

2023 European Conference on Computing in Construction

40th International CIB W78 Conference

 Heraklion, Crete, Greece

July 10-12, 2023

USING MACHINE LEARNING FOR AUTOMATED DETECTION OF AMBIGUITY IN

BUILDING REQUIREMENTS
Zijing Zhang1, Ling Ma1

1University College London, London, UK

Abstract

The rule interpretation step is yet to be fully automated in

the compliance checking process, which hinders the

automation of compliance checking. Whilst existing

research has developed numerous methods for automated

interpretation of building requirements, none of them can

identify or address ambiguous requirements. As part of

interpreting ambiguous clauses automatically, this

research proposed a supervised machine learning method

to detect ambiguity automatically, where the best-

performing model achieved recall, precision and accuracy

scores of 99.0%, 71.1%, and 78.2%, respectively. This

research contributes to the body of knowledge by

developing a method for automated detection of

ambiguity in building requirements to support automated

compliance checking.

Introduction

In the architecture, engineering and construction (AEC)

industry, compliance checking is an important step where

the building design is checked against requirements in

building regulatory documents, recommendations and

guidance (Eastman et al., 2009). Traditional compliance

checking is laborious, costly, time-consuming and error-

prone (Eastman et al., 2009; Macit İlal & Günaydın, 2017;

Zhang et al., 2022a). To address this issue, automated

compliance checking (ACC) has been a research focus in

the past years. Numerous studies have proposed methods

to address different aspects of the ACC challenges,

including the rule interpretation and representation to a

computer-readable form (Hjelseth & Nisbet, 2011;

Solihin & Eastman, 2016; Yurchyshyna & Zarli, 2009;

Zhang et al., 2023), the preparation of the building design

model data for checking (Solihin et al., 2020), and the

development of the automated compliance checking

system (Kim et al., 2020; Pauwels et al., 2011).

Despite the research interest, the rule interpretation and

representation step remains a bottleneck in the ACC

process. Many existing methods (such as the RASE

method (Hjelseth & Nisbet, 2011)) still rely on a manual

or semi-automated rule interpretation, which requires

extensive efforts by domain experts (Zhang & El-Gohary

Nora, 2017). More recently, some automated methods,

mainly based on machine learning, have been proposed

and achieved satisfying performance. However, they can

only deal with quantitative clauses or qualitative rules

with attributes; none can deal with rules with ambiguity.

Ambiguous rules are requirements that are open to more

than one interpretation. For example, the rule “Additional

space may be required for special baths.” is ambiguous as

the additional space required is not specified and there is

no explanation of what baths are special. Ambiguity is a

major factor hindering fully automated compliance

checking (Zhang & El-Gohary, 2022). To make matters

worse, as reported by Soliman-Junior et al. (2021), up to

53% of building rules can be ambiguous, which is a

considerable percentage and should be addressed.

The automation of interpreting and representing

ambiguous rules would first require accurate and fast

identification of ambiguous clauses in building

requirements. This paper thus aims to address this issue

by using machine learning methods. Identifying

ambiguous clauses would be the crucial first step towards

automated interpreting and representing building

requirement clauses.

The remainder of this paper is structured as follows. The

second section reviews related research. Then, the method

used in this paper is proposed. Next, the results of this

paper are presented, followed by discussions on the

results. Finally, the paper offers some conclusions.

Literature review

Ambiguity in natural language

Ambiguity is a phenomenon in natural language that has

long been studied by linguists, philosophers and

psychologists. Some early studies focused on

understanding ambiguity by providing classifications for

different types of ambiguity. Bach (1998) identified two

types of ambiguity, namely lexical (i.e., a word has more

than one meaning) and structural (i.e., a phrase has more

than one structure). This classification was later expanded

by Berry et al. (2003) into four types: lexical, syntactical

(structural), semantic and pragmatic ambiguity, where

semantic ambiguity is about ambiguity related to the logic

form (e.g., negation and quantifiers in predicate logic) and

pragmatic ambiguity refers to more than one valid

interpretation considering the context. They further

provided more examples and subclasses for each type of

ambiguity. For example, homonymy (e.g., bank) and

polysemy (e.g., green) are two common types of lexical

ambiguity. Some other studies suggested that not all

ambiguity in natural language is harmful and explored its

role in communication. Piantadosi et al. (2012), for

example, believed ambiguity promotes easy and effective

communication when the context is informative. Larina et

al. (2019) suggested that ambiguity in media discourse is

a persuasion strategy and can influence public opinion.

Ambiguity has also been studied in other areas, such as

the legal domain. Reidenberg et al. (2016), for example,

classified vagueness in website privacy policies into four

categories, including condition, generalisation, modality

and numeric quantifier. Incompleteness was also

identified as a type of ambiguity. Similarly, the corpus-

based study on legislative texts by Li (2017) found four

semantic types of vague terms, namely time, quantity,

degree and category. However, these studies focused

mainly on vagueness and incompleteness but neglected

other aspects of ambiguity.

Ambiguity received considerable attention in the software

requirement engineering (RE) domain. Extensive research

has focused on the classification of ambiguity, ambiguity

detection and reduction in software requirements.

Kamsties & Peach (2000) developed a taxonomy of

software requirements by incorporating both linguistic

ambiguity and domain-specific ambiguity in requirement

engineering (i.e., RE-specific ambiguity). They also

proposed a checklist for easier linguistic ambiguity

detection. Their later research proposed software

engineering ambiguity (SE-ambiguity), which includes

three categories: application domain, system domain and

development domain ambiguity (Berry & Kamsties,

2004). A more recent study provided a more

comprehensive ambiguity classification in the RE

domain, including six categories, namely lexical

ambiguity, semantic ambiguity, referential ambiguity,

structural ambiguity, vagueness and incompleteness

(Massey et al., 2014). While these ambiguity

classifications can provide a checklist for manual

ambiguity identification, some more efficient methods

have been proposed, including semi-automated and

automated methods. For example, Bruijn & Dekkers

(2010) used the Alpino tool for automated lexical and

syntactical ambiguity analysis of software requirements.

Some manual tools including panel review and systematic

review were also applied to improve detection accuracy.

As for automated methods, natural language processing

(NLP) techniques were applied. For example, Matsuoka

& Lepage (2011) compared the performance of three

methods, namely C-value, inverse document frequency

(IDF) and similarity to WordNet in detecting ambiguity in

software requirements. Similarly, Ferrari & Gnesi (2012)

proposed an algorithm for identifying pragmatic

ambiguity. The algorithm can first extract the sentence’s

“concept paths” and compare their similarities. A

similarity score lower than the given threshold will lead

to the sentence being regarded as having pragmatic

ambiguity. Other research focused on ambiguity

reduction. They either proposed a formal representation to

represent natural language with less ambiguity (Osborne

& MacNish, 1996) or used constrained language (Popescu

et al., 2007). However, both methods have limited

expressiveness and cannot fully capture the meanings of

natural language.

In contrast with the software engineering domain,

ambiguity in building requirements has received little

attention. Only a handful of studies have mentioned

ambiguity. In a study on healthcare facility requirements,

Soliman-Junior et al. (2020) found ambiguity in spatial

connectivity rules (e.g., adjacent to). They further

suggested using semantic enrichment to address the

ambiguity issues in adjacency and containment clauses.

Their more recent work found that there were two types

of ambiguous clauses leading to subjectivity; one is

natural, while the other is artificial (Soliman-Junior et al.,

2021). Natural subjectivity is clauses that include abstract

elements (e.g., design flexibility) and cannot easily be

made unambiguous. Artificial subjectivity, however, can

be avoided if they are carefully written using clear and

precise terms. In the classification of building

requirements proposed by Zhang et al. (2022b), clauses

concerning quality and/or aesthetics are regarded as

ambiguous. Several studies attempted to address the

compliance checking of ambiguous clauses. For example,

Hjelseth (2013) proposed the Test Indicator Objectives

(TIO) methodology to transform ambiguous phrases into

quantitative metrics (e.g., well illuminated to minimum

illumination in lux). Li et al. (2020) developed an

automated method that used spatial artefacts (i.e.,

functional space, visibility space, movement space) to

deal with spatial rules with ambiguity. They pointed out

that the disambiguation of rules needs to be backed by

related evidence. However, both methods still rely on

transforming ambiguous rules into quantitative metrics.

NLP for text classification in the AEC industry

Natural language processing (NLP) techniques have been

widely used to deal with text-related issues in the AEC

industry, such as classifying documents, information

extraction from documents, and ontology engineering. In

this section, we will focus specifically on the methods for

classifying texts in the AEC industry, mainly including

contract and building requirement documents.

Text classification (TC) is a subdomain of NLP.

Depending on the number of output categories and

whether one sentence can belong to more than one

category, TC problems can be further divided into binary

TC, multi-class TC and multi-label TC. Binary TC is

when there are only two possible outputs and one sentence

can only belong to one category. Multi-class TC refers to

sentences that belong to one of three or more mutually

exclusive classes. Multi-label TC means more than one

category can be assigned to the same sentences and there

are more than two categories in total.

In literature, various methods have been proposed to

address the three types of TC problems in the AEC

industry. Some studies focused on binary TC. Hassan &

Le (2020), for example, proposed a method to identify

requirements and non-requirements in construction

contracts. They experimented using the word2vec model,

bag of words model and bag of n-grams model using four

ML algorithms, where the model built on support vector

machines (SVM) achieved the best accuracy of 95%. Also

dealing with contracts, Candaş & Tokdemir (2022a)

implemented an ML and rule-based method to detect

vagueness in the FIDIC Silver Book. The study revealed

that a rule-based approach yielded promising performance

on recall, precision and accuracy scores (89.7%) when

seven vague terms were selected. The best-performing

ML model achieved a lower accuracy at 80%. However,

the authors pointed out that a rule-based approach is

typically harder to maintain.

Other studies used various methods to address multi-class

or multi-label TC. One of the first studies on the multi-

class TC problem was Caldas et al. (2002), which

proposed an automated method for classifying

construction project documents. They evaluated the

performance of classifiers based on four ML algorithms

SVM, Rocchio algorithm, Naïve Bayes, and k-nearest

neighbours), and the commercial software IBM Miner for

Text, where SVM performed the best. To address multi-

label TC problems, two commonly implemented

strategies are problem transformation and algorithm

adaptation. Based on the former strategy, Salama & El-

Gohary (2016) developed a hybrid method based on a

supervised ML algorithm and a deontic model to classify

requirement clauses into scope-related categories, such as

environmental or emergency management. This method

proved very effective and yielded a perfect recall score

and 96% precision. Candaş & Tokdemir (2022b) used a

supervised ML approach with a bag of n-grams

representation for multi-label classification of FIDIC

contracts. They found that the model based on the SVM

algorithm had the best performance, with a precision

score of 0.952, yet the recall is only 0.786. A more

advanced method has been developed by Moon et al.

(2022) to detect different types of contractual risks. They

used bidirectional encoder representations from

transformers (BERT) method, which achieved 88.9%

accuracy on validation and 93.4% recall on the test

dataset. The BERT method showed dominant

performance compared with the model built on SVM and

simple neural networks. Unlike the above-mentioned

research, Zhou & El-Gohary (2016b) approached the

multi-label TC problem on environment-related building

requirements using an ontology-based algorithm. A

domain ontology on environmental requirements was

developed to conceptualise related knowledge in the

environmental requirements to improve the classifier

performance. They reported that this ontology-based

approach consistently outperformed ML-based methods

in tests.

Research gap

There have been extensive research efforts in automated

compliance checking. While various methods have been

proposed to manually or automatically classify, extract,

interpret and represent building requirements, none can

deal with ambiguous requirements. Although some

scholars have shed light on the nature of ambiguity and/or

subjectivity in building requirements, the categories they

proposed are normally too broad and lack sufficient

details and instructions for manual ambiguity detection.

In addition, no automated or semi-automated methods

have been proposed for detection of ambiguity in building

requirements, which have the potential to greatly improve

the efficiency of this step. This paper aims to propose an

ML method to detect ambiguity in building requirements

automatically. The proposed method is detailed in the

“Methodology” section.

Methodology

Automated ambiguity detection is essentially a text

classification (TC) problem. Specifically, in this paper, as

1) there are only two possible results (i.e., ambiguous or

unambiguous) for each given sentence; 2) the possible

results are mutually exclusive, it is a binary TC problem.

As is shown in the literature review section, the

supervised machine learning method has been widely

used to deal with binary TC problems (Candaş &

Tokdemir, 2022a; Hassan & Le, 2020) and TC problems

on building requirements (Salama & El-Gohary, 2016;

Zhou & El-Gohary, 2016a), where it has demonstrated

promising performance. Another widely used method for

TC is the rule-based approach. Although the rule-based

approach can outperform supervised machine learning in

some cases, it has two main drawbacks: 1) it is time-

consuming as rules are handcrafted; 2) it is less flexible as

changing or expanding the dataset typically requires more

rules (Schütze et al., 2008). This research thus selected the

supervised machine learning method for the automated

identification of ambiguous clauses.

The main steps of implementing a supervised machine

learning model include model building and model

evaluation, which are presented in Figure 1 and will be

detailed in the following two subsections.

Figure 1. The workflows of the supervised ML method

Building the machine learning models

To build a machine learning model, the first step is

preparing the dataset. The authors selected all requirement

clauses from the Health Building Notes (HBN) 00-02 and

00-03 (healthcare building requirements in England and

Wales), as they have been reported to have ambiguous

clauses by Soliman-Junior et al. (2021). The data corpus

includes 464 sentences, where 237 sentences are

ambiguous and 227 are unambiguous. Ambiguous

sentences are sentences that have multiple valid

interpretations. Examples of such sentences include those

with words or phrases that cause borderline cases (e.g.,

sufficient), lack detailed information (e.g., special baths),

etc. The authors reviewed all sentences and gave a label

to each sentence. Either a “T” label (denoting an

ambiguous sentence) or an “F” label (meaning an

unambiguous sentence) was assigned to each sentence to

provide the ground truth of the classification.

The next step is data pre-processing. Five main steps were

conducted. First, all texts were transformed into

lowercase as ambiguity is case-insensitive. Second, the

punctuation marks in the sentences were removed. This

choice was made because in the authors’ preliminary

exploration, punctuation does not contribute much to the

ambiguity of the sentence. The third pre-processing step

is tokenization, where the texts are split into tokens

(subunits of the sentence). Tokenization is an essential

step in TC, as the ML algorithms can only analyse texts

in the form of feature vectors. Next, common English

stopwords (e.g., a, have) were removed by using the

Natural Language Toolkit (NLTK) in Python (Bird,

2006), as stopwords mainly include non-distinctive

features that are not helpful for the ML model. Then,

lemmatization was performed using WordNetLemmatizer

in NLTK to turn each term into its root form (e.g., rooms

to room). Lemmatization helps keep the vocabulary in the

data corpus small and reduces the number of features.

Finally, the dataset was randomly split into a training

dataset to train the machine learning model and a test set

to test the model performance, where 80% of the data was

in the training set and 20% was in the test set.

For the feature extraction step, three types of methods

were experimented with, namely bag of words (BOW),

bag of n-grams and term frequency-inverse document

frequency (TF-IDF). BOW is the most widely used text

representation (Schütze et al., 2008). Each sentence is

represented by a vector with the counts of each word. It

has the advantages of being simple and computationally

efficient. However, the main drawback of the BOW

representation is that it ignores the sequence of words.

Bag of n-grams refers to a group of models such as

unigram (words, same as BOW), bi-grams (pairs of

words) and tri-grams (three words), etc., where n is an

integer. It considers several consecutive words

(depending on the value of “n”) so that partial information

on the order of words and the contexts are included (Joulin

et al., 2016). Another text representation method used in

this study is TF-IDF. It is a statistical method that

evaluates the relevant importance of a term in a document

(Lam & Lee, 1999). It does so by considering the

frequency of a term in a statement and its

representativeness in the whole document (i.e., the

weighting will be lower for a term if it frequently appears

both in a statement and the whole document) (Sebastiani,

2002).

After the feature extraction step, the machine learning

algorithm support vector machines (SVM) was used to

build the classification models. SVM aims to find the best

decision surface for separating the training data points

into classes in a high-dimensional feature space

(Joachims, 1998). It can be used to classify both linear and

non-linear data. It has been reported as one of the best-

performing ML algorithms in previous TC studies on

construction documents (Candaş & Tokdemir, 2022b;

Hassan & Le, 2020).

The ML models were then trained on the training dataset

and tested on the test dataset to generate performance

results, which will be presented in the results and

discussions section.

Evaluating the machine learning models

The machine learning models were evaluated using three

metrics, namely accuracy, precision and recall. To

calculate the three metrics, the total number of predictions

needs to be first understood. Its calculation formula is

shown in equation (1). TP (true positive) means the

number of correct predictions on a correct classification;

TN (true negative) is the number of incorrect predictions

on an incorrect classification; FN (false negative) refers to

the number of incorrect predictions on the correct

classification and FP (false positive) means the number of

correct predictions on the incorrect classification

(Sebastiani, 2002). The calculation formulas for the three

metrics are shown in equations (2), (3) and (4),

respectively. Accuracy measures the percentage of correct

predictions. A higher accuracy score denotes better model

performance.

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 +
𝐹𝑁 (1)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4)

Despite being easy to calculate, the disadvantage of

accuracy is not being discriminant and distinctive enough

to select the best model (Huang & Ling, 2007). Hence,

this study also used precision and recall as evaluation

metrics. Precision measures the proportion of correct

positive predictions. Recall, also known as sensitivity,

denotes the effectiveness of the ML model on positive

class identification. Hence, in general, the higher the

precision and recall scores, the better the model

performance.

Results and Discussions

The authors implemented the above-mentioned ML

methods using Python 3.7. Hyperparameter tuning (based

on grid search) was conducted for each model to select the

best-performing parameters for model building. To

alleviate potential overfitting issues (i.e., only the set of

distinctive features is selected due to a small feature set),

k-fold cross-validation procedures are applied. All

machine learning models were able to complete the

identification fully automatically within seconds. In this

section, the authors look at the performance of different

models based on three metrics: accuracy, precision and

recall.

Table 1: Mean performance scores of the four ML models

Performance

score (mean)

Bag of

words

Bag of

bi-grams

Bag of

tri-grams
TF-IDF

Accuracy 82.2% 75.5% 78.2% 83.0%

Precision 80.3% 73.1% 71.1% 82.5%

Recall 88.3% 84.7% 99.0% 86.2%

The mean accuracy, precision and recall scores of

different models with 5-fold cross-validation procedures

and varying feature representation methods are shown in

Table 1. As can be seen from Table 1, the model based on

the TF-IDF feature weighting method performed the best

among the four models, with an average accuracy score of

83.0%. Among the three n-grams models, the unigram

model (bag of words model) yielded the best accuracy

results, where the mean score was 82.2%. As the number

of grams increased, the mean accuracy score first fell to

75.5% in the bi-grams model and then increased to 78.2%

in the tri-gram model.

The accuracy results indicate that the increase in the size

of grams is not helpful. A similar binary TC study by

Hassan & Le (2020) also showed that the unigram model

achieved the highest accuracy score compared with the bi-

grams and tri-grams models. The data sparsity issue could

be a reason for the reduction in accuracy in the bi-grams

and tri-grams models (Farhoodi et al., 2011). The reason

for the better performance of the tri-grams model over the

bi-grams model could be that the tri-grams model helped

the ML algorithm learn more semantic information in

three consecutive words over two-word phrases, thereby

helping the detection of ambiguity.

As for the precision and recall scores, they are typically

two duelling performance metrics (Buckland & Gey,

1994). In this study, the recall score is more important

than precision and accuracy because not omitting a single

ambiguous sentence is more critical than 1) ensuring

every ambiguous sentence detected by the ML model is

actually ambiguous and/or; 2) ensuring all the predictions

are correct (no matter positive or negative predictions).

Ideally, a 100% recall score means domain experts can

rest assured that all ambiguous sentences are among those

identified by the ML model.

As shown in Table 1, the highest mean precision was

achieved by the model based on the TF-IDF

representation (82.5%), followed by the unigram model,

which yielded a mean precision score of 80.3%. As the

number of grams increased, a drop in the mean precision

score was observed. The precision scores of models based

on bi-grams and tri-grams were only 73.1% and 71.1%,

respectively. Despite the low precision scores, the tri-

grams model performed the best regarding the recall score

(99.0%), while the mean recall scores of all other models

were below 90%.

Overall, the satisfactory performance of the supervised

ML models proposed in this paper shows that a supervised

ML method is a viable and reliable way to detect

ambiguity in building requirements. As the recall score is

the most important metric among the three evaluation

metrics, the model based on tri-grams with the SVM

algorithm is the best-performing model, which achieved

an almost perfect mean recall score of 99.0 % and a mean

precision and accuracy score of 71.1% and 78.2%,

respectively.

Conclusions

Accurate and efficient rule interpretation is a bottleneck

in the ACC process. The current automated interpretation

methods are often incapable of dealing with ambiguous

clauses. A quick and reliable way to identify ambiguous

clauses is a crucial first step in addressing this issue. This

paper proposed a supervised ML method to detect

ambiguity in building requirements automatically. Four

models using the bag of words, bag of bi-grams, bag of

tri-grams and TF-IDF representations based on the SVM

algorithm were experimented. They were trained and

tested on 464 building requirements collected from Health

Building Notes in England, with train and test percentages

of 80% and 20%, respectively. All four models showed

significant improvement in the efficiency of ambiguity

detection compared with manual identification and

finished detection in seconds. Among the four models, the

bag of tri-grams model achieved the best recall score at

99.0%, while the TF-IDF model achieved the best

accuracy score of 83.0%.

This research is the first to propose an automated method

for ambiguity detection in building requirements. The

proposed method significantly reduced the manual effort

in detecting ambiguity in building requirements and

achieved satisfactory overall performance on three

evaluation metrics. The recognised ambiguous clauses

can then be reviewed and interpreted by domain experts

to support the automated compliance checking process.

Practitioners in the AEC industry can benefit from using

this tool to improve the accuracy and efficiency of

checking regulations before design submission. This tool

could also help improve regulators’ regulations drafting

to avoid excessive ambiguity.

This research has some limitations. Firstly, the dataset

only includes 464 sentences. More data can be added to

improve the model performance further and alleviate the

data overfitting issue. Secondly, the authors only

experimented with the SVM algorithm for model

building. In future research, more complex ML models

such as word embeddings can be used to see if the

performance can be improved. Thirdly, this paper only

experimented with one data pre-processing method and a

4:1 training-test split ratio. Different data pre-processing

methods and training-test set ratios can be tested in future

research to achieve better performance. Future research

can also widen the research scope by considering the

automatic detection of more than individual sentences or

detecting other valuable attributes, such as complexity, to

facilitate the ACC process.

References

Bach, K. 1998. Routledge Encyclopedia of Philosophy:

Index. Taylor & Francis.

Berry, D. M. & Kamsties, E. 2004. Ambiguity in

requirements specification. Perspectives on

software requirements. Springer.

Berry, D. M., Kamsties, E. & Krieger, M. M. 2003. From

contract drafting to software specification:

Linguistic sources of ambiguity-a handbook.

Perspectives on Software Requirements, Series:

The Springer International Series in

Engineering and Computer Science 753.

Bird, S. NLTK: the natural language toolkit. 2006. 69-72.

Bruijn, F. d. & Dekkers, H. L. Ambiguity in natural

language software requirements: A case study.

2010 2010. Springer, 233-247.

Buckland, M. & Gey, F. 1994. The relationship between

recall and precision. Journal of the American

society for information science 45: 12-19.

Caldas, C. H., Soibelman, L. & Han, J. 2002. Automated

classification of construction project documents.

Journal of Computing in Civil Engineering 16:

234-243.

Candaş, A. B. & Tokdemir, O. B. 2022a. Automated

Identification of Vagueness in the FIDIC Silver

Book Conditions of Contract. Journal of

Construction Engineering and Management 148:

04022007.

Candaş, A. B. & Tokdemir, O. B. 2022b. Automating

Coordination Efforts for Reviewing

Construction Contracts with Multilabel Text

Classification. Journal of Construction

Engineering and Management 148: 04022027.

Eastman, C., Lee, J.-m., Jeong, Y.-s. & Lee, J.-k. 2009.

Automatic rule-based checking of building

designs. Automation in Construction 18: 1011-

1033.

Farhoodi, M., Yari, A. & Sayah, A. N-gram based text

classification for Persian newspaper corpus.

2011. IEEE, 55-59.

Ferrari, A. & Gnesi, S. 2012. Using collective intelligence

to detect pragmatic ambiguities. 2012. IEEE,

191-200.

Hassan, F. u. & Le, T. 2020. Automated requirements

identification from construction contract

documents using natural language processing.

Journal of Legal Affairs and Dispute Resolution

in Engineering and Construction 12: 04520009.

Hjelseth, E. 2013. Experiences on converting

interpretative regulations into computable rules.

Presented at TKS 2013: 01-15.

Hjelseth, E. & Nisbet, N. 2011. Capturing normative

constraints by use of the semantic mark-up

RASE methodology. 2011. 1-10.

Huang, J. & Ling, C. X. Constructing New and Better

Evaluation Measures for Machine Learning.

2007 2007. 859-864.

Joachims, T. Text categorization with support vector

machines: Learning with many relevant features.

1998 1998. Springer, 137-142.

Joulin, A., Grave, E., Bojanowski, P. & Mikolov, T. 2016.

Bag of tricks for efficient text classification.

arXiv preprint arXiv:1607.01759.

Kamsties, E. & Peach, B. 2000. Taming ambiguity in

natural language requirements. 2000.

Kim, I., Choi, J., Teo, E. A. L. & Sun, H. 2020.

Development of K-Bim E-Submission

Prototypical System for the Openbim-Based

Building Permit Framework. Journal of Civil

Engineering and Management 26: 744-756.

Lam, S. L. Y. & Lee, D. L. Feature reduction for neural

network based text categorization. 1999. IEEE,

195-202.

Larina, T., Ozyumenko, V. & Ponton, D. M. 2019.

Persuasion strategies in media discourse about

Russia: Linguistic ambiguity and uncertainty. 15:

3-22.

Li, B., Dimyadi, J., Amor, R. & Schultz, C. 2020.

Qualitative and traceable calculations for

building codes. 2020. 69-84.

Li, S. 2017. A corpus-based study of vague language in

legislative texts: Strategic use of vague terms.

English for Specific Purposes 45: 98-109.

Macit İlal, S. & Günaydın, H. M. 2017. Computer

representation of building codes for automated

compliance checking. Automation in

Construction 82: 43-58.

Massey, A. K., Rutledge, R. L., Antón, A. I. & Swire, P.

P. 2014. Identifying and classifying ambiguity

for regulatory requirements. 2014 IEEE 22nd

international requirements engineering

conference (RE), 2014. IEEE, 83-92.

Matsuoka, J. & Lepage, Y. Ambiguity spotting using

wordnet semantic similarity in support to

recommended practice for software

requirements specifications. 2011 2011. IEEE,

479-484.

Moon, S., Chi, S. & Im, S.-B. 2022. Automated detection

of contractual risk clauses from construction

specifications using bidirectional encoder

representations from transformers (BERT).

Automation in Construction 142: 104465.

Osborne, M. & MacNish, C. K. 1996. Processing natural

language software requirement specifications.

1996. IEEE, 229-236.

Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo, J.,

De Meyer, R., Van de Walle, R. & Van

Campenhout, J. 2011. A semantic rule checking

environment for building performance checking.

Automation in Construction 20: 506-518.

Piantadosi, S. T., Tily, H. & Gibson, E. 2012. The

communicative function of ambiguity in

language. Cognition 122: 280-291.

Popescu, D., Rugaber, S., Medvidovic, N. & Berry, D. M.

2007. Reducing ambiguities in requirements

specifications via automatically created object-

oriented models. Monterey Workshop, 2007.

Springer, 103-124.

Reidenberg, J. R., Bhatia, J., Breaux, T. D. & Norton, T.

B. 2016. Ambiguity in privacy policies and the

impact of regulation. The Journal of Legal

Studies 45: S163-S190.

Salama, D. M. & El-Gohary, N. M. 2016. Semantic text

classification for supporting automated

compliance checking in construction. Journal of

Computing in Civil Engineering 30: 04014106.

Schütze, H., Manning, C. D. & Raghavan, P. 2008.

Introduction to information retrieval.

Cambridge University Press Cambridge.

Sebastiani, F. 2002. Machine learning in automated text

categorization. ACM computing surveys (CSUR)

34: 1-47.

Solihin, W., Dimyadi, J., Lee, Y.-C., Eastman, C. & Amor,

R. 2020. Simplified schema queries for

supporting BIM-based rule-checking

applications. Automation in Construction 117.

Solihin, W. & Eastman, C. 2016. A knowledge

representation approach in BIM rule requirement

analysis using the conceptual graph. Journal of

Information Technology in Construction 21:

370-402.

Soliman-Junior, J., Pedo, B., Tzortzopoulos, P. &

Kagioglou, M. 2020. The Relationship Between

Requirements Subjectivity and Semantics for

Healthcare Design Support Systems. 2020.

Springer, 801-809.

Soliman-Junior, J., Tzortzopoulos, P., Baldauf, J. P., Pedo,

B., Kagioglou, M., Formoso, C. T. &

Humphreys, J. 2021. Automated compliance

checking in healthcare building design.

Automation in Construction 129.

Yurchyshyna, A. & Zarli, A. 2009. An ontology-based

approach for formalisation and semantic

organisation of conformance requirements in

construction. Automation in Construction 18:

1084-1098.

Zhang, J. & El-Gohary Nora, M. 2017. Semantic-Based

Logic Representation and Reasoning for

Automated Regulatory Compliance Checking.

Journal of Computing in Civil Engineering 31:

04016037.

Zhang, R. & El-Gohary, N. 2022. Natural language

generation and deep learning for intelligent

building codes. Advanced Engineering

Informatics 52: 101557.

Zhang, Z., Ma, L. & Broyd, T. 2022. Towards fully-

automated code compliance checking of

building regulations: challenges for rule

interpretation and representation. 2022a. EC³

(European Conference on Computing in

Construction).

Zhang, Z., Nisbet, N., Ma, L. & Broyd, T. 2022. A multi-

representation method of building rules for

automatic code compliance checking. European

Conference on Product and Process Modeling

2022, 2022b Trondheim, Norway.

Zhang, Z., Nisbet, N., Ma, L. & Broyd, T. 2023.

Capabilities of rule representations for

automated compliance checking in healthcare

buildings. Automation in Construction 146:

104688.

Zhou, P. & El-Gohary, N. 2016a. Domain-Specific

Hierarchical Text Classification for Supporting

Automated Environmental Compliance

Checking. Journal of Computing in Civil

Engineering 30.

Zhou, P. & El-Gohary, N. 2016b. Ontology-Based

Multilabel Text Classification of Construction

Regulatory Documents. Journal of Computing in

Civil Engineering 30.

