
1 
 

Predicting plant Rubisco kinetics from RbcL sequence data using machine learning 1 

1Wasim A Iqbal, 2Alexei Lisitsa and *1Maxim V Kapralov  2 

1 School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, 3 

NE1 7RU, United Kingdom  4 

2 Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, United 5 

Kingdom  6 

* Maxim.Kapralov@ncl.ac.uk  7 

Date of revised submission: 29/06/2022 8 

Number of figures in manuscript: 5 9 

Number of figures in supplementary: 12 10 

Number of tables in supplementary: 4 11 

Word count (excluding methods): 3433 12 

Short title: Predicting Rubisco kinetics from RbcL sequence data   13 

mailto:Maxim.Kapralov@ncl.ac.uk


2 
 

Highlight 14 

This paper is the first to demonstrate machine learning approaches as a tool for predicting 15 

Rubisco kinetics from RbcL sequences. 16 

Abstract 17 

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is responsible for the 18 

conversion of atmospheric CO2 to organic carbon during photosynthesis and often acts as a 19 

rate limiting step in the later process. Screening the natural diversity of Rubisco kinetics is 20 

the main strategy used to find better Rubiscos for crop engineering efforts. Here, we 21 

demonstrate the use of Gaussian processes (GPs), a family of Bayesian models, coupled 22 

with protein encoding schemes for predicting Rubisco kinetics from Rubisco large subunit 23 

(RbcL) sequence data. GPs trained on published experimentally obtained Rubisco kinetic 24 

datasets were applied to over 9,000 sequences encoding RbcL to predict Rubisco kinetic 25 

parameters. Notably, our predicted kinetic values were in agreement with known trends, e.g. 26 

higher carboxylase turnover rates (Kcat) for Rubiscos from C4 or Crassulacean acid 27 

metabolism (CAM) species compared to ones found in C3 species. This is the first study 28 

demonstrating machine learning approaches as a tool for screening and predicting Rubisco 29 

kinetics, and our approach could be applied to other enzymes.  30 
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Introduction 53 

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is claimed to be the most 54 

abundant enzyme on Earth (Bar-On and Milo, 2019). The global conversion of inorganic CO2 55 

to organic forms is mostly driven by Rubisco making it a gatekeeper of carbon for nearly all 56 

life on the planet (Raven, 2013). Form IB Rubiscos found in plants and green algae consists 57 

of both large subunits and small subunits, and the large subunits contain the Rubisco active 58 

site. Thus, it has long been assumed that the large subunit sequence variation contributes to 59 

the diversity of Rubisco kinetics (Kellogg and Juliano, 1997, Camel and Zolla, 2021). 60 

Rubisco is often characterised as having a slow turnover rate (Kcat) for CO2 and poor 61 

specificity for CO2 compared to O2 (Sc/o) (but see Tcherkez et al. (2006)). Rubisco catalytic 62 

inefficiencies might limit plant photosynthetic performance in certain environmental 63 

conditions such as saturating irradiance and limiting CO2 concentrations. Improving Rubisco 64 

kinetic traits is therefore a target for improving plant carbon uptake and crop yield. One 65 

strategy of doing this is screening the natural diversity of Rubisco kinetics and replacing of a 66 

plant’s native Rubisco with a better enzyme (Ort et al., 2015, Hermida-Carrera et al., 2016, 67 

Orr et al., 2016, Sharwood et al., 2016, Galmés et al., 2019, Orr and Parry, 2020, Von 68 

Caemmerer, 2020, Iqbal et al., 2021, Lin et al., 2022). Although there has been some 69 

progress with this strategy, direct replacement of Rubiscos in crops is currently challenging 70 

due to both limited capacity to mass-screen Rubisco kinetics, and Rubisco chaperone 71 

incompatibilities between distant species (Kanevski et al., 1999, Whitney et al., 2011, 72 

Whitney et al., 2015, Wilson et al., 2016, Sharwood, 2017, Wilson et al., 2018, Zhou and 73 

Whitney, 2019, Gunn et al., 2020, Martin-Avila et al., 2020).  74 

Given the resource-intensive nature of screening enzyme kinetics in the laboratory, 75 

modelling or in silico approaches, such as machine learning (ML), are being increasingly 76 

adopted to aid bioengineering efforts (Bedbrook et al., 2017, Yang et al., 2018, Li et al., 77 

2019, Yang et al., 2019, Benes et al., 2020, Bonetta and Valentino, 2020, Zhu et al., 2020, 78 

Biswas et al., 2021, Wittmann et al., 2021, Brandes et al., 2022, Hsu et al., 2022).  ML 79 

largely consists of ‘supervised’ tasks that involve training ML algorithms on previously seen 80 

protein sequences (e.g. enzyme sequence) with associated labels (e.g. catalytic activity). 81 

The trained model can then be used to predict labels of previously unseen but similar data 82 

inputs (Yang et al., 2019, Mazurenko et al., 2020, Newman and Furbank, 2021, Wittmann et 83 

al., 2021). Several examples exist of ML applications being used to screen enzyme 84 

properties, however no model exists which has predicted Rubisco kinetics from sequence 85 

variation (Romero et al., 2013, Yang et al., 2018, Greenhalgh et al., 2021, Hsu et al., 2022). 86 

The reasons for this may be that we do not know exactly which properties of the Rubisco 87 
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protein determine Rubisco kinetics. Additionally, state-of-the-art ML algorithms such as 88 

neural networks usually require hundreds or thousands of labelled data to perform well that 89 

is not possible with the current size of Rubisco datasets.  90 

Gaussian processes (GPs), a family of non-parametric, non-linear Bayesian models have 91 

shown to predict enzyme properties such as thermostability and activity given a limited 92 

amount of experimental data (Rasmussen and Williams, 2006, Yang et al., 2018, Yang et al., 93 

2019, Deringer et al., 2021, Dutordoir et al., 2021). A GP finds non-linear functions 94 

𝑓𝑓(𝑥𝑥1),𝑓𝑓(𝑥𝑥2) that map the relationship of similar labels (e.g. catalytic activity) with similar 95 

inputs 𝑥𝑥1, 𝑥𝑥2 (e.g. enzyme sequences), as encoded by a kernel function (Jokinen et al., 96 

2018, Greenhalgh et al., 2021). The kernel function measures the similarity of the input data 97 

in the form of a covariance matrix. A key feature of a GP is that it can characterise the model 98 

uncertainty due to lack of similar data, which can be used to determine the quality of 99 

predictions. 100 

With all ML techniques, protein sequences must be transformed into numerical 101 

representations and performance can suffer if the protein sequences are not encoded 102 

correctly. It is difficult to suggest a priori the best way to numerically represent protein 103 

sequences, as there are a variety of levels protein sequences can be represented,  such as 104 

physiochemical properties of amino acids or  the three-dimensional structure. Over the past 105 

decade, two classes of encoding schemes have been tested for mapping protein sequence-106 

function relationships. A classical encoding scheme (or ‘one-hot encoding’) directly 107 

represents a protein sequence amino acids in binary notation and a ‘learned encoding’ 108 

scheme ,which involves training an unsupervised ML method on millions of unlabelled 109 

protein sequences (Yang et al., 2018, Alquraishi, 2021, Elnaggar et al., 2021, Rives et al., 110 

2021, Wittmann et al., 2021). After the learned encoding scheme has been trained it can be 111 

reused to produce numerical vector representations of protein sequences (Elabd et al., 112 

2020, Faulon and Faure, 2021, Wittmann et al., 2021). The learned encoding scheme 113 

assumes that all protein sequences follow a set of evolutionary rules or biophysical traits that 114 

govern the relationships between protein sequences that allow them to carry out a biological 115 

function (Elabd et al., 2020, Faulon and Faure, 2021, Wittmann et al., 2021). The vector 116 

representations from the learned encoding scheme capture the relationships between 117 

proteins from the learned sequence-space. As result, similar sequences will have similar 118 

vector representations and so can be assumed to have similar biological function by a 119 

downstream-supervised ML model such as a GP (Elabd et al., 2020, Faulon and Faure, 120 

2021, Wittmann et al., 2021).  121 
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We think that the above ML processes could map the Rubisco sequence-function landscape 122 

for predicting unmeasured Rubisco kinetics. Previously, it was shown that Rubisco kinetic 123 

trade-offs exist between the Sc/o, Kcat and Michaelis-Menten constant for CO2 (Kc), leading 124 

to the belief that Rubisco kinetics are heavily constrained within a low-dimensional 125 

landscape (Tcherkez et al., 2006, Savir et al., 2010). However, recent work highlighted the 126 

importance of phylogenetic constraints for Rubisco kinetics suggesting that  closely related 127 

species are more likely to have similar kinetics (Flamholz et al., 2019, Bouvier et al., 2021); 128 

but see exceptions driven by a rapid evolution within recent adaptive radiations (Kapralov 129 

and Filatov, 2006, Kubien et al., 2008, Kapralov et al., 2011, Galmés et al., 2014a) Thus, 130 

similarity of Rubisco sequences might be among the many features that GPs with protein 131 

encoding schemes may use for interpolating uncharacterised Rubisco kinetics.  132 

Here, we trained GPs with either a learned encoding scheme or classical encoding scheme 133 

on form IB Rubisco sequence and kinetic data from C3 and C4 plant species. We evaluated 134 

the performance of the ML frameworks using leave-one-out cross validation and found that 135 

the GPs with the learned encoding scheme outperformed the classical encoding scheme. 136 

Next, we subjected the GPs with the learned encoding scheme to another validation 137 

framework to detect overfitting. This involved removing species sharing the same genus 138 

during model training and using the unseen genus group to assess model performance; from 139 

here on referred to as ‘leave-genus-out’ cross validation. We found that the GPs with a 140 

learned encoding scheme generalised across plant genera well. Finally, we wanted to 141 

validate hundreds of predictions without experimental data. One strategy of doing this was 142 

grouping predictions by photosynthesis metabolism type and taxonomical group for which 143 

mechanisms have been hypothesised to constrain Rubisco kinetics.  144 

  145 
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Methods 146 

Rubisco kinetics and sequence data 147 

Rubisco large subunit harbouring the catalytic site is encoded by the RbcL gene ,which 148 

therefore has a major influence on Rubisco kinetic properties (Kellogg and Juliano, 1997, 149 

Camel and Zolla, 2021). 165 C3 and C4 plant Rubisco in vitro Kcat values (25OC pH near 8), 150 

170 in vitro Sc/o values and 170 in vitro Kc values as well as corresponding RbcL 151 

sequences were obtained from literature (Jordan and Ogren, 1983, Lehnherr et al., 1985, 152 

Uemura et al., 1997, Kubien et al., 2008, Savir et al., 2010, Viil et al., 2012, Galmés et al., 153 

2014a, Galmes et al., 2014, Hermida-Carrera et al., 2016, Prins et al., 2016, Sharwood et 154 

al., 2016, Long et al., 2018, Flamholz et al., 2019). If studies reported overlapping in vitro 155 

kinetic data, the duplicate from the most recent study was kept and the other duplicate(s) 156 

discarded.  Additional corrections were made to the data as follows: Standard errors (SE) 157 

with reported kinetic values such as Kcat, Kc and Sc/o were converted to standard 158 

deviations (SD) using the number of species and/or replicates. When the number of 159 

replicates and/or species were not reported, the number of measurements were assumed to 160 

be from one sample. When the number of replicates and/or species were reported as a 161 

range (e.g. n= 6-10) the mean number of samples was taken. Kc measurements under 162 

anoxygenic conditions were adjusted to ambient O2 conditions (Kc21%O2) using the following 163 

equation: Kc21%O2 = KcO%O2 ∙ (1 + O2
Ko

) (Von Caemmerer, 2000). Where ‘Kc0%O2 ‘ refers to Kc 164 

measured under anoxygenic conditions, ‘O2’ refers to the ambient O2 level and ‘Ko’ refers to 165 

the Rubisco Michaelis-Menten constant for O2 (μM). 166 

Model setup 167 

Figure 1 shows a schematic diagram of the ML procedure. Just like a simple linear model, a 168 

GP can be used for regression or classification tasks (Rasmussen and Williams, 2006, 169 

Garnett, 2022). Here, since kinetics are continuous variables a GP regression was used. All 170 

ML tasks were performed using the python ‘GPflow’ module (version 2.1) and packaged into 171 

user-friendly Google COLAB notebooks (https://github.com/Iqbalwasim01/Mining-Rubisco-172 

kinetics.git) (Matthews et al., 2017).  173 

Protein encoding scheme 174 

Two protein encoding schemes were tested before choosing a final encoding scheme. The 175 

classical encoding scheme (or one-hot encoding) expresses each amino acid as a 20 digit 176 

vector with the value ‘1’ indicating the identity and position of the current amino acid out of 177 

20 other amino acid types ,which are represented with the value ‘0’ (Yang et al., 2018, 178 

Bonetta and Valentino, 2020, Elabd et al., 2020). The one-hot encoding is a relatively sparse 179 

https://github.com/Iqbalwasim01/Mining-Rubisco-kinetics.git
https://github.com/Iqbalwasim01/Mining-Rubisco-kinetics.git
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and memory inefficient representation of protein sequences. For example, an RbcL with a 180 

length of 450 amino acids would result in a 9000 length vector. Further, ‘one-hot encoding’ 181 

requires that all RbcL sequences are aligned to the same length and each time a new 182 

sequence is added the alignment procedure must be repeated. Here, an alignment 183 

procedure was performed using the ‘msa’ R package with the ‘clustal omega’ alignment 184 

algorithm (Bodenhofer et al., 2015).  185 

On the other hand, the learned encoding scheme takes inspiration from natural language 186 

processing and involves a semi-supervised ML model, learning basic underlying laws or 187 

rules of protein sequences that allow proteins to carry out a biological function (Yang et al., 188 

2018, Bonetta and Valentino, 2020, Elabd et al., 2020, Wittmann et al., 2021). The Rives et 189 

al. (2021) learned encoding scheme also known as ESM-1b based on a neural network with 190 

a transformer architecture was adopted . Previous studies have shown that it predicts 191 

residue-residue contacts and secondary structure better than other transformers (Rao et al., 192 

2019, Elnaggar et al., 2021). The learned  encoding scheme summarised each RbcL 193 

sequence as a vector of length 1280. Once the RbcL sequences have been converted to 194 

either the classical or learned encoding, the encodings served as the direct inputs into the 195 

GP regression (Figure 1).   196 

GP covariance structure 197 

A GP regression defines a distribution over functions linking data inputs (e.g. RbcL 198 

sequence encodings) with labels (e.g. kinetics). The functions are encoded by a kernel 199 

function represented as a covariance matrix and mean ,which measure the similarity or 200 

nearness of input data (Rasmussen and Williams, 2006, Garnett, 2022). The kernel function 201 

makes the basic assumption that data inputs (e.g. RbcL sequences) ,which are closely 202 

related are more likely to have similar labels but some additional prior knowledge is required 203 

such as whether the functions are linear, smooth or rough. When the underlying nature is 204 

unknown a popular choice of kernel is the non-linear ‘Matern 5/2’ kernel ,which was used 205 

here (Rasmussen and Williams, 2006). A linear kernel function was also tested to 206 

demonstrate the need for the non-linear Matern 5/2 kernel.  When data inputs consist of 207 

more than one numerical value, the kernel can be applied to each numerical value position 208 

allowing the GP regression to learn across multiple input positions  known as an ‘additive 209 

kernel’ (Duvenaud et al., 2011). For instance, many phenomenon depend on the sum of 210 

parts such as the value of a car ,which can be better approximated by the sum of prices of 211 

individual car parts.  Similarly, the  amino acid sites in a protein sequence may convey 212 

greater information when protein sequences share a high degree of overall structural 213 

similarity.  Therefore, this study first applied the kernel function to each learned encoding 214 

input position or classical encoding alignment position i.e. 𝐾𝐾 = 𝑘𝑘(𝑥𝑥1) + 𝑘𝑘(𝑥𝑥2) … (Figure 1). 215 
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The performance with an additive kernel was then compared to a single kernel where the GP 216 

depends on all input positions simultaneously i.e. 𝐾𝐾 = 𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … ). The  reason for testing 217 

both kernel configurations is that if the encodings consist of many low-order interactions, the 218 

additive kernel can exploit this and improve model performance (e.g. see Figure 5 Duvenaud 219 

et al. (2011)), if not both the additive and single kernel configurations should give similar 220 

performance. Finally, during training the kernel hyperparameters such as the length scale ‘𝑙𝑙′ 221 

and/or variance ′σ2′ were tuned to maximise the probability of observing the data points 222 

known as the marginal likelihood. Predictions for new data inputs were then obtained from 223 

drawing samples from the trained GP. 224 

Leave-one-out cross validation 225 

Performance of the GP regression was assessed using leave-one-out cross validation. 226 

Generally, any cross-validation involves splitting a dataset into training and testing datasets. 227 

The training dataset with input data (e.g. RbcL sequence encodings) and labels (e.g. 228 

kinetics) is used to fit the GP regression model parameters and the testing dataset with input 229 

data and labels is used to assess the performance of the trained GP regression to unseen 230 

data. Leave-one-out cross validation as the name implies involves holding out one labelled 231 

data input out of the training dataset and using the remainder of the dataset for fitting the GP 232 

model parameters and predicting the unseen labelled data input that was left out. For 233 

example, if a dataset consists of 170 data inputs with labels, the model would be trained on 234 

169 data inputs with labels and the data input and label that was omitted would serve as the 235 

testing data set.  Leave-one-out cross validation is carried out on each labelled data input, 236 

leaving a different  labelled data input  out of the training dataset each time. The predictions 237 

are gathered and performance metrics such as coefficient of determination (R2) and mean 238 

absolute error (MAE) are calculated with the experimental data.  239 

Leave-genus-out cross validation 240 

The leave-one-out cross-validation aims to reduce the chance of model overfitting and 241 

provide a depiction of model performance to unseen data. We know patterns or biases can 242 

arise from training models on similar datasets that could give a misleading picture of model 243 

performance. For instance, it is well known that form IB Rubiscos from the same genus can 244 

have similar sequences and kinetic properties (Hermida-Carrera et al., 2016, Orr et al., 245 

2016). This could have led to overoptimistic performance metrics during leave-one-out cross 246 

validation because at least one form IB variant from the same genus would have been left in 247 

the training dataset during model training.  To see if the GP regression generalises across 248 

genera, attempts were made to split the data equally while ensuring that a genus group was 249 

left out of the training set each time. However, each genus group had unequal species 250 
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numbers ,which made it difficult to create equally distributed testing/training splits while 251 

ensuring non-overlapping genus criteria. Instead, educated splits between the data were 252 

made by leaving a genus group out of the training data and then testing of the model on this 253 

omitted genus group. While the R2
 metric was used in the leave-one-out cross validation for 254 

assessing performance, it is not suitable for assessing all areas of predictive performance 255 

because it scales with the size of the dataset (i.e. the more data points there are the less 256 

sensitive the R2 metric is to changes) and assumes values are strictly monotonically 257 

associated. Because each genus group contained unequal species numbers, were small 258 

and predictions may not be normally distributed or monotonically associated with 259 

experimental values, model performance was assessed with the MAE metric as well as 260 

direct comparison with the experimental means ± SD.   261 

Benchmarking GP uncertainty estimates 262 

A benefit of a GP is that a ′σ2′  estimate is provided with each prediction, which allows users 263 

to identify predictions with a high chance of being different from the training dataset. In other 264 

words, the lower the predicted σ2 the nearer the prediction is to an example found in the 265 

training dataset. However, the GP σ2 parameter is not explicitly dependent on the labels (i.e. 266 

kinetics) and is actually dependent on the data inputs (e.g. see equation 24 Deringer et al. 267 

(2021)). During training, the σ2 parameter is implicitly mapped to the data labels via 268 

hyperparameter optimisation. Because the σ2 parameter is a trainable part of the model, the 269 

reliability of the σ2  estimates must be assessed against test data. Here, the quality of the 270 

predicted σ2 estimates from cross validation was first assessed using the spearman rank 271 

correlation with the true errors (i.e. absolute errors between actual mean values and 272 

predicted mean values) (Greenman et al., 2022). Secondly, we assessed if the actual mean 273 

values fall within the 95% predicted confidence intervals (CIs) (±2𝜎𝜎) as demonstrated by  274 

Kompa et al. (2021) . This method involves two metrics: ‘coverage’, which is if the actual 275 

mean value falls within the predicted 95% CI and ‘width’, which is the full range of the 276 

predicted 95% confidence interval (4𝜎𝜎).  277 
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t-distributed stochastic neighbour embedding (t-SNE) 278 

In this study protein encoding schemes convert protein sequences from their widely used 279 

amino acid format to sequences of numbers ,which cannot be understood using 280 

conventional protein sequence analysis methods such as multiple sequence alignments. To 281 

investigate how protein encoding schemes portray proteins, which ultimately determine their 282 

fate for prediction tasks, a dimensionality reduction method called t-distributed stochastic 283 

neighbour embedding  (t-SNE) was applied (Maaten and Hinton, 2008). t-SNE projects the 284 

protein encodings into two-dimensions ,which allows patterns/clustering arising from the 285 

protein encodings to be visualised. t-SNE was performed on the RbcL classical and learned 286 

encodings with a perplexity of 20 and default learning rate  parameters using the ‘sci-kit 287 

learn’ python module (version 1.0.2) (Pedregosa et al., 2011).  288 

Assessing RbcL sequence-space predictions with trait data 289 

Wild-type RbcL sequences from non-redundant protein databases were obtained (n 35,413) 290 

from a recent search (Davidi et al., 2020). Unknown species, sequences with lengths >500 291 

or <450 and duplicates entries were omitted leaving 13,124 unique RbcL sequences. 9052 292 

RbcL sequences identified as land plants (Embryophyta) remained. Using the fully trained 293 

GPs with the chosen encoding scheme, Rubisco kinetic predictions were obtained for 9052 294 

land plants. Predictions were grouped by plant photosynthetic type (C3, C4 or CAM) and 295 

taxonomical group (Angiosperms, Bryophytes, Gymnosperms, and “Ferns”, the latter is a 296 

group that included Pteridophyta and Lycopodiophyta). Differences between groups were 297 

assessed using one-way ANOVA and Duncan’s post hoc test with the ‘DescTools’ R 298 

package (version 0.99.44).   299 

While the sequence criteria of <500 and >450 was used to remove incomplete sequences, 300 

some sequences may still have several amino acids missing from the N-terminus and/or C-301 

terminus or ambiguous amino acids ,which could have led to high predicted σ2.  To see if 302 

such sequences affected the distribution of predictions, predictions were restricted based on 303 

σ2 estimates selected from cross validation if the σ2 estimates were well calibrated.  304 

Otherwise, the influence of outliers was assessed by  removing predictions outside the 305 

training dataset ranges. Predictions were grouped by plant photosynthetic type  and 306 

taxonomical group as described before. 307 

  308 
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Results 309 

GP performance with a learned encoding scheme compared with a classical encoding 310 

scheme 311 

GPs with the learned encoding and classical encoding schemes were trained on form IB 312 

RbcL sequence and kinetic data. The performance of the two encoding schemes applied to 313 

a single and additive kernel configuration was assessed (Figure S1-S3). The GPs with the 314 

learned encodings applied to an additive non-linear Matern 5/2 kernel  had the highest   315 

predictive ability (Figure 2) (R2 0.79-0.86) compared with the classical encodings (R2 0.60-316 

0.74) and other kernel configurations (Figure S1-S3). These results justified the adoption of 317 

the learned encodings with the non-linear Matern 5/2 additive kernel  for the final models 318 

(Figure 2).  319 

GP performance with the learned encoding scheme for numerous plant genera 320 

Form IB Rubisco variants included as part of the training data could have led to 321 

overoptimistic performance metrics shown in Figure 2 because at least one form IB Rubisco 322 

from the same genus may have been left in the training dataset during model training. Here, 323 

the GPs with the learned encoding scheme were assessed using another validation 324 

framework. This time form IB Rubiscos sharing the same genus were omitted from the 325 

model during training.  The remaining data was used to train the model and the omitted 326 

genus group was used to assess the model performance. 327 

The GPs with the learned encoding scheme displayed excellent performance. The majority 328 

of genus groups had Kcat predictions with a MAE <0.5 s-1 (Figure S4), Kc21%O2 predictions 329 

with a MAE <4.00 μM (Figure S5) and Sc/o predictions with a MAE <7.00 mol mol-1 (Figure 330 

S6).  331 

Visualisation of the RbcL learned and classical encodings used during GP training 332 

To investigate how the GPs learned to predict form IB kinetics, the RbcL sequence classical 333 

and learned encodings used for model training were visualised using t-distributed stochastic 334 

neighbour embedding (t-SNE) (Figure 3 and Figure S7). Both the classical and learned 335 

encodings show some sequences with higher Kcat, Kc21%O2 and Sc/o cluster together and 336 

some sequences with lower Kcat, Kc21%O2 and Sc/o cluster together.  Differences between 337 

the RbcL classical and learned encodings are unclear for Kc21%O2 and Sc/o but more 338 

clustering in the learned encodings than the classical encodings can be seen for Kcat.  339 

  340 
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Assessing GP uncertainty estimates 341 

Generally, it is assumed that GP predictions with high σ2 most likely arises from parts of the 342 

trained GPs from which less or less similar training data was included. However, because 343 

the σ2 estimates are a trainable part of the model, the reliability of the predicted σ2 was 344 

assessed before guiding the selection of appropriate predictions.  345 

Figure S8 and S9 demonstrates correlations between predicted σ2 estimates and true error 346 

from leave-one-out and leave-genus out cross validation. No clear trend was observed 347 

between predicted σ2 estimates and true error. Figure S10 shows uncertainty from leave-348 

genus-out cross validation assessed using coverage and width. Most genus groups exhibit 349 

high coverage and varying average width (4σ) but some do not. As predicted mean values 350 

become increasingly out of distribution, ideal models should increase width indicating model 351 

uncertainty while coverage remains high.  352 

Assessing RbcL sequence-space predictions with trait data 353 

The final goal was to screen the kinetic properties of thousands of Rubisco variants in silico 354 

using the GPs with the learned encoding scheme.  Predictions were made for 9052 unique 355 

RbcL sequences encoding Rubisco proteins from land plants. Grouping predictions by 356 

photosynthesis metabolism type revealed significant differences between Kcat, Sc/o and 357 

Kc21%O2 of C3, C4 and CAM groups (Figure S11). Grouping predictions by taxonomical group 358 

revealed significant differences between most groups except the Kcat of angiosperms and 359 

ferns, and Kc21%O2 of gymnosperms and bryophytes (Figure S12). 360 

Because the predicted σ2 estimates from  cross validation showed no clear trend (Figure S8-361 

S10), a criteria for determining the quality of predictions in the absence of experimental data 362 

could not be specified. Instead, the influence of outliers was assessed by removing 363 

predictions outside the ranges of the training dataset. Most kinetic predictions were within 364 

the range for Kcat (1.4, 7.1), Kc21%O2 (7, 42) and Sc/o (58, 121). (Figure 4 vs Figure S11, 365 

Figure 5 vs Figure S12). The overall trend in kinetics remained the same as before. For 366 

instance, Rubiscos from CAM and C4 plants have a higher median Kcat than Rubiscos from 367 

C3 plants. Similarly, the overall trend remained the same when grouping predictions by 368 

taxonomical type. For instance, angiosperms and ferns have a higher median Kcat than 369 

bryophytes and gymnosperms.  370 

  371 
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Discussion 372 

This work presents a useful tool for screening and predicting plant Rubisco kinetics for 373 

engineering efforts as well as for fundamental studies on Rubisco evolution and adaptation. 374 

Advancements in protein language modelling has allowed the exploitation of existing plant 375 

Rubisco data for predicting Rubisco kinetics in silico. Further, our predictions followed well 376 

established trends observed by previous studies in plants with different photosynthetic types 377 

without a priory knowledge. For example, generally Rubiscos from C4 plants have a higher 378 

Kcat, Kc21%O2 and lower Sc/o than Rubiscos from C3 plants (Galmés et al., 2014b, Galmés et 379 

al., 2015, Hermida-Carrera et al., 2016, Prins et al., 2016, Galmés et al., 2019, Iñiguez et al., 380 

2020). In contrast, CAM plants have a similar mean Kcat to that of C4 plants (Hermida-381 

Carrera et al., 2020, Iñiguez et al., 2020). 382 

The kinetic properties of modern Rubiscos are believed to be shaped by changes in 383 

atmospheric CO2 and O2 concentrations and temperature over time (Tcherkez et al., 2006, 384 

Savir et al., 2010, Studer et al., 2014, Hermida-Carrera et al., 2016, Cummins et al., 2018, 385 

Tcherkez et al., 2018, Moore et al., 2021). C4 and CAM plants both possess CCMs that 386 

enhance CO2 concentration near the Rubisco active site (Raven and Beardall, 2014, Raven 387 

et al., 2017, Young and Hopkinson, 2017, Ruban et al., 2022). CCMs in C4 and CAM plants 388 

may have first arisen in high O2/CO2 ratio environments and a decrease in O2/CO2 ratio over 389 

several million years led to the present day maintenance of high Kcat values to cope with 390 

higher mesophyll CO2 concentrations (Cc) (Iñiguez et al., 2020). Because both C4 and CAM 391 

plants are also found in high temperature environments, CCMs also help concentrate CO2 392 

near the active site when the gas solubility of atmospheric CO2/O2 ratio decreases with 393 

increasing temperature (Raven et al., 2017, Iñiguez et al., 2020). Despite the presence of 394 

CCMs in both C4 and CAM plants and similar mean Kcat values, both groups had 395 

significantly different mean Kc21%O2 and Sc/o. C4 plants may have evolved higher Kc21%O2 and 396 

lower Sc/o because of the adoption of the CCMs led to a reduced requirement for a higher 397 

Sc/o and lower Kc21%O2 (Iñiguez et al., 2020). On the other hand, unlike C3 and C4 plants, 398 

CAM plants have evolved to fix CO2 over the course of a day in phases and are commonly 399 

found in drier climates (Leverett et al., 2021, Ruban et al., 2022). One possibility is that the 400 

temporal separation of CAM CO2 fixation may hinder the use of CCMs during some periods 401 

leading to the requirement for a similar mean Sc/o to that of C3 plants and lower mean 402 

Kc21%O2 (Iñiguez et al., 2020).  403 

Additionally, land plant Rubiscos are characteristic of the ecological or taxonomical group 404 

from which they originated (Figure 5) (Galmés et al., 2014b).  For instance, angiosperms has 405 
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the largest distribution in kinetics because it is the largest and most diverse group of land 406 

plants comprising Rubiscos from C3, C4 and CAM plants.  407 

What is unclear is how the GPs mapped the Rubisco sequence-function landscape. 408 

Projecting the classical and learned encodings suggests that some encodings with similar 409 

kinetics cluster together but some do not (Figure 3 and S7). Instead, the GPs may have 410 

found something ‘deeper’ about the relationship between RbcL encodings and kinetics 411 

during training. During training, when a single kernel function was applied over all encoding 412 

input positions the models performed poorly compared with an additive kernel. This suggests 413 

a complex relationship which depends on the sum of small functions rather than on a single 414 

large modelled function.  415 

There are several strengths and limitations of the techniques used in this study. Firstly, one 416 

can assume that the training dataset only represented a fraction of all land plant Rubisco 417 

diversity. As a starting point the first logical step was to test the model on this currently 418 

available data before spending more time and resources on creating a more 419 

comprehensively rich training dataset that may reveal more subtle parts of the sequence-420 

function landscape (Hsu et al., 2022).  In fact, when removing predictions outside the ranges 421 

of the training dataset (e.g. Figure 4 vs Figure S4) there was no change in the kinetic trends 422 

suggesting predictions for most land plant Rubiscos are similar to the training dataset. We 423 

would be cautious about extending the current trained models to other Rubisco forms such 424 

as those found in bacteria and archaea, which exhibit greater sequence and kinetic diversity 425 

than form IB Rubiscos. For example,  Davidi et al. (2020) identified form II Rubiscos with the 426 

fastest having a Kcat of 22 s-1 which is far greater than all known plant Rubiscos. As more 427 

experimental data becomes available we expect models on more Rubisco forms to be built. 428 

Secondly, the models in this study assumed that features of the RbcL determines the kinetic 429 

properties of form IB Rubiscos. While over the past few years this assumption is largely 430 

thought to be true because a) the active site is encoded by the RbcL sequence and b) the 431 

RbcL sequence is largely conserved over time as chloroplast-encoded genes evolved slower 432 

than nuclear-encoded genes (Kelly, 2021).  It is now well established that the Rubisco small 433 

subunit encoded by the RbcS gene can influence catalysis too (Spreitzer et al., 2005, 434 

Genkov and Spreitzer, 2009, Atkinson et al., 2017, Martin-Avila et al., 2020, Lin et al., 2021, 435 

Sakoda et al., 2021). It would be interesting to see if incorporating RbcS sequences 436 

alongside RbcL sequences could improve the predictive power of our models.  However, 437 

incorporating the RbcS in silico is further complicated by the existence of multiple RbcS 438 

genes located in the nucleus and different nuclear-encoded RbcS genes differentially 439 

influencing Rubisco kinetics in the same plant (Khumsupan et al., 2020, Martin-Avila et al., 440 

2020). Further, the models in this paper can be used in thought experiments to predict the 441 
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kinetics of novel Rubisco variants created in silico by manipulation of the Rubisco sequence 442 

potentially creating better enzymes. Lastly, the learned encoding scheme adopted in this 443 

study was a pre-trained neural network capable of predicting protein sequence features 444 

across numerous protein families without any knowledge of Rubisco kinetics. In future, we 445 

aim to improve model performance by making the neural network of the learned encoding 446 

scheme a trainable part of the GP models (also known as end-to-end learning) i.e. fine-tune 447 

the learned encoding scheme specifically for Rubisco sequence-function tasks.  448 

Conclusion 449 

Overall, this study is the first to demonstrate the prediction of land plant Rubisco kinetics 450 

from RbcL sequence data. This study provides plant biologists with a pre-screening tool for 451 

highlighting Rubisco species exhibiting better kinetics for crop engineering efforts. Going 452 

forward we expect more experimental data to become available, which will facilitate the 453 

development of richer models.   454 
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Figure 1. Schematic diagram showing steps involved in training a Gaussian process (GP) 743 

regression. (A) Rubisco large subunit (RbcL) sequences can be converted to either a binary 744 

representation (classical encodings) which explicitly represents the amino acids or learned 745 

encodings (such as: Rives et al. (2021)) which involves another machine learning method- 746 

learning key features of each sequence (such as physiochemical properties or secondary 747 

structures) and storing these features as numerical vectors. The encoded RbcL sequences 748 

are stored in a kernel which describes the similarity between the encoded sequences. A 749 

kernel function can be applied to each input feature of the encodings. For example, 𝑘𝑘(𝑥𝑥1) 750 

would encode the first numerical input for the learned encodings or the first alignment 751 

position for the classical encodings. Alternatively, input features can vary simultaneously 752 

using a single kernel function. (B) During model training, hyperparameters such as the 753 

length scale (𝑙𝑙) and/or variance (𝜎𝜎2)  are optimised to find functions ( 𝑓𝑓(𝑥𝑥) ) that describe the 754 

relationship between the RbcL encodings and associated labels (e.g. turnover rate: Kcat). 755 

The 𝑙𝑙  describes the horizontal distances between 𝑓𝑓(𝑥𝑥) , and 𝜎𝜎2  the vertical distance (i.e. 756 

noise and signal). As such, GPs provide a flexible framework for explaining numerous 757 

relationships. 758 

 759 

Figure 2. Comparison between predicted and actual carboxylation turnover rate (Kcat : s-1), 760 

Michaelis-Menten constant for CO2 at ambient O2 (Kc21%O2: µM) and specificity for CO2 over 761 

O2 (Sc/o: mol mol-1) at 25OC. Determined using leave-one-out cross-validation with the 762 

learned encoding scheme (Rives et al., 2021) (green) and classical encoding scheme 763 

(orange). The better performance of the learned encoding with an additive non-linear kernel 764 

justified the adoption of this method over classical for the final machine learning tasks. 765 

 766 

Figure 3. Visualization of the Rubisco large subunit (RbcL) learned encodings used in the 767 

fully trained Gaussian process (GP) models. Each data point represents an RbcL learned 768 

encoding with (A) carboxylation turnover rate (Kcat: s-1), (B) Michaelis-Menten constant for 769 

CO2 at ambient atmospheric O2 (Kc21%O2: μM) and (C) specificity for CO2 over O2 (Sc/o: mol 770 

mol-1). 771 
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 773 

Figure 4. Box plots depict (A) carboxylation turnover rate (Kcat: s-1), (B) Michaelis-Menten 774 

constant for CO2 at ambient atmospheric O2 (Kc21%O2: μM) and (C) specificity for CO2 over 775 

O2 (Sc/o: mol mol-1) predictions made for the form IB (plants) Rubisco large subunit (RbcL) 776 

sequence-space using the fully trained Gaussian process (GP) models with the learned 777 

encoding scheme. Shown are predictions within the ranges of the training dataset for Kcat 778 

(1.4, 7.1), Kc21%O2 (7, 42) and Sc/o (58, 121). Predictions were grouped by photosynthesis 779 

metabolism type (C3, C4 or CAM). Box plot horizontal lines show the median value, and the 780 

box and whisker represent the 25th and 75th percentile and minimum to maximum 781 

distributions of the data. Significant differences from the one-way ANOVA with Duncan’s 782 

post hoc test are shown for groups: *** p<0.001, ** p<0.01, * p<0.05, n.s., non significant. 783 

 784 

Figure 5. Box plots depict (A) carboxylation turnover rate (Kcat: s-1), (B) Michaelis-Menten 785 

constant for CO2 at ambient atmospheric O2 (Kc21%O2: μM) and (C) specificity for CO2 over 786 

O2 (Sc/o: mol mol-1) predictions made for the form IB (plants) Rubisco large subunit (RbcL) 787 

sequence-space using the fully trained Gaussian process (GP) models with the learned 788 

encoding scheme. Shown are predictions within the ranges of the training dataset for Kcat 789 

(1.4, 7.1), Kc21%O2 (7, 42) and Sc/o (58, 121). Predictions were grouped by taxonomical type 790 

(Angiosperms, ‘Ferns’ (including Pteridophytes and Lycopodiophytes), Gymnosperms or 791 

Bryophytes). Box plot horizontal lines show the median value, and the box and whisker 792 

represent the 25th and 75th percentile and minimum to maximum distributions of the data. 793 

Significant differences from the one-way ANOVA with Duncan’s post hoc test are shown for 794 

groups: *** p<0.001, ** p<0.01, * p<0.05, n.s., non significant. 795 
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