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A spatiotemporal analysis of the impact of lockdown and coronavirus on 
London’s bicycle hire scheme: from response to recovery to a new normal
Xiaowei Gao a, Huanfa Chen b and James Haworth a

aSpaceTimelab, Department of Civil, Environmental and Geomatic Engineering, University College London, London, United Kingdom; 
bCentre for Advanced Spatial Analysis, University College London, London, United Kingdom

ABSTRACT
The coronavirus pandemic that started in 2019 has had wide-ranging impacts on many aspects 
of people’s daily lives. At the peak of the outbreak, lockdown measures and social distancing 
changed the ways in which cities function. In particular, they had profound impacts on urban 
transportation systems, with public transport being shut down in many cities. Bike share 
systems (BSS) were widely reported as having experienced an increase in demand during the 
early stages of the pandemic before returning to pre-pandemic levels. However, the studies 
published to date focus mainly on the first year of the pandemic, when various waves saw 
continual relaxing and reintroductions of restrictions. Therefore, they fall short of exploring the 
role of BSS as we move to the post-pandemic period. To address this gap, this study uses origin- 
destination (O-D) flow data from London’s Santander Cycle Hire Scheme from 2019–2021 to 
analyze the changing use of BSS throughout the first two years of the pandemic, from lock
down to recovery. A Gaussian mixture model (GMM) is used to cluster 2019 BSS trips into three 
distinct clusters based on their duration and distance. The clusters are used as a reference from 
which to measure spatial and temporal change in 2020 and 2021. In agreement with previous 
research, BSS usage was found to have declined by nearly 30% during the first lockdown. Usage 
then saw a sharp increase as restrictions were lifted, characterized by longer, less direct trips 
throughout the afternoon rather than typical peak commuting trips. Although the aggregate 
number of BSS trips appeared to return to normal by October 2020, this was against the 
backdrop of continuing restrictions on international travel and work from home orders. The 
period between July and December 2021 was the first period that all government restrictions 
were lifted. During this time, BSS trips reached higher levels than in 2019. Spatio-temporal 
analysis indicates a shift away from the traditional morning and evening peak to a more diffuse 
pattern of working hours. The results indicate that the pandemic may have had sustained 
impacts on travel behavior, leading to a “new normal” that reflects different ways of working.
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1. Introduction

The coronavirus pandemic that started in 2019 has 
had wide-ranging impacts on many aspects of people’s 
daily lives. At the peak of the outbreak, lockdown 
measures and social distancing changed the ways in 
which cities function, with many people shifting from 
daily commuting to working from home, leading to 
both short and long term changes to mobility patterns 
(Elarde et al. 2021; Shepherd et al. 2021). Although 
restrictions have now eased in many countries due to 
effective containment measures and the rollout of 
vaccines, flexible working continues at a higher level 
than in the pre-pandemic world, with a recent study 
estimating that the number of days spent working 
from home will rise from 0.69 to 1.29 per week (Jain, 
Currie, and Aston 2022). The impact of this change on 
travel and commuting patterns in cities remains to be 
seen and is the subject of ongoing research.

One of the positive impacts of the pandemic was 
the reported increase in the mode share of cycling. 
Cycling is a nonpolluting mode that has significant 
health benefits for individuals compared with alterna
tive modes (Teixeira, Silva, and Moura e Sá 2021; 
Woodcock et al. 2014). With fewer cars on the road 
during restrictions, citizens have been more inclined 
to cycle and this has been matched by a concerted 
effort from many governments to promote cycling 
through short-term infrastructure changes such as 
“pop-up” bike lanes and low traffic neighborhoods 
(LTNs). In an analysis of 106 European cities, Kraus 
and Koch (2021) found that such policies increased 
cycling between 11% and 48% on average. However, as 
more people have returned to work and schools have 
reopened, the level of road traffic has begun to 
increase, which is compounded by the fact that many 
people are less inclined to travel on crowded public 
transport, at least in the short term (Nouvellet et al.  
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2021). Furthermore, anecdotally there has been oppo
sition to the cycling infrastructure schemes from those 
who claim they increase traffic congestion and are 
under-utilized, despite clear evidence that they reduce 
injuries (Aldred and Goodman 2021; Laverty, Aldred, 
and Goodman 2020).

For those without access to their own bicycle, cycle 
hire schemes are one of the most accessible ways to 
cycle, for utilitarian or leisure purposes (Lathia, 
Ahmed, and Capra 2012). Lovelace et al. (2020) 
found that London’s cycle hire scheme has saw growth 
in lower income areas before the pandemic, particu
larly in the AM peak commuting time. The primary 
pre-pandemic use of cycle hire schemes in many cities 
was to fulfil the “last mile” of commuting trips (Ji et al.  
2017), resulting in a two-peak profile on weekdays 
(Fishman 2016). For example, in London’s Santander 
Cycles system, the busiest locations were around the 
main train stations and employment centers such as 
the City of London. The secondary usage of the sys
tems is for leisure trips, often linked to tourism. These 
trips typically take place outside the morning and 
afternoon peak hours, particularly on weekends, and 
are spatially concentrated in tourist hotspots and 
green spaces. It has been widely reported that the 
Santander Cycles scheme experienced an upsurge in 
demand in the early stages of the UK’s national lock
down, despite the lack of commuting trips taking place 
(Transport for London 2021). Towards the latter part 
of 2020 the overall usage of the system appeared to 
have returned to pre-pandemic levels (Heydari et al.  
2021). However, there are two important points to 
note: 1) Most of the UK working population were 
under instruction to work from home if possible dur
ing this period; 2) International and domestic tourism 
was restricted during most of this period. Therefore, 
we can hypothesize that the total usage masked sig
nificant spatiotemporal differences in the pattern of 
usage compared with the pre-pandemic period. In 
order to fully understand the impact of the pandemic 
on London’s BSS, it is necessary to continue to moni
tor its usage as restrictions continue to be lifted.

This paper aims to provide insights into the chan
ging usage of London’s Santander Cycles Bicycle 
Sharing System (BSS) for the duration of the pandemic 
in 2020–21, using 2019 as a baseline. In doing so, it 
goes beyond BSS research from the early pandemic to 
reveal insights into sustained changes in mobility as 
covid restrictions are lifted. To achieve this aim, we 
propose a simple method to separate the trips into 
different trip types using a data driven approach. We 
then explore the changes in the balance of these activ
ity types in terms of temporal and spatial dimensions. 
The proposed approach is fast to implement and 
applicable to any bike sharing system that collects 
origin-destination (OD) flow data between docking 
stations, making it generalizable to other systems 

worldwide. The remainder of this paper is structured 
as follows. In Section 2 we review the literature on trip 
purpose estimation in cycle hire data and the impact of 
the coronavirus pandemic on urban transport. 
Section 3 presents the data and methodological frame
work. Section 4 presents the results, before conclu
sions and future directions are presented in Section 5.

2. Literature review

2.1. Impact of COVID-19 on urban transportation 
systems

Many empirical studies have revealed that lockdown 
policies implemented in response to the outbreak of 
COVID-19 led to significant decline in urban trans
port trips (Chang et al. 2021; De Vos 2020; Degli 
Esposti, Mortara, and Roberti 2021; Huang et al.  
2020; Katrakazas et al. 2020; Tirachini and Cats  
2020). In terms of public transit, ridership was found 
to have declined during morning and evening peaks as 
commuting trips reduced (Wilbur et al. 2020). In 
many cases, this reduction was between 80–90% 
(Apple COVID-19 mobility report 2021; Bucsky  
2020; Wang et al. 2020). However, non-commuting 
trips were also impacted; a comparative study of ten 
countries by Barbieri et al. (2021) found that usage of 
all transport modes reduced for all trip purposes. As 
the disruption caused by the pandemic eases, some of 
these trends are expected to continue to some extent. 
van Wee and Witlox (2021) found that COVID-19 
fostered an e-life pattern and hypothesize that this 
will lead to two main changes on individual mobilities; 
namely more diverse destinations for daily travel and 
lower transport demand during the peak time. 
Moreover, the transport system will experience 
a decline in number of trips but the trip duration 
will rise.

2.2. The role of BSS during the pandemic

The pandemic has been found to have significant 
impacts on the usage of BSS worldwide, which have 
mirrored the different stages of the pandemic. 
Consistent with other transport modes, usage initi
ally fell during lockdown periods, but the subse
quent recovery varied by location. For example, 
Chai et al. (2021) found that the overall BSS usage 
(including Mobike, DiDi Bike, Hellobike, and Ofo) 
reduced by 64.8% during the early stage of the 
COVID-19 outbreak in Beijing, China, in 
January 2020. It then increased by 15.9% when 
restrictions eased. However, the overall usage had 
not recovered to pre-pandemic levels by 
March 2020. Hu et al. (2021) observed changes in 
the Divvy BSS in Chicago over a longer period 
between January and July 2020, finding an 
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“increase-decrease-rebound” pattern, with 
a decrease from January to April and recovery 
until July. However, a study by Li et al. (2021b) 
on London’s BSS over a similar period from 
January to June 2020 found that the usage sharply 
declined after the UK’s first lockdown but did not 
recover instantly when the lockdown eased. Clearly, 
more research is needed over longer periods to 
understand how BSS usage has recovered.

While general usage statistics of BSS can reveal 
trends at the aggregate scale, they mask local varia
tions at trip, spatial, and temporal scales, which may 
give greater insight into the nature of change. In terms 
of trip characteristics, longer distances or durations 
have been recognized as the new normal by various 
studies (Chai et al. 2021; Kraus and Koch 2021; Li et al.  
2021b; Nikiforiadis, Ayfantopoulou, and Stamelou  
2020; Teixeira and Lopes 2020). For example, the 
Divvy BSS in Chicago presents a clear pattern of 
longer trips (Hu et al. 2021), while in New York’s 
Citi Bike system, the average trip duration in 2020 
increased from 13 min to 19 min (Teixeira and Lopes  
2020). Pase et al. (2020) found that during 
March 2020, short cycling trips in downtown 
New York become less frequent, while longer trips 
connecting different boroughs made up a larger 
share of the BSS trips.

From a temporal perspective, an increase in trips 
in the afternoon as well as during weekends has 
been observed (Chai et al. 2021; Huang et al. 2020; 
Li et al. 2021b; Mollers, Specht, and Wessel 2021). Li 
et al. (2021a) found that during the first UK lock
down and subsequent easing time, the trips in the 
morning peak were at a lower level. Using a long 
term dataset, Chibwe et al. (2021) studied the 
London BSS from 2012 to 2020, finding the daily 
number of trips in weekdays during COVID-19 
lockdown was 21.81% lower on average than week
days in the pre-pandemic period. A study of ten 
German cities by Mollers, Specht, and Wessel 
(2021) found the pandemic increased BSS usage 
during midday and afternoon hours as well as dur
ing weekends, with the opposite being true in morn
ing peak hours and weekdays. The usage of BSS 
during the pandemic has also been found to vary 
according to landuse (Chai et al. 2021; Doubleday 
et al. 2021; Hu et al. 2021; Huang et al. 2020; Li 
et al. 2021b), socio-economic status (Li et al. 2021; 
Pase et al. 2020) and ethinicity (Bi et al. 2022; Hu 
et al. 2021; Teixeira, Silva, and Moura e Sá 2022).

It is important to note that the analyses presented 
here were conducted using data from the first full year 
of the pandemic in 2020. Therefore, while they present 
a good account of the initial impacts of covid on BSS 
from various perspectives, they do not explore 
whether changes have taken place that persist once 
all restrictions have been lifted. Studies where 

conditions appear to have returned to “normal” 
needed be viewed in the context of continuing global 
restrictions.

2.3. Trip purpose in BSS data: survey and 
inference

Data on trip purpose is not routinely collected at the 
population level for individual journeys on BSS. 
Therefore, research into BSS trip purpose often uses 
sample surveys of registered users. For example, Buck 
et al. (2013) used an intercept survey and online 
member survey in an analysis of Capital Bikeshare 
(CaBi) in Washington DC, finding that frequent BSS 
users are more likely to use the system for utilitarian 
purposes such as commuting, while instant users tend 
to use the system for leisure and tourism. Ji et al. 
(2017) used an intercept survey to study feeder mode 
choice of rail users in Nanjing, China, focussed on bike 
share, with a sample size of 709, finding that female, 
older, and low-income rail commuters are less likely to 
use public bicycle to access rail transit. While this type 
of study can reveal deep insights into a focussed topic, 
they are expensive and not easily repeatable, which 
renders them insufficient for examining granular spa
tio-temporal patterns (Li et al. 2021b). For this reason, 
many studies attempt to infer trip purpose from large, 
unlabeled BSS trip data.

In docked systems, BSS trip data is usually in the 
form of origin-destination trips with associated travel 
times. To infer purpose these trips are usually com
bined with temporal and/or spatial factors such as 
time of day, day of week and surrounding land use 
and points of interest (POIs). Bordagaray et al. (2016) 
developed a heuristic for classifying BSS trips on the 
TusBic system in Santander, Spain based on 24,664 
trips across 193 bikes. Five categories are obtained: 1) 
round trips, which are linked to leisure or fitness 
purposes; 2) rental time reset, whereby a user reaches 
the time limit for free travel and switches to a new 
bike; 3) bike substitution, whereby a bike is found to 
be defective and immediately switched; 4) perfectly 
symmetrical mobility trips associated with commut
ing, and; 5) non-perfectly symmetrical mobility trips, 
also associated with commuting but likely capturing 
situations where the user had to search multiple dock
ing stations either to pick up or dock the bike. The 
approach of Bordagaray et al. (2016) requires user 
data, which is not typically available. Furthermore, 
classes 1 and 2 are specific to the BSS under analysis 
and difficult to generalize. However, the basic struc
ture of categories 3, 4 and 5 can be observed from trip 
data without user information. Zhang et al. (2018) 
analyzed 1.9 million cycling trips, focussing on trip 
chains and transition activities in Zhongshan, China. 
The approach requires user data to identify trips made 
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by the same user. Furthermore, trip purpose is men
tioned but is not assessed quantitatively. Li et al. 
(2020b) employed a Continuous Hidden Markov 
Model (HMM) and Gaussian Mixture Model (GMM) 
to infer trip purposes of docked BSS trips in Nanjing, 
China. Four trip types are inferred; metro/bus transfer 
activity, flexible cycling activity, home-based com
mute activity and work-based commute activity.

Recent studies also have examined trip purpose in 
dockless BSS. Dockless BSS typically offer much more 
granular spatial and temporal information than 
docked BSS. Journeys are often tracked by GPS and 
pick-up and drop-off locations are not determined by 
the position of docking stations. Therefore, they offer 
a richer source of information for inferring trip pur
pose. Li, Huang, and Axhausen (2020a) utilized 
a Dirichlet multinomial regression topic model on 
a dockless bike-sharing (Mobike) dataset in 
Shanghai, China. They found long-distance or dura
tion trips are made more frequently for leisure than for 
commuting. Moreover, there are five main trip pur
poses of dockless BSS (Mobike) in Shanghai, namely 
dining (22.53%), transport (19.58%), shopping 
(19.23%), work-related (15.66%), and residential- 
related (10.85%) (Xing, Wang, and Lu 2020). 
However, Li et al. (2021a) found that the largest 
share of trip purposes in Shenzhen, China is work- 
related activities (24.19%), followed by recreation 
(17.69%), home-related (17.28%), dining (11.27%), 
and transfer activities (11.03%). Additionally, for the 
trip purposes in modal transfer, Xu et al. (2019) unra
veled the trip purposes of dockless BSS in Singapore 
may be more likely as the “first-mile” to mass rapid 
transit (MRT).

2.4. Spatio-temporal clustering of BSS

Many studies have conducted spatio-temporal analysis 
of bike-sharing mobility patterns. The methods of 
these studies can be categorized into three types: spa
tio-temporal visualization (e.g. Beecham, Wood, and 
Bowerman 2014; Bi et al. 2022; Lovelace et al. 2020; 
Yu, Liu, and Yin 2021), spatio-temporal regression 
(e.g. Corcoran et al. 2014; Maas et al. 2021; Morton 
et al. 2021), and spatio-temporal clustering (e.g. Saberi 
et al. 2018; Yang et al. 2019; Zheng et al. 2021). As this 
study focusses on clustering of BSS journeys, we only 
review papers on spatio-temporal clustering of BSS 
here.

There is a wide range of clustering algorithms, 
which can be broadly separated into five types: parti
tioning clustering (PC), density-based clustering 
(DBC), hierarchical clustering (HC), model based 
clustering (MBC) and grid based clustering (GBC) 
(Ansari et al. 2020). GBC is not suitable here as it is 
designed to be applied to grid data structures 
(Giannotti et al. 2007). Similarly, DBC methods such 

as DBSCAN are not suitable because they are designed 
to find clusters in point data, as seen in Bao et al. 
(2017). The BSS data used here have fixed geographic 
location (docking stations) so the approach would be 
of limited value. PC, of which k-Means (KM) is the 
archetype, has been applied in a number of BSS stu
dies. For example, Borgnat et al. (2011) applied the 
KM algorithm on the dynamic cycling trip network 
regarding docked BSS in space and time, finding four 
spatio-temporal clusters related to cycling travel pat
terns on peak hours and ordinary hours intra- 
weekdays and weekends. Hyland et al. (2018) utilized 
KM and Fuzzy C-means clustering methods, finding 
three BSS clusters which are mostly interpretable with 
commuting rhythms (membership, weekdays, peak 
hours) or leisure activities (non-membership, week
ends). The advantage of PC methods is their simplicity 
and ease of implementation. However, cluster assign
ment depends only on the mean vector, which prohi
bits different variances along different dimensions.

MBC approaches, such as Gaussian Mixture 
Modelling (GMM), relax the restrictions of PC meth
ods like KM to allow each cluster to have its own 
covariance matrix. This has two main advantages: 
firstly, clusters can have different variances along dif
ferent axes and arbitrary orientations, and secondly, 
data points are assigned a probability of cluster mem
bership. MBC has been applied to BSS in identifying 
usage variances among various docked stations 
(Etienne and Latifa 2014), mining the “last-mile” 
effects of a new metro line (Yang et al. 2019), and 
mining trip trends of bikes among BSS stations based 
on their geographical location information (Jia et al.  
2019).

HC is an approach that forms a nested hierarchy of 
clusters. HC is useful in cases where data may natu
rally form into subpopulations. For example, 
Froehlich, Neumann, and Oliver (2009) used hierarch
ical clustering to cluster docked BSS stations. They 
split the stations into three major clusters, 1) outgoing 
cluster, showing low availability of bicycles during the 
morning peak and higher availability after morning 
peak; 2) incoming cluster, showing an opposite situa
tion to the outgoing cluster; 3) flat cluster, showing an 
even distribution in available bicycles intra-days. 
Similarly, Du, Deng, and Liao (2019) and Liu and 
Lin (2019) used hierarchical clustering, finding morn
ing/evening peak hour-related station-level usage fre
quency clusters. However, as the data presented in this 
study are two dimensional, a hierarchical approach is 
not required.

Alongside the aforementioned clustering methods, 
community detection (CD) has been widely applied to 
BSS. CD extracts groups of nodes in a network that are 
strongly connected. CD has been applied in BSS ana
lysis in New York City (Lin, He, and Peeta 2018), 
London (Saberi et al. 2018), Chicago (Zhou and 
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Chen 2015), and Singapore (Song et al. 2021). While 
CD is very useful in detecting patterns in graph struc
tures, it is not considered a suitable approach here as 
we focus only on identifying clusters of similar trip 
types.

3. Data and methods

The data are sourced from London’s Santander Cycles 
system, which is a docked BSS launched in 2010. This 
BSS is concentrated in central London, with limited 
coverage in outer boroughs. The data are obtained 
from Transport for London (TfL’s) website. The data 
fields are shown in Table 1.

After removing the trips without start or end sta
tions and removing duplicated trip records, we got 
a BSS trip dataset with specific trip information 
(Yang et al. 2022). In 2019, there were 797 docking 
stations and 10,207,268 trips. In 2020, during the 
pandemic, the system served 10,033,213 BSS trips 
with 798 stations. Descriptive statistics of the BSS 
data can be seen in Table 2.

From Table 2, it can be seen that the BSS statistics 
for each year are similar. One observation is that the 
mean duration of trips increased in 2020, before fall
ing again in 2021.

3.1. Clustering journeys

We make the assumption that utilitarian and leisure 
activities can be clustered into distinct groups based 
on their duration and the distance between start and 
end docking stations, which we henceforth refer to as 
distance. For utilitarian trips, which are more direct, 
we expect duration to increase linearly with distance, 
with some variation around the mean to account for 
differences in cycling speed between different riders. 
Therefore, we hypothesize that the utilitarian trips can 
be described by a bivariate normal distribution. We 
further hypothesize that leisure trips can be described 
by a separate bivariate normal distribution with 

a different mean vector and covariance matrix that 
captures the more circuitous nature of leisure trips. 
However, we note that this is an idealized situation 
and trips may cluster in other ways that we do not 
account for here. Therefore, an approach is required 
that can identify the distributions of different journey 
types within the data and estimate the probability of 
each journey belonging to either one. According to the 
literature review, KM, HC and model based clustering 
such as EM and GMM are suitable candidates for 
clustering BSS trips. As the data under study is low- 
dimensional and we are only interested in basic trip 
types, a hierarchical approach is not needed. Model 
based approaches and KM are similar, but the latter 
has fewer restrictions on the shape and orientation of 
the resulting clusters. Therefore, we choose a model- 
based approach, GMM, for this study.

3.2. Gaussian mixture modelling

Gaussian Mixture Modelling (GMM) is a probabilistic 
clustering method that identifies Gaussian subpopula
tions within a dataset, each with their own set of 
parameters. A GMM can be defined as a weighted 
sum of M Gaussian densities according to 
Equation 1 (Reynolds 2009): 

p xjλð Þ ¼
XM

i¼1
wigðxjμi;ΣiÞ (1) 

where x is a D-dimensional continuous-valued data 
vector, wi ¼ 1; . . . ;M are the weights and 
g xjμi;Σi
� �

; i ¼ 1; . . . ;M, are component Gaussian 
densities. The component densities are D-variate 
Gaussian functions of the following form: 

g xjμi;Σi
� �

¼
1

2πð ÞD=2 Σij j
1=2 exp �

1
2

x � μi
� �0

Σ� 1
i x � μi
� �

� �

(2) 

with mean vector μi and covariance matrix Σi. The 
weights wi sum to 1.

Table 1. Data fields in the santander cycles dataset.
Data Field Description

Rental ID Unique ID for each trip
Duration Duration of the trip in seconds
Bike ID The unique ID of the Santander bicycle used for the trip
Start/EndDate The start or end date and time of the trip, to the nearest minute
Start/EndStation ID The unique ID of the start or end docking station of the trip
Start/EndStation Name The name of the start or end docking station of the trip

Table 2. Descriptive statistics of filtered BSS trips.

Year Total Stations Total Trips

Distance/meters Duration/seconds

Mean S.D. Min. Max. Mean S.D. Min. Max.

2019 797 10,207,268 2,139.78 1,450.49 0 11,996.48 993.25 845.29 60 7,200
2020 798 10,033,213 2,239.92 1,637.61 0 11,999.09 1,216.42 1,040.74 60 7,200
2021 797 10,680,265 2,181.47 1,520.79 0 11,997.28 1,093.16 9,21.63 60 7,200
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The GMM is fitted using the expectation- 
maximization (EM) algorithm (Dempster, Laird, and 
Rubin 1977), implemented in the scikit-learn package 
in Python programming language (Pedregosa et al.  
2011). The covariance type is selected as “full”, which 
allows each component of the mixture to have its own 
general covariance matrix. In effect, this means that 
the resulting clusters can have different mean and 
variance along each axis and arbitrary orientation. 
This choice is made in order to provide the greatest 
flexibility in the obtained clusters. The number of 
clusters is selected by minimizing the Bayesian infor
mation criterion (BIC) (Schwarz 1978), which is 
a common method for defining the number of clusters 
in GMMs (McLachlan and Rathnayake 2014; 
VanderPlas 2016; Zeng et al. 2016). Steele and 
Raftery (2009) compared BIC with three other mea
sures for cluster number selection, finding BIC to be 
the most effective in discovering true clusters. BIC 
chooses the number of components that maximizes 
the likelihood of the data while also penalizing models 
with a large number of parameters, thus preventing 
overfitting (Etienne and Latifa 2014). The calculation 
of BIC is shown in Equation 3: 

BIC ið Þ ¼ � 2 log p xjcλM

� �
þ kilog Nð Þ (3) 

where cλM represents the maximum likelihood estimate 
of λM, ki is the number of free parameters in the 
mixture model with i components, and N is the num
ber of data points. The selection process ends when the 
improvement in BIC from adding more components, 
ki, becomes negligible or when the number of compo
nents becomes impractical. Finally, the optimal num
ber of components is determined when the BIC score 
reaches a balance between the model’s fit and 
complexity.

The purpose of the GMM model is to cluster trip 
types into classes and to examine changes in class 
membership between the pre-pandemic, pandemic 
and recovery periods. We assume that the fundamen
tal properties of commuting and leisure trips will be 
unchanged throughout the study period. That is, we 
assume that a commuting trip will always be charac
terized by directness and a leisure trip the opposite. 
However, we assume that the proportion of trips in 
each class is variable. Therefore, it is not necessary to 
carry out the clustering on multiple time periods. 
Instead, we carry out the clustering on the pre- 
pandemic data in 2019 to characterize the clusters 
then assign new trips to the cluster that they have the 
highest probability of belonging to, based on their 
distance and duration. This allows us to see how the 
balance of trip types has shifted during the pandemic. 
It is important to note that we do not claim to cor
rectly infer the purpose of each trip, but we use the 
clustering result as a reference from which to measure 

change. This approach is supported by recent studies. 
For example, Li et al. (2021a) discovered that the 
pandemic resulted in an increase in the number of 
docked bicycle activities but did not significantly 
alter their patterns. Furthermore, Song et al. (2021) 
assumed that cycling trip clusters were consistent 
before, during, and after the pandemic. They 
employed a community detection method to cluster 
cycling trips and fine-tuned the k parameter, repre
senting the number of nearest stations of each trip, 
using pre-pandemic cycling trips. This same para
meter was then applied to cluster trips during and 
after the pandemic.

4. Results

In this section, we first explore the basic temporal 
trends in the data at the global level to give an over
view of the context in Section 4.1. Following this, we 
present the results of the clustering analysis in 
Section 4.2. We then use the clustering results to 
illustrate the local spatio-temporal variations that are 
masked in these global performance indicators in 
Section 4.3.

4.1. Global temporal analysis

In this section we conduct an exploratory temporal 
analysis at the global (system) level to illustrate the 
dominant trends in the London BSS in 2020 and 2021, 
compared with 2019. To give context to the results, 
Table 3 shows the timeline of the pandemic between 
March 2020 and December 2021.

From Figure 1, it can be seen that there was 
a reduction in trips in March and April 2020 during 
the lockdown period, then a rebound to higher than 
2019 levels between May and September. From 
October onwards the pattern appeared to return to 
“normal”. However, it should be noted that this period 
coincided with a gradual re-imposition of restrictions. 
From 6th January 2021, the UK entered its third 
national lockdown, which caused the trips to reduce 
until March, when a phased reduction in restrictions 
began. The summer months of 2021 followed a similar 

Table 3. Time periods for analysis based on London’s lock
down timeline.

Description Start Date End Date

First national lockdown 26th March, 2020 9th May, 2020
First Lockdown restrictions 

eased gradually
10th May, 2020 13th September, 

2020
Reimposing restrictions 14th September, 

2020
4th November, 

2020
Second national lockdown 5th November, 

2020
30th December, 

2020
Third national lockdown 6th January, 2021 7th March, 2021
Leaving lockdown 8th March, 2021 18th July, 2021
Back to normal 19th July, 2021 8th December, 

2021

6 X. GAO ET AL.



pattern to 2020 until October, when the 2021 counts 
were markedly higher than 2019 and 2020 and 
remained so until December, when further restrictions 
were announced due to the outbreak of the Omicron 
variant. These differences can be clearly seen in 
Figure 2.

Figure 3 shows the breakdown of the trip counts by 
month and day of the week. It can be seen that January 
and February 2019 and 2020 (before the first lock
down) had very similar weekday patterns. The week
day counts are noticeably lower in the first national 
lockdown in March-April 2020 and the third lock
down in January-February 2021. From April to 
November in both 2020 and 2021, the trip count on 
Saturdays and Sundays was higher than 2019, indicat
ing a sustained change in usage. An interesting obser
vation is that from September 2021, the weekday 
counts started to match or exceed 2019 levels, which, 
combined with the higher weekend counts, explains 
the higher overall usage in 2021 to an extent.

4.2. Clustering results

Figure 4 shows the BIC score for different values of 
k from 1 to 7. It can be seen that the BIC score drops 
sharply from 1 to 3 clusters, before leveling off. This 
indicates that the GMM model’s estimating performance 
is not significantly improved beyond a cluster size of 
three. Therefore, as a result of the intuitive explanation 
of the clusters and the creation of a stable model, we 
choose k = 3 as the number of clusters. Figure 5 shows 
the result of the GMM clustering procedure. The three 
identified clusters can be described as follows:

Cluster 1 (C1): This cluster represents trips of short 
duration and distance. On initial inspection, these may 
represent last mile journeys and are expected to 
mainly be comprised of utilitarian trips between trans
port hubs and work locations. They also reflect the 
pricing structure of Santander cycles, in which unlim
ited journeys of under 30 minutes may be made for 
£2 per day. The mean distance within this cluster is 

Figure 1. Daily temporal trend of bike share usage from 2019 to 2021.

Figure 2. Monthly temporal trend of bike share usage from 2019 to 2021.
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1509.5 meters, while the mean duration is 527.2  
seconds.

Cluster 2 (C2): This cluster represents trips that are 
longer but still direct. It can be hypothesized that this 
cluster contains a mix of longer utilitarian trips and 
leisure trips connecting leisure facilities within the 
city. The mean distance within this cluster is 2983.78 
meters, while the mean duration is 1246.43 seconds.

Cluster 3 (C3): This cluster represents trips that 
have longer duration and generally shorter distance, 
indicating less direct trips. It can be hypothesized that 
these mainly represent leisure trips. The mean dis
tance within this cluster is 2649.89 meters, while the 
mean duration is 3165.17 seconds.

4.3. Spatiotemporal analysis of clusters

In this section, we carry out spatial and temporal 
analyses of the clustering results presented in section 
4.2. In doing so, we reveal deeper insights into the 
nature of the changes in usage of the BSS.

4.3.1. Temporal analysis
To investigate the temporal characteristics, we divide 
the data into five time periods: 1) Morning Peak 
(AMP) from 07:00 to 09:59; 2) Inter Peak (IP) from 
10:00–15:59; 3) Afternoon Peak (PMP) from 16:00 to 
18:59; 4) Evening period (EP) from 19:00–23:59; 
and 5) Overnight period (OP) from 00:00–06:59.

Figures 6–8 show the monthly average count of trips 
by hour in each cluster between 2019 and 2021. It can be 
clearly seen that C1 exhibits the typical two peak com
muting profile in 2019, but this disappears during the 
first lockdown. By September 2021 the two peak profiles 

Figure 3. The total number of bike hire trips by day of the week in each month from 2019 to 2021.

Figure 4. BIC score of GMM model selection.

Figure 5. The scatter plot of overall 2020 trips with the pre- 
trained GMM model.
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have returned, but with a smaller morning peak than 
2019, and a longer afternoon peak. C2 also shows a two- 
peak profile in 2019, representing commuting trips of 
longer distance and duration. In the summer months of 
May to September, there is evidence that the afternoon 
peak extends from early afternoon to evening. This 
pattern becomes more pronounced in 2020, indicating 
a greater number of trips in this cluster. Given that 
more people were working from home during this 
period, it’s likely that this cluster contains a mixture of 

commuting and leisure trips. It is also possible that 
users in C2 were substituting trips that would have 
been taken by other transport modes such as buses or 
the London Underground. By late 2021, the pattern of 
trips in this cluster was similar to 2019. However, there 
is still evidence of the afternoon peak starting earlier, 
consistent with the pattern of C1. C3 saw the widest 
variation between 2019 and 2021. The temporal profile 
of this cluster matches the leisure trip purpose, with 
more trips in the summer months and in the afternoon 

Figure 6. Total hourly trip counts in Cluster 1 per month of 2019, 2020, and 2021.
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and evening. 2020 saw a large increase in trips in this 
cluster from April to September, peaking in May, which 
was the period when lockdown restrictions eased but 
very few people were working in Central London. 
People using the BSS benefited from very low traffic 
levels. In 2021 the pattern returned to similar levels to 
2019.

Figure 9 shows the percentage change in the num
ber of trips in each cluster during each phase of the 
pandemic, as shown in Table 3, compared with the 

same period in 2019. The changes are further broken 
down by period of the day. Positive changes indicate 
an increase in trips in that cluster, and negative 
changes the opposite. It can be seen that C3 showed 
large increases in each of the lockdown periods across 
most time periods, further supporting the hypothesis 
that citizens made use of the BSS for leisure purposes 
while vehicle traffic was reduced and public transport 
was restricted. The second national lockdown was the 
peak for usage in this cluster.

Figure 7. Total hourly trip counts in Cluster 2 per month of 2019, 2020, and 2021.
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C1 showed the largest decrease in the first lock
down and did not recover in the intervening periods. 
The reductions were particularly sharp in the AMP, 
with 84.1%, 52.6% and 73.9% decreases in the 
first, second and third national lockdowns, respec
tively. By the “back to normal” period in late 2021, 
C1 was still 18.6% down on 2019 levels in the AMP. 
Conversely, C1 levels were higher than 2019 in all 
other periods, with the largest increases outside the 

traditional peaks (AMP and PMP). This could indicate 
that the short-term changes to commuting patterns 
caused by the pandemic are being sustained: fewer 
people are working regular office hours. C2, which 
represents direct trips of a longer distance and dura
tion than C1, also saw large decreases in the AMP 
throughout the pandemic, which were sustained in 
the “back to normal” period. The greatest increases 
in this cluster were in the IP period in the second 

Figure 8. Total hourly trip counts in Cluster 3 per month of 2019, 2020, and 2021.

GEO-SPATIAL INFORMATION SCIENCE 11



national lockdown and in the EP in the “back to 
normal” period. In fact, similar to C1 and C3, this 
cluster showed increases in all time periods in the 
“back to normal” period except the AMP. This repre
sents a change in the way the system is used, which is 
masked by aggregate statistics.

4.3.2. Spatial analysis
To investigate the spatial characteristics, we separate 
the inflows and outflows of each station into their 

corresponding clusters. Because the volume of C1 
and C2 is higher than C3, we extract the top 1% of 
flows for C1 and C2 and the top 5% for C3 to show 
indicative patterns.

Figures 10–12 show the top 1% of OD flows in C1 
and C2 and the top 5% of flows in C3. 2019, 2020 and 
2021 flows are shown in yellow, blue and red, 
respectively.

Figure 10 shows cluster C1, which represents trips 
of short duration and distance. It can be seen that in 

Figure 9. Change ratios (%) in the trips of each cluster among each period compared with 2019.
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2019 in the AMP, these comprised of trips between the 
main train stations of Waterloo and King’s Cross and 
nearby work locations in Central London and the City 
of London. The situation was reversed in the PMP, 
with commuters making the return trip to the train 
stations. The pattern for 2020 and 2021 is similar in 
this cluster, with a concentration around the same 
stations in the AMP and PMP. However, the flows 

are spatially more dispersed, with flows in the Olympic 
Park to the North East and Battersea and Chelsea to 
the West. Given that each map shows the top 1% of 
trips, this indicates that the flows are less dominated 
by the two main stations.

From Figure 11, we can see that C2 mainly 
comprises longer, direct trips, which could have 
a mixed commuting and leisure purpose. In 2019 

Figure 10. Spatial patterns of top 1% of OD flows in the Cluster 1 (a) C1-amp (b) C1-IP (c) C1-PMP.
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C2 AM peak these trips originated mainly at 
Waterloo and Kings Cross/St Pancras stations, 
with destinations in the City of London and 
Westminster, respectively. These trips most likely 
represent commuters completing the last portion of 
their journey using BSS. This spatial concentration 
of trips disappears from the AM peak in 2020, with 
the top OD pairs being distributed across the whole 
of Central London. In the inter-peak in 2019, 2020 
and 2021, the C2 trips are centered on Hyde Park/ 
Kensington Gardens and the Olympic Park. These 
trips are typically shorter distance or circular trips 
of longer duration, indicating leisure purpose. The 
PM peak shows the same pattern as the inter peak. 
The fact that the AM peak pattern does not reverse 
in 2019 suggests two things: 1) in 2019, people 
were more likely to perform longer last mile com
muting trips in the morning than the evening; 2) 
the PM peak commuting patterns in this cluster are 
obscured by the greater number of leisure trips 
taking place in the PM peak compared with the 
AM peak. This latter point is supported by the fact 
that the 2020 pattern also changes between the AM 
and PM peaks.

Figure 12 shows the top 5% of OD pairs in C3 for 
each time period. The AM peak in 2019 was charac
terized by long distance trips, indicating that some 
commuters were traveling long distances to complete 
their trips. This pattern was replaced by circular trips 
in 2020, representing leisure trips in which users hire 

a bike for an extended period and return it to the 
same docking station. The pattern in 2021 was simi
lar to 2019, representing a return to longer commut
ing trips, albeit with different origins and 
destinations. The IP and PMP in this cluster were 
characterized by circular trips concentrated in Hyde 
Park and the Olympic park in all three years. 
However, it should be noted that the absolute num
ber of trips in this cluster varied considerably 
throughout the pandemic.

5. Discussion and conclusions

The COVID-19 pandemic and its ensuing counter
measures have re-shaped mobility patterns in urban 
areas. BSS are an important component of many 
urban transportations systems, facilitating green 
“last-mile” trips that contribute to reductions in traf
fic congestion and environmental pollution, while 
improving the health of the individuals that use 
them (Shamshiripour et al. 2020; Teixeira, Silva, 
and Moura e Sá 2021). Furthermore, during the pan
demic BSS provided a way to travel in cities that did 
not involve taking public transportation and reduced 
exposure to COVID-19 (Kim 2021; Li et al. 2021a; 
Xin et al. 2022).

This study aims to explore how the pandemic has 
changed the way London’s BSS is used. A simple, 
data-driven approach was adopted to analyze the 
spatiotemporal patterns of the BSS usage during the 

Figure 10. (Continued).
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pandemic 2019–21, from lockdown to recovery. The 
approach has enabled examination of both the short- 
term impacts and the sustained changes that may 
reflect societal adaptations to new ways of working, 
or a “new normal”.

The GMM model identified three clusters in the 
London BSS data, which we loosely associate with 
commuting, mixed commuting/leisure and leisure. 
These classes provide a reference from which to 

measure spatial and temporal variation and change 
during the various stages of the pandemic.

The results confirm the findings of similar studies 
on patterns of BSS usage in response to lockdown and 
initial recovery (Heydari et al. 2021; H.; Li et al. 2021a; 
Teixeira, Silva, and Moura e Sá 2022). There was 
a near 30% decline in BSS usage during the first lock
down between March and April 2020. Following this 
period, trip counts increased, reaching higher levels 

Figure 11. Spatial patterns of top 1% of OD flows in the Cluster 2 (a) C2-AMP (b) C2-IP (c) C2-PMP.
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than the corresponding period in 2019 between May 
and September. This increase occurred despite many 
citizens working remotely and significant restrictions 
to international travel. One explanation for this could 
be that cycling was considered as one of the best 
transport modes for maintaining social distancing 
(De Vos 2020; Li et al. 2021a) and thus the London 
BSS performed an important role in transmission 
mitigation during the pandemic. However, the results 
indicate that commuting trips, particularly those in 
the AMP, were substituted by a greater number of 
leisure trips, reflected in the increase in the size of 
C3 and increases in the number of weekend, IP and 
EP trips. This hypothesis is supported by the results of 
the spatial analysis, which show that the AMP and 
PMP trips between the main train stations and work 
locations were replaced by a more diffuse pattern and 
a concentration around London’s parks. Therefore, 
although London’s BSS appeared to be back to normal 
after the first waves of the pandemic in 2020, the 
overall usage statistics masked significant spatial and 
temporal changes in usage patterns.

Examination of the results from 2021 provides 
further insights as London’s citizens became more 
accustomed to living with the virus. All restrictions 
on social distancing were lifted between July and 
December 2021, so this period can be seen as “back 
to normal” from the perspective of government policy. 
During this time, BSS usage was consistently higher 
than the 2019 baseline, suggesting a sustained change 

in usage. The clustering results indicate that “last mile” 
commuting activities resumed during this period. 
However, there was a shift in the time at which these 
activities took place. All three clusters showed reduc
tions in AMP activity despite the rise in the total 
number of BSS trips. Conversely, all other time peri
ods showed increases for each cluster. It can be 
observed that the PMP extended from the IP to the 
EP during the “back to normal” phase. This change 
likely reflects the adaptation to remote working and 
a greater acceptance of flexible working patterns. As 
van Wee and Witlox (2021) anticipate, workers may 
have greater flexibility in when they travel post-covid 
and could, for example: “first work online for one or 
a few hours and then travel to work after the morning 
rush hour traffic subsided”. The likelihood of this 
behavior may be higher for BSS users due to the 
perceived risk of cycling during rush hour.

There are a number of limitations of the 
approach that must be acknowledged. Firstly, by 
using a simple data representation, the approach 
can easily be replicated in other BSS to carry out 
comparison studies. However, data on the character
istics of docking stations has not been incorporated. 
Using POI data in the clustering approach would 
allow for deeper insights into trip purpose. Secondly, 
the data used do not contain user information, so 
socio-demographic characteristics of BSS users are 
not considered. Should such data become available, 
future research could focus on the shared cycling 

Figure 11. (Continued).
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mobilities of individuals or demographic groups. 
Thirdly, this study only considered the national or 
city-level lockdown measures and hence some local 
(e.g. borough-level) lockdown measures were not 
accounted for. Finally, while this study examines 
the impact of the pandemic on BSS, there is scope 
for further research into the role that BSSs play in 
the wider transport system during extreme events. 
As stated earlier, BSSs do not exist in isolation and 

often cater for the first and last mile of public 
transport trips. Users who are unable to fulfil those 
trips because of a lack of available bikes or docking 
places face disruption and must seek alternatives; 
a lack of journey time reliability can undermine 
trust in a transport mode. Recent research has 
begun to examine the resilience of BSSs when 
faced with sudden changes in patterns of demand. 
For example, Yang et al. (2019) explored the impact 

Figure 12. Spatial patterns of top 5% of OD flows in the Cluster 3 (a) C3-AMP (b) C3-IP (c) C3-PMP.
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of tube strikes on London’s BSS. Integration of 
multi-modal datasets is crucial in this regard.
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