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Abstract 

The rule interpretation step is yet to be fully automated in 

the compliance checking process, which hinders the 

automation of compliance checking. Whilst existing 

research has developed numerous methods for automated 

interpretation of building requirements, none of them can 

identify or address ambiguous requirements. As part of 

interpreting ambiguous clauses automatically, this 

research proposed a supervised machine learning method 

to detect ambiguity automatically, where the best-

performing model achieved recall, precision and accuracy 

scores of 99.0%, 71.1%, and 78.2%, respectively. This 

research contributes to the body of knowledge by 

developing a method for automated detection of 

ambiguity in building requirements to support automated 

compliance checking. 

Introduction 

In the architecture, engineering and construction (AEC) 

industry, compliance checking is an important step where 

the building design is checked against requirements in 

building regulatory documents, recommendations and 

guidance (Eastman et al., 2009). Traditional compliance 

checking is laborious, costly, time-consuming and error-

prone (Eastman et al., 2009; Macit İlal & Günaydın, 2017; 

Zhang et al., 2022a). To address this issue, automated 

compliance checking (ACC) has been a research focus in 

the past years. Numerous studies have proposed methods 

to address different aspects of the ACC challenges, 

including the rule interpretation and representation to a 

computer-readable form (Hjelseth & Nisbet, 2011; 

Solihin & Eastman, 2016; Yurchyshyna & Zarli, 2009; 

Zhang et al., 2023), the preparation of the building design 

model data for checking (Solihin et al., 2020), and the 

development of the automated compliance checking 

system (Kim et al., 2020; Pauwels et al., 2011). 

Despite the research interest, the rule interpretation and 

representation step remains a bottleneck in the ACC 

process. Many existing methods (such as the RASE 

method (Hjelseth & Nisbet, 2011)) still rely on a manual 

or semi-automated rule interpretation, which requires 

extensive efforts by domain experts (Zhang & El-Gohary 

Nora, 2017). More recently, some automated methods, 

mainly based on machine learning, have been proposed 

and achieved satisfying performance. However, they can 

only deal with quantitative clauses or qualitative rules 

with attributes; none can deal with rules with ambiguity.  

Ambiguous rules are requirements that are open to more 

than one interpretation. For example, the rule “Additional 

space may be required for special baths.” is ambiguous as 

the additional space required is not specified and there is 

no explanation of what baths are special. Ambiguity is a 

major factor hindering fully automated compliance 

checking (Zhang & El-Gohary, 2022). To make matters 

worse, as reported by Soliman-Junior et al. (2021), up to 

53% of building rules can be ambiguous, which is a 

considerable percentage and should be addressed.  

The automation of interpreting and representing 

ambiguous rules would first require accurate and fast 

identification of ambiguous clauses in building 

requirements. This paper thus aims to address this issue 

by using machine learning methods. Identifying 

ambiguous clauses would be the crucial first step towards 

automated interpreting and representing building 

requirement clauses.  

The remainder of this paper is structured as follows. The 

second section reviews related research. Then, the method 

used in this paper is proposed. Next, the results of this 

paper are presented, followed by discussions on the 

results. Finally, the paper offers some conclusions.  

Literature review 

Ambiguity in natural language 

Ambiguity is a phenomenon in natural language that has 

long been studied by linguists, philosophers and 

psychologists. Some early studies focused on 

understanding ambiguity by providing classifications for 

different types of ambiguity. Bach (1998) identified two 

types of ambiguity, namely lexical (i.e., a word has more 

than one meaning) and structural (i.e., a phrase has more 

than one structure). This classification was later expanded 

by Berry et al. (2003) into four types: lexical, syntactical 

(structural), semantic and pragmatic ambiguity, where 

semantic ambiguity is about ambiguity related to the logic 

form (e.g., negation and quantifiers in predicate logic) and 

pragmatic ambiguity refers to more than one valid 

interpretation considering the context. They further 

provided more examples and subclasses for each type of 

ambiguity. For example, homonymy (e.g., bank) and 

polysemy (e.g., green) are two common types of lexical 

ambiguity. Some other studies suggested that not all 



ambiguity in natural language is harmful and explored its 

role in communication. Piantadosi et al. (2012), for 

example, believed ambiguity promotes easy and effective 

communication when the context is informative. Larina et 

al. (2019) suggested that ambiguity in media discourse is 

a persuasion strategy and can influence public opinion.  

Ambiguity has also been studied in other areas, such as 

the legal domain. Reidenberg et al. (2016), for example, 

classified vagueness in website privacy policies into four 

categories, including condition, generalisation, modality 

and numeric quantifier. Incompleteness was also 

identified as a type of ambiguity. Similarly, the corpus-

based study on legislative texts by Li (2017) found four 

semantic types of vague terms, namely time, quantity, 

degree and category. However, these studies focused 

mainly on vagueness and incompleteness but neglected 

other aspects of ambiguity.  

Ambiguity received considerable attention in the software 

requirement engineering (RE) domain. Extensive research 

has focused on the classification of ambiguity, ambiguity 

detection and reduction in software requirements. 

Kamsties & Peach (2000) developed a taxonomy of 

software requirements by incorporating both linguistic 

ambiguity and domain-specific ambiguity in requirement 

engineering (i.e., RE-specific ambiguity). They also 

proposed a checklist for easier linguistic ambiguity 

detection. Their later research proposed software 

engineering ambiguity (SE-ambiguity), which includes 

three categories: application domain, system domain and 

development domain ambiguity (Berry & Kamsties, 

2004). A more recent study provided a more 

comprehensive ambiguity classification in the RE 

domain, including six categories, namely lexical 

ambiguity, semantic ambiguity, referential ambiguity, 

structural ambiguity, vagueness and incompleteness 

(Massey et al., 2014). While these ambiguity 

classifications can provide a checklist for manual 

ambiguity identification, some more efficient methods 

have been proposed, including semi-automated and 

automated methods. For example, Bruijn & Dekkers 

(2010) used the Alpino tool for automated lexical and 

syntactical ambiguity analysis of software requirements. 

Some manual tools including panel review and systematic 

review were also applied to improve detection accuracy. 

As for automated methods, natural language processing 

(NLP) techniques were applied. For example, Matsuoka 

& Lepage (2011) compared the performance of three 

methods, namely C-value, inverse document frequency 

(IDF) and similarity to WordNet in detecting ambiguity in 

software requirements. Similarly, Ferrari & Gnesi (2012) 

proposed an algorithm for identifying pragmatic 

ambiguity. The algorithm can first extract the sentence’s 

“concept paths” and compare their similarities. A 

similarity score lower than the given threshold will lead 

to the sentence being regarded as having pragmatic 

ambiguity. Other research focused on ambiguity 

reduction. They either proposed a formal representation to 

represent natural language with less ambiguity (Osborne 

& MacNish, 1996) or used constrained language (Popescu 

et al., 2007). However, both methods have limited 

expressiveness and cannot fully capture the meanings of 

natural language.  

In contrast with the software engineering domain, 

ambiguity in building requirements has received little 

attention. Only a handful of studies have mentioned 

ambiguity. In a study on healthcare facility requirements, 

Soliman-Junior et al. (2020) found ambiguity in spatial 

connectivity rules (e.g., adjacent to). They further 

suggested using semantic enrichment to address the 

ambiguity issues in adjacency and containment clauses. 

Their more recent work found that there were two types 

of ambiguous clauses leading to subjectivity; one is 

natural, while the other is artificial (Soliman-Junior et al., 

2021). Natural subjectivity is clauses that include abstract 

elements (e.g., design flexibility) and cannot easily be 

made unambiguous. Artificial subjectivity, however, can 

be avoided if they are carefully written using clear and 

precise terms. In the classification of building 

requirements proposed by Zhang et al. (2022b), clauses 

concerning quality and/or aesthetics are regarded as 

ambiguous. Several studies attempted to address the 

compliance checking of ambiguous clauses.  For example, 

Hjelseth (2013) proposed the Test Indicator Objectives 

(TIO) methodology to transform ambiguous phrases into 

quantitative metrics (e.g., well illuminated to minimum 

illumination in lux). Li et al. (2020) developed an 

automated method that used spatial artefacts (i.e., 

functional space, visibility space, movement space) to 

deal with spatial rules with ambiguity. They pointed out 

that the disambiguation of rules needs to be backed by 

related evidence. However, both methods still rely on 

transforming ambiguous rules into quantitative metrics.   

NLP for text classification in the AEC industry 

Natural language processing (NLP) techniques have been 

widely used to deal with text-related issues in the AEC 

industry, such as classifying documents, information 

extraction from documents, and ontology engineering. In 

this section, we will focus specifically on the methods for 

classifying texts in the AEC industry, mainly including 

contract and building requirement documents.     

Text classification (TC) is a subdomain of NLP. 

Depending on the number of output categories and 

whether one sentence can belong to more than one 

category, TC problems can be further divided into binary 

TC, multi-class TC and multi-label TC. Binary TC is 

when there are only two possible outputs and one sentence 

can only belong to one category. Multi-class TC refers to 

sentences that belong to one of three or more mutually 

exclusive classes. Multi-label TC means more than one 

category can be assigned to the same sentences and there 

are more than two categories in total.  

In literature, various methods have been proposed to 

address the three types of TC problems in the AEC 

industry. Some studies focused on binary TC. Hassan & 

Le (2020), for example, proposed a method to identify 



requirements and non-requirements in construction 

contracts. They experimented using the word2vec model, 

bag of words model and bag of n-grams model using four 

ML algorithms, where the model built on support vector 

machines (SVM) achieved the best accuracy of 95%. Also 

dealing with contracts, Candaş & Tokdemir (2022a) 

implemented an ML and rule-based method to detect 

vagueness in the FIDIC Silver Book. The study revealed 

that a rule-based approach yielded promising performance 

on recall, precision and accuracy scores (89.7%) when 

seven vague terms were selected. The best-performing 

ML model achieved a lower accuracy at 80%.   However, 

the authors pointed out that a rule-based approach is 

typically harder to maintain.  

Other studies used various methods to address multi-class 

or multi-label TC. One of the first studies on the multi-

class TC problem was Caldas et al. (2002), which 

proposed an automated method for classifying 

construction project documents. They evaluated the 

performance of classifiers based on four ML algorithms 

SVM, Rocchio algorithm, Naïve Bayes, and k-nearest 

neighbours), and the commercial software IBM Miner for 

Text, where SVM performed the best. To address multi-

label TC problems, two commonly implemented 

strategies are problem transformation and algorithm 

adaptation. Based on the former strategy, Salama & El-

Gohary (2016) developed a hybrid method based on a 

supervised ML algorithm and a deontic model to classify 

requirement clauses into scope-related categories, such as 

environmental or emergency management. This method 

proved very effective and yielded a perfect recall score 

and 96% precision. Candaş & Tokdemir (2022b) used a 

supervised ML approach with a bag of n-grams 

representation for multi-label classification of FIDIC 

contracts. They found that the model based on the SVM 

algorithm had the best performance, with a precision 

score of 0.952, yet the recall is only 0.786. A more 

advanced method has been developed by Moon et al. 

(2022) to detect different types of contractual risks. They 

used bidirectional encoder representations from 

transformers (BERT) method, which achieved 88.9% 

accuracy on validation and 93.4% recall on the test 

dataset. The BERT method showed dominant 

performance compared with the model built on SVM and 

simple neural networks. Unlike the above-mentioned 

research, Zhou & El-Gohary (2016b) approached the 

multi-label TC problem on environment-related building 

requirements using an ontology-based algorithm. A 

domain ontology on environmental requirements was 

developed to conceptualise related knowledge in the 

environmental requirements to improve the classifier 

performance. They reported that this ontology-based 

approach consistently outperformed ML-based methods 

in tests. 

Research gap 

There have been extensive research efforts in automated 

compliance checking. While various methods have been 

proposed to manually or automatically classify, extract, 

interpret and represent building requirements, none can 

deal with ambiguous requirements. Although some 

scholars have shed light on the nature of ambiguity and/or 

subjectivity in building requirements, the categories they 

proposed are normally too broad and lack sufficient 

details and instructions for manual ambiguity detection. 

In addition, no automated or semi-automated methods 

have been proposed for detection of ambiguity in building 

requirements, which have the potential to greatly improve 

the efficiency of this step. This paper aims to propose an 

ML method to detect ambiguity in building requirements 

automatically. The proposed method is detailed in the 

“Methodology” section.  

Methodology 

Automated ambiguity detection is essentially a text 

classification (TC) problem. Specifically, in this paper, as 

1) there are only two possible results (i.e., ambiguous or 

unambiguous) for each given sentence; 2) the possible 

results are mutually exclusive, it is a binary TC problem. 

As is shown in the literature review section, the 

supervised machine learning method has been widely 

used to deal with binary TC problems (Candaş & 

Tokdemir, 2022a; Hassan & Le, 2020) and TC problems 

on building requirements (Salama & El-Gohary, 2016; 

Zhou & El-Gohary, 2016a), where it has demonstrated 

promising performance. Another widely used method for 

TC is the rule-based approach. Although the rule-based 

approach can outperform supervised machine learning in 

some cases, it has two main drawbacks: 1) it is time-

consuming as rules are handcrafted; 2) it is less flexible as 

changing or expanding the dataset typically requires more 

rules (Schütze et al., 2008). This research thus selected the 

supervised machine learning method for the automated 

identification of ambiguous clauses.  

The main steps of implementing a supervised machine 

learning model include model building and model 

evaluation, which are presented in Figure 1 and will be 

detailed in the following two subsections.  

 

Figure 1. The workflows of the supervised ML method 

Building the machine learning models 

To build a machine learning model, the first step is 

preparing the dataset. The authors selected all requirement 

clauses from the Health Building Notes (HBN) 00-02 and 

00-03 (healthcare building requirements in England and 

Wales), as they have been reported to have ambiguous 



clauses by Soliman-Junior et al. (2021). The data corpus 

includes 464 sentences, where 237 sentences are 

ambiguous and 227 are unambiguous. Ambiguous 

sentences are sentences that have multiple valid 

interpretations. Examples of such sentences include those 

with words or phrases that cause borderline cases (e.g., 

sufficient), lack detailed information (e.g., special baths), 

etc. The authors reviewed all sentences and gave a label 

to each sentence. Either a “T” label (denoting an 

ambiguous sentence) or an “F” label (meaning an 

unambiguous sentence) was assigned to each sentence to 

provide the ground truth of the classification.  

The next step is data pre-processing. Five main steps were 

conducted. First, all texts were transformed into 

lowercase as ambiguity is case-insensitive. Second, the 

punctuation marks in the sentences were removed. This 

choice was made because in the authors’ preliminary 

exploration, punctuation does not contribute much to the 

ambiguity of the sentence. The third pre-processing step 

is tokenization, where the texts are split into tokens 

(subunits of the sentence). Tokenization is an essential 

step in TC, as the ML algorithms can only analyse texts 

in the form of feature vectors. Next, common English 

stopwords (e.g., a, have) were removed by using the 

Natural Language Toolkit (NLTK) in Python (Bird, 

2006), as stopwords mainly include non-distinctive 

features that are not helpful for the ML model. Then, 

lemmatization was performed using WordNetLemmatizer 

in NLTK to turn each term into its root form (e.g., rooms 

to room). Lemmatization helps keep the vocabulary in the 

data corpus small and reduces the number of features. 

Finally, the dataset was randomly split into a training 

dataset to train the machine learning model and a test set 

to test the model performance, where 80% of the data was 

in the training set and 20% was in the test set.  

For the feature extraction step, three types of methods 

were experimented with, namely bag of words (BOW), 

bag of n-grams and term frequency-inverse document 

frequency (TF-IDF). BOW is the most widely used text 

representation (Schütze et al., 2008). Each sentence is 

represented by a vector with the counts of each word. It 

has the advantages of being simple and computationally 

efficient. However, the main drawback of the BOW 

representation is that it ignores the sequence of words. 

Bag of n-grams refers to a group of models such as 

unigram (words, same as BOW), bi-grams (pairs of 

words) and tri-grams (three words), etc., where n is an 

integer. It considers several consecutive words 

(depending on the value of “n”) so that partial information 

on the order of words and the contexts are included (Joulin 

et al., 2016). Another text representation method used in 

this study is TF-IDF. It is a statistical method that 

evaluates the relevant importance of a term in a document 

(Lam & Lee, 1999). It does so by considering the 

frequency of a term in a statement and its 

representativeness in the whole document (i.e., the 

weighting will be lower for a term if it frequently appears 

both in a statement and the whole document) (Sebastiani, 

2002).  

After the feature extraction step, the machine learning 

algorithm support vector machines (SVM) was used to 

build the classification models. SVM aims to find the best 

decision surface for separating the training data points 

into classes in a high-dimensional feature space 

(Joachims, 1998). It can be used to classify both linear and 

non-linear data. It has been reported as one of the best-

performing ML algorithms in previous TC studies on 

construction documents (Candaş & Tokdemir, 2022b; 

Hassan & Le, 2020).  

The ML models were then trained on the training dataset 

and tested on the test dataset to generate performance 

results, which will be presented in the results and 

discussions section.  

Evaluating the machine learning models 

The machine learning models were evaluated using three 

metrics, namely accuracy, precision and recall. To 

calculate the three metrics, the total number of predictions 

needs to be first understood. Its calculation formula is 

shown in equation (1). TP (true positive) means the 

number of correct predictions on a correct classification; 

TN (true negative) is the number of incorrect predictions 

on an incorrect classification; FN (false negative) refers to 

the number of incorrect predictions on the correct 

classification and FP (false positive) means the number of 

correct predictions on the incorrect classification 

(Sebastiani, 2002). The calculation formulas for the three 

metrics are shown in equations (2), (3) and (4), 

respectively. Accuracy measures the percentage of correct 

predictions. A higher accuracy score denotes better model 

performance.  

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 +
𝐹𝑁                                                                                (1) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                (2)                                                             

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                    (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                        (4) 

Despite being easy to calculate, the disadvantage of 

accuracy is not being discriminant and distinctive enough 

to select the best model (Huang & Ling, 2007). Hence, 

this study also used precision and recall as evaluation 

metrics. Precision measures the proportion of correct 

positive predictions. Recall, also known as sensitivity, 

denotes the effectiveness of the ML model on positive 

class identification. Hence, in general, the higher the 

precision and recall scores, the better the model 

performance.  

Results and Discussions 

The authors implemented the above-mentioned ML 

methods using Python 3.7. Hyperparameter tuning (based 



on grid search) was conducted for each model to select the 

best-performing parameters for model building. To 

alleviate potential overfitting issues (i.e., only the set of 

distinctive features is selected due to a small feature set), 

k-fold cross-validation procedures are applied. All 

machine learning models were able to complete the 

identification fully automatically within seconds. In this 

section, the authors look at the performance of different 

models based on three metrics: accuracy, precision and 

recall.  

Table 1: Mean performance scores of the four ML models 

Performance 

score (mean) 

Bag of 

words 

Bag of 

bi-grams 

Bag of 

tri-grams 
TF-IDF 

Accuracy 82.2% 75.5% 78.2% 83.0% 

Precision 80.3% 73.1% 71.1% 82.5% 

Recall 88.3% 84.7% 99.0% 86.2% 

The mean accuracy, precision and recall scores of 

different models with 5-fold cross-validation procedures 

and varying feature representation methods are shown in 

Table 1. As can be seen from Table 1, the model based on 

the TF-IDF feature weighting method performed the best 

among the four models, with an average accuracy score of 

83.0%. Among the three n-grams models, the unigram 

model (bag of words model) yielded the best accuracy 

results, where the mean score was 82.2%. As the number 

of grams increased, the mean accuracy score first fell to 

75.5% in the bi-grams model and then increased to 78.2% 

in the tri-gram model.  

The accuracy results indicate that the increase in the size 

of grams is not helpful. A similar binary TC study by 

Hassan & Le (2020) also showed that the unigram model 

achieved the highest accuracy score compared with the bi-

grams and tri-grams models. The data sparsity issue could 

be a reason for the reduction in accuracy in the bi-grams 

and tri-grams models (Farhoodi et al., 2011). The reason 

for the better performance of the tri-grams model over the 

bi-grams model could be that the tri-grams model helped 

the ML algorithm learn more semantic information in 

three consecutive words over two-word phrases, thereby 

helping the detection of ambiguity.  

As for the precision and recall scores, they are typically 

two duelling performance metrics (Buckland & Gey, 

1994). In this study, the recall score is more important 

than precision and accuracy because not omitting a single 

ambiguous sentence is more critical than 1) ensuring 

every ambiguous sentence detected by the ML model is 

actually ambiguous and/or; 2) ensuring all the predictions 

are correct (no matter positive or negative predictions). 

Ideally, a 100% recall score means domain experts can 

rest assured that all ambiguous sentences are among those 

identified by the ML model.  

As shown in Table 1, the highest mean precision was 

achieved by the model based on the TF-IDF 

representation (82.5%), followed by the unigram model, 

which yielded a mean precision score of 80.3%. As the 

number of grams increased, a drop in the mean precision 

score was observed. The precision scores of models based 

on bi-grams and tri-grams were only 73.1% and 71.1%, 

respectively. Despite the low precision scores, the tri-

grams model performed the best regarding the recall score 

(99.0%), while the mean recall scores of all other models 

were below 90%.  

Overall, the satisfactory performance of the supervised 

ML models proposed in this paper shows that a supervised 

ML method is a viable and reliable way to detect 

ambiguity in building requirements. As the recall score is 

the most important metric among the three evaluation 

metrics, the model based on tri-grams with the SVM 

algorithm is the best-performing model, which achieved 

an almost perfect mean recall score of 99.0 % and a mean 

precision and accuracy score of 71.1% and 78.2%, 

respectively.  

Conclusions 

Accurate and efficient rule interpretation is a bottleneck 

in the ACC process. The current automated interpretation 

methods are often incapable of dealing with ambiguous 

clauses. A quick and reliable way to identify ambiguous 

clauses is a crucial first step in addressing this issue. This 

paper proposed a supervised ML method to detect 

ambiguity in building requirements automatically. Four 

models using the bag of words, bag of bi-grams, bag of 

tri-grams and TF-IDF representations based on the SVM 

algorithm were experimented. They were trained and 

tested on 464 building requirements collected from Health 

Building Notes in England, with train and test percentages 

of 80% and 20%, respectively. All four models showed 

significant improvement in the efficiency of ambiguity 

detection compared with manual identification and 

finished detection in seconds. Among the four models, the 

bag of tri-grams model achieved the best recall score at 

99.0%, while the TF-IDF model achieved the best 

accuracy score of 83.0%.  

This research is the first to propose an automated method 

for ambiguity detection in building requirements. The 

proposed method significantly reduced the manual effort 

in detecting ambiguity in building requirements and 

achieved satisfactory overall performance on three 

evaluation metrics. The recognised ambiguous clauses 

can then be reviewed and interpreted by domain experts 

to support the automated compliance checking process.  

Practitioners in the AEC industry can benefit from using 

this tool to improve the accuracy and efficiency of 

checking regulations before design submission. This tool 

could also help improve regulators’ regulations drafting 

to avoid excessive ambiguity.  

This research has some limitations. Firstly, the dataset 

only includes 464 sentences. More data can be added to 

improve the model performance further and alleviate the 

data overfitting issue. Secondly, the authors only 

experimented with the SVM algorithm for model 

building. In future research, more complex ML models 

such as word embeddings can be used to see if the 

performance can be improved. Thirdly, this paper only 

experimented with one data pre-processing method and a 

4:1 training-test split ratio. Different data pre-processing 



methods and training-test set ratios can be tested in future 

research to achieve better performance. Future research 

can also widen the research scope by considering the 

automatic detection of more than individual sentences or 

detecting other valuable attributes, such as complexity, to 

facilitate the ACC process.  
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