
less unmixing results. When α5 = α6 = 0 and any
of α1∼4 is 1, the network would simply output unmixing
results close to the corresponding guidance provided by
SiVM+FCLS. When α2 = α4 = α6 = 0, α1 = 0.1, α3 =
0.01, α5 = 1, i.e., LEAng, LAAng, LBUAng are deactivated
and LEMSE , LAMSE , LBUMSE are activated, the proposed

TABLE II
HYPERPARAMETERS OF BUDDIP STRUCTURE.

EDIP

Conv1D

In Channel Out Channel kernel size stride pad

p 256 3 1 same
256 p 3 1 same
p p 1 1 same

ADIP

Conv2D

In Channel Out Channel kernel size stride pad

r 32 3 1 same
32 64 3 1 same
64 64 3 1 same
64 r 3 1 same
2r r 1 1 same

Activation LeakyReLU negative slope=0.1

method generate better unmixing performance with abundance
AAD of 5.67 and endmember SAD of 1.88. Finally, when all
the six loss terms are activated, that is, α2 = 0.001, α4 =
0.01, α6 = 0.1, α1 = α3 = α5 = 1, the proposed method
delivers the best unmixing performance with AAD of 4.65
and SAD of 1.68. Consequently, we have employed these
configurations as the default settings for the subsequent ex-
periments conducted on the synthetic dataset. This experiment
also indicates that the proposed method is very sensitive to
hyperparameters α1∼6 as they control the relative importance
of regularisation LEDIP , LADIP and data fidelity LBU .
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Fig. 7. The impact of hyperparameter on linear unmixing performance.

Convergence Analysis: This experiment presents an anal-
ysis of the convergence behavior of the proposed method, by
comparing the training process and blind unmixing perfor-
mance under two different settings. In the first setting, denoted
as ”setting 1”, the network is trained without any regularization
or guidance by deactivating the LEDIP and LADIP terms
and setting α1∼4 = 0 and α5 = 1, α6 = 0.1. In the second
setting, denoted as ”setting 2”, the LEDIP and LADIP terms
are activated by setting α1 = α3 = α5 = 1.0, α2 = 0.001,
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Fig. 8. Convergence analysis. In setting 1, we train the network with α5 = 1, α6 = 0.1, α1∼4 = 0, that is, the regularisation/guidance LEDIP and LADIP

are deactivated. In setting 2, we activate the regularisation/guidance LEDIP and LADIP by using α1 = α3 = α5 = 1.0, α2 = 0.001, α4 = 0.01, α6 = 0.1.
(a) various MSE loss versus epochs, (b) various angle distance loss versus epochs, (c) Abundance AAD versus epochs. (d) Endmember SAD versus epoch.

α4 = 0.01, and α6 = 0.1. The number of epochs is set to
12000 for analysis purposes, while the remaining settings are
kept as default.

The training process and the corresponding unmixing per-
formance are plotted in Fig. 8 as a function of the number
of epochs. In setting 1, the network converges at around
1200 epochs and achieves the smallest fitting error LBUMSE ,
but the worst unmixing performance, as evidenced by the
high AAD and SAD values shown in Fig. 8c and Fig. 8d,
respectively. Furthermore, the endmember SAD values in-
crease with more epochs, indicating overfitting. Moreover, the
regularisation penalties LEMSE , LAMSE , LEAng , and LAAng

in Fig. 8a and Fig. 8b are also high.
In contrast, in setting 2 where all the regularization terms are

activated, the network reaches an equilibrium state at around
epoch 6000 as shown in Fig. 8, where it minimizes both the
fitting error (LBUMSE and LBUAng) and the regularization
penalties (LEMSE , LAMSE , LEAng , and LAAng). This setting
also yields improved unmixing performance, with an abun-
dance AAD of approximately 4.4 and an endmember SAD
of 1.67. Therefore, the proposed method does not require the
use of techniques such as early stopping [35] or exponentially
weighted averaging of outputs from multiple runs [34], since
the LEDIP and LADIP terms serve as effective regulariza-
tions. We choose 6000 epochs as a trade-off between training
efficiency and unmixing quality.

Comparison of different input: We now evaluate the
effectiveness of the proposed input strategy using synthetic
dataset 1. We retain the default settings for BUDDIP except
that the network now is fed with two types of input: gaussian
input as UnDIP suggested [34], and the proposed input. The
unmixing performance with respect to training epochs are
shown in Fig. 9. It can be seen that with the proposed
input strategy, the network achieves better unmixing when
the number of epochs is small, say, 300. We attribute this
to the fact that the proposed input can be viewed as a noisy
observation of the underlying ground truth. Thus, the task
of the network is to generate more refined unmixing results
given the noisy input. In comparison, with the gaussian input,
the network needs to generate unmixing results given non-
informative input. It is also noticeable that, with the proposed
input, BUDDIP also delivers better unmixing results when the

number of epochs is large.
Performance vs. Purity Level ρ: In this section, we

evaluate the impact of purity level ρ on the linear unmixing
performance of various unmixing methods using synthetic
dataset 2. Specifically, we retain the default settings and the
purity ρ varies in [0.8, 0.9, 1.0], where ρ = 0.8 indicates
the case where the HSI data is highly mixed and ρ = 1.0
means there are highly pure pixels. We also train the proposed
method with guidances generated from two different methods,
SiVM+FCLS and HyperCSI, respectively. The unmixing per-
formance is summarised in Table. III. It is evident that, when
the data is highly mixed, i.e., ρ = 0.8 and ρ = 0.9, HyperCSI
performs the best among the various competing methods.
Nevertheless, when the proposed method is trained with the
guidance from HyperCSI, it achieves almost 1.6 times better
performance than HyperCSI. For example, when HyperCSI
shows abundance AAD of 2.19 and endmember SAD of 0.80
at purity level 0.8, the proposed method can further improve
it to AAD of 1.97 and SAD of 0.49. In the meantime,
although SiVM+FCLS failed to deliver satisfactory unmixing
performance, the proposed network can use the unmixing
results from SiVM+FCLS as the training guidance and further
improve the performance by three times, from an abundance
AAD of 11.4 to 3.82. At a purity level of ρ = 1.0, the
proposed L-BUDDIP guided with SiVM has the lowest RMSE
and AAD, as well as the second best SAD. Comparing the
performance of L-BUDDIP trained with different guidance, it
can be seen that the performance of the proposed method is
affected by the quality of the guidance used during training.
A higher quality guidance leads to better performance of the
proposed method. Overall, the proposed L-BUDDIP performs
well across different purity levels. Additionally, the proposed
method can utilize the unmixing results of the state-of-the-art
as training guidance (represented by EG and AG) to further
improve its performance.

Processing Time Comparison: In this section, we com-
pare the processing time of various unmixing methods. The
test platform is equipped with Intel Xeon Gold 6248 CPU
2.50GHz, Tesla V100 GPU, 503GB RAM. The results for
linear unmixing case and nonlinear unmixing case are shown
in Table. III and Table. IV, respectively. The quantities are
obtained by averaging over ten individual runs. It is evident
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Fig. 9. Linear unmixing performance of BUDDIP with different input strategies: gaussian input and the proposed input. (a) Abundance RMSE versus epoch.
(b) Abundance AAD versus epoch. (c) Endmember SAD versus epoch.

TABLE III
LINEAR UNMIXING PERFORMANCE COMPARISON OF VARIOUS METHODS FOR DIFFERENT PURITY LEVEL ρ. THE BEST RESULTS ARE HIGHLIGHT IN

BOLD. THE SECOND BEST ARE DENOTED WITH A STAR.

method
ρ = 0.8 ρ = 0.9 ρ = 1.0

time (:s)
RMSE AAD SAD RMSE AAD SAD RMSE AAD SAD

SiVM+FCLS 0.0692 11.4335 5.0056 0.0328 4.4675 2.4792 0.0106 1.1287⋆ 0.4726 11.9374

HyperCSI 0.0140⋆ 2.1875⋆ 0.7998⋆ 0.0120⋆ 1.6817⋆ 0.5989⋆ 0.0114 1.4366 0.5826 0.1181

HiSun 0.0439 5.6432 4.7341 0.0237 2.7296 2.0948 0.0251 2.3893 0.8225 8.7195

EDAA 0.0633 10.4134 3.5987 0.0701 10.3568 2.0083 0.0316 3.3124 0.2614 12.2705

MNN-BU2 0.0614 10.2151 3.3293 0.0831 12.6412 3.2022 0.0256 2.3661 1.1599 0.1926

U-ADMM-BUNet-II 0.0348 5.7705 1.7182 0.0461 6.7399 1.5596 0.0227 2.8388 0.6132 0.1490

EGU-Net-ss 0.0959 13.6120 4.6811 0.0538 6.0256 2.7246 0.0177 1.9359 0.7267 0.3659

UnDIP 0.0720 11.9410 5.0056 0.0345 4.7341 2.4792 0.0139 1.6776 0.4726 0.0086

MiSiCNet 0.0953 14.3151 6.0990 0.0657 8.0372 4.6247 0.0292 3.3278 2.8937 0.0023⋆

CNNAEU 0.3667 65.1646 16.4183 0.4160 69.2101 16.8180 0.4234 70.9834 14.7135 0.0054

L-BUDDIP
0.0236 3.8200 1.5430 0.0161 2.2130 0.9460 0.0104 1.0941 0.2920⋆

0.0018
(SiVM)

L-BUDDIP
0.0126 1.9681 0.4875 0.0119 1.5704 0.4587 0.0105⋆ 1.1408 0.4383

(HyperCSI)

that the network-based unmixing methods generally outper-
form traditional unmixing methods in terms of processing
time, with the exception of HyperCSI. Among the network-
based methods, The proposed method stand out as the fastest
unmixing approach.

2) Nonlinear Unmixing: We now evaluate the unmixing
performance of the proposed NL-BUDDIP with various state-
of-art unmixing methods, such as network based methods
UnDIP [34], EGU-Net-ss [2], MNN-BU-2 [36], U-ADMM-
BUNet-II [37], CNNAEU [52] and MiSiCNet [53], as well as
the traditional methods SiVM [7]+FCLS [8], and rNMF [14],
HyperCSI [23], HiSun [22], and EDAA [17], using synthetic
dataset under FM model. Correspondingly, in the proposed
network, the Mixing Module (MM) would use the FM
model [45] as defined in (4), while the structure of EDIP
and ADIP module are the same as those summarised in
Table. II. We also use the Adam optimiser with learning rate
set to 5e − 3 and the number of epochs set to 12000. By

default, the synthetic HSI image dataset 1&2 are generated
under FM model, which consists of 100 × 100 pixels. The
synthetic dataset is then polluted with AWGN noise leading
to SNR = 30 dB. The hyperparameters are set to αinit

1 =
100, αinit

2 = αinit
5 = 1, αinit

3 = αinit
4 = 10, αinit

6 = 0.1, γ1 =
0.8, γ2 = 0.9, αmin = 1e − 3, αmax = 1e + 2, g = 300 by
grid search techniques.

Fixed vs. Adaptive Loss Weight Strategy: We now eval-
uate the impact of the proposed adaptive loss weight strategy
using the nonlinear HSI synthetic dataset 1 under FM model.
Specifically, we vary the hyperparameters αinit

2 , αinit
4 , γ1, γ2,

while the remaining are fixed as the default setting. The
unmixing performance is reported in Fig. 10. The dots with
γ1 = γ2 = 1 are results of the fixed loss weight strategy,
while the others are results of the adaptive loss weight strategy.
It is clear that, with the fixed strategy, the network can
readily generate unmixing results better than the guidance.
Nevertheless, with the proposed adaptive loss weight strategy,
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the network achieves the best unmixing performance in terms
of both endmember SAD and abundance AAD.
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SiVM+FCLS

Fig. 10. Fixed versus adaptive loss weight strategy under nonlinear unmixing
case. X axis is abundance AAD and Y axis is endmember SAD. The dots with
γ1 = γ2 = γ3 = 1 are the fixed loss weight strategy, while the remaining
are adaptive loss weight strategy.

Performance vs. Purity Level ρ: In this section, we
evaluate the impact of purity ρ on the nonlinear unmixing
performance of the proposed methods using synthetic HSI
dataset 2 under FM model. Specifically, we retain the default
settings and the purity ρ varies in [0.8, 0.9, 1.0]. The unmixing
performance is summarised in Table. IV. It is clear that, at the
purity level of ρ = 0.8, HyperCSI performs the best among
the various competing methods with AAD of 4.6 and SAD of
1.5. On the other hand, although SiVM+FCLS only achieves
AAD of 17.96 and SAD of 6.34, the proposed NL-BUDDIP
can utilise those unmixing results as guidance and delivers
7 times better performance with AAD of 3.9959 and SAD of
0.8752, which is even better than HyperCSI. When ρ increases
to 0.9 and 1.0, the proposed NL-BUDDIP achieves the best
performance among all competitors. In general, the proposed
NL-BUDDIP shows the state-of-the-art nonlinear unmixing
performance across different purity levels.

D. Evaluation on real dataset

We conducted an evaluation of the unmixing performance of
various methods on the real dataset Jasper Ridge. Comparisons
on other real dataset can be found in the appendix. The
methods used in this comparison were traditional linear un-
mixing methods, namely SiVM [7]+FCLS [8], HyperCSI [23],
HiSun [22], and EDAA [17], as well as traditional non-
linear unmixing methods, including rNMF [14]. Addition-
ally, we evaluated learning-based unmixing networks such
as MNN-BU-2 [36], U-ADMM-BUNet-II [37], EGU-Net-
ss [2], UnDIP [34], CNNAEU [52], MiSiCNet [53], and our
proposed L-BUDDIP and NL-BUDDIP. In this experiment,
we utilized the MM module in the NL-BUDDIP to function
as the FM model. We employed SiVM+FCLS as the default
guidance/initialization generator for various methods such

as MNN-BU-2, U-ADMM-BUNet-II, EGU-Net-ss, UnDIP,
MiSiCNet, and the proposed L-BUDDIP. Finally, we trained
both L/NL-BUDDIP using guidance generated from EDAA to
demonstrate state-of-the-art performance.

The proposed L-BUDDIP with guidance from EDAA is
trained using the hyperparameters α1 = α3 = α6 = 0.01,
α2 = α4 = 100, and α5 = 1.0, while the hyperparame-
ters for NL-BUDDIP with guidance from EDAA are set to
αinit
1 = αinit

3 = αinit
4 = 10, αinit

2 = 100, αinit
5 = 0.1,

αinit
6 = 0.01, γ1 = γ2 = 0.9, αmin = 0.01, αmax = 100,

and g = 700. These hyperparameters were selected using
grid search techniques. In contrast, the hyperparameters for
L-BUDDIP with guidance from SiVM+FCLS were set to
α1 = 45.25, α2 = 100, α3 = 16.60, α4 = 47.16, α5 = 1.0,
and α6 = 0.08, which were determined using random search
techniques. All networks were trained using a learning rate
of 5e − 3 and epoch 6000. The qualitative results of esti-
mated endmembers and abundances are shown in Fig. 11 and
Fig. 12, respectively. The corresponding quantitative results
are shown in Table. V. The results presented in Fig. 11
show that several existing methods, such as SiVM+FCLS,
CNNAEU, UnDIP, and EGU-Net, failed to accurately estimate
the signatures of the road, resulting in large endmember SAD
values as indicated in Table. V. Moreover, both HyperCSI
and HiSun failed to unmix the signature of water, while
MiSiCNet produce the best estimation for the endmember of
Tree for this dataset. In contrast, the proposed L-BUDDIP with
guidance from SiVM+FCLS was able to recover more accurate
endmember signatures for the road. Specifically, Table V
shows that L-BUDDIP with SiVM+FCLS guidance achieved
an Endmember SAD of 4.13 for the road, which represents
a significant improvement compared to SiVM+FCLS, which
achieved an SAD of 15.8 for the road.

Furthermore, when using guidance from EDAA, the pro-
posed methods generated the most visually appealing unmix-
ing results. The quantitative results presented in Table. V
demonstrate that the proposed method has the best SAD for
the road endmember and the overall average SAD among
all endmembers. With improved endmember estimation, the
proposed method also achieved the best abundance estimation
in terms of RMSE and AAD. Moreover, NL-BUDDIP slightly
outperformed L-BUDDIP in terms of abundance estimation.
Although EDAA readily delivered good unmixing results with
an AAD of 7.66, the proposed method was able to further im-
prove the AAD to 5.2. Finally, the qualitative results presented
in Fig. 12 indicate that the proposed method generates the best
abundance estimation compared to its competitors.

V. CONCLUSION

In this work, we have proposed a general neural network
structure that is capable of solving both linear and nonlinear
hyperspectral blind unmixing problems. Different from the
popular autoencoder structure, building upon Deep Image
Prior (DIP) techniques, the proposed method consists of
three modules: an Endmember estimation module using DIP
(EDIP), an Abundance estimation module using DIP (ADIP),
and a Mixing Module (MM). The EDIP and ADIP module
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TABLE IV
NONLINEAR UNMIXING PERFORMANCE COMPARISON OF VARIOUS METHODS FOR DIFFERENT PURITY LEVEL ρ. THE BEST RESULTS ARE IN BOLD.

THE SECOND BEST ARE DENOTED WITH A STAR.

method
ρ = 0.8 ρ = 0.9 ρ = 1.0

time (:s)
RMSE AAD SAD RMSE AAD SAD RMSE AAD SAD

rNMF 0.3042 50.732 23.3305 0.3353 52.6879 22.4824 0.3665 54.2828 22.4233 3.1484

SiVM+FCLS 0.1002 17.9685 6.3412 0.0465 6.7308 3.4658 0.0192 2.4020 0.6095 10.9354

HyperCSI 0.0302⋆ 4.6126⋆ 1.5008⋆ 0.0237 3.2769 1.1230⋆ 0.0176 2.1633 0.7855 0.1551

HiSun 0.0405 5.6666 5.4575 0.0212⋆ 2.5992⋆ 2.6349 0.0188 2.0754 0.6695 9.5697

EDAA 0.0698 11.7178 3.8387 0.0406 5.4092 1.6947 0.0390 4.3166 0.2894 12.3635

MNN-BU2 0.1451 29.0092 12.0890 0.0736 9.6026 5.5778 0.1391 22.4132 3.8198 0.1872

U-ADMM-BUNet-II 0.0543 9.1804 2.6652 0.0550 7.9753 1.7887 0.0312 3.8843 0.9381 0.2729

EGU-Net-ss 0.1022 15.3104 4.4069 0.0499 5.9326 2.4708 0.0164⋆ 1.8787⋆ 0.625 0.3789

UnDIP 0.1496 28.7185 7.1064 0.0479 6.9371 3.4658 0.0238 3.1231 0.6095 0.0099

MiSiCNet 0.0988 15.7423 5.7003 0.0658 8.5409 4.4252 0.0312 3.6481 2.8217 0.0026
CNNAEU 0.3600 66.6197 16.2333 0.3972 69.6882 16.9117 0.4428 72.7636 16.5118 0.0077

NL-BUDDIP 0.026 3.9959 0.8752 0.0182 2.2613 0.5897 0.0121 1.1652 0.4202⋆ 0.0039⋆
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Fig. 11. Endmembers estimated by different methods on Jasper Ridge dataset. Blue solid lines indicate the true value, while red dot lines indicate the scaled
estimated value. From top to bottom: Tree, Water, Soil, and Road. (a) SiVM+FCLS. (b) MNN-BU-2. (c) U-ADMM-BUNet-II. (d) EGU-Net-ss. (e) UnDIP.
(f) L-BUDDIP with EDAA. (g) rNMF. (h) NL-BUDDIP with EDAA. (i) HyperCSI. (j) HiSun. (k) EDAA. (l) MiSICNet. (m) CNNAEU. (n) L-BUDDIP with
SiVM+FCLS.
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Fig. 12. Abundance maps estimated by different methods on Jasper Ridge dataset. From top to bottom: Tree, Water, Soil, and Road. (a) SiVM+FCLS. (b)
MNN-BU-2. (c) U-ADMM-BUNet-II. (d) EGU-Net-ss. (e) UnDIP. (f) L-BUDDIP with EDAA. (g) rNMF. (h) NL-BUDDIP with EDAA. (i) HyperCSI. (j)
HiSun. (k) EDAA. (l) MiSICNet. (m) CNNAEU. (n) L-BUDDIP with SiVM+FCLS. (o) Reference.

would output estimations for endmembers and abundances,
respectively, whereas the MM, based on the unmixing model,

would yield a reconstruction of the observed HSI reflectances.
Different from the general noise input used in the DIP
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TABLE V
MEAN AND STANDARD DEVIATION OF ABUNDANCE RMSE, AAD (IN DEGREES), ENDMEMBER SAD (IN DEGREES) BY DIFFERENT METHODS ON

JASPER RIDGE. THE BEST RESULTS ARE IN BOLD. THE SECOND BEST ARE DENOTED WITH A STAR.

Methods RMSE AAD SAD of Tree SAD of Water SAD of Soil SAD of Road averaged SAD

HyperCSI 0.2005±0.0000 20.7649±0.0000 5.4103±0.0000 44.3726±0.0000 7.5442±0.0000 6.6429±0.0000 15.9925±0.0000

HiSun 0.3152±0.0000 46.0728±0.0000 14.4662±0.0000 54.6580±0.0000 10.3029±0.0000 5.8153±0.0000 21.3106±0.0000

SiVM+FCLS 0.1480±0.0000 20.7198±0.0000 8.5545±0.0000 14.4877±0.0000 6.5558±0.0000 15.7991±0.0000 11.3493±0.0000

MNN-BU-2 0.2154±0.0007 33.1936±0.0927 7.9771±0.0046 14.4324±0.0117 5.3219±0.0367 8.6187±0.0020 9.0875±0.0117

U-ADMM-Net-II 0.1332±0.0022 17.6087±0.3170 8.6635±0.0160 4.0919±0.1313 5.6216±0.0113 13.6586±0.2183 8.0089±0.0417

EGU-Net-ss 0.2110±0.0019 30.7221±0.2117 2.7626±0.1517⋆ 4.5969±0.5298 5.6690±0.0646 22.0731±0.3154 8.7754±0.0242

UnDIP 0.1748±0.0252 25.3249±4.4570 8.5545±0.0000 14.4877±0.0000 6.5558±0.0000 15.7991±0.0000 11.3493±0.0000

L-BUDDIP
0.0445±0.0005⋆ 5.2348±0.1152⋆ 4.2622±0.0335 2.9074±0.0209 2.7430±0.0206⋆ 2.8273±0.0463 3.1850±0.0045

(EDAA)

rNMF 0.1750±0.0002 25.2385±0.0233 8.7639±0.0098 16.1319±0.0122 25.8640±0.0630 32.0590±0.0210 20.7047±0.0148

NL-BUDDIP 0.0434±0.0005 5.1956±0.0722 4.3011±0.0489 2.8836±0.0352⋆ 2.7488±0.0228 2.8532±0.0681⋆ 3.1966±0.0078⋆

MiSiCNet 0.1894±0.0000 27.4191±0.0015 2.4860±0.0010 16.5820±0.0069 10.0646±0.0007 9.3605±0.0018 9.6233±0.0015

CNNAEU 0.2726±0.0860 36.6164±12.9452 3.8993±0.5724 4.3835±1.2212 5.0614±1.3909 31.3367±16.9217 11.1702±4.0669

EDAA 0.0583±0.0000 7.6572±0.0000 4.2205±0.0000 2.8038±0.0000 2.7262±0.0000 3.1506±0.0000 3.2253±0.0000

L-BUDDIP
0.1238±0.0003 16.2442±0.0447 8.7884±0.0139 13.2621±0.0064 6.4180±0.0212 4.1317±0.0013 8.1501±0.0036

(SiVM+FCLS)

technique, we propose to use the estimations from existing
unmixing methods as the input, based upon which, we design
a more efficient DIP network structure with less learnable
parameters. In order to generate meaningful unmixing results
and further improve the unmixing performance, we propose a
new composite loss function that is applicable in both linear
and nonlinear unmixing cases. For the nonlinear case, we also
propose an adaptive loss weight strategy to further improve
the performance. Extensive experiments on both linear and
nonlinear unmixing cases show that the proposed method
can deliver better unmixing performance than the state-of-art
unmixing methods such as SiVM+FCLS, rNMF, MNN-BU,
U-ADMM-BUNet, EGU-Net, and UnDIP.
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