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A B S T R A C T

Digitization of pathology has been proposed as an essential mitigation strategy for the severe staffing
crisis facing most pathology departments. Despite its benefits, several barriers have prevented widespread
adoption of digital workflows, including cost and pathologist reluctance due to subjective image quality
concerns. In this work, we quantitatively determine the minimum image quality requirements for binary
classification of histopathology images of breast tissue in terms of spatial and sampling resolution. We
train an ensemble of deep learning classifier models on publicly available datasets to obtain a baseline
accuracy and computationally degrade these images according to our derived theoretical model to identify
the minimum resolution necessary for acceptable diagnostic accuracy. Our results show that images can be
degraded significantly below the resolution of most commercial whole-slide imaging systems while maintaining
reasonable accuracy, demonstrating that macroscopic features are sufficient for binary classification of stained
breast tissue. A rapid low-cost imaging system capable of identifying healthy tissue not requiring human
assessment could serve as a triage system for reducing caseloads and alleviating the significant strain on the
current workforce.
1. Introduction

Pathology services are a critical component of integrated health
care systems and underpin many patient pathways, particularly the
diagnosis and treatment of cancer. The need for increased pathology
capacity has become more urgent in recent years; according to Cancer
Research U.K. (2016), cellular pathology requests have increased by
4.5% on average each year and are becoming more complex as health
services target early diagnosis (Williams et al., 2017). Despite this
increased demand, maintaining adequate staffing levels remains an
ongoing challenge. The current vacancy rate for pathologists in England
is 12.5%, while only 3% of surveyed UK pathology departments report
having enough staff. Further compounding the difficulty is low uptake
of training places to replace those due to retire imminently, as 25%
of all histopathologists are aged 55 and older (The Royal College
of Pathologists, 2018). Similar workforce trends have been seen in
other high-income countries including Spain (Retamero et al., 2020),
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Canada and the United States (Metter et al., 2019), and shortages are
even more severe in low- and middle-income countries (Wilson et al.,
2018; Mudenda et al., 2020). Planned expansion of existing screening
programs such as those in place for breast cancer, for example, would
further exacerbate an already serious problem.

Most professional membership organizations for clinical patholo-
gists have identified digitization of pathology workflows as a key
mitigation strategy to address this crisis, where physical samples are
scanned using a whole-slide imager (WSI3) to create digital or ‘‘virtual’’
slides, flexible file formats that are assessed on a computer workstation.
Digitization provides opportunities for increased efficiency in assigning,
managing and auditing cases (Williams et al., 2017), allows for the pro-
vision of remote diagnostics for under-served areas (Pare et al., 2016)
and generates invaluable resources for teaching and research (Hamilton
et al., 2012). The eventual availability of automated diagnostic tools
is the ultimate goal of digitization, and would significantly alleviate
vailable online 13 July 2023
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staffing pressures on pathology departments worldwide (Chang et al.,
2019).

Despite these clear benefits, routine clinical use of WSIs for diagno-
sis is limited. In a 2018 survey by Williams et al., 60% of participating
UK pathology departments had access to a slide scanner, but only 31%
of departments reported using digital slides for primary diagnosis, with
the majority of use cases being for education. This is in stark contrast
to radiology departments, with some hospital trusts in the United King-
dom becoming fully digitized as early as 2007 (Barham and Madden,
2007). Two major contributing factors unique to pathology have been
cost (Griffin and Treanor, 2017) and pathologist perception of poor
image quality (Flotte and Bell, 2018). These two issues are closely
linked: demands for increased image quality have spurred incredible
technological development of slide scanners, requiring a large capital
outlay for digitization.

Modern ultra-fast slide scanners image samples in colour at very
high magnification (usually up to 40× for histopathology). The tech-
ical challenges of capturing high-quality, high-resolution and in-focus
mages at the speed required to process the volume of cases generated
y a typical pathology department4 have resulted in scanners that
an cost up to $500,000 USD. In addition to the large capital outlay,
canning at such volumes incurs significant operating costs including
‘companion software, data storage, and personnel costs’’ (Liu and
antanowitz, 2019). Data storage is a particular challenge, as a single
igital slide is on the order of 1 GB (Zarella et al., 2019).

The demand for scanning images at such high resolution was driven
n large part by pathologist assessment of inadequate digital image
uality. A number of studies have investigated the impact of image
uality on diagnostic concordance and confidence (Krupinski et al.,
999; Williams et al., 2003; Krupinski et al., 2012a,b; Shrestha et al.,
015, 2016). Most concluded, however, that optimal image quality
as not necessarily crucial for an accurate diagnosis: (Krupinski et al.,
012a) for example found that ‘‘images may be compressible to rel-
tively high levels before impacting WSI interpretation performance’’.
alidation studies comparing diagnostic concordance between WSI and
onventional light microscopy (CLM) have found little evidence that
ccuracy is reduced when using WSI (Mukhopadhyay et al., 2018),
owever confidence is generally lower for WSI (Goacher et al., 2017),
uggesting that the issue is perception of inadequate image quality
ather than the absolute quality itself. In a 2015 study, Shrestha et al.
dentified the most important image quality metrics required by pathol-
gists for an accurate and confident diagnosis as (in order): sharpness,
ontrast, brightness, uniform illumination and colour separation. This
tudy however relied on a subjective measure of image quality as-
igned on a numeric scale by pathologists when assessing images
ith degradation of one of the five characteristics. Dodge and Karam

2016) investigated the effects of similar degradations on deep learning
lgorithms deployed on the ImageNet object classification dataset (Rus-
akovsky et al., 2015), finding the trained networks most sensitive to
mage blur and noise, with blurred images obtained by applying a
aussian kernel of increasing width. Noise is not generally an issue in
rightfield microscopy, and the blur of low-resolution imaging systems
s an Airy disk kernel rather than a Gaussian. More importantly, how-
ver, the kernel sizes were not related to physical imaging parameters
uch as macroscopic lens f-number, for example.

In this work we quantitatively determine the minimum image qual-
ty requirements necessary for an accurate preliminary diagnosis of
he malignancy of breast tissue, focusing on the first two most impor-
ant quality metrics as identified by Shrestha et al. (2015): sharpness
nd contrast, which are both dependent on the spatial resolution of

4 Retamero et al. (2020) found that the Philips IntelliSite Pathology Solu-
ion, for example, scans an average glass slide in 114 s and estimated the
lide volume generated in Grenada University Hospital’s central pathology
aboratory at 700 slides per day.
2

i

the imaging system. Out-of-focus errors were also the most common
contributor to discordant cases when comparing WSI and CLM-based
diagnoses (Gilbertson et al., 2006; Snead et al., 2016; Araújo et al.,
2019). We provide a theoretical description of image resolution both
in terms of the spatial frequency support of the optical system used
to generate the magnified image and the digital sampling frequency of
the camera sensor used to capture it. We train a binary classification
algorithm using publicly available datasets of breast histology images to
achieve a baseline accuracy comparable to the current state of the art,
and deploy the model on test images that have been computationally
degraded using our derived framework to identify the size of learned
features needed for robust diagnostics. We also re-train the classifica-
tion algorithms on degraded images to determine if larger macroscopic
features are sufficient for binary classification. Our results show that
lower resolution imaging feasible for this task. In the context of high-
volume national screening programs such as those in place for breast
cancer, pairing a low-resolution imaging system with a sufficiently
sensitive automated classifier could potentially reduce the number of
cases needing to be scanned at full resolution and assessed by a human
pathologist.

2. Theory and background

The spatial resolution of a shift-invariant imaging system can be
quantified through its impulse response or point spread function (PSF),
which is defined as the output of the system with a point source as its
input (Goodman, 2005). The image amplitude 𝐴(𝑥, 𝑦) captured by the
system is the object amplitude 𝑂(𝑥, 𝑦) convolved with the system’s PSF
ℎ(𝑥, 𝑦), or

(𝑥, 𝑦) = ℎ(𝑥, 𝑦) ∗ 𝑂(𝑥, 𝑦). (1)

or coherent illumination5, Eq. (1) describes the linearity of an optical
ystem’s impulse response to the object’s complex amplitude. Bright-
ield microscopy generally uses an incandescent lamp as an extended
llumination source and is thus an incoherent imaging modality. Con-
equently, the phase of the incident electromagnetic field varies in
n uncorrelated way, and the impulse response at all points must
e computed on an intensity basis. Eq. (1) then becomes for image
ntensity 𝐼 :

(𝑥, 𝑦) = |ℎ(𝑥, 𝑦)|2 ∗ |𝑂(𝑥, 𝑦)|2. (2)

he amplitude PSF ℎ is equal to the Fraunhofer diffraction pattern of
he exit pupil function 𝑃 , which for a rotationally symmetric imaging
ystem consisting of an aberration-free objective lens of numerical aper-
ure NA and a matched tube lens resulting in a system magnification

is equal to unity with radius

pupil = 𝑓obj × NAobj, 𝑓obj =
𝑓tube
𝑀

. (3)

he NA, 𝑛 sin 𝛼, is defined by the maximum acceptance angle 𝛼 of the
bjective lens and the refractive index 𝑛 of the objective immersion
edium. The unaberrated pupil function 𝑃 is a top-hat function with
radius 𝑟pupil:

(𝑟, 𝜃) =
{

1, 𝑟 ≤ 𝑟pupil
0, 𝑟 > 𝑟pupil

(4)

he intensity PSF is therefore equal to

ℎ(𝑥, 𝑦)|2 = |{𝑃 (𝑢, 𝑣)}|2, (5)

hich for a top-hat pupil function is an Airy disk (Airy, 1835). Eq. (2)
an be simplified using the convolution theorem (Bracewell, 1999):

{𝐼(𝑥, 𝑦)} = {|ℎ(𝑥, 𝑦)|2} × {|𝑂(𝑥, 𝑦)|2}. (6)

5 Goodman (2005) gives a simple definition of spatially coherent
llumination as originating from a point source.
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Fig. 1. (a) Intensity PSF |ℎ(𝑥, 𝑦)|2 and (b) MTF |𝐻(𝑓𝑥 , 𝑓𝑦)| of NA𝐻 = 0.4 (solid blue
line) and NA𝐿 = 0.25 (dotted yellow line) objectives, respectively, plotted across centre
of image plane. Overlaid vertical lines are (a) Rayleigh criteria (Eq. (9)) and (b)
incoherent cutoff frequencies (Eq. (10)) for NA𝐻 (red dashed line) and NA𝐿 (green
dashed–dotted line) objectives, respectively. Magnification is 10× and wavelength is
550 nm.

The Fourier transform of the intensity PSF |ℎ(𝑥, 𝑦)|2 is defined as the
optical transfer function (OTF) 𝐻 of an incoherent imaging system, or

𝐻(𝑓𝑥, 𝑓𝑦) = {|ℎ(𝑥, 𝑦)|2}. (7)

The OTF 𝐻(𝑓𝑥, 𝑓𝑦) ‘‘specifies the complex weighting factor applied by
the system to the frequency component at 𝑓𝑥 [and] 𝑓𝑦, relative to the
weighting factor applied to the zero-frequency component’’ (Goodman,
2005). Another important property of the OTF is that

𝐻(𝑓𝑥, 𝑓𝑦)| ≤ |𝐻(0, 0)|. (8)

The modulus of the OTF |𝐻| is referred to as the modulation transfer
function (MTF).

We now have sufficient information to quantify the aberration-
free frequency response of an incoherent imaging system. To compare
two well-corrected objective lenses with identical magnifications but
different NAs, we calculate the radius of the pupil function given 𝑀
= 10 and 𝑓tube = 180 mm (standard for Olympus microscopes) using
Eqs. (3) and (4). An Olympus extended apochromat 10× objective lens,
for example, has an NA of 0.4, whereas a Olympus plan achromat 10×
objective has an NA of 0.25. The ‘‘high’’ NA 10× objective (0.4) is
assigned the subscript 𝐻 and the ‘‘low’’ NA 10× objective (0.25) is
assigned the subscript 𝐿.

Cross sections of the squared and normalized6 intensity PSFs and
MTFs calculated using Eqs. (5) and (7) are plotted for both objectives
in Fig. 1 at a wavelength of 𝜆 = 550 nm, corresponding to the green
channel of a typical RGB camera sensor. Two resolution criteria that
are useful as comparison metrics are overlaid on these plots for each of
the lenses. The Rayleigh criterion 𝑑𝑅 defines the minimum resolvable
distance between two point objects for an objective lens with a given
NA at a wavelength 𝜆 (Born and Wolf, 1999):

𝑑𝑅 = 0.61 𝜆
NA . (9)

This value corresponds to the first minimum of the PSF of the system
as shown in Fig. 1a. The incoherent cutoff frequency 𝑓CO defines the
bandwidth of our imaging system, and is calculated as (Goodman,
2005):

𝑓CO = 2NA
𝜆

. (10)

The imaging system cannot resolve any spatial frequencies beyond
this cutoff frequency, and the contrast of the system drops to zero as
illustrated in Fig. 1b.

As the output of any slide scanning system is a digital representation
of a real image, we must also consider the sampling resolution of the

6 The PSF is normalized such that ∑

𝑥
∑

𝑦 PSF(𝑥, 𝑦) = 1, and the MTF is
normalized such that |MTF(0, 0)| = 1.
3

Fig. 2. (a) Minimum pixel size 𝑑pixel required for diffraction-limited imaging (𝑓𝑠 > 𝑓𝑁 )
at different magnifications and NAs. Actual 𝑑pixel values used to capture each dataset are
overlaid as dashed grey lines for comparison. (b) Field of view (FOV) of typical sCMOS
sensor 2048 × 1536 pixels in size with 6.5 μm wide pixels for different magnifications
(blue boxes). Orange boxes show FOV of imaging systems used to capture datasets used
in this work. Yellow box shows 20 mm coverslip to illustrate typical imaging area of
a microscope slide. We note that the BreaKHis dataset was captured with a 3.3× relay
lens to avoid the issue of undersampling at lower magnifications, hence the reduced
FOV.

camera sensor. The Shannon–Nyquist sampling theorem defines the
minimum sampling frequency necessary to reconstruct a band-limited
signal, or diffraction-limited image in this case, as twice the highest
spatial frequency present in the image (Marks, 2009). This frequency
is referred to as the Nyquist rate and is defined as

𝑓𝑁 = 2 × 𝑓CO. (11)

The maximum monochrome sampling frequency of the sensor 𝑓𝑠 is set
by the effective pixel size 𝑑eff, or

𝑓𝑠 =
1
𝑑eff

, 𝑑eff =
𝑑pixel

𝑀
, (12)

where 𝑑pixel is the physical size of the sensor pixels and 𝑀 is the
system magnification. Our system is therefore limited in resolution
both by the frequency response of the optical components and by the
sampling resolution of the camera sensor; if the system is sufficiently
sampled, i.e. if 𝑓𝑠 > 𝑓𝑁 , it will be considered to be diffraction limited
or oversampled, whereas if 𝑓𝑠 < 𝑓𝑁 the system will be considered to be
Nyquist limited or undersampled. The consequences of undersampling
manifest as aliasing artefacts, where shifted copies of the original im-
age’s frequency spectrum occurring at integer multiples of the sampling
frequency overlap, resulting in information loss and distortion (Oppen-
heim et al., 1999). Lower magnification images are often undersampled
due to the linear relationship between 𝑓𝑠 and 𝑀 and the physical
limitations of camera pixel sizes, as illustrated in Fig. 2a. Smaller pixel
sizes result in a higher sampling frequency but at the expense of less
light incident on each pixel, which would be prohibitive for imaging
modalities such as darkfield or fluorescence microscopy. Increasing the
magnification reduces the field of view (FOV) of each image as shown
in Fig. 2b, requiring significantly more images to capture an entire
physical sample that may be tens of millimetres in size.

The sampling frequency of most systems will in reality be lower than
𝑓𝑠 as defined in Eq. (12) due to the wavelength dependence of 𝑓𝑁 and
the type of camera sensor used. Most RGB cameras use a colour filter ar-
ray (CFA) to produce a mosaiced image (Swirski, 2009); in the common
Bayer CFA pattern, the green channel is sampled twice as often as the
red and blue channels, and ‘‘the final system resolution is dominated
by the green array’’ (Palum, 2001). Most methods for demosaicing
single-channel images produced by a CFA camera into RGB images
involve linear interpolation (Malvar et al., 2004). This interpolation
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combined with overlap in the passbands of the array filters means that
the channel-specific sampling frequencies are not strictly limited by the
geometry of the CFA, e.g. the sampling frequency of the red channel is
ot exactly half that of the green channel. The monochrome sampling
requency 𝑓𝑠 will therefore be used in the absence of information about
he colour camera sensors for a given imaging system.

Given an intensity image recorded by a high NA imaging system 𝐼𝐻
f a real physical object 𝑂 in the presence of noise 𝜖, Eq. (2) becomes
removing the spatial coordinates for brevity)

𝐻 = |ℎ𝐻 |

2 ∗ |𝑂|

2 + 𝜖𝐻 , (13)

nd the equivalent image recorded by an identical but lower NA
maging system 𝐼𝐿 is

𝐿 = |ℎ𝐿|
2 ∗ |𝑂|

2 + 𝜖𝐿. (14)

The major sources of noise in digital imaging are read noise, or
voltage fluctuations during the process of analog to digital conver-
sion (Horowitz and Hill, 2015), shot noise, or a fundamental variability
in the number of photons arriving at a sensor due to quantum fluctu-
ations of the incident electromagnetic field (Mandel and Wolf, 1995),
thermal noise, pixel response non-uniformity (PRNU) and pattern noise
or spatial variation in the noise properties of individual pixels across
the sensor (Gonzalez and Woods, 2007). When comparing images from
two nominally identical imaging systems with different NAs, thermal
noise, PRNU and pattern noise would be effectively uniform across
both images. In the case of low photon number 𝑁 , for example in
fluorescence microscopy, the noise signal is often a combination of
read and shot noise. In brightfield microscopy, 𝑁 is generally large,
the signal-to-noise ratio (SNR) is equal to

√

𝑁 and 𝜖𝐻 and 𝜖𝐿 will be
dominated by Poisson shot noise, which for large 𝑁 can be modelled
as additive white Gaussian noise (AWGN) having uniform power across
the frequency spectrum.

We can computationally degrade the high-NA images 𝐼𝐻 of the
publicly available datasets to an equivalent image 𝐼𝐿 that would be
generated by a lower NA system by moving into frequency space and
using Eq. (6). The frequency spectrum of the low NA image 𝐼𝐿 can be
approximated by the following expression, provided (𝑓𝑥, 𝑓𝑦) < 𝑓CO,𝐻 :

{𝐼𝐿}(𝑓𝑥, 𝑓𝑦) ≈
|{|ℎ𝐿|

2}(𝑓𝑥, 𝑓𝑦)|

|{|ℎ𝐻 |

2}(𝑓𝑥, 𝑓𝑦)|
× {𝐼𝐻}(𝑓𝑥, 𝑓𝑦).

While this expression is not exactly equivalent given Eqs. (13) and (14)
for 𝐼𝐻 and 𝐼𝐿 respectively, the general property of the MTF given in
Eq. (8) means that the ratio of the MTFs will always be less than unity
for any nonzero frequency, and high-frequency AWGN noise 𝜖𝐻 present
in 𝐼𝐻 will be suppressed. The degraded image 𝐼𝐿 is computationally
pproximated as (again removing the spatial coordinates for brevity):

𝐿 = −1
{

|𝐻𝐿|

|𝐻𝐻 |

× {𝐼𝐻}
}

. (15)

his equation defines the degradation function that was applied to the
mages in each of the histopathology datasets used in this work, using
stimates of the parameters of the imaging system used to capture
hem.

. Material and methods

We computationally degraded high-quality labelled histopathology
mages using the degradation model defined by Eq. (15) to system-
tically determine the minimum image resolution requirements for
ccurate automated classification using deep learning. These networks
ere first trained on the original images and deployed on degraded test

ets for classification, then re-trained on degraded images and again
eployed on similarly degraded images. To generate a realistic degrada-
ion model, the original NA of the imaging system (NA𝐻 ) was obtained
r estimated, as well as the magnification 𝑀 and the effective pixel
ize 𝑑eff. The following section will outline the datasets used in this
ork, the methods used to estimate their relevant imaging parameters,

he network architecture used for automated binary classification and
etails about training and testing.
4

c

.1. Datasets

The publicly available datasets used in this study are listed in
able 1. Datasets were chosen based on their ubiquity in the compu-
ational pathology research community and the availability of state-of-
he-art classification algorithms. This work focused on binary classifica-
ion as this task is particularly well-suited to automated diagnostics; one
uch application of an imaging system optimized for cost and accuracy
ould be to reduce the volume of cases needing to be assessed by a
uman pathologist as a potential mitigation strategy for the current
taffing crisis. Tasks such as pixel-wise segmentation or tissue grading
re not considered, as the full replication of human competence is a
onger-term goal of digital pathology and is outside the scope of this
ork.

The majority of labelled histopathology datasets consist of images
f breast tissue due to the existence of screening programs in most
igh-income countries, with tissue sampling followed by patholog-
cal assessment forming part of the ‘‘triple-test’’ of breast diagno-
is (Ginsburg et al., 2020). The first significant datasets to be re-
eased were BreaKHis (Spanhol et al., 2016) and the Bioimaging 2015
hallenge dataset (Araújo et al., 2017), the latter of which was ex-
anded into the Grand Challenge on BreAst Cancer Histology images,
r BACH (Aresta et al., 2019). Another benchmark dataset, the Cancer
etastases in Lymph Nodes Challenge 2016 (CAMELYON16, Ehteshami
ejnordi et al.) was followed by PatchCamelyon or PCam (Veeling
t al., 2018) consisting of labelled patches extracted from CAME-
YON16.

The BACH dataset contains both annotated WSIs and microscopy
mages of breast tissue with four different classification labels. In
his work we use only the microscopy images, grouping those with
‘Normal’’ and ‘‘Benign’’ labels into a single benign class and those with
‘In-situ’’ and ‘‘Invasive’’ carcinoma labels into a single malignant class.
here are a total of 400 images in the training set with an additional
00 unlabelled images in the test set. BreaKHis consists of 7,909
abelled images of breast tissue, broadly divided into ‘‘Benign’’ and
‘Malignant’’ categories. Finer grading labels are also provided but these
re also not used in this work. Images are provided at magnifications
f 40×, 100×, 200× and 400×, however the actual objectives used for
maging had magnifications of 4×, 10×, 20× and 40×. This notation

is consistent with terminology from CLM-based pathology, where the
eyepiece adds an additional ocular magnification of 10×. The images
are evenly divided between the four magnifications (approximately
2,000 total images for each) with a ratio of malignant to benign images
of 2:1. Finally, PCam consists of 277,483 image patches extracted
from the CAMELYON16 dataset at 10× magnification, and the version
used in this work is the one hosted on Kaggle with duplicate images
removed. Images are divided into ‘‘Normal’’ and ‘‘Tumour’’ classes,
where ‘‘[a] positive label indicates that the centre 32 × 32 [pixel]
region of a patch contains at least one pixel of tumour tissue’’ (Veeling
et al., 2018).

3.2. Imaging system parameters

Images were degraded computationally in MATLAB (MathWorks
Inc.) using Eq. (15), where the MTFs 𝐻𝐻 and 𝐻𝐿 were computed
using Eq. (3), (4), (5) and (7) for two different values NA𝐻 and NA𝐿
with 𝑀 , 𝑓obj, 𝑑eff being equal. The ratio of the MTFs was applied
o the Fourier transform of each colour channel separately over the
requency range |𝑓𝑥, 𝑓𝑦| ≤ 𝑓CO,𝐻 , with 𝑓CO,𝐻 defined in Eq. (10) for

given NA𝐻 and wavelength 𝜆 corresponding to the centre of the
pectral passband of a typical filter7 for that channel, or {𝜆𝑅, 𝜆𝐺 , 𝜆𝐵} =
625, 550, 475} nm. Scaling of the frequency spectrum was followed by

7 See, for example, the datasheet of the pco edge 5.5c colour sCMOS
amera (pco).
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Table 1
Publicly available histopathology datasets used in this study with relevant metadata.

Dataset Tissue type Classification labels Number of images and splits Citation

BACH
(ICIAR2018)

Breast Normal
Benign
In-situ carcinoma
Invasive carcinoma

100/25 train/test
100/25 train/test
100/25 train/test
100/25 train/test
500 total

Aresta et al. (2019)

BreaKHis (all) Breast Benign∗

Malignant∗∗
2,480
5,429
7,909 total

Spanhol et al. (2016)

PatchCamelyon
(PCam)

Breast Normal
Tumour
Unlabelled (test set)

130,908
89,117
57,458
277,483 total

Veeling et al. (2018)

Grades: ∗adenosis, fibroadenoma, phyllodes tumour, tubular adenoma ∗∗ductal/lobular/mucinous/papillar carcinoma.
Table 2
Relevant imaging parameters of datasets listed in Table 1. Entries in bold denote parameters not explicitly provided in the description of the dataset that were
either estimated or acquired from imaging system technical specifications. Entries with † denote provided parameters that are not exactly consistent with other
parameters provided in the description and/or obtained from the technical specification. Shaded values of 𝑓𝑠 indicate Nyquist-limited/undersampled imaging.

Dataset 𝑀obj 𝑀relay 𝑑pixel
(μm)

𝑑eff
(μm)

NA 𝑓𝑠 (μm−1) 𝑓𝑁
(μm−1)

Image size

BACH 20 0.5 3.2 0.32† 0.30 3.125 2.526 2048 × 1536
BreaKHis (4×) 4 3.3 6.5 0.49 0.16 6.250 1.346 700 × 460
BreaKHis (10×) 10 3.3 6.5 0.20 0.40 5.000 3.368 700 × 460
BreaKHis (20×) 20 3.3 6.5 0.10 0.80 10.00 6.737 700 × 460
BreaKHis (40×) 40 3.3 6.5 0.05 1.40 20.00 11.79 700 × 460
CAMELYON16 (RUMC)a 20 - 5.5 0.243† 0.80 4.115 6.737 WSIs (variable)
CAMELYON16 (UCMU)b 20 2 9.2 0.23 0.75 4.348 6.316 WSIs (variable)
PatchCamelyon (PCam) 10 - - 0.972 0.13 1.029 1.095 96 × 96

aRadboud University Medical Center.
bUniversity Medical Center Utrecht.
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n inverse Fourier transform and histogram matching using the original
mage 𝐼𝐻 as a reference via the imhistmatch function in MATLAB
o maintain consistent colour balance. Computing Eq. (15) for each
ataset required identifying NA𝐻 , 𝑀 and 𝑑eff for the imaging systems
sed to generate these datasets and are summarized in Table 2; entries
n bold denote parameters that were not explicitly provided in the
ataset description and were either estimated or determined from the
echnical specification of the imaging system used. Note that we do not
se the CAMELYON16 dataset in this work, but refer to the imaging
arameters specified by Ehteshami Bejnordi et al. (2017) to estimate
he parameters for PCam.

All dataset descriptions provided the manufacturer and model name
f the imaging system, the effective pixel size 𝑑eff, and in most cases, the
mage magnification 𝑀 . No dataset descriptions specified the imaging
ystem NA, and it was estimated by applying a low-pass filter at a
teadily decreasing frequency to a set of test images and measuring
he change in structural similarity (SSIM) between the filtered and
riginal images (Wang et al., 2004). A significant change meant the
ilter frequency had exceeded 𝑓CO as defined in Eq. (10); a full de-
cription of the method used to estimate NA is given in Supplementary
nformation. Technical detail regarding the type of RGB camera sensor
r demosaicing algorithm used was not provided for any of the datasets
sed in this work, thus the monochrome sampling frequency 𝑓𝑠 was
sed. We note that there was a discrepancy in the provided value of
eff for the BACH dataset, which is also described in more detail in
upplementary Information. Fig. 3 shows the results of systematically
egrading a single training image from the PCam dataset.

.3. Binary classification architecture

The classification architecture chosen to measure diagnostic accu-
acy in a repeatable and deterministic manner was based on the method
escribed by Kassani et al. (2020) which used an ensemble of three
5

onvolutional neural networks (CNNs) to achieve good classification S
accuracy across each of the datasets used in this work. The classifiers
described here are used to establish a baseline accuracy, and we define
a significant drop in accuracy as exceeding 10% and therefore an
unacceptable degradation in image quality8. The focus in training the
classifier is therefore not to achieve the highest accuracy possible in
this task, but accuracy in line with the state of the art.

Ensemble networks have an advantage over individual networks
in that architecture-specific limitations of any one network can be
mitigated against; ensemble networks tend to achieve higher accuracies
on datasets than their constituent architectures. In the work of Kas-
sani et al. (2020), the three network architectures in the ensemble
were VGG19 (Simonyan and Zisserman, 2015), MobileNetV2 (Howard
et al., 2017) and DenseNet201 (Huang et al., 2017), and the ensemble
achieved a classification accuracy of 98.13% on the BreaKHis dataset
while an individual VGG16 network achieved only 93.54%. The same
ensemble also achieved accuracies of 94.64% and 95.00% for PCam
and BACH, respectively. The accuracy of a human pathologist for high
level diagnostics i.e. binary classification of breast tissue is compara-
le; (Rakha et al., 2017) examined 240 breast lesions from routine
ractice across the UK’s National Health Service, finding only 35 cases
14.6%) with a diagnostic concordance of less than 95% with each
ase being assessed by 600 participants on average. 13 discordant cases
5.4%) were due to pathologist misinterpretation.

All training and testing was carried out in Keras using a Tensorflow
ackend (both versions 2.3.0) with the CUDA 10.1 toolkit in Python
.6.9 on a NVIDIA DGX running the Ubuntu 18.04.6 LTS operating
ystem. The GPU used for training was a single NVIDIA Tesla V100-
GXS with 32 GB of onboard memory. Given the discrepancy in the size
f the datasets shown in Table 1, the ensemble network was first trained
n PCam, then re-deployed on the BreaKHis and BACH datasets as part

8 We note that a 10% reduction in diagnostic accuracy would not
ecessarily be acceptable in routine clinical practice; see discussion in
ection 5.
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Fig. 3. (a) Degradation functions as defined by Eq. (15) applied to {𝐼𝐻} given NA𝐻 = 0.13, M = 10 and 𝑑eff = 0.972 μm for different values of NA𝐿. (b) Original image 𝐼𝐻
from training set of PCam showing normal breast tissue. (c)–(g) Resulting degraded images 𝐼𝐿 for different values of NA𝐿.
of a patch-based classifier utilizing transfer learning. This approach
also worked well due to the small size of the images in the PCam
dataset. Test sets were provided for PCam and BACH, and the training
set was randomly divided into training and validation sets in a 80/20
split using the ImageDataGenerator class in Keras. BreaKHis was
divided randomly into a 75/15/10 train/validation/test split.

Patch classifier
Each of the three CNNs (VGG19, MobileNetV2 and DenseNet201)

was loaded in Keras pre-trained on ImageNet without the top classifier
layers. The outputs were pooled using the GlobalAveragePool-
ing2D layer and concatenated into a single feature layer. Bottleneck
features were extracted from the training and validation sets to train
the top classifier block, which consisted of a fully connected layer
with 128 neurons, a dropout layer (rate of 0.5), a batch normalization
layer and finally a dense binary classification layer with a sigmoid
activation function. The classifier block was trained for a maximum of
1,000 epochs, keeping all other layers in the ensemble network frozen.
Callback functions for early stopping and learning rate reduction on
validation loss plateaus meant that training the top classifier usually
finished after approximately 30–40 epochs. Training the top classifier
block took approximately 23 min.

The final convolutional blocks of each classifier were then un-
frozen (layers 16, 97 and 480 onwards in VGG16, MobileNetV2 and
DenseNet201, respectively) and fine-tuned for an additional maxi-
mum 100 epochs. Identical callbacks were used to avoid overfitting.
Fine-tuning also usually finished between 30–40 epochs, taking approx-
imately 6 h. Data augmentation was used during all training stages,
including up to 90 degree rotations, horizontal and vertical mirroring
and shifts of up to 20% of image height and width). Batch size was set
to 32 with an initial learning rate of 10−4. An exponentially decaying
learning rate was used, with 105 decay steps and a decay rate of 0.96.
The models were compiled using the Adam optimizer (𝛽1 = 0.6, 𝛽2
= 0.8) with a binary crossentropy loss function and optimizing for
accuracy. The model with the highest validation accuracy was chosen
as the best model.

Whole image classifier
The small size of the BreaKHis and BACH datasets necessitated

the use of transfer learning, and images were downsampled to ap-
proximately match the effective pixel size 𝑑eff of PCam (0.972 μm)
and contain an integer number of 96 × 96 patches, the input tensor
size of the patch-based classifier. The patch-based model was loaded
with the same final blocks in each of the three ensemble CNNs set
as trainable for fine-tuning. A single 96 × 96 patch was randomly
selected from each image in the training and validation sets for each
6

epoch, and the network was re-trained in the same manner as PCam.
Validation accuracy as computed during training was only calculated
for a single patch extracted from each image in the validation set, thus
a custom metric combining training and validation accuracy was used
to select the best model, and training loss was monitored for learning
rate reduction and early stopping. To compute a more accurate final
validation and testing score, the best model was deployed on whole
images divided into patches and average voting was used to compute
the entire image classification score. Training on both BreaKHis and
BACH took approximately 25 min.

Testing and re-training on degraded datasets
Baseline models were trained for BACH, PCam and BreaKHis on the

original image sets {𝐼𝐻}Train and {𝐼𝐻}Validation to establish a baseline
accuracy. Each of the four magnifications in BreaKHis were treated as
separate datasets. These models were then deployed on degraded test
sets {𝐼𝐿}Test for each dataset at steadily decreasing NA𝐿 to identify
the relevant feature sizes learned by the baseline model for accurate
classification. The model was then retrained on the degraded image
sets {𝐼𝐿}Train and {𝐼𝐿}Validation to determine if lower resolution fea-
tures could be learned while maintaining acceptable accuracy on the
degraded test set {𝐼𝐿}Test for a given value of NA𝐿. For BACH and
BreaKHis, where NA𝐿 was decreased below the baseline NA𝐻 value for
PCam (0.13), the model of PCam was loaded that had been trained on
similarly degraded images.

4. Results

Figs. 4 to 7 show training, validation and test results for origi-
nal and degraded versions of each dataset, and Table 3 summarizes
the relevant degradation thresholds in terms of degraded system NA,
or NA𝐿. For consistency, we calculated the absolute accuracy using
a benign/malignant label threshold of 0.5, and validation accuracy
influenced the choice of the best model during training. Benchmark
scores provided in the literature for these and other image classification
datasets generally include accuracy (percentage of correctly classified
images), area under the receiver operating characteristic curve (AUC,
or diagnostic ability with variable threshold), precision/specificity (true
negative rate), recall/sensitivity (true positive rate) and 𝐹𝛽 (a weighted
average of precision and recall). 𝐹1 scores are most commonly pre-
sented, which equally weight the precision and recall into a single
score. In the clinical context of identifying healthy samples with high
confidence and without human assessment, the typical combination
of binary accuracy/AUC and equally weighted 𝐹1 score should be
supplemented with the area under the precision recall curve (AUPRC).
The specificity itself is particularly important for the type of application
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Fig. 4. Training and validation accuracy as well as validation and test AUC of
automated classifier when presented with degraded images of the PCam dataset.
Datapoints at NA = 0.13 correspond to original images. Solid blue line with penta-
gram markers shows training accuracy, while dashed lines show validation accuracy
(diamond markers) and validation AUC (square markers) illustrating that accuracy and
AUC are very similar. Dash-dotted green line with circle markers shows test AUC using
original baseline model, and dotted purple line with triangle markers shows test AUC
with models re-trained on equivalent degraded dataset.

considered here as false negatives would be much more serious, while
false positives could still be rectified in the normal assessment pathway.
The AUPRC is also more descriptive for unbalanced datasets (Davis and
Goadrich, 2006), as is the case with both BreaKHis and PCam.

Full test labels were available for BreaKHis and thus training, val-
idation and test accuracy are presented for baseline and degraded
models in addition to AUPRC and specificity. Test set validation for
PCam was obtained using the submission scoring system on Kaggle,
and the area under the receiver operating characteristic curve (AUC)
was provided as the evaluation metric. Validation accuracy (with a
benign/malignant label threshold of 0.5) and validation AUC were very
similar, thus test AUC was considered to be equivalent to test accuracy.
We note that we did not have access to the test labels for the BACH
dataset, as the challenge hosted at https://iciar2018-challenge.grand-
challenge.org was no longer accepting legacy submissions for scoring
at the time of this work and the organizers of the challenge did not
respond to our requests for the test labels. We instead used our baseline
model predictions as pseudo-ground truth test labels and measured the
accuracy, AUPRC and specificity of the degraded test sets relative to
these pseudo-labels, again using a benign/malignant label threshold of
0.5. The test set was balanced evenly between classes, and the baseline
predicted 52 images out of 100 as malignant, thus our predicted
ground-truth labels were similarly balanced between classes. Finally,
the most routinely misclassified images for BreaKHis and BACH are
identified, along with some additional statistics for misclassifications
in general.

4.1. PCam

Fig. 4 shows the results for the PCam dataset. We achieved a
baseline training accuracy of 95.5% and validation accuracy/AUC of
94.3%/0.95 for PCam, with a baseline test AUC of 0.93 on the original
images. Test AUC steadily decreases for increasingly degraded images,
with the previously defined threshold for unacceptable loss in accuracy
(10%, or AUC = 0.83) occurring at an equivalent NA𝐿 of 0.09. For
models trained on degraded image sets, images can be degraded to NA𝐿
= 0.04 while maintaining a test AUC of 0.85.
7

4.2. BreaKHis

Figs. 5 and 6 show the results for each of the magnifications
provided in the BreaKHis dataset. The baseline training, validation
and test accuracies achieved for BreaKHis 4× were 98.5%, 99.3%
and 99.3%, respectively. Test accuracy for the baseline 4× model
reached the threshold of accuracy loss (91.5%) at NA𝐿 = 0.11 from
the original NA𝐻 of 0.16. For models trained on degraded image sets,
images can be degraded to NA𝐿 = 0.04 while still achieving a test
accuracy of 97.0%. The baseline train/validation/test accuracies for
10× were 97.5%, 92.8% and 94.3%, respectively. Test accuracy for
the baseline 10× model reached the threshold of accuracy loss (87.3%)
at a much higher degradation of NA𝐿 = 0.25 from the original NA𝐻
of 0.40 than the baseline 4× model. Retrained models maintained
acceptable accuracy for degradation at NH𝐿 = 0.05 of 96.2%. Baseline
train/validation/test accuracies for 20× were 99.3%, 98.0% and 98.5%,
respectively, and test accuracy for the original model maintained vir-
tually unchanged diagnostic accuracy to NA𝐿 = 0.35, reaching the
threshold (88.9%) at NA𝐿 = 0.25, which is similar to the baseline 10×
model. Retrained 20× models maintained performance over an even
larger degradation range (NA𝐿 = 0.10), only dropping to 92.0% at full
degradation of NA𝐿 = 0.05. Finally, baseline train/validation/test accu-
racies for BreaKHis 40× were 97.4%, 97.1% and 94.5%, respectively.
The original model maintained acceptable diagnostic accuracy across
the entire spectrum of degradation from NA𝐻 = 1.40 to NA𝐿 = 0.05,
dropping to 84.5%. Re-trained models were very similar to the baseline,
achieving 89.5% accuracy at NA𝐿 = 0.05.

Using an equivalent reduction in AUPRC of 0.1 from the baseline
value as a cutoff for unacceptable diagnostic ability, the baseline model
trained on original images from the 4× dataset (baseline of 1.0) reaches
the loss threshold at a resolution of NA𝐿 = 0.06 (AUPRC = 0.898),
while the retrained model maintained an AUPRC of at least 0.985
across the entire degradation range. The baseline model trained on the
10× dataset achieved a baseline AUPRC of 0.996, and never dropped
below 0.933, even for the test set degraded to NA𝐿 = 0.05 which was
the worst performing model in most cases. The model retrained on
NA𝐿 = 0.05 achieved the worst performance of 0.933, still within the
acceptable range, and slightly worse than the baseline model. For 20×
images, a baseline AUPRC of 0.991 was reached, dropping to 0.897
for the NA𝐿 = 0.05 degraded test set but still acceptable according to
our definition. Retraining produced more variable performance than
was expected, and in some cases did not improve relative to the
baseline model; unusually, the retrained model at NA𝐿 = 0.05 did
not meet the acceptability criteria at all (0.813) while the baseline
model was just within the cutoff (0.897). For the final set of images
at 40×, training on the original images yielded a baseline AUPRC of
0.980, and the performance across the degraded test sets remained
within the acceptable range in all cases (minimum 0.887 for baseline
at NA𝐿 = 0.05), and as with 20×, retrained performance was variable,
with particularly poor performance at NA𝐿 = 0.20 (0.905) but still
acceptable. The specificity results appear to indicate that re-training
is critical to maintain acceptable performance in all cases, however
we note that a 10% reduction in specificity would almost certainly be
unacceptable in clinical practice, and these values are calculated strictly
for a 0.5 binary/malignant label threshold which is arbitrarily chosen.
In reality, false negative errors would be more heavily penalized at all
stages, i.e. a lower threshold would be used to flag potential malignancy
and models would be optimized for specificity rather than accuracy.

In terms of misclassification statistics, all four datasets contained
1–2 images that were misclassified by the majority of trained models.
At 4× magnification, 84 of the 199 test images were misclassified at
least once. Two images of ductal carcinoma from the same slide (14-
3909) were misclassified as benign by all models except the baseline
when predicting on the original resolution version of the image. The
next three images that were misclassified by the majority of models
were also of ductal carcinoma and from the same slide (14-11031).

https://iciar2018-challenge.grand-challenge.org
https://iciar2018-challenge.grand-challenge.org
https://iciar2018-challenge.grand-challenge.org
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Fig. 5. Training, validation and test accuracy of automated classifier when presented with degraded images for each magnification present in the BreaKHis dataset. Datapoints at
(a) NA = 0.16, (b) NA = 0.40, (c) NA = 0.80, and (d) NA = 1.40 correspond to original images. Solid blue line with pentagram markers shows training accuracy, while dashed
orange line with diamond marker shows validation accuracy. Dash-dot green line with circle markers shows test accuracy using original baseline model and dotted purple line
with triangle markers shows test accuracy with models re-trained on equivalent degraded training dataset.
Fig. 6. Area under precision recall curve (AUPRC) and specificity of automated classifier when presented with degraded test images for each magnification present in the BreaKHis
dataset. Datapoints at (a) NA = 0.16, (b) NA = 0.40, (c) NA = 0.80, and (d) NA = 1.40 correspond to original images. Solid blue line with circle markers shows test AUPRC and
green dashed line with diamond markers shows test specificity for the original baseline model, while dotted red line with triangle markers shows test AUPRC and yellow dash-dot
line with pentagram markers shows test specificity for models retrained on equivalent degraded training dataset.
Two images of benign fibroadenoma were misclassified in half of the
cases (7/14) and also came from the same slide (14-25197). At 10×
magnification, 62 out of 157 test images were labelled incorrectly in
at least one case. A slide containing mucinous carcinoma (14-10147)
contributed two images that were misclassified in all cases by all
models, and a third image from this slide was misclassified in the
majority of cases, the exception being the models retrained on NA𝐿 =
0.25 and lower. A single image of ductal carcinoma proved difficult
to identify in the majority of cases, as well as two more images of
mucinous carcinoma from different slides. Only two benign images (one
of fibroadenoma and one of phyllodes tumour) were misclassified as
malignant in multiple cases (3/15), both by models retrained on lower
resolution (NA𝐿 ≤ 0.25). At 20× magnification, 134 of 199 total test
images were wrongly identified in one or more cases. A single benign
image of adenosis tissue from slide 14-22549CD was misclassified in all
cases except for the baseline model predicting on the image degraded to
NA𝐿 = 0.75. Two additional images from this slide were misclassified
but only in single cases. Two images of benign tubular adenoma from
slide 14-19854C were incorrectly classified as malignant by all models
predicting on the image when it was degraded to NA𝐿 = 0.4 and
below. A single image of benign fibroadenoma was also misclassified by
most models, but notably not for the baseline model when predicting
on the image when it was degraded to below NA𝐿 = 0.5. Only two
malignant images of mucinous and ductal carcinoma were incorrectly
predicted as benign in half of the cases or more. At 40×, 89 of 181 test
images were mislabelled at least once. An image of tissue containing
mucinous carcinoma was misclassified as benign by all models except
one (retrained on NA = 0.10), while a slide (14-25197) containing
8

𝐿

benign fibroadenoma contributed three images that were misclassified
in multiple instances, with one image being incorrectly labelled by all
models except the model retrained on NA𝐿 = 0.80. The next three
images that were mislabelled in at least 16 of 29 cases were one of
papillar and two of mucinous carcinoma.

4.3. BACH

Training the patch-based classifier on the BACH dataset was partic-
ularly difficult due to its small size (400 training and 100 test images).
A good baseline was achieved on the original images in line with the
state of the art with a patch-based training accuracy of 98.1%, and a
full-image validation accuracy of 92.5%, however the results were quite
variable for re-training on the degraded images. As a consequence,
Fig. 7 shows only the test discrepancy for each of the degraded test
sets. The model maintains acceptable relative accuracy for degradation
at NA𝐿 = 0.12 of 90%, or ten images classified differently to the original
set of predictions. Test discrepancy significantly increases for NA𝐿 of
0.11 and lower, which is largely consistent with the results for PCam
and BreaKHis baseline models. The AUPRC metric implies reasonably
strong performance across the range of degradation, dropping to 0.949
at NA𝐿 = 0.05, with the caveat that all metrics were calculated with
pseudo-ground truth labels and only show that the model did not
generate significantly different labels for degraded images relative to
the baseline images. Specificity however quickly drops below any sort
of acceptable threshold at NA𝐿 = 0.15. 40 of the 100 test images were
labelled differently than the baseline in at least one instance, and 8
images were identified differently in at least 5 out of 9 cases (NA𝐿 =
0.15 and below, and all 8 were misidentified below NA = 0.11).
𝐿
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Fig. 7. Degradation of BACH dataset. As test labels were not available, predicted labels
generated by original baseline model when presented with each degraded test set were
compared to predicted labels generated from original dataset.

5. Discussion

The results outlined in the previous section demonstrate that reason-
able binary diagnostic accuracy can be maintained despite a significant
reduction in the spatial resolution of breast tissue images relative to
the original system resolution, but additional optimization would be
required before such a system could be realistically deployed in a
clinical setting. The best performance under the constraint of reduced
spatial resolution was achieved with the BreaKHis 4× dataset, which is
consistent with concept of the space-bandwidth product (SBWP), a pa-
rameter that describes the fixed relationship between optical resolution
and FOV and quantifies the maximum information that can be encoded
by an optical system in a single image (Lohmann et al., 1996). While
more high-frequency information is gained by increasing the resolution,
fewer macroscopic features of the object are visible in the reduced FOV.

It should be noted that due to the use of a 3.3× relay lens in
the imaging system used to generate the BreaKHis images, the 4×
dataset has a system magnification similar to PCam (10×). Despite the
similarity in magnification, the models trained on PCam were by all
metrics the worst performing, which is almost certainly due to the small
size of the image patches and resulting lack of macroscopic information
visible in the FOV, further illustrating the constraint of the SBWP.
Its deployment on other datasets as part of a patch-based classifier
however yielded good results, and the model was clearly still able to
learn some relevant macroscopic structures.

The BreaKHis 4× images were also oversampled, while the PCam
images were not; the WSIs in the original dataset that PCam was ex-
tracted from (CAMELYON16) were undersampled even at the
monochrome sampling frequency defined in Eq. (12) and provided
in Table 2, and the undersampling in reality due to the use of a
colour camera was likely even more severe. It is possible that the
effects of information loss due to aliasing artefacts obscured some of
the macroscopic structure visible in the PCam images, affecting the
classification performance beyond the FOV limitation. It is therefore
reasonable to conclude that while high spatial resolution is not strictly
necessary, sufficient digital sampling likely is.

In several cases, a minor decrease of 0.01 or 0.02 relative to the
baseline NA𝐻 value resulted in slightly improved training, validation
and test accuracies/AUPRC values; the degradation function defined in
Eq. (15) acted as a low-pass filter, removing high-frequency noise as
well as compression artefacts that were visually present in some images,
particularly BreaKHis as the images were provided in .PNG format.
The images in the BACH dataset were provided as .TIFs and visually
appeared to be the highest quality. They were also captured with the
largest image sensor of all datasets, but despite the relatively large
FOVs, results were inconsistent due to the very small size of the training
dataset (400 images). It was difficult to confidently validate each model
due to the lack of ground-truth labels for the test set. Overfitting was
also an issue, with the model often reaching very high training accuracy
but poor validation accuracy.
9

Table 3
Baseline test accuracies and threshold NA𝐿 values that maintain acceptable binary
diagnostic accuracy (≤10% relative to baseline) for original and retrained models. BH
refers to BreaKHis. †Baseline test accuracy of BACH is 100% due to lack of labels for
test dataset, thus predicted labels using the baseline model were taken as ground truth.
Test accuracy for degraded datasets was calculated relative to these labels. ‡Test AUC
is provided for PCam instead of accuracy as this was the metric provided by automated
scoring on Kaggle.

Dataset NA𝐻
Baseline

Acc (%) NA𝐿
Original

Acc (%) NA𝐿
Retrained

Acc (%)

BACH 0.30 100† 0.12 90 – –
BH4× 0.16 99.3 0.11 91.5 0.04 97.0
BH10× 0.40 94.3 0.25 87.3 0.05 96.2
BH20× 0.80 98.5 0.25 88.9 0.05 92.0
BH40× 1.40 94.5 0.05 84.5 0.05 89.5
PCam 0.13 0.927‡ 0.09 0.827‡ 0.04 0.855‡

It is not clear why the baseline models trained on BreaKHis 10×
and 20× were more sensitive to degradation than the baseline model
trained on 40×, reaching the threshold of unacceptable accuracy at NA𝐿
= 0.25 for both 10× and 20× compared to NA𝐿 = 0.05 for 40×. Further
investigation would involve identifying the types of structures that are
most relevant to the output label of the classifier. It is possible that
4× images contained sufficient macroscopic structural information and
40× images contained more granular features of the cell nuclei and
cytoplasm, and 10× and 20× images did not contain sufficient detail in
either domain. The 40×-trained classifier may also have been overfit on
spurious features such as brightness or stain variations however, as its
performance was remarkably consistent across a very large degradation
range, and fine nuclear details would not have been resolvable in the
most heavily degraded images. The results for the retrained models
on all datasets did follow the expected trend of reduced performance
for increased magnification given the previously discussed constraint
of reduced spatial resolution and consequently reduced information
content.

The BACH dataset allowed for a straightforward interrogation of
the consistency of each of the individual classifiers as well as the
ensemble as a whole due to its small size; the 10% reduction in relative
accuracy seen at NA𝐿 = 0.12 was largely due to ‘‘flipping’’ of predicted
labels for original images 𝐼𝐻 images that were assigned a classification
score of between 0.4 and 0.6 by the baseline model; for binary clas-
sification, labels in this range indicate a ‘‘borderline’’ diagnosis. Each
of the ensemble networks were individually more inconsistent when
presented with these borderline cases, and the 10% relative threshold
was crossed at slightly higher NA values for each. These types of
results are typical for ensemble networks in general and demonstrate
the reasoning behind choosing this type of architecture for this specific
task.

The 10%/0.1 metric reduction threshold was chosen for comparison
purposes and would likely not be acceptable in routine clinical practice.
The aim of this experiment was to identify if high spatial frequency in-
formation is strictly necessary to make an accurate binary classification,
and the results suggest that macroscopic tissue structure is sufficient
for high-level classification, i.e. benign or malignant. It is clear that
imaging systems with lower magnification and spatial resolution are
well suited for this task, which would require fewer images to fully
capture a sample and generate WSIs with much smaller file sizes. Tasks
such as segmentation or tissue grading require more granular analysis,
and high-resolution scanning would of course still be necessary for
these types of tasks.

A feasible application for the type of rapid low-resolution binary
diagnostic system described here would be in the context of a high-
volume screening program e.g. to identify normal tissue samples with
high diagnostic confidence, minimizing (or in an ideal case, eliminating
entirely) the number of false negative (FN) errors at the expense of
absolute classification accuracy. Such a system would still serve to
reduce the volume of samples needing to be scanned and stored at
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full resolution for later assessment. One potential modification to the
ensemble architecture presented here to achieve this would be to use
maximum voting rather than average voting as a pooling layer when
computing the whole-image score, amplifying any suspected malig-
nancy and ‘‘flagging’’ the section for more detailed assessment using
the standard pipeline. Optimizing for high specificity or an 𝐹𝛽 score

eighted more towards specificity rather than absolute accuracy during
raining could also improve the performance of an automated classifier
or this specific task. Specific imaging system parameters would need
o be carefully chosen to balance the reduction in FN errors while
till successfully classifying enough normal samples and removing them
rom the pipeline to be useful. Optimizing the entire system (hardware
nd software) for specificity rather than absolute accuracy could also
ncrease the system’s flexibility, for example in extending its use for
ther tissue types than have been investigated here. System parameters
ould likely have to be carefully tailored to the type of tissue being
ssessed however, which could be a limitation in its wider applicability;
t would likely find use only in particularly high-volume screening
rograms such as breast or colon tissue.

The threshold values listed in Table 3 can be assigned to equivalent
icroscope objectives: an NA of 0.04 corresponds to an Olympus

pochromat 1.25× objective for macroscopic observation, and an NA
f 0.10 to an Olympus achromat 4× objective. A 1.25× objective has
monochrome Nyquist sampling frequency corresponding to a camera
ixel size of 3.7 μm using Eqs. (10) and (11), however in practice these
mages would likely still be undersampled if a CFA camera sensor was
sed, as discussed in Section 2 and demonstrated by the performance
f the PCam-trained models. The spatial resolution of a 1.25× lens
ppears to be the limit beyond which binary classification is no longer
ossible, and any information loss due to undersampling would likely
e prohibitive.

It is possible that future technological development of camera sen-
ors with higher quantum efficiencies could allow pixel sizes to be
educed below the current limit of approximately 2.5 μm, in which
ase the use of such macroscopic observation lenses would allow for
xtremely rapid binary classification. A relay lens with less than unity
agnification could also be used to optimize between spatial resolution

nd macroscopic structural information. Despite this current technical
imitation, the use of a 4× achromat objective with an NA of 0.1 would
till result in a significant increase in FOV compared with current
SI systems while leaving room for additional resolution loss due to

ndersampling. Imaging at 4× magnification would require a factor of
5 fewer images to fully capture a sample compared with 20× as is
tandard with most slide scanners, with a commensurate reduction in
canning time and WSI file size.

Another significant issue with WSI systems is ensuring the sample
emains in focus. An advantage of using lower NA lenses is increased
xial depth of field, which is inversely dependent on the square of the
A (Oldenbourg and Shrikak, 2009). The impact of defocus can also be
odelled as a wavefront error in the pupil function 𝑃 , which has the

ffect of widening the PSF and reducing the spatial frequency support of
he MTF in a similar but not identical manner to a reduction in NA. The
esults presented here suggest that binary classification algorithms may
e able to withstand fairly significant defocus, as well as other pupil
berrations such as spherical aberration. Preliminary work suggests
hat this is the case; see Supplementary Information for further detail.
nother type of aberration common to lower-magnification microscope
bjectives are field-dependent aberrations such as field curvature and
istortion, where the pupil wavefront error varies across the FOV. A
uture experiment could introduce variable degradation of the type
resented here during training as a data augmentation strategy, which
ould force a classifier to learn distorted or blurred features as they
ay occur at the edges of the FOV and could increase robustness of
10

atch-based WSI classifiers. i
. Conclusions and future work

The key result of this work is that robust automated binary clas-
ification is possible at low spatial resolution, which is consistent
ith expert pathologists’ abilities to quickly make a high-level tissue
ssessment at low magnification. High-resolution images are costly
o store and cumbersome to work with, both for human and auto-
ated assessment. Imaging at lower magnification results in shorter

canning times and reduced susceptibility to focus errors due to a
arger depth of field. Given the current challenges facing histopathology
epartments, the introduction of a rapid, low-cost system capable of
ccurately identifying healthy or normal tissue without the need for
uman intervention could function as a pathological triage system to
itigate currently unmanageable caseloads. Even partially reducing

aseloads would provide pathologists with additional time to devote to
esearch and contribute their considerable expertise to the development
f automated diagnostic tools. Reducing the number of samples needing
o be scanned at full resolution (such as for segmentation or tissue
rading) would also lower the operating costs of a digital pathology
epartment in terms of data storage and technical support staff, which
as been identified as a barrier to digitization. In terms of real-world
pplications, the type of system proposed in this work would most
ikely find use as an additional component of the digitization workflow
ather than as a replacement for the high-quality scanners that many
epartments already have access to.

Future work would involve identifying specific low-resolution fea-
ures that are most relevant for classification and correlating these
ith known anatomical and pathological structures. An investigation
f the effects of undersampling and wavelength-dependent sampling
esolution for different types of RGB cameras would also yield insight
nto the importance of these system parameters to accurate binary
lassification. The limited size of available datasets in digital pathology
s well as variability in stain appearance often leads to overfitting
nd brittle diagnostic models; there is evidence that stain normal-
zation and augmentation can be powerful tools for addressing these
ssues (Janowczyk et al., 2017; Salvi et al., 2020). An expansion of
his work would investigate which of these strategies are relevant for
ccurate binary classification of low-resolution images of stained tissue.
he techniques presented here for systematic image degradation could
lso be used as a real-time data augmentation strategy to improve the
obustness of patch-based classifiers to regions of the tissue that are
ut of focus or distorted. As with any deep learning model, including
dditional datasets as they become available would of course improve
he performance; the BRACS dataset (Brancati et al., 2022) in particular
ould be a major focus of future work, but would require adapting

he training architecture to allow for input images of variable size.
inally, the most important extension of the work described here would
e to determine if the results obtained for images of breast tissue
re repeated with other tissue types that are generated through high-
olume screening programs e.g. colon tissue (Sirinukunwattana et al.,
017; Kather et al., 2016; Graham et al., 2019) or more general datasets
uch as the Atlas of Digital Pathology (Hosseini et al., 2019).
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