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A B S T R A C T   

The role of carbon capture technology using monoethanolamine (MEA) is critical for achieving the carbon- 
neutrality goal. However, maintaining the efficient operation of the post-combustion carbon capture is chal-
lenging considering the hyperdimensional design space and nonlinear characteristics of the process. In this work, 
CO2 capture level from the flue gas in the absorption column is investigated for the post-combustion carbon 
capture process using MEA. Artificial neural network (ANN) and support vector machine (SVM) models are 
constructed to model CO2 capture level under extensive hyperparameters tuning. The comparative performance 
analysis based on external validation test confirmed the superior modelling and generalization ability of ANN for 
the carbon capture process. Later, partial derivative-based sensitivity analysis is carried out and it is the found 
that absorbent-based input variables like lean solvent temperature and lean solvent flow rate are the two most 
significant input variables on CO2 capture level in the absorption column. The optimization problem with the 
ANN model embedded in the nonlinear programming-based optimization environment is solved under different 
operating scenarios to determine the optimum operating ranges for the input variables corresponding to the 
maximum CO2 capture level. This research presents the optimum operating conditions for CO2 removal from the 
flue gas for the post-combustion carbon capture process using MEA that contributes to achieving the carbon 
neutrality goal.   

Introduction 

Climate change is a harsh reality and its dangerous impact on the 
environment is beginning to be evident in the form of disturbed rain 
cycles, floods, prolonged summer seasons and elevated sea level. The 
transition from fossil-fuels to renewable energy systems may not be 
robust and reliable under the existing state of technology (IEA 2021). 
Therefore, intensive research is being conducted in decarbonizing the 
flue gases of fossil-based industrial complexes. Carbon capture is a key 
carbon removal technology from the flue gases and is presented as one 
amongst the solutions to achieve carbon-neutrality from the fossil-based 
industrial systems. In this regard, post combustion carbon capture pro-
cess using monoethanolamine (MEA) is the most mature form of carbon 
removal technology and is installed at some industrial stations for 
decarbonizing the flue gases (IEA 2021). However, the process is energy 
intensive and requires efficient operation management of the carbon 
capture system thereby ensuring the higher energy efficiency of the in-
dustrial complex. 

Post-combustion carbon capture process using MEA is a complex 

carbon removal process maintained under the large design space of 
input variables. The mathematical model predicting CO2 capture level 
based on the large number of the input variables of the process is quite 
complex and thus deploying the constructed mathematical model for 
extensive predictive and optimization analytics can be computationally 
prohibitive and time intensive. To address this issue, machine learning 
based modelling algorithms offer an alternative tool to construct an 
efficient model of the complex and large industrial process that are 
computationally cheaper to construct, easier to use for predictive ana-
lytics, and subsequently be deployed to speed up the optimization 
analysis. 

Artificial neural network (ANN) and support vector machine (SVM) 
are the two powerful modelling algorithms of machine learning. ANN 
can approximate any nonlinear output space constructed on large input 
space with good accuracy and can effectively dig nonlinear patterns 
from the heap of data (Bishop, 1995). These features enable ANN to be 
deployed for practical applications ranging from atomic-scale (Uddin 
et al., 2013) to enterprise-level of industrial complexes (Ashraf et al., 
2021) for the operational excellence and improved efficiency of the 
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system. Similarly, SVM can also construct the effective functional rela-
tionship with the output variable that captures the nonlinearity and 
interactions among the variables (Singh et al., 2015). This feature is 
particularly useful for constructing the flexible and efficient models for 
the multi-scale systems and SVM has been used for a diverse range of 
practical applications (Ma et al., 2018, Shadloo, 2020, Zendehboudi 
et al., 2018). However, there are number of challenges to be addressed 
for the development of an efficient ML based predictive model that 
include, i) data-collection and visualizing the data-distribution space to 
ensure the quality of data, ii) elimination of the linearly-dependent input 
variables, iii) hyperparameters tuning for the development of ML 
models, iv) evaluation of the predictive performance of the ML model on 
the unseen dataset etc. More challenges about the ML model develop-
ment can be studied from (Bishop, 1995, Ashraf et al., 2023). 

Over the past few decades, researchers have conducted rigorous 
research on solvent-based post combustion carbon capture technology. 
Zhang et al. (Zhang et al., 2009) developed a mechanistic model for the 
solvent based carbon capture plant and validated it on the pilot plant 
data from the University of Texas Austin. It was concluded that the high 
thermal energy spent in the reboiler of stripper could be an obstacle in 
wide-spread utilization of the carbon-capture plant world-wide. To 
reduce the thermal duty of the reboiler, Freguia and Rochelle (Freguia 
and Rochelle, 2003) investigated the sensitivity of the process variables 
to evaluate the impact of the operating conditions of the CO2 capture 
process on the steam requirements in the reboiler. Tatarczuk et al. 
(Tatarczuk et al., 2015) deployed an inter-heated stripper in the stripper 
column that modified the solvent recovery process in the column. The 
results showed that the energy requirements and CO2 recovery of the 
process were improved by 8-12% and 8-11% respectively. In another 
study, Wang et al. (Wang et al., 2011) pointed out in the review study on 
the post-combustion carbon capture that the effective synchronization 
of the sub-systems of the carbon capture process like absorption column, 
flue gas system, stripper column, reboiler, heat-exchangers, condensers 
etc., can reduce the energy consumption for capturing the CO2 from the 
flue gas. 

The application of ML models for the process design and operation of 
post-combustion carbon capture technologies is being widely adopted 
by the researchers. The potential application of ML models in carbon 
capture domain is to identify the patterns present in the data that are 
difficult to capture for the complex operation of carbon capture process. 
ML algorithms are being applied for the properties evaluation of CO2 
sorbents and oxygen carrying materials, modelling and control of carbon 
capture process (Bai et al., 2016, Li et al., 2018, Li et al., 2017), predict 
CO2 solubilities in solvents and adsorbents (Farmahini et al., 2018, 
Burns et al., 2020, Pai et al., 2020). Sipöcz et al. (Sipöcz et al., 2011) 
developed an ANN network to model CO2 capture level, specific duty 
and rich load for MEA solvent based carbon capture process using five 
variables namely inlet flue gas flow, inlet flue gas temperature, CO2 
concentration in the flue gas, reboiler duty and solvent circulation rate. 
The data from the process simulator CO2SIM was utilized to construct 
the model. Li et al. (Li et al., 2015) constructed steady-state and dynamic 
models to model CO2 capture level of post-combustion MEA based car-
bon capture process using bootstrap aggregated neural networks. The 
prediction performance of the models was evaluated to select a 
well-performing model for CO2 capture level. Liu et al. (Liu et al., 2022) 
developed ANN to model CO2 absorption process with aqueous biphasic 
absorbents containing diethylethanolamine and diethylenetriamine in a 
rotating zigzag bed. The flue gas and absorbent conditions like tem-
perature, pressure, flow rate and inlet CO2 concentration were incor-
porated to predict mass transfer coefficient and CO2 absorption 
efficiency. Shalaby et al. (Shalaby et al., 2021) developed tree and 
gaussian regression based different models to predict different outputs 
from carbon capture unit. 

In the literature studies, carbon capture in the post-combustion 
carbon capture process using MEA solution has been investigated by 
ML approach. The input variables are selected corresponding to the 

absorption column and stripper section of the carbon capture process to 
predict CO2 capture level using ML based modelling algorithms (Li et al., 
2015, Shalaby et al., 2021, Fu et al., 2022). However, the detailed and 
comprehensive model-based sensitivity (to obtain the insight about the 
process) and optimization analysis (estimating the optimized values of 
the input variables corresponding to maximum CO2 capture level) on the 
absorption column of the carbon capture is lacking in the literature. 
Therefore, in this study, we focus only on the absorption column for 
ANN and SVM based modelling, that is not investigated for carbon 
capture in the absorption column previously corresponding to the input 
variables as taken from (Li et al., 2015). Subsequently, the selected ML 
model is used for carrying out the sensitivity and optimisation analysis 
for the carbon capture in the absorption column that is not investigated 
earlier and differentiates this work from the literature studies as cited 
above. Furthermore, ML model-based sensitivity and optimization 
analysis supports the utilization of ML for practical engineering appli-
cations thereby helping to support carbon neutrality that contributes to 
the novel aspects of this work as well. 

An extensive hyperparameters tuning is carried out to ensure the 
efficient working of the selected ML algorithms. A rigorous external 
validation test is performed for the performance comparison of the 
constructed ML models and subsequently to select a better performing 
model having excellent prediction and generalization abilities. Partial- 
derivative based sensitivity analysis is performed to investigate the 
variables’ significance on CO2 capture level. Furthermore, the devel-
oped ML model is embedded in the optimization framework of nonlinear 
programming technique and the optimization problem under various 
scenarios is solved to determine the optimal operating ranges of input 
variables corresponding to maximum CO2 capture level that is poten-
tially missing in the literature and can be of industrial relevance to 
achieve efficient operation of carbon capture using the ML based 
modelling and optimization analysis. This research presents a generic 
analytical framework incorporating ML model and the optimization 
technique to determine the optimized conditions for the input variables 
of the absorption column of carbon capture process that enhances the 
system’s efficiency and contributes to carbon-neutrality target. 

Methodology 

Fig. 1 shows the key stages of the analysis to optimize the post- 
combustion carbon capture process using MEA in the absorption col-
umn. Four major analysis stages are devised namely data-collection & 
visualization, ML model development, sensitivity analysis and opti-
mizing the carbon capture process. The detailed description on these 
stages is provided below. 

Data-Collection & Visualization 

The MEA based post-combustion carbon capture is the mature car-
bon removal technology from the flue gas and thus finds its industrial 
application in power generation, steel, cement and chemical industries. 
The mathematical model incorporating the various input variables is 
constructed to model the post-combustion carbon capture process using 
MEA solution as provided in (Lawal et al., 2009). The description about 
the carbon capture in the absorption tower can be found in (Li et al., 
2015) and the schematic diagram of the process is presented in Fig. 2. An 
extensive literature survey is conducted to identify the relevant and key 
important variables for CO2 removal in the absorption column of carbon 
capture process (Liu et al., 2022, Fu et al., 2022, Wu et al., 2017, Fu 
et al., 2014, Quan et al., 2023, Shahsavand et al., 2011). Heat require-
ment for absorbent generation, circulation amount of MEA, steam con-
sumption in regeneration tower, flue gas flow, liquid to gas ratio, 
molecular weight of lean liquid are also deployed to predict CO2 capture 
amount from the flue gas (Li et al., 2018). However, flue gas and 
absorbent conditions like temperature, pressure, flow rate and concen-
tration etc., are the relevant variables to model CO2 capture level from 
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the absorption column. Therefore, the key input variables taken to 
develop ML model are as follows: a) inlet flue gas flow (kg/s) (iFGF), b) 
inlet CO2 concentration (mass fraction) (iCO2 conc.), c) inlet flue gas 
pressure (Pa) (iFGP), d) inlet flue gas temperature (K) (iFGT), e) lean 
solvent flowrate (kg/s) (LSF), f) MEA concentration (mass fraction) 
(MEA conc.), g) lean solvent temperature (K) (LST). Whereas, CO2 
capture level (%) is the output variable considered in this study. 

The training dataset is extracted from the figures provided in (Li 
et al., 2015) as explained in section: Visualizing the input-output space 
of post combustion carbon capture process using MEA. The hyper-
dimensional input space of the process is helpful to control the process 
and subsequently maintaining the process performance parameters 
within the designed limits. However, the input variables in the large 
design-input space may have inter-dependencies, therefore the true in-
dependent input variables having significant impact on the process are 

required to be identified for the modelling purpose. The selection of the 
independent input variables is considerably important for the develop-
ment of a well-performing ML model having effective functional map-
ping between the input-output variables. To this end, Pearson 
correlation coefficient is calculated to identify the dependent input 
variables (Yuan et al., 2021). The mathematical expression of Pearson 
correlation coefficient is given as: 

Rxy =

∑N
i (xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i (xi − x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
i (yi − y)2

√ (1)  

here, Rxy is the Pearson correlation coefficient computed between the 
variable x and y for the dataset containing N observations. The value of 
Rxy varies from -1 (perfect negative correlation) to +1 (perfect positive 
correlation). Whereas, zero correlation value indicates the variables’ 
independence. The heat map containing the Pearson correlation coeffi-
cient is constructed and the dependent variables (having higher value of 
correlation coefficient) can be identified and subsequently be eliminated 
from the list of the input variables. Thus, the independent input vari-
ables of the process can be deployed to model the output variable by the 
ML-based modelling algorithm. 

Machine Learning Models 

The physics-based mathematical model characterising the output 
variables with the causal input variables can be constructed depicting 
the response and behaviour of the system. However, the size of the 
model gets larger with its improved accuracy and thus the mathematical 
model-based optimization analysis becomes computationally prohibi-
tive. On the other hand, ML-based models are computationally cheaper 
and efficient for the modelling and optimization analysis. However, the 
entire parameters space embedded in the modelling algorithm is to be 
optimized for the robust prediction and efficient generalization capa-
bility of the ML models. 

Fig. 1. The proposed methodology to carry out the ML based modelling and optimization analysis for post-combustion carbon capture process using MEA. The key 
stages in the analysis involves data-collection & visualization, ML model development, sensitivity analysis, and finally, optimizing the carbon capture process. 

Fig. 2. A general schematic diagram of carbon capture in the absorption tower 
using MEA solution. 
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ANN and SVM are the two powerful ML algorithms deployed for 
modelling output variables having the nonlinear and interactive re-
lationships with the large space of input variables (Ashraf et al., 2020, 
Ashraf et al., 2022). ANN is an excellent function approximator and can 
construct the effective functional mapping between the input-output 
variables (Ashraf et al., 2022). The algorithm can well-generalize the 
ill-defined problem and dig the hard to extract nonlinearity in the data. 
Moreover, the memory requirement of the algorithm is low therefore 
ANN can handle the medium to large datasets of the practical applica-
tions (Bishop, 1995). The important hyperparameter to be tuned for the 
working of the ANN model is to find the optimal number of neurons in 
the hidden layer and the number of hidden layers (Bourquin et al., 
1998). The size of the hidden layer controls the complexity introduced in 
the ANN algorithm to model the output variable. Too low and too high 
added complexity can compromise the prediction and generalization 
performance of the model, thereby requiring an accurate optimization of 
the hyperparameters. The mathematical expression of ANN model is 
given as: 

Y(Xi) = f2

(∑
W2

[
f1

(∑
XiW1 + b1

)]
+ b2

)
(2)  

here, Xi is an input vector defined on the number of input variables and i 
= 1,2,3,…,N equal to the observations. W1, W2 and b1, b2 are the weight 
and bias matrices computed at the hidden layer and output layer of ANN 
network respectively. 

∑
XiW1 + b1 is calculated at each hidden layer 

neuron of the ANN model and is transformed on the scale of the acti-
vation function (f1). The information from the hidden layer propagates 
to the output layer and is processed further incorporating W2, b2 and f2 
(activation function applied on the output layer of ANN) to simulate the 
model simulated response Y(Xi). The error is calculated between the 
actual and model simulated response and the error signal is propagated 
backward to update the parameters (weights and biases) in an iterative 
training. The expression for the updated weight and bias is given as 
follows: 

Wnew = Wold − η ∂E
∂W

(3)  

bnew = bold − η ∂E
∂b

(4)  

here, E is the loss function deployed to calculate the deviation between 
the actual and model-simulated response; η is the learning rate; and ∂E

∂W , 
∂E
∂b are the partial derivative of the loss function with respect to weight 
and bias respectively. Whereas, Wnew and bnew are the new values of the 
weight and bias matrices after an update in old values of Wold and bold 
respectively. 

SVM is another type of ML based modelling algorithm and can 
accurately predict the values of the output variables subjected to the 
designed space of the input variables. SVM model can provide an 
excellent generalization ability from the data deployed for its develop-
ment (Ashraf et al., 2021, Muhammad Ashraf et al., 2020). Structural 
risk minimization principle is used for the SVM model development. The 
data which is hard to classify through linear hyperplane, the non-linear 
and complex input space is projected to higher-dimensional data space 
through the use of kernel and the problem is solved in a linear pattern. 
The hyperplane separates the data for the prediction efficacy whereas 
the margin around the hyperplane is maximized since the prediction 
error is tolerated up to this limit. Gaussian kernel is commonly used for 
fitting a non-linear hyperplane across the data. Furthermore, SVM in-
corporates Vapnik’s ε-intensive loss function and constructs the 
approximation problem as an inequality constrained optimization 
problem to maximize the boundary around the hyperplane (Maddipati 
et al., 2011). SVM also learns the nonlinear relationship among the 
variables by solving a convex quadratic programming problem. The 
mathematical expression for the nonlinear SVM model is given as: 

The training dataset for the development of SVM model is repre-
sented as: 

{(xi, yi), i= 1, 2, 3,…, N} xi ϵ Rd, yi ϵ
{

Rd} (5)  

where, xi is the vector of input variables and yi is the corresponding 
output variable; i = 1,2, 3, ...,N equal to total number of observations 
of the training dataset. For nonlinear SVM model, Lagrangian function 
and non-negative numbers, i.e., αn and α∗

n are introduced and the loss 
function is written as: 

L (α) = 1
2
∑N

i=1

∑N

j=1

(
αi − α∗

i

)(
αj − α∗

j

)
G
(
xi, xj

)
+ ε

∑N

i=1

(
αi + α∗

i

)

+
∑N

i=1
yi
(
αi − α∗

i

)
(6)  

subject to the constraints: 

∑N

i=1

(
αn − α∗

n

)
= 0 (7)  

∀n : 0 ≤ αn ≤ C (8)  

∀n : 0 ≤ α∗
n ≤ C (9) 

Here, G(.) is the kernel function that projects the hyperdimensional 
input space to higher dimensions; ε is epsilon margin around the hy-
perplane; and C is the penalty parameter. The Karush-Kuhn-Tucker 
(KKT) conditions are incorporated for developing the optimal solution 
of the non-linear dual problem of the SVM which are given as: 

∀n : αn(ε+ ξn − yn + f (xn)) = 0 (10)  

∀n : α∗
n(ε+ ξn + yn − f (xn)) = 0 (11)  

∀n : ξn(C − αn) = 0 (12)  

∀n : ξ∗n
(
C − α∗

n

)
= 0 (13) 

Here, ξ and ξ∗ are the slack parameters that tolerate the deviations 
beyond the ε-tube. Finally, the SVM model can be written as: 

Y(x) =
∑N

i=1

(
αi + α∗

i

)
G(xi, x) + b (14) 

Here, Y(x) is the output variable that can be predicted by the set of 
input variables (x) and b is the bias value. 

Evaluation Criteria 

The modelling performance of the ML models should be evaluated on 
rigorous performance evaluation measures. For this purpose, two sta-
tistical measures, namely coefficient of determination (R2) and root- 
mean-squared-error (RMSE) are deployed to gauge the modelling ac-
curacy of the developed ML models (Yuan et al., 2021). The mathe-
matical expression of R2 and RMSE is given as: 

R2 = 1 −

∑N
i (yi − ŷi)

2

∑N
i (yi − yi)

2 (15)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(ŷi − yi)

2

√
√
√
√ (16)  

here, yi is the actual value of the output variable whereas ŷi is the ML 
model simulated response. Similarly, yi is the mean of yi and i = 1,2,3, 
…,N equal to total number of observations. R2 is a measure of accuracy 
in predicting the actual values of the output variable by the developed 
ML model and its value changes from 0 (poor predictability) to 1 (good 
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functional map between the input and output variable). Whereas, RMSE 
measures the deviation between ML model simulated responses and the 
actual values of the output variable. 

External validation of the developed ML models 

The external validation test is conducted for the comparative per-
formance evaluation of the ML models. The external validation dataset is 
primarily unseen to the models during their development and contains 
the observations within the operating ranges of the input variables. 
Thus, the external validation test is a fair method to evaluate the pre-
diction and generalization performance of the developed models and the 
external validation test-based performance comparison can help choose 
a well-performing ML model. Therefore, the external validation test is 
carried out in this study and a better ML model, in terms of prediction 
and generalization performance, is selected based on the performance 
measures (R2 and RMSE). 

Sensitivity analysis 

The ML model like ANN is essentially a black box model and it be-
comes difficult to interpret how the model develops the relationship 
with the output variable; thereby explaining the prediction process of 
the ANN is quite challenging. To this end, researchers have reported 
various sensitivity analysis techniques purposely deployed to get an 
insight about the parametric dependence as well as significance of the 
input variables on the output. Neural interpretation diagram, Garson’s 
method, Olden’s method, input perturbation etc. are amongst the 
frequently used sensitivity analysis techniques as reported in literature 
(Pizarroso et al., 2020). However, these techniques lack in providing the 
comprehensive information about the interpretability of the ML model 
in terms of prediction. In this regard, partial derivative-based sensitivity 
analysis computes the partial derivative of the output variable with 
respect to the input variables at each sample of the dataset. Thus, the 
explicit expression for the sensitivity analysis of the ML model can be 
obtained using partial derivative approach and it provides the robust 
diagnostic information about the variables’ sensitivity compared with 
previously mentioned techniques (Pizarroso et al., 2020). Therefore, in 
this study, partial derivative-based sensitivity analysis on the developed 
ML model is conducted to investigate the input variables’ impact on the 
output variables. 

Integrating machine learning model in the optimization framework 

The development of a well-performing and flexible machine learning 
model is an important task for conducting the value-creating analytics 
using data-driven modelling and optimization approach. A model 
depicting good generalization of the system is essentially desirable to 
mine the input design space of operating variables to develop the 
optimal solution. At the same time, the optimization problem should be 
written carefully considering the nature of the objective function. 

The output variable modelled in this work has the complex in-
teractions with the input variables thereby depicting the nonlinear 
output space of the objective. Therefore, nonlinear programming (NLP) 
based optimization technique is used to solve the optimization problem 
incorporating the developed ML model representing the objective to be 
optimized. NLP technique is particularly applied when the objective to 
be optimized is nonlinear and/or the constraints applied on the problem 
are essentially non-linear. The general expression of NLP problem is 
given as: 

Objective Function: max f(x) subject to: 

h(x) = 0  

x = x1, x2,…, xn (17)  

x ϵ X ⊆ Rn  

xL ≤ x ≤ xU  

where, x is a set of optimization variables defining the objective function 
f(x). h(x) is the equality constraint representing the ML model (Gueddar 
and Dua, 2012). xL and xU are the lower and upper bounds applied on 
the design space of the input variables. The objective function represents 
the output variable of the ML model, i.e., CO2 capture level. Thus, the 
NLP based optimization problem is constructed and is solved for several 
initial guesses to find the optimal solution (operating values of the input 
variables) corresponding to which the objective function has the 
maximum value. 

Results & Discussion 

Data collection and visualizing the data-distribution space of the variables 

The mathematical model for the post-combustion carbon capture in 
the absorption tower using MEA is constructed to model CO2 capture 
level (Lawal et al., 2009). The key input variables corresponding to the 
output variables is presented in the form of input-process-output dia-
gram as presented in Fig. 3. Input variables are shown on the left side 
while output variable to be modelled on the input variables is shown on 
the right side of Fig. 3. 

WebPlotDigitizer software is used to extract the data for the input- 
output variables from the figures mentioned in (Li et al., 2015). The 
value of CO2 capture level (%) is retained against the operating values of 
the input variables and the complete dataset containing seventy obser-
vations for the input-output variables is compiled from figures as re-
ported in (Li et al., 2015). iFGF, iCO2 conc., iFGP and iFGT are the 
variables corresponding to the flue gas and are varied from 0.08 kg/s to 
0.18 kg/s, 0.2 to 0.39, 0.12 Pa to 1.06 Pa and 297 K to 329 K respectively 
in (Li et al., 2015). Whereas, the variables with respect to absorbent, i.e., 
LST, MEA conc., and LSF have the operating ranges as: 297 K to 332 K, 
0.21 to 0.35, and 0.63 kg/s to 0.83 kg/s respectively. In response to the 
operating conditions of the input variables, CO2 capture level from the 
flue gas is changed from 62 % to 100% as reported in (Li et al., 2015). 
The data-distribution for the input variables as well as output variable is 
presented in Fig. 4. It is evident that fairly large design space of the input 
variables is explored to evaluate its effect on CO2 capture level and the 
data-distribution profile is reasonable across the operating ranges of the 
variables that is beneficial for the development of flexible ML model. 

In the next step, the dependence among the input variables is 
investigated by computing the Pearson correlation coefficient. The 
Pearson correlation coefficient measures the linear correlation between 
the variables, whereby the variables’ linear dependence can be effec-
tively computed. The heat map showing the correlation between the 
variables of post-combustion carbon capture process using MEA is pre-
sented in Fig. 5. The correlation value varies from -0.7 to 0.2 thereby 
indicating that the strong linear relationship does not exist between the 
variables (Yuan et al., 2021). Another way for interpreting the small 
correlation value can be the presence of nonlinear relationships among 
the variables of carbon capture process. 

Fig. 3. Input-Process-Output diagram for the post-combustion carbon capture 
process using MEA. The input variables are enlisted on the left-side and output 
variable is presented on the right-side of process. 
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Development of ANN and SVM model 

ANN models are trained on the collected dataset for the carbon 
capture process. In this work, data split is set as 0.8 and 0.2 for training 
data and testing data respectively. A shallow multilayer perceptron 
network containing one hidden layer neuron is developed. It is reported 
in literature that ANN network consisting of one hidden layer and 

having enough number of hidden layer neurons can approximate any 
non-linear function (Kubat, 1994). The number of neurons in the hidden 
layer are varied from 1 × to 2.5 × of the number of input layer neurons. 
Sum of square error is deployed as a loss function with 
Levenberg-Marquardt algorithm in the architecture of the ANN model 
for the parametric optimization (weights and biases) since it has stable 
and fast convergence performance (Yu and Wilamowski, 2018). More-
over, the computational complexity of Levenberg-Marquardt algorithm 
includes computation of the Jacobian matrix that is comparatively less 
expensive than that of constructing Hessian matrix (Yu and Wila-
mowski, 2018). The activation functions applied at the hidden layer and 
output layer are tangent sigmoidal (to capture the nonlinearity) and 
linear, respectively. The learning rate is set to 0.01 which is reasonable 
given the computational time and smooth tuning of the parameters 
during the network development. The early stopping criteria is made as: 
minimum gradient achieved = 1.0 × 10− 20, maximum validation failure 
= 6 and training epochs = 10000. The network training is stopped when 
either condition of the stopping criteria is met. 

ANN models are trained in Matlab 2021b. Fig. 6 shows the perfor-
mance of ANN models having hidden layer neurons varying from seven 
to eighteen during training and testing phase. The modelling perfor-
mance of the models is evaluated on the performance metrics built on R2 

and RMSE. Closely looking the performance of the ANN models in the 
training and testing phase, it is found that ANN model having eleven 
neurons in the hidden layer has comparatively higher value of R2 

(R2_train = 0.98, R2_test = 0.89) and lower RMSE (RMSE_train = 1.2 % 
and RMSE_test = 3.1 %) in comparison with that of other ANN models. 
Thus, eleven hidden layer neurons make the optimal size of hidden layer 
and the resulting ANN model is retained for the external validation test. 

Fig. 4. Visualizing the data-distribution space of variables for the post-combustion carbon capture process using MEA. Good data-distribution is observable for the 
input and output variables. 

Fig. 5. Pearson correlation coefficient-based heat map constructed for the 
variables of the carbon capture process using MEA. A small correlation value is 
observable between the variables indicating the variables’ independence. 

Fig. 6. Tuning of hidden layer neurons for the development of ANN model. R2 and RMSE are calculated for different architectures of ANN (based on hidden layer 
neurons) during training and testing phase. ANN model having eleven neurons in the hidden layer has shown comparatively better modelling performance. 
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The hyperparameters required to be optimized for the SVM model 
development include epsilon, kernel scale and box constraint. For this 
purpose, grid-search method is used to systematically construct the 
combination of hyperparameters from their operating range and sub-
sequently utilize them for the model development. Kernel scale, epsilon, 
and box constraint are varied between 0.001 to 1000, 0.20859 to 
20859.15 and 0.001 to 1000 respectively. Bayesian optimizer along with 
the expected improvement per second plus acquisition function is 
deployed for the SVM model development. The mean square error (MSE) 
between the model-simulated and the actual value is calculated for the 
given set of hyperparameters values. Finally, the values of hyper-
parameters are selected corresponding to which MSE is minimum. 

Matlab 2021b software is used for SVM model development. In this 
work, Gaussian kernel function is deployed since the output variable 
possesses nonlinear characteristics. Extensive combination of hyper-
parameters are tested in 30 epochs and the optimized values of epsilon, 
kernel scale and box constraint are 0.540, 1.947 and 974.8 respectively 
corresponding to the minimum MSE. The performance metrics of the 
developed SVM model for the training and testing dataset are as follows: 
R2_train = 0.99, R2_test = 0.88 and RMSE_train = 0.58% and RMSE_test 
= 4.42%. R2 and RMSE values for the training and testing dataset are 
reasonable representing the good modelling performance of the devel-
oped SVM model. 

External Validation of ANN and SVM model and model selection 

The ANN and SVM models developed under rigorous hyper-
parameters optimization are subjected to external validation test. The 
external validation dataset contains seventeen operating conditions 
constructed on the ranges of the input variables. The validation dataset 
is deployed to be predicted from ANN and SVM models; the model- 
simulated responses are compared with the true CO2 capture level and 
the performance metrics are calculated. 

Fig. 7 presents the prediction profiles of CO2 capture level for the 
external validation dataset by the developed ANN and SVM model. The 
models-based responses are compared with the true CO2 level to eval-
uate their prediction efficacy. The performance metrics for the ANN 
based predictions for the external dataset are comparatively better than 
those of SVM, i.e., R2

ANN = 0.98 > R2
SVM = 0.78 and RMSEANN = 1.28 % <

RMSESVM = 4.41 %. The comparative predictive performance of the 
developed ML models for the external validation test confirms the su-
perior modelling capability of ANN, compared with SVM, to model the 
post-combustion carbon capture process using MEA and thus, is 
deployed for the subsequent analysis as mentioned in the next section. 

Variables’ significance on the carbon capture level 

The partial-derivative based sensitivity analysis is conducted to 
investigate the impact of the input variables on the carbon capture level 
from the flue gas. Since ANN model has expressed the effective model-
ling performance, the partial derivative of the model’s output is taken 
with respect to the input variable that signifies the variable’s sensitivity 
on CO2 capture level. As the tangent hyperbolic activation function is 
applied on the hidden layer of ANN, the mathematical expression for 
partial derivative-based sensitivity of input variable (Xp) on the output 
variable (Y) for the ANN model is given as (Nourani and Fard, 2012): 

∂Y
∂Xp

=
∑nh

h=1
W2

(
1 − M2)W1 (18)  

here, W2 is the weight matrix built on the weighted connections from the 
hidden layer to output layer neuron; W1 is the weighted connections 
from the particular input variable (Xp) to the hidden layer neurons; and 
(1 − M2) is the partial derivative of the activation function applied on 
the hidden layer with respect to the summation computed at the hidden 
layer neuron. 

The variance in the output variable produced as the result of change 
in the input variable is calculated for the entire dataset (Pizarroso et al., 
2020) and the procedure is repeated for all input variables. The per-
centage significance (r) is calculated accounting for the sensitivity of 
input variables. Higher is the value of r, the more sensitive is the output 
variable to the particular input variable and vice versa. The mathe-
matical expression of r is given as: 

ri (%) =
σ2

yi |xi∑c
i=1σ2

yi |xi

× 100 (19)  

here, σ2
yi |xi 

refers to the variance produced in output variable yi with 
respect to the input variable xi; 

∑c
i=1σ2

yi |xi 
is the summation of the vari-

ance produced in the output variable with respect to input variables; i =
1,…, c equals to number of input variables. Thus, r is expressed in per-
centage that measures the percentage contribution of the input variable 
for explaining the variance of the output variable; thereby the variables’ 
significance is calculated. 

Fig. 8 shows the percentage significance of the input variables on 
CO2 capture level for post-combustion carbon capture process using 
MEA. LST turns out to be the most significant variable towards CO2 
capture level and has the r value of 36.6%. The significance of LST to-
wards CO2 capture level is due to the thermal conditions and subse-
quently, the reaction kinetics maintained in removing CO2 from the flue 

Fig. 7. The prediction profiles of CO2 capture level for the external validation 
dataset by the developed ANN and SVM models. There exists a good agreement 
between CO2 level-true and CO2 level-ANN depicting the excellent modelling 
and generalization performance by the developed ANN model. 

Fig. 8. Partial derivative-based percentage significance of input variables on 
CO2 capture level. Two input variables, i.e., LST and LSF are the significant 
input variables towards CO2 capture level. 
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gas. CO2 absorption in the lean solvent is an exothermic reaction and 
thus lowering the temperature is advised to enhance the CO2 capture 
level from the flue gas (Kazemi and Mehrabani-Zeinabad, 2016). Thus, 
LST needs to be controlled and maintained in the operating limits 
carefully to maintain the carbon removal efficiency from the CO2 rich 
flue gas. The second most significant variable towards the output vari-
able is LSF having r value of 19%. LSF controls the amount of lean sol-
vent being sprayed on CO2 rich flue gas in counter flow direction in 
order to clean it. LSF maintains the fresh supply of lean solvent for CO2 
absorption from the flue gas and is an important operation control 
variable maintaining the carbon capture level in the absorption column 
of post-combustion carbon capture process (Kazemi and Mehrabani--
Zeinabad, 2016). The two input variables like LST and LSF, which 
represent the input variables with respect to the solvent utilized in the 
carbon capture process, account for the r value of 55.6%. The r value for 
the remaining input variables of carbon capture process, i.e., MEA conc., 
FGP, iCO2 conc., iFGF and FGT is 13.0%, 12.2%, 7.9%, 7.2% and 4.0% 
respectively. The continuous replacement of CO2 rich solution from the 
absorption column and solvent recovery in the stripper is synchronized 
to ensure the enough circulation of lean solvent to the absorption col-
umn for CO2 absorption from the flue gas (Chao et al., 2021). It is 
important to note that the input variables with respect to lean solvent 
are more significant to maintain CO2 capture level than the concentra-
tion of CO2 in the flue gas at the inlet of absorber. Thus, the most sig-
nificant input variables are required to be carefully monitored and 
adjusted during the operation in order to effectively control the carbon 
capture process. 

Nonlinear programming-based optimization analysis for maximizing CO2 
capture level 

The post-combustion carbon capture process is maintained to keep 
CO2 emission level in the flue gas within the tight and strict operating 
limits of the industrial complexes. The operating input space of carbon 
capture process is hyperdimensional that is constructed on the input 
variables. These variables have non-linear interacting relationships, thus 
maintaining the higher efficiency of the process is a challenging task. In 
this regard, machine learning based process models like ANN have 
demonstrated the excellent ability in data-mining and learning the 
complex dynamics of the hyper-dimensional processes and can well 
approximate the system with good generalization and prediction effi-
cacy (Uddin et al., 2013, Uddin et al., 2020). Thus, a well-developed 
ANN model predicting the CO2 capture level with respect to process 
control variables of carbon capture process is constructed. Subsequently, 
the model is integrated within the optimization environment of the NLP 
technique. Thus, the optimization is formulated as follows: 

Objective function: 

min f = − CO2 capture level (%) (20) 

Constraints: 

CO2 capture level (%) − 100 < 0  

− 1 × CO2 capture level(%) + 62 < 0 

Bounds: 

297 ≤ LST (K) ≤ 332  

0.21 ≤ MEA ≤ 0.35  

0.08 ≤ iFGF(kg / s) ≤ 0.18  

0.2 ≤ iCO2 conc. ≤ 0.39  

0.12 ≤ iFGP (Pa) ≤ 1.06  

297 ≤ iFGT (K) ≤ 329  

0.63 ≤ LSF (kg / s) ≤ 0.83 

The optimization problem (20) for maximizing the carbon capture 
level is solved by interior point solver in MATLAB 2021 b version and 
the optimal operating values of the input variables are determined. 
Fig. 9 shows the operating values of the input variables determined by 
solving the NLP based optimization problem under different initial 
conditions for the carbon capture process. The operating values are 
calculated corresponding to maximum CO2 capture level (100 %) of the 
carbon capture process. Furthermore, the range in the operating values 
of the input variables is also measured with respect to the different 
starting conditions for the NLP based optimization problem. A tight 
confidence bound around the optimal values of the input variables 
except iFGP of the carbon capture process is observed. It indicates that 
iFGP can be maintained within the estimated bound and the maximum 
carbon capture level can be achieved. However, the remaining input 
variables are required to be controlled within the bounds to achieve the 
optimal performance of the carbon capture process. The operating 
values of the input variables determined from the NLP based optimiza-
tion analysis are: iCO2 conc. = 0.28 ± 0.02; iFGF = 0.12 ± 0.02 kg/s, 
LSF = 0.72 ± 0.02 kg/s, MEA conc. = 0.29 ± 0.03, iFGP = 0.56 ± 0.3 
Pa, iFGT = 314.3 ± 1.96 K, and LST = 316 ± 7.53 K. Considering the 
nonlinear interactions among the input variables, the optimizer has 
determined the optimized values that are not essentially the minimum 
or maximum operating bound of the input variables; therefore signifying 
the effectiveness of the determined operating ranges of input variables 
for the maximum CO2 capture level. Thus, the operating values of the 
input variables can be determined by NLP based optimization technique 
thereby ensuring the maximum CO2 capture level for the nonlinear and 
complex carbon capture process. 

Similarly, the maximum carbon capture level from the flue gas is 
investigated by NLP approach under the different conditions of the flue 
gas. Three operating scenarios considering the different operating values 
of the flue gas based variables like iCO2 conc., iFGF, iFGP and iFGT are 
considered which are as follows: a) iCO2 conc. = 0.2, iFGF = 0.08 kg/s, 
iFGP = 0.12 Pa, iFGT = 298 K, b) iCO2 conc. = 0.23, iFGF = 0.12 kg/s, 
iFGP = 0.54 Pa, iFGT = 315 K, c) iCO2 conc. = 0.39, iFGF = 0.18 kg/s, 
iFGP = 1.06 Pa, and iFGT = 329 K. Thus, the flue gas-based variables are 
held at constant values in the three scenarios and the resulting optimi-
zation problem is solved by NLP under different starting conditions to 
determine the optimized values of the remaining input variables of 
carbon capture process corresponding to the maximum CO2 capture 
level. Fig. 10 shows the optimized values of LSF, MEA conc., and LST 
determined by the NLP based optimization analysis to achieve 
maximum CO2 capture level corresponding to the three constructed 
operating scenarios. Referring to Fig. 10(a), the estimated optimized 
values of input variables are as follows: LSF = 0.74 ± 0.03 kg/s, MEA 
conc. = 0.30 ± 0.02, and LST = 316 ± 7 K. Whereas, the optimized 
values of the variables corresponding to the maximum CO2 capture level 
for scenario (b) and scenario (c) are: LSF = 0.72 ± 0.02 kg/s, MEA conc. 
= 0.28 ± 0.02, LST = 316 ± 7 K, and LSF = 0.72 ± 0.03 kg/s, MEA 
conc. = 0.28 ± 0.01, and LST = 315 ± 5 K. Since, there exists nonlinear 
interactions among LSF, MEA conc. and LST (Kazemi and Mehrabani--
Zeinabad, 2016), the determined operating values of the input variables 
along with the range of variability can help achieve maximum CO2 
capture level under different operating conditions of the flue gas. 

Conclusions 

The efficient operation of post-combustion carbon capture process is 
critical to ensure higher carbon removal from the flue gas, contributing 
to the carbon neutrality goal. In this work, CO2 capture level in the 
absorption tower is modelled on the relevant input variables (lean sol-
vent temperature (K), MEA concentration (mass fraction), inlet flue gas 
flow rate (kg/s), inlet CO2 concentration (mass fraction), inlet flue gas 
pressure (Pa), inlet flue gas temperature (K), and lean solvent flowrate 
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(kg/s)) by ML model for the post-combustion carbon capture process 
using MEA. Two ML based models, i.e., ANN and SVM are trained under 
rigorous hyperparameters optimization. The comparative prediction 
performance of the two models evaluated on external validation dataset 

reveals the superior modelling performance of ANN. The partial 
derivative-based sensitivity analysis is carried out and it is found that 
lean solvent temperature and lean solvent flow rate are the two most 
significant input variables contributing the percentage significance 

Fig. 9. NLP based optimization problem integrating the developed ANN model for CO2 capture level is solved and the optimum operating conditions for the input 
variables are determined for the maximum CO2 capture level for post-combustion carbon capture process using MEA. 

Fig. 10. Maximizing the carbon capture level for different conditions of the flue gas: a) iCO2 conc. = 0.2, iFGF = 0.08 kg/s, iFGP = 0.12 Pa, iFGT = 298 K, b) iCO2 
conc. = 0.23, iFGF = 0.12 kg/s, iFGP = 0.54 Pa, iFGT = 315 K, and c) iCO2 conc. = 0.39, iFGF = 0.18 kg/s, iFGP = 1.06 Pa, iFGT = 329 K. 
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value of 55.6% towards the prediction of CO2 capture level. The ANN 
model is integrated within the nonlinear programming-based optimi-
zation environment and the optimum operating conditions for the input 
variables corresponding to maximum CO2 capture level are determined. 
The optimum operating ranges for the input variables are: iCO2 conc. =
0.28 ± 0.02; iFGF = 0.12 ± 0.02 kg/s, LSF = 0.72 ± 0.02 kg/s, MEA 
conc. = 0.29 ± 0.03, iFGP = 0.56 ± 0.3 Pa, iFGT = 314.3 ± 1.96 K, and 
LST = 316 ± 7.53 K. Furthermore, the optimized values of the LSF, MEA 
conc., and LST are determined by the NLP approach under three sce-
narios constructed on the operating values of iCO2 conc., iFGF, iFGP, 
and iFGT. This research provides the insight about the carbon capture 
process as well as the general model-based optimization framework to 
obtain the optimized operating conditions for the maximum CO2 capture 
level that the industrial community can consult with for the optimum 
operation of carbon capture process using MEA and contributes to 
carbon-neutrality goal. While the focus of this work has been on the 
absorption column, the future work will take into account other aspects, 
such as the stripper, of the whole carbon capture process, for ML based 
modelling, sensitivity analysis and optimisation. 
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