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1 Introduction

In the literature of convex analysis and optimization, see e.g., [1, 2, 11, 15, 16], the standard definition
of a convex set is a convex subset of a vector space. It has been noticed that the requirement that a
convex set to be embedded into a vector space is restrictive for several applications in e.g., decision
theory and petroleum engineering, see [8, 9] for some discussions and historical remarks. The natural
generalization is to consider the so called convex space or convex structure, where only operations of
finite convex combinations are defined, without involving a vector space, see [6]. Affine functions can
be defined on a convex space in the same way as on a convex set in a vector space. According to [7,
Theorem 4], a convex space is isomorphic to a convex set in a cone, rather than a vector space, where
the cone is defined again without referring to a vector space, see the precise definitions in Subsection
2.1. Therefore, in terms of terminology, we will talk about convex sets in a cone, instead of convex
spaces.

In this paper, we consider an optimization problem in a convex set in a cone with an (−∞,∞]-
valued affine objective function on it, and subject to constraint inequalities on other J affine functions,
where J ≥ 0 is a fixed nonnegative integer.

Our contributions are as follows. For an optimization problem in a convex set E in a cone with
an (−∞,∞]-valued affine objective function on it, and subject to constraint inequalities on other J
affine functions, we impose suitable conditions under which we show that this problem has an optimal
solution which is in the form of a convex combination of no more than J + 1 extreme points in E. In
[13, Subsection 3.2.5], a similar result was obtained for E being a metrizable compact convex subspace
of a locally convex Hausdorff space, where the latter requirement was inaccurately missing. Here, the
conditions are more general in that we assume the consistency of the problem, and the compactness of
the convex set E in a cone, which is not necessarily metrizable, as well as the totality of the space of
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bounded below lower semicontinuous affine functions on E. The application of this result to Markov
decision processes will be demonstrated in [14]. The present paper can also be viewed as an application
of the Feinberg-Shwartz lemma in [5] in finite dimensional convex analysis, quoted as Proposition 3.1
below, on which our proof is based.

The rest of the paper is organized as follows. In Section 2, we provide basic definitions and present
the main result. Section 3 collects auxiliary lemmas and facts. The proof of the main theorem is
presented in Section 4. The paper ends with a conclusion in Section 5.

2 Problem statement and main result

In this section, we state the concerned optimization problem. Before that, we provide some definitions
that are directly involved in the problem statement and main result to be presented. Although the
objects to be defined are all standard in the context of convex sets in a vector space, we need to
consider their natural generalizations in the context of convex sets in a cone, or say convex spaces.

2.1 Basic definitions

To begin with, we define a cone without involving a vector space as follows.

Definition 2.1 (Cone) Consider a nonempty set X with an element 0 ∈ X and the operations of
addition, denoted as x+ y ∈ X for x, y ∈ X, and scalar multiplication by non-negative real numbers,
denoted as ax ∈ X for all x ∈ X and a ∈ [0,∞). The set X is called a cone (over [0,∞)) if it satisfies
the following conditions:

• a(x+ y) = ax+ ay for all a ∈ [0,∞) and x, y ∈ X;

• a(bx) = (ab)x for all a, b ∈ [0,∞) and x ∈ X;

• 1x = x and 0x = 0 for all x ∈ X;

• x+ y = y + x for all x, y ∈ X;

• x+ (y + z) = (x+ y) + z for all x, y, z ∈ X;

• (a+ b)x = ax+ bx for all a, b ∈ [0,∞) and x ∈ X;

• x+ 0 = x for all x ∈ X.

The above definition is close to the one of a cone with a zero on p.93 of [8]. The only difference
is that in [8], a cone is further required to be cancellative. A cone is called cancellative if for any
y, z ∈ X, if for some x ∈ X, it holds that x + y = x + z, then y = z. Here we do not require this
property to hold for the concerned set to be a cone.

An example of a cone (over [0,∞)) which is not cancellative is X = [0,∞] with the usual addition
and scalar multiplication, 0 = 0, 0 · ∞ := 0, because for y, z ∈ X, ∞ + y = ∞ + z (both sides being
∞) does not imply y = z.

Definition 2.2 (Convex set in a cone) A subset E of a cone X is called a convex set (in X) if
αx+ (1− α)y ∈ E for all x, y ∈ E and α ∈ [0, 1]. A subset of E is called a convex subset of E if it is
a convex set in X.

2



Let us say a few words about terminologies. In view of [8, Theorem 4], we may well call the above
defined convex set in a cone a convex space: this is consistent with the definition of a convex space
in [6]. In the literature, by a convex set it is often meant a convex subset of a vector space. A vector
space is a particular cone. Here and below, by a convex set, unless stated otherwise, we always mean
a convex set in a cone, not necessarily in a vector space. Some results need the convex set to be a
subset of a vector space, see, for instance, Example 3.1 below. When this is to be emphasized, we will
say explicitly that the convex set is in the underlying vector space.

For example, the set X of all [0,∞]-valued measures on a given measurable space (Ω,F), with
the usual addition and scalar multiplication, is a non-cancellative cone, and one can consider convex
subsets of this convex cone of [0,∞]-valued measures on a σ-algebra B. This is the situation that
arises in studies of Markov decision processes with total undiscounted criteria, where the occupation
measures form a convex set in the cone of [0,∞]-valued measures, which in general cannot be embedded
into a vector space, see [3, 4].

Definition 2.3 (Face and extreme point) Let E be a nonempty convex set. A nonempty subset
D ⊆ E is called an extreme subset of E, if for each point u ∈ D, the representation u = αu1 +(1−α)u2

with α ∈ (0, 1), u1, u2 ∈ E implies that u1, u2 ∈ D. A point u ∈ E is called an extreme point of E if
the singleton {u} is an extreme subset of E. An extreme subset of E may be non-convex. E.g., a pair
of distinct extreme points forms such a non-convex extreme subset. A convex extreme subset of E is
called a face of E.

Suppose in the above definition, the convex set E has a topology on it. Then by a closed extreme
subset (or face) of E we mean a closed subset of E, which is also an extreme subset (respectively, a
face) of E.

Definition 2.4 (Affine function) A (−∞,+∞]-valued function f(·) defined on a convex set E in
a cone is called affine if

f(αx1 + (1− α)x2) = αf(x1) + (1− α)f(x2)

for all x1, x2 ∈ E and all α ∈ [0, 1].

In the above definition, we used the same notation for the addition and scalar multiplication in the
underlying cone and in (−∞,∞]. The context should exclude any confusion.

2.2 Problem statement and main result

Now we state the concerned optimization problem.
Consider a nonempty convex set E in a cone, and endow E with some topology. This topology on

E needs not be consistent with the linear operations (addition and scalar multiplication). Let Ĉ(E)
be the family of (−∞,+∞]-valued bounded from below lower semicontinuous affine functions on E.
As in [7, p.222], we call Ĉ(E) total if for each x, y ∈ E with x 6= y, there is some function f ∈ Ĉ(E)
such that f(x1) 6= f(x2).

Let W0(·),W1(·), . . . ,WJ(·) ∈ Ĉ(E) be given. We consider the following optimization problem

Minimize over x ∈ E: W0(x)

subject to Wj(x) ≤ dj , j = 1, 2, . . . , J, (1)

where dj ∈ R are fixed constants and J ≥ 0. The case of J = 0 corresponds to the absence of
constraint inequalities in problem (1).
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In the context of problem (1), any point in E will be referred to as a solution (for problem (1)). A
solution is called feasible for problem (1) if it satisfies the constraints in it. If J = 0, then every solution
is feasible. Problem (1) is called consistent, if it has some feasible solutions. A feasible solution x∗ ∈ E
is called an optimal solution for problem (1) if W0(x∗) ≤W0(x) for all feasible solutions x ∈ E.

Now we present our main result.

Theorem 2.1 Suppose that the nonempty convex set E (in a cone) is compact, problem (1) is con-
sistent, and Ĉ(E) is total. Then there exists an optimal solution, say x∗ ∈ E, for problem (1) in the
form of a convex combination of at most J + 1 extreme points in E, i.e., x∗ =

∑J+1
k=1 αkxk, where

αk ∈ [0, 1],
∑J+1

k=1 αk = 1, and xk is extreme in E for each k = 1, 2, . . . , J + 1.

Remark 2.1 In the special case of E being a convex compact subset of Rn endowed with the Euclidean
topology, if problem (1) is consistent, then it has an optimal solution x∗, which, by the Caratheodory
theorem, can be expressed as a convex combination of no more than n+ 1 extreme points of E. What
is new here, is that in case J < n, J + 1 extreme points are enough.

3 Preliminary results

In this section, we present some lemmas and recall some further facts, which are needed in the proof
of the main theorem. Lemmas 3.1 and 3.2 are immediate consequences of the relevant definitions.
However, we still provide their complete proofs in hope of further improving the readability.

Lemma 3.1 If E1 is an extreme subset of E0, whereas E0 is an extreme subset of a nonempty convex
set E, then E1 is also an extreme subset of E. In particular, a face of a face of a nonempty convex
set E is also a face of E.

Proof. We verify the first assertion, only, as the second assertion follows from it. Let x ∈ E1 and
assume that x = αx1 + (1 − α)x2 with α ∈ (0, 1) and x1, x2 ∈ E. Then x1, x2 ∈ E0 because x ∈ E0,
and E0 is an extreme subset of E. This in turn leads to x1, x2 ∈ E1 because E1 is an extreme subset
of E0. Thus E1 is an extreme subset of E, as required. 2

Lemma 3.2 Consider a nonempty convex set E, which is endowed with a topology. Let I be an
arbitrary nonempty index set. If Ei, i ∈ I, are extreme subsets (or faces) of E and

⋂
i∈I Ei 6= ∅, then⋂

i∈I Ei is an extreme subset (respectively, face) of E. In particular, if Ei, i ∈ I, are closed extreme
subsets (or faces) of E and

⋂
i∈I Ei 6= ∅, then

⋂
i∈I Ei is a closed extreme subset (respectively, face) of

E.

Proof. Suppose x ∈
⋂
i∈I Ei, x = αx1 + (1 − α)x2 with α ∈ (0, 1), and x1, x2 ∈ E. Then, for each

i ∈ I, from the inclusion x ∈ Ei, we see that x1, x2 ∈ Ei, because Ei is an extreme subset of E. Since
the inclusion x ∈ Ei holds for all i ∈ I, we see that x1, x2 ∈

⋂
i∈I Ei. Thus,

⋂
i∈I Ei is an extreme

subset of E.
If Ei are all convex, then so is their intersection

⋂
i∈I Ei, and in that case,

⋂
i∈I Ei will be a face

of E.
The last assertion holds because the set

⋂
i∈I Ei is closed if the sets Ei are all closed. 2

Given a nonempty convex set E (in a cone X), the minimal face of E that contains a point u ∈ E,
i.e., the intersection of all the faces of E containing u, is denoted by GE(u).

Definition 3.1 (Pareto optimality) Let E be a fixed nonempty convex set in the cone (−∞,∞]J+1

with some nonnegative integer J . A point u ∈ E is called Pareto optimal if, for each v ∈ E, the
component-wise inequality v ≤ u implies that v = u. The collection of all Pareto optimal points is
denoted by Par(E).
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Let J ≥ 0 be a fixed nonnegative integer. Consider a nonempty convex set E in RJ+1, and
~u = (u0, . . . , uJ) ∈ Par(E). The next useful result of Feinberg and Shwartz, see Lemma 3.2 of [5],
gives a structure of GE(~u).

Proposition 3.1 (Feinberg and Shwartz) Let J ≥ 0 be a nonnegative integer. Suppose E is a
fixed nonempty convex subset of RJ+1, and ~u = (u0, . . . , uJ) ∈ Par(E). Then the following assertions
are valid.

(a) GE(~u) ⊆ Par(E).

(b) For some 1 ≤ k ≤ J + 1, and 1 ≤ i ≤ k, there are some ~bi = (bi0, . . . , b
i
J) ∈ RJ+1 and βi ∈ R,

defining the hyperplanes in RJ+1

H i =

~x = (x0, . . . , xJ) ∈ Rj+1 :
J∑
j=0

bijxj = βi

 , i = 1, 2, . . . , k,

satisfying the following properties:

(i) ~bi ≥ 0,
∑J

j=0 b
i
j > 0, for i = 1, 2, . . . , k − 1 and ~bk > 0. Here all the inequalities are

component-wise.

(ii)
∑J

j=0 b
1
jxj ≥ β1 for all ~x = (x0, . . . , xJ) ∈ E0 := E,

∑J
j=0 b

1
juj = β1; for i = 1, 2, . . . , k− 1,∑J

j=0 b
i+1
j xj ≥ βi+1 for all ~x = (x0, . . . , xJ) ∈ Ei := Ei−1 ∩H i, and

∑J
j=0 b

i+1
j uj = βi+1.

(iii) GE(~u) = Ek := Ek−1 ∩Hk.

Proof. See Lemmas 3.1 and 3.2 of [5]. 2

In Proposition 3.1(b), for each i = 1, 2, . . . , k, H i is a supporting hyperplane of Ei−1 at ~u.
The proof of Theorem 2.1 is based on an application of the result of Feinberg and Shwartz quoted

in Proposition 3.1. We shall refer to it as the Feinberg-Shwartz lemma.
The correctness of the previous result requires E to be a convex subset of Rn. More precisely, the

next example shows that if E is a nonempty convex subset of the cone (−∞,∞]2 and ~u ∈ R2, then
Proposition 3.1 may fail to hold.

Example 3.1 Let E′ ⊆ R2 be a closed disk of radius 0.5 and centered at (1, 1.5), and E = E′ ∪
{(∞, v2) : v2 ∈ [0, 2]}. Then this set E is convex in the cone (−∞,∞]2 with the component-wise
addition and scalar multiplication, and ~u = (1, 1) is Pareto optimal in E. It is also an extreme point
of E. Thus, GE(~u) = {~u}.

If Proposition 3.1 was applicable to this convex set E in the cone (−∞,∞]2 and the point ~u = (1, 1),
then there would be nonnegative b1, b2 ≥ 0 with b1 + b2 > 0 and a constant β such that b1 ·1+ b2 ·1 = β
and b1v1 + b2v2 ≥ β for all ~v = (v1, v2) ∈ E.

The requirement of b1 · 1 + b2 · 1 = β and b1v1 + b2v2 ≥ β for all ~v = (v1, v2) ∈ E′ ⊂ E imply
that b1 = 0, and b2 = β > 0, as given by the unique supporting hyperplane in R2 of the disk E′ at
~u = (1, 1).

On the other hand, since 0 ·∞ := 0, for (∞, 0) ∈ E, b1 ·∞+b2 ·0 = 0 < β, yielding a contradiction.

The next result, in particular, asserts that a nonempty convex compact set E in a cone always has
some extreme points, provided that Ĉ(E) is total. Its proof is similar to the one of [1, Lemma 7.65].

Lemma 3.3 Suppose E is a nonempty, compact and convex set in a cone. Recall that Ĉ(E) is the
space of (−∞,+∞]-valued bounded from below lower semicontinuous affine functions on E. Then the
following assertions are valid.

5



(a) Suppose F is a closed extreme subset (or a closed face) of E and f(·) ∈ Ĉ(E). Then

Y :=

{
x ∈ F : f(x) = inf

x̃∈F
f(x̃)

}
is a closed extreme subset (respectively, a closed face) of E.

(b) Assume that Ĉ(E) is total, i.e., if x1 6= x2 ∈ E, then there is f(·) ∈ Ĉ(E) such that f(x1) 6= f(x2).
Then each closed face F of E contains at least one extreme point x̂ of E, and the singleton {x̂}
is closed. In particular, E has some extreme points.

Proof. (a) Let inf x̃∈F f(x̃) := a ∈ (−∞,∞]. If a = +∞, then Y = F and the statement follows from
the assumed properties of F .

Below, we assume that a ∈ R. Then Y := {x ∈ F : f(x) = a} = {x ∈ F : f(x) ≤ a}.
Firstly, consider F as a closed extreme subset of E.
It follows that the set Y is nonempty and closed, because F is closed, and the function f(·) is

lower semicontinuous.
Let us verify that Y is an extreme subset of E. Indeed, if x ∈ Y and x = αx1 + (1 − α)x2 with

α ∈ (0, 1) and x1, x2 ∈ F , then, a = f(x) = αf(x1) + (1− α)f(x2) because f(·) is affine on E. Since
for each x̃ ∈ F , f(x̃) ≥ a, to have x ∈ Y (i.e., f(x) = a), we must have f(x1) = f(x2) = a leading to
x1, x2 ∈ Y . This shows that Y is an extreme subset of F . Now, according to Lemma 3.1, Y is also an
extreme subset of E.

Thus, Y is a closed extreme subset of E.
Finally, we note that if F is a closed face of E, then the set Y is convex. Indeed, if x1, x2 ∈ Y ,

then for each α ∈ [0, 1], αx1 + (1− α)x2 ∈ F , and f(αx1 + (1− αx2)) = αf(x1) + (1− α)f(x2) = a,
where the first equality holds because f(·) is affine, and the last equality holds because x1, x2 ∈ Y .
Consequently, αx1 + (1− α)x2 ∈ Y . It follows from this and what was established earlier that Y is a
closed face of E.

(b) Fix a closed face F of E. Consider the family A of closed faces of F , which is partially ordered
with respect to the inclusion, i.e., A � B if and only if B ⊆ A. For each chain in A, since F is compact
(as a closed subset of the compact E) and each finite subfamily say A1 ⊇ · · · ⊇ An of the chain in A
has a nonempty intersection An 6= ∅, one may refer to Theorem 2.31 of [1] for that each chain in A has
a nonempty intersection. According to Lemma 3.2, this intersection is an upper bound of the chain
in A. Therefore, according to Zorn’s Lemma, see e.g., [1, Lemma 1.7], A has a maximal element, say
F̂ , and no proper subset of F̂ can be a closed face of F .

Next, we show that F̂ is a singleton. Suppose for contradiction that there exist x1, x2 ∈ F̂ such
that x1 6= x2. Since by assumption Ĉ(E) is total, we may consider some f(·) ∈ Ĉ(E) such that
f(x1) 6= f(x2). Without loss of generality, assume that f(x1) > f(x2). Now by part (a), applied to
the nonempty compact and convex set F , we see that

Z :=

{
x ∈ F̂ : f(x) = inf

x̃∈F̂
f(x̃) ≤ f(x2)

}
is a closed face of F , and x1 /∈ Z. As a result, Z ⊂ F̂ is a proper subset of F̂ as well as a closed face of
F , which is a desired contradiction. We conclude that F̂ = {x̂} is a singleton, closed in F and thus in
E, and the point x̂ ∈ F is an extreme point of F . By Lemma 3.1, x̂ is also an extreme point of E. 2

It is known, see e.g., [1, Corollary 7.66] that every nonempty convex compact subspace E of a
locally convex Hausdorff space has some extreme points. Lemma 3.3 is an extension of that result,
because in a locally convex Hausdorff space, the set of real-valued continuous affine functions separate
points: see Item 5 of [12, Ch.XI,§1] or [1, Corollary 5.82].
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4 Proof of Theorem 2.1

In this section, we provide the detailed proof of Theorem 2.1.
Proof of Theorem 2.1. First, we assume that there is a feasible solution, say x ∈ E, with W0(x) <∞.
Then there is an optimal solution, say x ∈ E, for problem (1) with a finite value, say W0(x) =: d0 ∈ R.
It will be explained at the end of this proof that this assumption can be withdrawn.

Introduce the space of performance vectors

O := { ~W (x) = (W0(x),W1(x), . . . ,WJ(x)), x ∈ E} ⊆ (−∞,∞]J+1.

The set O is convex in the cone (−∞,∞]J+1 because the functions Wj(·) are affine and the space E
is convex. Since, by assumption, problem (1) is consistent and with a finite (optimal) value, O∩RJ+1

is a nonempty convex set in RJ+1.
Now we pass problem (1) to the following one in the space of performance vectors:

Minimize W0 (2)

subject to ~W = (W0,W1, . . . ,WJ) ∈ O

and Wj ≤ dj , j = 1, 2, . . . , J.

The rest of the proof consists of verifying the statements formulated in each of the following steps.
Step 1. There exists an optimal solution, say ~W ∗ = (W ∗0 ,W

∗
1 , . . . ,W

∗
J ), to problem (2) such that

~W ∗ = (W ∗0 ,W
∗
1 , . . . ,W

∗
J ) ∈ Par(O ∩ RJ+1).

(We mention that the assumption of totality of Ĉ(E) is not in use here as well as in Steps 2 and 3 of
this proof.)

To show the existence of such an optimal solution ~W ∗ to problem (2), we consider the following
problem

Minimize over x ∈ E :
J∑
j=0

Wj(x) (3)

subject to Wj(x) ≤ dj , j = 0, 1, 2, . . . , J.

Since for each j = 0, . . . , J, Wj(·) is lower semicontinuous, bounded from below, and with values in

(−∞,∞], so is the function
∑J

j=0Wj(·). Since E is compact, the set of feasible solutions for problem
(3) is compact, as a closed subset of E. It follows that problem (3) has an optimal solution x∗ ∈ E.

Upon passing problem (3) to the following problem in the space of performance vectors

Minimize

J∑
j=0

Wj (4)

subject to ~W = (W0,W1, . . . ,WJ) ∈ O

and Wj ≤ dj , j = 0, 1, 2, . . . , J,

we see that ~W ∗ = (W ∗0 ,W
∗
1 , . . . ,W

∗
J ) := (W0(x∗),W1(x∗), . . . ,WJ(x∗)) is an optimal solution to

problem (4).
We argue that ~W ∗ is as required in Step 1 as follows. Note that, compared to problem (2), in

problem (3), there is an additional constraint W0(x) ≤ d0, where d0 is defined as the optimal value of
problem (2), which is finite by assumption, see the beginning of this proof. This implies that problem
(3) has a finite optimal value, so that ~W ∗ ∈ RJ+1, and the set of feasible solutions for problem
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(3) is a subset of the one for problem (2). Therefore, x∗ is a feasible solution for problem (1), and
accordingly, ~W ∗ is a feasible solution to problem (2). Secondly, it necessarily holds that W ∗0 = d0,
because otherwise, we would have W0(x∗) < d0, and this is against that d0 is the optimal value of
problem (1) and problem (2). Consequently, ~W ∗ is an optimal solution to problem (2), as required.

To see why ~W ∗ ∈ Par(O∩RJ+1), note that ~W ∗ ∈ RJ+1, and if there is some ~W ′ = (W ′0, . . . ,W
′
J) ∈

O∩RJ+1, which strictly outperforms ~W ∗, i.e., W ′ ≤ ~W ∗ and W ′j < W ∗j for some j ∈ {0, . . . , J}, then
~W ′ is feasible for problem (4) and

∑J
j=0W

′
j <

∑J
j=0W

∗
j . Consequently, ~W ∗ would not be optimal for

problem (4), yielding a contradiction.
(Alternatively, since ~W ∗ is optimal for problem (4), Corollary 2.3(a) of [10] implies that ~W ∗ is

Pareto optimal in O := O∩{ ~W = (W0, . . . ,WJ) : Wj ≤ dj , j = 0, . . . J} ⊆ O∩RJ+1. This also implies
~W ∗ ∈ Par(O ∩ RJ+1), because none of the points in (O ∩ RJ+1) \O can outperform ~W ∗.)

Step 1 is completed.
In Step 2, we consider F , a nonempty convex closed (and thus compact) subset of E. Introduce

the set

Õ := { ~W (x) : x ∈ F} ⊆ (−∞,∞]J+1, (5)

where ~W (x) = (W0(x), . . . ,WJ(x)). The set Õ is a convex subset of O, because Wj(·) are affine on E
and F is a convex subset of E.

We assume that β ∈ R and a vector ~b = (b0, . . . , bJ) > 0 in RJ+1 are such that, for some
~u = (u0, . . . , uJ) ∈ Õ,

∑J
j=0 bjuj = β and

J∑
j=0

bjWj ≥ β ∀ ~W = (W0, . . . ,WJ) ∈ Õ ∩ RJ+1. (6)

Recall that 0 ×∞ := 0 and a +∞ := ∞ for all a ∈ R ∪ {∞}. All the inequalities for vectors are
component-wise. Then from ~b > 0, we see that

Ô :=

 ~W = (W0, . . . ,WJ) ∈ Õ :
J∑
j=0

bjWj = β


=

 ~W = (W0, . . . ,WJ) ∈ Õ ∩ RJ+1 :
J∑
j=0

bjWj ≤ β

 ⊆ RJ+1. (7)

Step 2. For F , ~b and β as described in the above, the set Ô is bounded and closed, and thus is a
compact subset of RJ+1.

The set Ô is bounded from below because each of the functions Wj(·) is bounded below by a

constant say W j , and Ô is a subset of the space of performance vectors O.

The set Ô is bounded from above because for each j = 0, 1, . . . , J and ~W = (W0, . . . ,WJ) ∈ Ô,

Wj =
β−

∑
i6=j biWi

bj
≤ β−

∑
i 6=j biW i

bj
<∞. Again, here we used the fact that ~b > 0 component-wise.

The rest verifies the closedness of Ô ⊆ RJ+1 in RJ+1.
Let { ~W (n) = (W

(n)
0 , . . . ,W

(n)
J )}n≥0 ⊆ Ô converge to some ~W = (W0, . . . ,WJ) ∈ RJ+1, i.e.,

W
(n)
j →Wj as n→∞ for each j = 0, . . . , J. Then

J∑
j=0

bjWj = β. (8)
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It remains to show that ~W = (W0(x), . . . ,WJ(x)) =: ~W (x) for some x ∈ F.
For each n ≥ 0, since, ~W (n) ∈ Ô, there is some xn ∈ F such that ~W (n) = ~W (xn).
Since F is a compact subset of E, by [1, Theorem 2.31], the sequence {xn}n≥0 has a convergent

subnet {yλ}λ∈Λ with yλ → x for some x ∈ F . We verify that ~W (x) = ~W as follows.
Since for each j = 0, . . . , J, the function Wj(·) is lower semicontinuous, by [1, Lemma 2.42],

lim
λ
Wj(yλ) ≥Wj(x) ∀ j = 0, 1, . . . , J. (9)

On the other hand, since for each j ∈ {0, 1, . . . , J}, {Wj(yλ)}λ∈Λ is a subnet of {Wj(xn)}n≥0 =

{W (n)
j }n≥0 and W

(n)
j → Wj as n→∞, by [1, Lemma 2.17], {Wj(yλ)}λ∈Λ → Wj . It follows from this

and (9) that

Wj ≥Wj(x)

for all j = 0, 1 . . . , J. In particular, ~W (x) ∈ RJ+1.
For the desired relation ~W = ~W (x), it remains to show for each j = 0, 1, . . . , J that the above

inequality cannot hold strictly. Suppose for contradiction that Wj > Wj(x) for some j ∈ {0, 1 . . . , J}.
Then we would have β =

∑J
j=0 bjWj >

∑J
j=0 bjWj(x) ≥ β, where the first equality is by (8), the

second inequality holds because ~b > 0, and the last inequality holds by (6) and the facts that x ∈ F ,
~W (x) ∈ RJ+1, and Õ is the set of performance vectors of the points in F . Hence, ~W = ~W (x), as
needed, and Step 2 is completed.

Step 3. Consider the point ~W ∗ = (W ∗0 , . . . ,W
∗
J ) ∈ Par(O ∩ RJ+1) coming from Step 1. Then

~W ∗ =
∑J+1

k=1 αk
~Wk, where αk ∈ [0, 1] for each k = 1, . . . , J + 1,

∑J+1
k=1 αk = 1, and ~Wk is an extreme

point of O ∩ RJ+1, satisfying ~Wk ∈ Par(O ∩ RJ+1).
The justification of the claimed result in Step 3 is as follows.
Since ~W ∗ ∈ Par(O∩RJ+1) as asserted in Step 1, and O∩RJ+1 is a nonempty convex set in RJ+1

as was noted in the beginning of this proof, Proposition 3.1 is applicable, from which we deduce the
following:

(a) GO∩RJ+1( ~W ∗) ⊆ Par(O ∩ RJ+1).

(b) For some 1 ≤ k ≤ J + 1, and 1 ≤ i ≤ k there exist some ~bi = (bi0, b
i
1, . . . , b

i
J) ∈ RJ+1 and βi ∈ R,

defining the hyperplanes

H i =

~p = (p0, . . . , pJ) ∈ RJ+1 :
J∑
j=0

bijpj = βi

 , i = 1, 2, . . . , k,

satisfying the following properties:

(i) ~bi ≥ 0,
∑J

j=0 b
i
j > 0, for i = 1, 2, . . . , k − 1 and ~bk > 0. Here all the inequalities between

vectors are component-wise.

(ii)
∑J

j=0 b
1
jpj ≥ β1 for all ~p = (p0, . . . , pJ) ∈ O ∩ RJ+1,

∑J
j=0 b

1
jW
∗
j = β1; for i = 1, 2, . . . , k −

1,
∑J

j=0 b
i+1
j pj ≥ βi+1 for all ~p = (p0, . . . , pJ) ∈ O ∩ RJ+1 ∩ H1 ∩ H2 ∩ · · · ∩ H i, and∑J

j=0 b
i+1
j W ∗j = βi+1.

(iii) GO∩RJ+1( ~W ∗) = O ∩ RJ+1 ∩H1 ∩H2 ∩ · · · ∩Hk.

In the rest of this proof, we shall refer to the above consequences of Proposition 3.1 as the Feinberg-
Shwartz lemma.
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Let us verify that the set GO∩RJ+1( ~W ∗) is a convex and compact subset of RJ+1. First, we show
its compactness by applying the statement established in Step 2. To this end, we shall identify the
appropriate F,~b and β satisfying the conditions described above Step 2.

Consider the half-spaces

H
i

:=

~p = (p0, . . . , pJ) ∈ RJ+1 :
J∑
j=0

bijpj ≤ βi
 , i = 1, 2, . . . , k.

From Items (ii,iii) of (b) in the Feinberg-Schwartz lemma, we see that

GO∩RJ+1( ~W ∗) = O ∩ RJ+1 ∩H1 ∩H2 ∩ · · · ∩Hk

= RJ+1 ∩O ∩H1 ∩H2 ∩ · · · ∩Hk
. (10)

Since the bounded from below functions Wj(·), j = 0, 1, . . . , J , are lower semicontinuous and bij ≥ 0

for all j = 0, 1, . . . , J , we see that
∑J

j=0 b
i
jWj(·) is also lower semicontinuous. Here 0 · ∞ := 0 was in

use. It follows that the set

{x ∈ E : ~W (x) ∈ O ∩H1 ∩H2 ∩ · · · ∩Hk−1}

= {x ∈ E : ~W (x) ∈ H1 ∩H2 ∩ · · · ∩Hk−1}

=

k−1⋂
i=1

x ∈ E :

J∑
j=0

bijWj(x) ≤ βi


is closed and thus compact in E because E is compact. It is nonempty by (10).

If we take F = {x ∈ E : ~W (x) ∈ O ∩H1 ∩H2 ∩ · · · ∩Hk−1}, then the set in (5) takes the form

Õ = O ∩H1 ∩H2 ∩ · · · ∩Hk−1
, and by (10),

GO∩RJ+1( ~W ∗) =

 ~W = (W0, . . . ,WJ) ∈ Õ ∩ RJ+1 :
J∑
j=0

bkjWj ≤ βk
 ,

which is in the same form as the set Ô defined in (7) above Step 2. The conditions on ~u, bj and

β above Step 2 are satisfied by ~W ∗, bkj and βk by (b) in the Feinberg-Shwartz lemma. Hence, the

statement in Step 2 is applicable, from which we see that the set GO∩RJ+1( ~W ∗) is a compact subset
in RJ+1. Its convexity is evident, and is actually by definition.

Now, since GO∩RJ+1( ~W ∗) ⊆ RJ+1 is an intersection with some hyperplane(s), its dimension is not
higher than J. One may apply the Caratheodory theorem together with the Krein-Milman theorem,
see e.g., [1, Theorems 5.32, 7.68] or [13, Corollary B.2.1], for that every point of GO∩RJ+1( ~W ∗) can
be written as the convex combination of at most J + 1 extreme points in it. Since, according to (a)
in the Feinberg-Shwartz lemma, GO∩RJ+1( ~W ∗) ⊆ Par(O ∩ RJ+1), we see that each of these extreme
points are in Par(O ∩ RJ+1). Since GO∩RJ+1( ~W ∗) is a face of O ∩ RJ+1, its extreme points are also
extreme points of O ∩ RJ+1, see Lemma 3.1. The statement in Step 3 is thus justified.

Step 4. Consider an extreme point ~W = (W0, . . . ,WJ) of O ∩ RJ+1, and suppose ~W ∈ Par(O ∩
RJ+1). Then there exists some extreme point x̂ ∈ E such that ~W = ~W (x̂) = (W0(x̂), . . . ,WJ(x̂)).

We justify the statement in Step 4 as follows.
Consider the set E′ := {x ∈ E : ~W (x) = ~W}. Then E′ 6= ∅ as ~W ∈ Par(O ∩ RJ+1) ⊆ O by

assumption, and

E′ =

J⋂
j=0

{x ∈ E : Wj(x) ≤Wj}. (11)
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Indeed, E′ is a subset of the set on the right-hand side. Let us justify that the opposite inclusion
holds. Suppose that x ∈ E belongs to the set on the right-hand side, i.e., it is such that Wj(x) ≤Wj ,

j = 0, 1, . . . , J . Then ~W (x) = (W0(x), . . . ,WJ(x))) ∈ O ∩ RJ+1 and ~W (x) = ~W , because ~W ∈
Par(O ∩ RJ+1). This shows that the given point x belongs to E′, as required.

Next, observe that E′ is a nonempty compact and convex set in E. Indeed, the nonemptiness of
E′ was observed earlier. Since all the functions Wj(·), j = 0, 1, . . . , J , are lower semicontinuous, it
follows from (11) that the set E′ is a closed and hence compact subset of the compact set E. It is
obviously convex, as the functions Wj(·), j = 0, 1, . . . , J, are affine.

Applying Lemma 3.3(b) to the nonempty compact and convex set E′, we see that E′ contains some
extreme point, say x̂ ∈ E′. Now we show that x̂ ∈ E′ is also an extreme point of E. By the definition
of the set E′, this would lead to the statement claimed in Step 4.

Let x1, x2 ∈ E be such that x̂ = αx1 + (1− α)x2 for some α ∈ (0, 1). Then

~W = ~W (x̂) = α ~W (x1) + (1− α) ~W (x2), (12)

where the first equality holds because x̂ ∈ E′, and the second equality holds as the functions Wj(·)
are affine. Since ~W ∈ Par(O ∩ RJ+1) ⊆ RJ+1, it follows that ~W (x1), ~W (x2) ∈ RJ+1.

If ~W (x1) = ~W (x2), then their common value is necessarily ~W . Consequently, x1, x2 ∈ E′. Since x̂
is an extreme point of E′, we see that x1 = x2 = x̂.

On the other hand, it cannot happen that ~W (x1), ~W (x2) do not coincide, for otherwise, since
~W (x1), ~W (x2) ∈ O ∩ RJ+1, (12) indicates that ~W is not an extreme point of O ∩ RJ+1, which is a
contradiction.

Therefore, x̂ is also an extreme point of E, as requested. Step 4 is completed.
Now by Steps 3 and 4, we see that ~W ∗ coming from Step 1 satisfies ~W ∗ =

∑J+1
k=1 αk

~Wk =∑J+1
k=1 αk

~Wk(xk) for some αk ∈ [0, 1] satisfying
∑J+1

k=1 αk = 1 and xk being an extreme point of E
for each k = 1, . . . , J + 1. Since the functions Wj(·) are affine and E is convex, from the previous

equalities, we see ~W ∗ = ~W (
∑J+1

k=1 αkxk). Since ~W ∗ is an optimal solution for problem (2), the last

equality shows that the point
∑J+1

k=1 αkxk ∈ E is an optimal solution for problem (1). It exhibits all
the properties stated in Theorem 2.1.

So far, we have seen that the statement of this theorem holds, given the extra assumption that
there is a feasible solution x̂ ∈ E with W0(x̂) <∞.

Finally, we show that the theorem still holds, when the aforementioned assumption does not hold.
Thus, until the end of this proof, we suppose that, for all feasible solutions x ∈ E, W0(x) = +∞.
Then, any feasible solution is optimal.

If J = 0, then any extreme point of E is optimal. By Lemma 3.3(b), E has at least one extreme
point, and the statement of the theorem follows.

Consider the case of J ≥ 1. In this case, we consider a modification of problem (1):

Minimize over x ∈ E: W1(x)

subject to Wj(x) ≤ dj , j = 2, . . . , J.

Since problem (1) is consistent by assumption, an optimal solution to the above problem is necessarily
feasible for problem (1), and its optimal value is finite and smaller or equal to d1. Note also that this
modified problem has J − 1 constraints. Now, we may apply what was proved earlier to this modified
problem, and obtain an optimal solution for the modified problem in the form of a convex combination
of at most J extreme points of E. This solution is feasible for the original problem. As was mentioned
earlier, it is also optimal for the original problem (1). This theorem is thus proved. 2

11



5 Conclusion

In conclusion, we considered an optimization problem in a convex set in a cone E with an affine
objective and J affine constraints. The set E is not required to be embedded in any vector space.
Under suitable conditions, by applying the Feinberg-Shwartz lemma in finite dimensional convex
analysis, we showed that there exists an optimal solution in the form of a convex combination of at
most J + 1 extreme points of E. This result will be used in the study of Markov decision processes in
[14].
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