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ABSTRACT

ABSTRACT

Machine learning techniques are becoming more prevalent in chemistry research as they
offer an effective approach for handling large, complex chemical datasets generated from
high-throughput experiments and molecular simulations. To gain a comprehensive under-
standing of datasets, it is crucial to employ efficient methods for data representation and
analysis. This PhD project utilized classical machine learning algorithms to effectively
visualize high-dimensional chemical data, ascertain connections between chemical struc-
ture and properties, facilitate the discovery of novel organic catalysts, and developing a
machine learning potential to describe intermolecular interactions.
The primary application of machine learning involves examining a large, intricate database
of multidimensional organic molecular crystal structures generated through previous re-
search conducted by our group. By applying unsupervised learning techniques to calcu-
lated pore descriptors, a set of ‘landmark’ structures was identified systematically from the
dataset. The two-dimensional embedding of these structures became human interpretable
after employing dimensionality reduction algorithms. Additionally, an interactive web ex-
plorer was developed to facilitate data sharing and to showcase the findings of the study.
To speed up the discovery of organic molecular crystal structure calculations, a machine
learning force field based on TorchANI was developed to describe the intermolecular in-
teractions.
Then, a combination of machine learning and high throughput experimentation of organic
photocatalysts was used to visualize, interpret, and reveal the feature-activity correlations.
This study visually mapping the relationship between structure and hydrogen evolution ac-
tivity correlations by using unsupervised learning techniques. A virtual experiment was
conducted on the aforementioned measured dataset, demonstrating that the use of algo-
rithms as an experimental advisor can significantly reduce the cost of conducting experi-
ments. In order to leverage the benefits of algorithmic assistance in catalyst discovery, a
closed-loop discovery strategy was applied by integrating Bayesian optimization to iden-
tify promising organic photoredox catalysts (OPCs) from a set of 560 designed candidate
molecules and to determine their optimal reaction conditions. The identified OPC formu-
lation was found to be competitive with iridium catalysts at high nickel concentrations and
outperformed iridium catalysts at lower nickel concentrations.
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ABSTRACT

Through the completion of the above research projects, I developed an interactive web ex-
plorer that utilizes machine learning techniques to view large organic molecular datasets
and extended the ANI machine learning potential to describe the organic intermolecular
interactions. I also explored the structure-properties relationships of organic photocata-
lysts and employed Bayesian optimization in routine laboratory procedures to guide the
discovery of catalysts. Overall, these studies make a step forward the machine learning as-
sisted discovery of organic materials allowing chemists to systematically consider a much
broader chemical space than than previously possible.

Keywords: machine learning; machine learning potential; data visualization; Bayesian
optimization; Gaussian processes; photocatalyst
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CHAPTER 1 INTRODUCTION

1.1 Machine learning sparks in chemistry

Looking for a pattern of mapping chemical structures to desired properties is one of the

major expectation of computational chemists. Based upon derivations of classic chemical

theory, the background knowledge from experiments, and chemical intuition, traditional

chemical discovery relied increasingly on the rapid evolution of experimental data and

the use of computers.1-3 As large dataset generated by experiments or computational, an

experienced chemist may have the insight into the complex chemical results, but it needs

decades training and research whereas machine learning (ML) model as a statistic tool

has the ability to accelerate this discovery and determine psychical laws without human

intuition.4-10 The classic material research based on the knowing chemical knowledge can

be considered as the ‘First generation’ of exploration approach.11 Future development of

equipments drives the high throughput experiment and computation to boost the discovery

process as the ‘Second generation’, whereas the emerging ML workflow can corporate

prior knowledge and the advantage of statistic leads the ‘Third generation’ procedure,2,11

as illustrated below:

Figure 1.1 Evolution of the research workflow in material discovery
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With increased availability of datasets generated and collected in high-throughput simula-

tions and experiments, machine learning techniques have emerged as promising avenues

of probing and understanding the rich information4,12-13 and structure-property relation-

ships,14 as well as assisting experiments,15-19 by discovering hidden patterns in the vast

amount of data. A typical workflow of data-driven material discovery, comprising data

acquisition (either generated on the fly or retrieved from existing databases), fertilisation,

machine learning and visualization. Such exercises can be conveniently (semi-)automated

by scripting and using open-source software such as matminer.20 These data-driven ap-

proaches hold the promising towards speeding up both the experimental chemical dis-

covery, and theoretical modelling, so that chemists can quickly gain insights into the

designed or screened chemical spaces,21 discover structure-properties relationships,22

and be guided by closed-loop autonomous evolution beyond their general chemical in-

tuition.23-27

1.1.1 Machine learning predictions based on data from quantum cal-

culations

There always exist two contradictory requirements in computational chemistry: accuracy

simulation of electronic features and short timescales. The high level electronic struc-

ture calculation requests heavy computation resources and fast modelling techniques such

as force filed only have rough estimation of the molecular potential energy surface.28

Such gap can be fill by developing ML techniques that combine electronic structure cal-

culations and statistical analysis tools. For example, von Lilienfeld and co-workers29-31

have demonstrated that machined learned models, using large datasets, can recover what

is absent between two different levels of theory, delivering a computational framework

that achieves quantum chemical accuracy at a fraction of its normal computational cost.

One major development is artificial neural network potential (ANN),32-34 which increased
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the accuracy of the force filed by transfer learning approaching CCSD(T) level.35 Addi-

tionally, various machine learning (ML) algorithms have been employed in the develop-

ment of machine learning force fields, such as ‘Gaussian-Approximated Potential’ (GAP)

method,36-37 based on Gaussian process regression (GPR). Another approach of simulat-

ing interatomic potential is achieved by physically informed neural network that increase

the transferability of ML potentials to unknown structures.38 Those algorithms require

advanced representation of chemical structure to capture the intricate interatomic interac-

tions.39-40

In addition to the development of an accuracy machine learning force field, another area

where these methodologies find application is in the field of in-silico crystal structure

prediction (CSP).41-42 This application aims to support process risk management and fa-

cilitate the rapid screening of potential materials, particularly during the initial stages of

crystallization process development in the pharmaceutical industry. Machine learning

techniques have the potential to effectively address the challenge posed by the vast search

space resulting from the increasing number of configurations.43 In general, an ML model

can predict the crystal lattice energies from crystal structures using 1/544 to 1/1000045

time compared with expensive density functional theory (DFT) calculations based on the

symmetry functions and ANN model.32,34,46 Recently, Wang, Wang, Zhao, Du, Xu, Gu,

and Duan developed a molecular dynamics graph neural network that incorporates high-

order terms of interatomic distances. This network successfully reproduces the force fields

of molecules and crystals derived from both classical and first-principles molecular dy-

namics simulations.

Another application including the prediction of functional materials properties using ma-

chine learning can be driven back to 1990s, where new magnetic and electro-optical ma-

terials with specific crystal structures were predicted.48 However, there has been a sub-

stantial increase in the number of studies in this field since 2010.49-50 Graph based neural
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networks show great promise for property predictions of crystalline materials.51-52 The

prediction of lattice parameters,53 formation energies,54 structure-energy-property rela-

tionships of molecular crystals,55 and infrared spectra56 can be achieved via in-silico. For

example, Xie and Grossman used crystal graph convolutional neural networks to predict

eight different properties of crystals including formation energy, absolute energy, Fermi

energy, band gap etc. Similarity, various properties of inorganic crystals were predicted

using a gradient boosting decision tree.57 These properties include metal/insulator classi-

fication, bandgap energy, bulk/shear moduli, Debye temperature, and heat capacities. The

developed model achieved a high prediction accuracy ranging from 88% to 95%.

The majority of machine learning studies on crystal solids have primarily focused on a

specific type of crystal structure. This is primarily due to the challenge of representing

crystalline solids in a format that can be readily utilized by statistical learning algorithms.

By concentrating on a single structure type, the representation is inherently integrated

into the model. However, the development of flexible and transferable representations is

an important research area within machine learning for crystalline solids.

1.1.2 Machine learning for high throughput materials discovery

Except in-silico design of material discovery, ML methods have been increasingly applied

to complement experiments when studying complex chemical systems, as exemplified by

accelerated discoveries of drugs,58 catalysts,14,59-64 adsorbent materials,65 and batter-

ies.66 Both generating predictive models and gaining physical insights are essential tasks:

the former allows for fast, in silico pre-evaluation of potential candidates through quan-

titative prediction, qualitative ranking or coarse-grained filtering; the latter is important

for probing and understanding the relationship between a material’s structure or physic-

ochemical characteristics and its functional properties or activities. Classic ML models

help to get reliable relationships by extracting the features importance and make algo-
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rithms interpretable. Since AlphaGo, a computer program that plays the board game Go,

defeated the word champion Lee Sedol in March 2016,67 the explosive development and

deployment of deep learning, also in the form of deep neural networks, has catalysed

technological revolutions in many research areas. Computer assisted synthesis planning

with neural networks demonstrates the success of artificial intelligence (AI) in guiding

chemists to find better synthetic routes.5 DL models are trained to predict chemical reac-

tions from reactants to products,68 following the principles of language translation, using

sequence-to-sequence neural networks.

The timescale of developing new materials from chemistry laboratory to a practical ap-

plication can easily be decades.7,69 A typical, current, integrated approach to functional

material discovery starts with researchers coming up with a new material concept and

predicting the performance metric, then proceeds to laboratory synthesis and characteri-

zation, and finally feeds information back to the researchers to think about possible im-

provement or re-design of the material. Each step of this cycle can take such long time

that researchers are developing computational methods to boost the material design cy-

cle, reducing the time cost for each step. Efforts to accelerate this process are focused on

methodologies of high throughput virtual screening (HTVS),70 in which computations are

performed on large numbers of possible candidates to identify the best-performing ones,

often leveraging the large throughputs using robotic platforms. For example, computa-

tional calculation assisted HTVS contributes to the discovery of water-splitting photocat-

alysts.71 Bai et al. screened 6354 candidates co-polymers computationally and identified

99 of them, assisted by machine learning, for the latter experimental, robotic make-and-

measure workflow.

Beyond these high-throughput virtual screening, active learning has become a very pow-

erful avenue of research to help this acceleration.72-75 A recent study demonstrated a

machine learning-assisted workflow for optimizing catalyst designs, resulting in the dis-
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covery of new and optimal catalysts at a faster rate.14 Bayesian optimization was used

to drive this discovery of new catalysts in a designed chemical space consisting of more

than 800 catalysts. Another systematic study of Bayesian reaction optimization proved the

algorithm outperforms human decision in efficiency and consistency.76 This close loop

discovery also links other techniques, such as inverse design,69,77 to accelerate and enable

the end-to-end material discovery. The inverse design directly generates chemical struc-

tures with desired properties by searching the functional space constructed by machined

learned existing data.78-79 The main difference between HTVS and active learning is that

ML models observe new chemical knowledge of both structure and property beyond the

given data whereas HTVS cannot. Inverse design has been demonstrated by, for example,

using variational autoencoders,80-82 and generative models.77,83

An additional crucial step in experimental material discovery involves determining the

appropriate reaction conditions, including the crystallization conditions for porous mate-

rials and the synthesis conditions for organic compounds. Considering the vast amount

of experimental procedures available for synthesizing porous materials, numerous efforts

have been made to mine or extract this collective knowledge to training ML models for

prediction. The prediction of zeolite synthesis has been achieved using decision trees that

rely on parameters describing the synthetic conditions.84 Likewise, Jensen et al. devel-

oped a workflow to extract information on conditions from a dataset of 70,000 published

papers. This dataset was then utilized to build a model capable of predicting the den-

sity of materials. However, extracting reaction conditions directly from published papers

may introduce bias since many unsuccessful or failed synthesis routes are often omitted,

and only successful ones are typically reported.15 One example to prof this is Moosavi

et al. shown how to learn from the failed and partially successful experiments to synthesis

metal-organic frameworks(MOFs). The challenges associated with ML-driven reaction

optimization are substantial, and the key requirement is the need for publicly accessible

sharing of all synthesis attempts.
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1.2 Encoding chemical data

1.2.1 Topological methods

In the field of chemical and molecular science, an early ‘data-driven’ philosophy emerged

in response to the vast combinatorial space of possible molecules87 and the relatively

straightforward synthetic strategies available for exploring this space. This philosophy

gave rise to the development of Quantitative Structure-Property Relationship (QSPR)

techniques,58,88-89 which attempt to map descriptors of molecular structures to the be-

haviours of a chosen compound. These descriptors can be derived from various ap-

proaches, including extended connectivity fingerprints,90 chemical-intuition driven de-

scriptors,91-92 molecular graphs,93-94 or indicators obtained from quantum chemical cal-

culations.95 The focus is typically on predicting properties of direct applicative interest,92

such as solubility, toxicity,96 or reaction activity.14

Before being fed into machine learning algorithms, chemical information related to the

structure of a molecule or crystal structure needs to undergo pre-processing to make it

machine-readable. While the ultimate goal of obtaining absolute accuracy in describing

chemical properties lies in solving the Schrödinger equation to determine electronic prop-

erties and geometry, this approach is computationally challenging and resource-intensive.

In most cases, 3D Cartesian coordinators are not an efficient way, or a correct one, of

representing chemical structures when coupled with ML algorithms, because one such

combination does not contain any chemical or physical theory (Schrödinger equation). A

good representation needs to capture as much chemical information as possible, in ad-

dition to satisfying other principles such as being invariant to rigid motions. Therefore,

scientists have made significant efforts in developing both engineered descriptors and nu-

merical representations, most of which fall into three categories depending on the data

formation:69
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• discrete (string),

• continuous (tensors),

• weighted graphs

These engineered cheminformatics descriptors are constructed in an ad hoc manner,

combining descriptors related to molecular structure, composition, and easily estimable

molecular properties. They typically require a significant amount of prior knowledge, are

often specific to a particular system or problem, and are designed to label a compound

rather than a specific configuration of its atoms. This is because QSPR aims to provide an

end-to-end description of a thermodynamic property, which is not an attribute of a single

configuration but of a thermodynamic state of matter.39

Figure 1.2 A ciprofloxacin molecule represented by SMILES and
coloured by branches. Original by Fdardel, slight edit by DMacks
(https://commons.wikimedia.org/wiki/File:SMILES.png). Copyright CC BY-SA 3.0

The most straightforward method to encode cheminformatics is using their 2D structures to
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evaluate the similarity between the topological structure. The simplified molecular-input

line-entry system (SMILES),97-99 invented by David Weiniger, is a string representation

for molecular structure, which encodes chemical species into a sequence notation using a

depth-first graph traversal. It is a simple, yet powerful, tool to enumerate molecular struc-

tures from a library of building blocks (Fig 1.2). For example, a molecule comprising

multiple fragments connected via single covalent bonds can be expressed in SMILES as

a simple concatenation of the fragment SMILES in the same ordering. Some basic rules

are:

• Atoms are written by standard abbreviation of their element names.

• Bonds are represented using -, =, #, and $ for single, double, triple and quadruple

bonds, respectively.

• A backbone is arbitrary chosen as the main written string in a molecule (coloured

by green in Fig 1.2).

• Branches are described in paired bracket and right behind the connection atom in

the backbone (multiple coloured in Fig 1.2).

• Rings are broken at an arbitrary point as two branches and adding numerical ring

closure labels to mark the connectivity between two breakpoints (numbered as 1, 2,

3, and 4 in Fig 1.2).

Except these basic rules, aromatic atoms can be written in lower-case forms and the aro-

matic bond notation is commonly omitted as well as the single bond and hydrogen atom

notation. Chemists can use SMILES format as a starting point to build a chemical database

because of simplicity and compatibility. Therefore, the character string can be converted

to 2D chemical structure and 3D Cartesian coordinate by applying standard force field

optimization in many packages such as RDkit.100

Besides, SMILES arbitrary target specification (SMARTS), related to the SMILES line

notation, is a more flexible chemical language to describe molecules. The chemical re-
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action string utility (e.g., in RDKit) written in SMARTS is a particularly powerful tool

to design a group of chemicals by input different reactants. However, the limitation of

SMILES is many fractions of strings do not correspond to a valid molecule which could

block the application on generative models to design novel functional materials. Krenn

et al. developed a robust method, Self-referencing embedded strings (SELFIES), to ex-

tend the application of such string-based representation.101 Those string format can be

converted to a one-hot-vector as the input features of many linear deep neural networks.70

The design of SMILES shares similarities with certain cheminformatics methods based

on graph theory. SMILES can be viewed as a graph-based representation where each

character in the SMILES string corresponds to a node, and the bonds between atoms are

represented as edges. To convert the graph representation into numerical data, the chem-

ical structure graph is fragmented, and pairwise similarity is measured by counting the

number of common substructures or pieces shared by two chemicals.94,102 The origi-

nal design of these algorithms, such as Morgan fingerprints,103 is used for substructure

searching, but later for analysing molecular similarity. By dividing the chemical structure

into fragments and comparing the presence of substructures, these algorithms enable the

assessment of molecular similarity based on shared features.

Extended-connectivity fingerprints (ECFPs)90 is a modified algorithm from Morgan fin-

gerprints for molecular characterization. Morgan algorithm is an iterative process assign-

ing numerical numbers as the atomic environment identifier. The initial process encodes

the invariant atomic information into an atomic identifier, and followed by using the gener-

ated identifiers from previous iteration. The iteration process continues until every atomic

identifier is unique. The final result constitute the invariant fingerprints of the molecule,

and the intermediate results are discarded during the iteration.

Because the absolute disambiguation strategy in Morgan algorithm, each substructure in

every iteration is carefully assigned to avoid mathematical ’collision’, that is two different

10



CHAPTER 1 INTRODUCTION

environments are given the same identifier. Therefore, this process has the side effect that

can assign different identifiers to two identical atom environment. ECFPs abandons this

expensive encoding process by a fast hash scheme resulting a saving of computational ef-

fort during the fingerprint generation compared with Morgan algorithm.90 Also, ECFPs

terminate at a user determined number of iterations instead of achieving maximum dis-

ambiguation of identifiers. The predefined iteration number is the maximum radius of

Algorithm 1.1 Initial assignment of atomic identifier90

Input: An atom from a molecule
Output: 𝜂, hashed identifier
begin

𝑎1 ← The number of heavy atom neighbours;
𝑎2 ← The valence minus the number of hydrogen;
𝑎3 ← The atomic number;
𝑎4 ← The atomic mass;
𝑎5 ← The atomic charge;
𝑎6 ← The number of attached hydrogen;
𝑎7 ← Weather the atom is in a ring;
𝜂 ← 𝐻𝐴𝑆𝐻([𝑎1, 𝑎2, … , 𝑎7]);

end

counted substructure, and named as ECFP4 or ECFP6 for 2 and 3 iteration, receptively.

The initial assignment process in ECFPs contains seven atomic information (labelled as

𝑎1, 𝑎2, … , 𝑎7 in Algorithm 1.1) and hash this numbers as an integer identifier for each

atom. The hash function is used to make sure as much as unique the integer assigned for

each atom. The initial atom identifiers are collected as the fingerprint array. Then, an it-

erative update stage is performed to capture substructures in molecule and including bond

types. The bond to hydrogen and hydrogen atoms are ignored in each stage. Finally, dupli-

cate identifiers are removed after the final iteration, and the remaining identifiers within

the initial fingerprint array define the ECFP fingerprint (Algorithm 1.2). Because each

identifier represent a unique substructure, the similarity calculation comes as counting

how many identifiers are same and different in two fingerprint sets.

𝐽(𝐴, 𝐵) = |𝐴 ⋂ 𝐵|
|𝐴 ⋃ 𝐵| = |𝐴 ⋂ 𝐵|

|𝐴| + |𝐵| − |𝐴 ⋂ 𝐵| (1.1)

11



CHAPTER 1 INTRODUCTION

Algorithm 1.2 ECFP generation process90

Input: A molecule structure
Data: 𝑅, The radius of the largest feature
Output: 𝐅
𝐅 ← an empty array // The list of fingerprints;
forall atoms 𝛼 of molecule do

𝜂 ← using Algorithm 1.1 (𝛼);
if 𝜂 not in 𝐅 then

𝜂 append to 𝐅;
end

end
for 𝑟 = 1 to 𝑅 do

foreach 𝛼 in 𝐹 do
𝛀 ← (𝑟, 𝛼);
𝐵 ← All attached atoms of structure 𝛼, 𝐵 ⊂ 𝐹 ;
for 𝛽 in 𝐵 do

𝜎 ← The bond order for the bond between atom 𝛽 and centre 𝛼;
// 1, 2, 3, and 4 for single, double, triple, and
aromatic bonds, respectively;
(𝜎, 𝛽) append to 𝛀;

end
𝜂 ← 𝐻𝐴𝑆𝐻(𝛀);

end
if 𝜂 not in 𝐅 then

𝜂 append to 𝐅;
end

end
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In most instances, the similarity for fingerprints is defined by Jaccard (or Tanimoto) sim-

ilarly (Equation (1.1)), mathematically. After definition of pairwise similarity, the initial

applications of ECFPs are the area of high-throughput virtual screening by combining

with Bayesian optimization(BO) and Gaussian processes(GPs). Except this, fingerprints

can be used in kernel methods for structure-activity relationship analysis and manifold

learning for data visualization.

1.2.2 Simulated and measured chemical features

A straightforward approach in the design of molecular descriptors is to utilize calculated

or measured chemical properties, such as activities or electronic features, obtained from

quantum mechanical (QM) calculations95,104 using methods such as ab-initio techniques,

density functional theory (DFT), or empirical simulations. It is worth noting that there

is typically a trade-off between computational efficiency and accuracy. Highly accurate

quantum methods tend to be computationally expensive compared to empirical potential-

based simulation methods. The choice of method depends on the available computational

resources and the size of the chemical system under investigation. The utilization of quan-

tum calculations involves the initial determination of the relevant geometry of the system,

as well as its total ground state energy. From this step, various physical properties of

interest can be obtained using quantum mechanics and statistical mechanics principles.

These calculations provide valuable insights into molecular systems and enable the de-

termination of important electronic properties. Some examples of calculated electronic

properties include atomic charges, molecular orbital energies, dipole moments, polarity

indices, electronic charge distributions, and energy band gaps between exciton and ground

states. In the case of organic photocatalysts, several factors contribute to their catalytic ac-

tivity, including the efficiency of light absorption, thermodynamically driven force, and

the ability of electronic charge transfer. These factors collectively influence the overall
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performance of the photocatalyst. Apart from electronic properties, the physical charac-

teristics of porous materials play a crucial role in determining their adsorption properties.

Features such as surface area, pore size distribution, and pore volume have a significant

impact on the adsorption capacity and efficiency of porous materials. These physical

characteristics directly affect the available surface area for adsorption, the accessibility of

pores to target molecules, and the overall adsorption performance of the material.

Descriptors derived from electronic and geometric properties have the potential to offer a

comprehensive characterization of materials, making them well-suited for machine learn-

ing models due to their continuity and the ability to incorporate prior chemical knowledge

obtained through simulation approaches.105 However, there are potential risks associ-

ated with the use of computational methods to design and apply descriptors pertaining to

photocatalysts. An instance of such risk is encountered when attempting to predict the

electronic and spectroscopic properties of dyes, which play a crucial role in highly active

photocatalytic reactions like water splitting and photoredox synthesis.106-107 For the most

efficient metal-based dyes, the DFT and time-dependent density functional theory (TD-

DFT) provide accurate results. These computational methods successfully reproduce the

optical properties of diverse Ru(II) complexes,108-109 as well as accurately predict their

ground and excited-state oxidation potentials. This capability enables the predictions and

screen novel synthetic approaches.110 For organic molecules, the reliable calculation of

excitation energies still represents an open issue, as a definite and effective computational

approach has not yet been defined.111 In the case of molecules with Long-range charge-

transfer and spatially extended 𝜋 systems, it is often observed that many TD-DFT cal-

culations significantly underestimate the excitation states.112-113 A benchmark study was

conducted on five different dye-sensitized solar cells, evaluating the performance of var-

ious wave function methods, including B3LYP,114 Coulomb-attenuating B3LYP(CAM-

B3LYP),115 PBE0,116 MPW1K,117 and MP2.118 The results of this benchmark indicate

that the CAM-B3LYP approach is the most accurate TD-DFT method among the ones

14



CHAPTER 1 INTRODUCTION

tested in this study. When examining the photocatalytic properties of covalent organic

framework (COF) photocatalysts, the conclusions regarding the accuracy of computa-

tional methods can differ. A study comparing the performance of the benchmark B3LYP

method against two range-separated functionals (CAM-B3LYP and wB97X) in predicting

the standard reduction potentials of half-reactions for free electrons/holes and excitons us-

ing molecular fragments representing certain COF photocatalysts revealed that all three

functionals produced nearly identical results.119 Similar agreement was also observed

for conjugated polymers, where range-separated functionals such as CAM-B3LYP only

provided marginal improvements over B3LYP in predicting the optical gap.105 Gómez-

Bombarelli et al. performed extensive benchmarking of their chosen TD-B3LYP level of

theory against experiments, and against range-separated functionals and other hybrid func-

tionals, concluding that B3LYP offers a cost-effective accuracy while performing on-par

or better than the other functionals tested. Therefore, the choice of DFT calculations still

relies on the specific research system, and there is no universal rule or standard approach.

Additionally, since simulated descriptors are derived from molecular structures, they can

exhibit correlations with each other, leading to redundancy. This redundancy may impact

the performance of machine learning models. Besides, chemical reactions involve mul-

tiple molecular species, multiple reaction pathways, and numerous intermediate steps,

which is challenging to represent in a number of calculated descriptors. Nonetheless,

further research is needed to enhance the speed and efficiency of feature generation meth-

ods. This includes exploring new approaches that can capture more intricate molecular

properties while addressing the challenges of redundancy and representation of chemical

reactions.
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1.2.3 Atomic centred descriptors and machine learning force field

An alternative method of constructing QSPR involves the use of atomic constituents to

simulate and predict atomic-scale properties, which is known as the ‘bottom-up’ ap-

proach.39 This approach starts with the chemical structure to predict the energy, forces, or

a specific molecular configuration, and then uses these predictions to search for chemical

behaviours by building an accurate molecular dynamics model.120 The atomic 3D Carte-

sian coordinates is a simple and unequivocal representation of chemicals in classic phys-

ical and quantum chemical calculations. However, it is not suitable for machine learning

applications because the comparison between coordinates does not reflect the difference

of two chemicals. For example, two different coordinates can represent same molecule

because the list of coordinates has an arbitrarily assigned order, and two structures can

be mapped by space symmetry operations such as rotation, reflection, or translation. A

good atomic centred descriptor need to be invariant to represent the symmetric opera-

tion.39 This mapping associate chemical structure with a point in designed feature space,

which then used to represent a QSPR by machine learning models. Therefore, several

commonly used descriptors were developed to transform the coordinates in a way that

fulfils physically informed requirements: smoothness and symmetry with respect to iso-

metrics, such as Coulomb matrices,121 atom-centred symmetry functions (ACSFs),34,122

and the smooth overlap of atomic positions (SOAP).123 Most of these descriptors are used

for modelling atomization energies and forces, as they are directly related to molecular ge-

ometries.

Since the introduction of symmetric functions, there have been numerous studies con-

ducted on neural network potentials. One notable example is the Accurate Neural Net-

work Engine for Molecular Energies (ANI),124 which modifies the original symmetry

function to create an atomic environment vector (AEV) and trains NNPs. Despite these,

other atomic centred descriptors are developed by exploiting many mathematical tricks.
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One popular example is the Smooth Overlap of Atomic Positions (SOAP) descriptor,123

which encodes local regions of atomic geometries by combining spherical harmonics and

radial Gaussian functions to describe the angular and radial environment around the cen-

tral atom. SOAP descriptors have been shown to achieve high accuracy in predicting both

atomic energies and advanced chemical electronic properties.125 One major difference

between SOAP and ACSFs is in the way the descriptors are constructed. SOAP descrip-

tors are based on radial and angular distribution functions that describe the electron den-

sity of atoms in a material, while symmetry function descriptors are based on a set of

pre-defined mathematical functions that quantify the local symmetry and coordination of

atoms. SOAP method has been shown to be effective in computational chemistry, includ-

ing fitting the Gaussian Approximation Potentials (GAPs) model,120,123 and comparing

the similarity of molecular structures. On the other hand, symmetry function descriptors

are often more interpretable and intuitive, as they are based on explicit geometric features

of the atomic environment.

1.3 Fundamental of machine learning

1.3.1 Model selection and evaluation

Machine learning is a series of modelling methods and statistic models by computing the

cost function when given enough amount data with a property algorithm. A general pro-

cess of building an ML model is training the model with known dataset and test it in a

new dataset. Models are always classified into several branches depending on their ap-

proach: supervised learning, unsupervised learning, reinforcement learning and so on.126

Supervised learning algorithms aim at mapping the input data to the given output data

whereas unsupervised learning algorithms take the dataset only containing inputs with-

out any targets. Furthermore, machine learning techniques can be categorized based on
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their specific purposes. Regression models are employed to predict a continuous-valued

attribute associated with the input data. On the other hand, classification models are de-

signed to identify the category to which an object belongs. They assign input data to

specific predefined classes or categories. Additionally, clustering models, which fall un-

der the category of unsupervised classification models, are utilized to automatically group

similar input data into distinct categories or clusters. Unlike classification models, clus-

tering models do not have predefined categories and instead seek to discover patterns or

similarities in the data without explicit labels.

During the training process of machine learning models, numerous parameters need to

be optimized. To accomplish this, a cost function, also known as a loss function or error

function, is designed to evaluate the mapping between the input data and the output predic-

tions.126 Simultaneously, an optimization algorithm is introduced to minimize this cost

function. In regression models, the cost function typically computes the mean squared

error, while in classification models, cross-entropy is commonly used as the cost function

during parameter estimation.126

In addition to the optimized parameters, machine learning models also have hyperparam-

eters that control the learning process. To evaluate the performance of a trained model and

optimize hyperparameters, the dataset is divided into three sets: the training set, the vali-

dation set, and the test set.126 The training set is used to train the algorithm whereas the

test set is used to evaluate the model performance on never-before-seen data. The neces-

sity of the validation set is that many complex models need to search a good configuration

in hyperparameter space, for example, the number of layers in deep learning and the reg-

ularization parameter in regression model. To avoid ’cheating’, the best hyperparameter

space is chosen by using as feedback signal the performance on the validation set, then

the test set is implemented to evaluate machine learning model.126

Another technique known as cross-validation can be used to achieve the same objective
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without requiring a separate validation set. In cross-validation, the training set is randomly

partitioned into several subsets, and an iterative process selects one of these subsets as

the validation set while training the model using the remaining data. The performance

evaluation is then based on the average values computed across the iterations. While

cross-validation can be time-consuming, it has the advantage of utilizing the available

data more efficiently, which is particularly beneficial when dealing with small datasets.

(a) Under fitting (b) Fitting (c) Over fitting

Figure 1.3 Under fitting, fitting and overfitting function(red line) training on the same noised
dataset(blue points)

Other common issues in machine learning are over-fitting and under-fitting (Figure 1.3)

due to variance reasons. For example, the undue complexity (Figure 1.3(c)) causes the

learning model fits the training set perfectly but fits the test set poorly. Information leaks

lead over-fitting quickly when the validation set is involved in the hyperparameter con-

figuration step whereas inadequate training set and simple model (Figure 1.3(a)) cause

under-fitting.

1.3.2 Linear regression and classification

The fundamental method of a machine learning, named as simple linear regression, is

mapping the linear relationship between two one dimensional data. The hypotheses of

this algorithm is that there exist a linear function to describe the given data by calculating

the dataset 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑛} and yield property 𝒴 = {𝑦1, 𝑦2, … , 𝑦𝑛}. The simplest
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mathematical function of a one dimensional dataset is given by

𝑓(𝑥) = w𝑥 + 𝜖 (1.2)

where parameters w and need to be optimized to give the best predication of the property

𝒴 . The most commonly used function to evaluate the model called cost function is the

sum of squared error function as below:

𝐽(w) =
𝑛

∑
𝑖=1

(𝑓 (𝑥𝑖) − ̂𝑦𝑖)2 (1.3)

The gradient descent technique is utilized to optimize the model and minimize the cost

function. As the dimensionality of the features, denoted as 𝑥𝑖, increases, the complexity of

the parameters w also increases in order to effectively fit the given dataset. However, this

can lead to overfitting issues. To address this concern, an additional hyperparameter, 𝜆,

known as the regularization parameter, is introduced.126 This parameter acts as a penalty

term to shrink the parameters and mitigate the problem of overfitting. By adjusting the

value of 𝜆, one can control the balance between the model’s complexity and its ability to

generalize to unseen data. The cost function is given by

𝐽(w) = 1
𝑁

𝑛

∑
𝑖=1

{(𝑓(𝑥𝑖) − ̂𝑦𝑖)2} + 𝜆 ‖w‖2 (1.4)

where the penality term can be either ‖w‖2 or ‖w‖. The former is called ridge regres-

sion or 𝑙2 norm and the latter is called lasso regression or 𝑙1 norm.126 The minimum of

the cost function of ridge regression also has a mathematical solution called the normal

equation126 which is given by

w = (𝑋𝑇 𝑋 + 𝜆𝐼)−1𝑋𝑇 y (1.5)

where 𝑋 and y correspond to the matrix form of data set 𝒳 and 𝒴 . The parameter 𝜆

works as same as in the cost function of ridge regression, which controls the amount of

shrinkage: the larger value of 𝜆, the smaller parameter w and thus the complexity of the

model is reduced to prevent the overfitting problem.
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In addition to linear regression, another commonly used application in machine learning

is classification. In classification tasks, the property value (represented as 𝒴) is discrete or

categorical, typically in the form of integers, rather than continuous numbers as in regres-

sion problems. The logistic function is often employed in classification tasks to calculate

the binary target variable 𝑦𝑖, which can take values of either 0 or 1. This represents the

simplest form of classification problems.

𝑓(𝑥) = 1
1 + exp(−𝜔𝑥) (1.6)

Figure 1.4 The standard logistic function where 𝜔 = 1

that the predication of this function is the probability of the positive class 𝑃 (𝑦𝑖 = 1|𝑥𝑖).

For a binary classification, it is easy to conclude that the output follow the requirement

𝑃 (𝑦𝑖 = 1|𝑥𝑖)+𝑃 (𝑦𝑖 = 0|𝑥𝑖) = 1 and if 𝑓(𝑥) > 0.5 then the predication label is 1. The cost

function of logistic function need to capture the error of the probability, which defined as

the negative log-likelihood of logistic model:126

𝐶𝑜𝑠𝑡𝑙𝑜𝑔(𝑓 (𝑥), 𝑦) = − (𝑦 log 𝑓(𝑥) + (1 − 𝑦) log(1 − 𝑓(𝑥))) (1.7)

where 𝑦 is the true label in the binary classification so that it is always be 0 or 1. Figure

1.5 present the two section of the loos, and it is commonly called cross entropy in statistic.
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(a) The log loss with true label equal to 0 (b) The log loss with true label equal to 1

Figure 1.5 Example graph of the two part of cross entropy loss function

Both squared error and cross entropy loos are continues so that they are able to apply the

gradient descent as the optimization method to find the best model during training.

1.3.3 Kernel methods

The linear regression and logistic regression models are mainly defined by itself param-

eters. With increasing the complexity of data, more parameters need to be introduced

to explain the model reasonably. Such methods that use the fixed number of parameters

are called parametric methods whereas another technique can overtake this disadvantage

without fixed parameters are called non-parametric methods. Another type of object such

as binary set of bit fingerprint also does not have a fixed size vectors to best represent

them. One of the approach to such problems is to assume a method to calculate the simi-

larity between objects that does not require the representation as the feature vector format.

The most commonly used technique here is kernel function which measures the similarity

between any given training points.

Kernel methods refer a class of machine learning algorithms by utilizing the advantage

of ’kernel trick’ to deal with high dimensional dataset.126 This function operates the data

with a cheap evaluation to calculate the similarity in original space yield an 𝑛 × 𝑛 kernel

matrix. For all 𝑥 and 𝑥′ in given space 𝒟, the kernel function can be expressed as an inner
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product in another space 𝒱 , and it also can be written in the form of mapping 𝜑 ∶ 𝒟 → 𝒱

as follows

𝜅(x, x′) = 𝜙(x)𝑇 𝜙(x′) = ⟨𝜙(x), 𝜙(x′)⟩ (1.8)

It turns out that many algorithms can be kernelized in this way, if the inner products of

the form ⟨𝜙(x), 𝜙(x′)⟩ is replaced by a kernel function. Applying the kernel trick to the

fundamental ridge regression results the kernel ridge regression(KRR).126

w = (𝐾 + 𝜆𝐼)−1𝑋𝑇 y = 𝑋𝑇 (𝑋𝑋𝑇 + 𝜆𝐼)−1y (1.9)

The solution of ridge regression is given by Equation 1.5.126 The 𝑋𝑋𝑇 term can be

replaced by matrix 𝐾 which also called positive definite kernel after the matrix inver-

sion(Equation 1.9).126 Following dual variables are defined as follows

𝛼 = (𝐾 + 𝜆𝐼)−1y (1.10)

Then the solution of Equation 1.5 and the prediction of new points x with 𝑁 training

vectors can be rewritten as follows

w = 𝑋𝑇 𝛼 =
𝑁

∑
𝑖=1

𝛼𝑖x𝑖

̂𝑓 (x) = w𝑇 x =
𝑁

∑
𝑖=1

𝛼𝑖x𝑇
𝑖 x =

𝑁

∑
𝑖=1

𝛼𝑖𝜅(x, x𝑖)

(1.11)

The hypotheses of the ’kernel trick’ is that there exist a higher denominational space (la-

tent space) where a linear model can fit the given data point when project them from the

original space to the latent space.126 A visualization understand of this can be expressed

using support vector machine(SVM) classification in a 2D space. After project the train-

ing points to the 3D latent space(Figure 1.6(a)), there is a linear surface to separate the

group 1 and group 2. This boundary can be mapped back to the 2D feature space (Fig-

ure 1.6(b)) as a non-linear circle. Therefore, by applying this transformation, some linear

model can fit the complex training dataset such as principal component analysis(PCA),
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(a) The training points mapped to a 3D space (b) The points in the original 2D space

Figure 1.6 Example of SVM classification with kernel given by 𝜅(𝑥, 𝑦) = 𝑥𝑦 + 𝑥2𝑦2. The
linear boundary function in 3D space(the grey plane) is presented in (a), and the projected
function in 2D space (the grey circle) is presented in (b).

GPs and KRR, SVM mentioned before.

There are many kernel functions used in machine learning. Deriving a kernel directly

from the feature vector can yield the linear kernel(𝜙(x) = x),126 defined by

𝜅(x, x′) = 𝜙(x)𝑇 𝜙(x′) = x𝑇 x′ (1.12)

The squared exponential kernel or Gaussian kernel126 is defined by

𝜅(x, x′) = exp −‖x − x′‖
2

2𝜎2 (1.13)

It is also called a radial basis function (RBF) kernel since it is only a function of radial

‖x − x′‖.126 The parameter 𝜎 is knowns as the bandwidth and the term − 1
2𝜎2 often written

as length scale 𝑙 to simplify the format of Equation 1.13.126 The measurement radial

can be recognized as the Euclidean distance between two points in the original space.

Another different distance measurement can also be implemented here with different type

of features such as Jaccard distance for binary data.
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1.3.4 Multilayer perception

Deep learning, as a subfield of machine learning, also process the input to targeted output

mapping calculations, but the data are transformed via a deep sequence layers, referred to

the artificial neural network (ANN). The deep in deep learning does not refer to any deeper

understanding, rather, it implies the complexity of learning model with many successive

layers and nodes. The simplest neural network is constituted by one hidden layer with one

node, one dimension of input, and an output layer, which is similar to the one dimension

linear regression (Equation 1.2). The computation for output contains can be decomposed

into two steps

𝑧 = 𝑤𝑥 + 𝑏 (1.14)

𝑎 = 𝛿(𝑧) (1.15)

where 𝛿 is the activation function and 𝑎 equal to the output ̂𝑦. When this network is

extended to multiple hidden layers and nodes with high dimension input features, all pa-

rameters are stacked up horizontally into a matrix or vector as follows

𝑍[𝑙] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑊 [𝑙]
11 𝑊 [𝑙]

12 ⋯ 𝑊 [𝑙]
1𝑛

𝑊 [𝑙]
21 𝑊 [𝑙]

22 ⋯ 𝑊 [𝑙]
2𝑛

⋮ ⋮ ⋱ ⋮

𝑊 [𝑙]
𝑛𝑥1 𝑊 [𝑙]

𝑛𝑥2 ⋯ 𝑊 [𝑙]
𝑛𝑥𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥1

𝑥2

⋮

𝑥𝑛𝑥

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑏[𝑙]
1

𝑏[𝑙]
2

⋮

𝑏[𝑙]
𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1.16)

𝑍[𝑙] = 𝑊 [𝑙]𝑇 𝑋 + 𝐵[𝑙] (1.17)

𝐴[𝑙] = 𝛿(𝑍[𝑙]) (1.18)

where 𝑊 [𝑙]
𝑛𝑥𝑛 represent the distribution parameter 𝑤 which multiplied by the 𝑛𝑥th dimen-

sion of input 𝑥 in 𝑙th hidden layer and 𝑛th neuron. The last term 𝐵[𝑙] in Equation 1.17
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refers to the bias matrix in Equation 1.16. The second step of ANN Equation 1.18 is same

as Equation 1.15 using an activation function 𝛿 such as rectified linear unit (ReLU), Sig-

moid function and Tanh function. The output matrix of hidden layer 𝑙 (𝐴[𝑙]) is propagated

forward to next layer as their input matrix 𝑋 that organized layers stacked on top of each

other. Besides, these forward propagation steps can also be visualized as a graph network

Figure 1.7 The structure of a multilayer perceptron

where arrows depicting the dependences between nodes and circular node represents the

two mentioned computation steps. The ANN is also called multilayer perception (MLP)

when the nodes in each layer are fully connected by the propagation function (Figure 1.7).

The training process for deep learning involves optimizing the weight parameters of the

network so that it can accurately predict the output data. This optimization process is

performed by minimizing a loss function, which measures the difference between the pre-

dicted output and the true output. To find the minimum position for the loss function,

gradient descent is the basic method for the optimization. However, in neural networks,

there are so many weight parameters that calculating the derivatives is a time-consuming

step in the training loop. The algorithm called backpropagation127 distributes the loss

term from the final value and backward through layers by applying the chain rule.

The application of deep learning algorithms often requires a large amount of data to be

used as the training set. In many cases, this data is obtained by searching through pub-
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lished scientific papers, dataset, and conducting quantum calculations. The combination

of different DL models with chemical targets has the potential to enable a wide range of

applications in materials science. For example, generative model, e.g. the variational auto

encoder is applied to inverse design;69 sequence deep neural network is used to predicting

the organic synthesis route by introducing string representation as ‘chemical language’ and

using published chemical reaction datasets;68 graph neural network is also a reasonable

for investigating chemical structure;94 deep neural network potential trained with millions

calculated organic molecular structure to simulate the interatomic interaction.124

1.4 Visualization of high dimensional data

The field of chemical sciences is facing a significant challenge as it generates a large vol-

ume of complex data that includes chemical structures and their related properties. For in-

stance, the ChEMBL128 database contains more than 1 million bioactive molecules from

literature. Other chemical database, GDB serials,87,129 generated from theoretical calcu-

lation also contain up to 166 billion organic molecules. Visualization of high dimensional

data can be a major requirement in data science and high throughput chemical discov-

ery.130 It allows chemists to gauge the distribution and relative relations of compounds

in chemical space that can help with manual inspection of structure activity or property

relationships.

Thus, the dimensionality reduction becomes a popular application of machine learning al-

gorithm, which project data points from the original high dimensional space into a human-

readable two or three-dimensional space and also keep the similarity information as much

as possible.131 To reach human intuition, data set are normally displayed in a 2D or 3D

scatter plot, but it is difficult to reserve the original features exactly after the representation.

Various techniques involved for this problem proposed many algorithms depending on the
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preserved features. Classic dimensionality reduction method such as PCA was invented

nearly a century ago as a linear technique to decompose the original features into a new

set of orthogonal components which keep the maximum variance in each dimension.132

Another linear transform algorithm, multidimensional scaling (MDS),133 was proposed

that focus on keeping the dissimilar data points apart in the low dimensional represen-

tations.131 However, it is usually more useful to keep points close together if they are

very similar in the original space, which linear mapping algorithms are not possible to

achieve.134

Many non-linear dimensionality reduction methods have been proposed to preserve the

local structure of the original space based on the hypothesis that the dimensionality of the

dataset is only artificially high. T-distributed stochastic neighbour embedding (t-SNE)

probability is the most popular manifold learning technique in the past decades since it

was proposed by Maaten and Hinton in 2008.134 It is a stochastic neighbour embedding

and very sensitive to local structure to extract local clustered groups that is beneficial to

visually distinguish a dataset, but t-SNE also have some disadvantages such as computa-

tionally expensive and absence of global structure. Therefore, uniform manifold approx-

imation and projection (UMAP) algorithm was proposed by McInnes et al. recently as a

new technique to overcome these defects.135 The ideas of UMAP came from the t-SNE

process and topological data analysis to construct a high dimensional graph representation

so that the global structure is preserved before the optimization of low dimensional em-

bedding. Here is a comparison of these two algorithms on the Fashion MNIST136 which

is a dataset of clothing images consisting of 70k examples in 784 dimensional space with

label from 10 categories (Fig 1.8). Both algorithms successfully exhibit local clustering

features and group similar items (gathered different footwear) together on the 2D figure.

UMAP preserves more global structure such as clearly separates footwear (light blue and

yellow) away from coat (cyan) and shirt (dark purple) whereas t-SNE can only distinguish

different cluster without the distance information between each group. It is also worth
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Figure 1.8 Dimensionality reduction applied to the Fashion MNIST dataset. Coloured by
the category of clothing items.

noting that UMAP cost 21 seconds in comparison to 200 seconds with t-SNE. Both of

these techniques are stochastic that multiple restarts can yield different embeddings. Fu-

ture details and applications of these dimensionality reduction techniques are discussed

in chapter 2. However, these techniques still has time-consuming limitation with large

datasets (107), so that other implementation TMAP137 was proposed to visualization very

large chemical database. The TMAP algorithm can visualize the relation between clusters

because the tree format includes edges and branches. However, the explanation of the tree

graph is still challenge for large chemical datasets.

1.5 Active learning and Bayes optimization

1.5.1 Bayesian optimization

In real word optimization problem, such as finding the best hyperparameters in training

of ML models and searching the reaction condition in chemistry experiment, the funda-
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mental challenge is the expensive measuring step and large exploration of reaction and pa-

rameters space for many high throughput techniques.138 In a typical laboratory, chemists

can only estimate a small subset of experiments results during the optimization process

due to the time and materials limitation. With the help of modern high throughput ex-

perimentation,139 the capability of experiments design is extended to thousands dataset

under limited configurations. The design of these experiments is mainly relying on scour-

ing chemical literatures, the success of previous experimental experience, chemical intu-

ition, and mechanical understanding of data. Future development of systematic approach

design of experiments (DOE) identify the importance of parameters by sampling experi-

mental conditions systematically.140 DOE enable to explore the prior information gained

from previous sampling and guide the evolution of next selection of experimental design.

However, the sampling experiments increased exponentially with the number of searching

dimensions makes DOE ineffective.76 Such challenge is also existed in machine learning

during the optimization of hyperparameters, which drives the empirical optimization to

algorithm guided approach.

So-called active learning or close loop optimization attempt to find the global optimum in

designed space in a minimum number of steps. The advantage of this strategy is that the al-

gorithm can incorporate both prior and posterior knowledge during the experiment process

to propose next sampling. Bayesian optimization (BO),138 an uncertainty guided strategy,

has shown excellent performance in the optimization of expensive objective functions. It

is a sequence design for global optimization of black box functions that incorporates the

prior function with samples draw from the fitted model to get a posterior that better than

the prior approximation. The process uses a surrogate model to simulate the objective

function and propose next sampling by acquisition function.

The most commonly used surrogate model is GPs because it is flexible and relative cheap

to estimate the objective function.141 The surrogate model gives both the mean and vari-
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ance so that the acquisition function can balance the exploitation and exploration to pro-

pose the next sampling. Both drive to high acquisition function values, corresponding to

high potential of high value of the objective function, and the sampling position can be

determined by maximizing the acquisition function. There are many designed functions to

achieve this purpose. Fore example, probability improvement (PI), expected improvement

(EI), upper confidence boundary (UCB) and lower confidence boundary (LCB). Some of

them are purely exploitation (PI), some introduces extra parameter to control the balance

of mean 𝜇(𝑥) and variance 𝛿(𝑥) such as UCB and EI:141

𝑓𝑈𝐶𝐵(𝑥) = 𝜇(𝑥) + 𝛽𝛿(𝑥)

𝑓𝐸𝐼 (𝑥) = (𝜇(𝑥) − 𝑓(𝑥+) − 𝜉)Φ(𝑍) + 𝛿(𝑥)𝜑(𝑍), 𝑖𝑓𝜎 > 0
(1.19)

where 𝑍 = (𝜇(𝑥) − 𝑓(𝑥+) − 𝜉)/𝛿(𝑥), Φ and 𝜑 are the cumulative density function and

probability density function of the standard normal distribution. The 𝛽 and 𝜉 are the pa-

rameters to control the amount of exploration. The first term of both function are the

exploitation term and the second term is the exploration term, receptively. After defined

both surrogate model and acquisition function, the proposed sampling position is calcu-

lated by maximizing the acquisition function using gradient descent.

Figure 1.9 is a simple example to show how the algorithm works on a one dimensional

objective function with two prior sampled points (Iteration 1). In the context of Bayesian

optimization, the algorithm’s behaviour can be observed in terms of its proposed positions

or solutions over iterations. Typically, during the early steps (Iteration 1-4 in Figure 1.9),

the algorithm tends to prioritize exploration by proposing positions with high variance.

This means it explores different regions of the search space to gain a better understanding

of the landscape and potential global maximum. As the optimization progresses to later

iterations (Iteration 5-6), the algorithm shifts its focus towards exploitation. It starts to

prioritize positions with high mean values, indicating a preference for regions that have

shown promising results so far. By concentrating on these high mean positions, the algo-
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 1.9 Bayesian optimization for 6 iterations in graphs including the noise free objec-
tive function(in red), the tested point(black dots), the surrogate function(in blue), the 95%
confidence interval of the mean(the white shaded region), and the proposed sampling loca-
tion(the dash line). The GPs with squared exponential kernel is used here as the surrogate
model. The EI with 𝜉 = 0.01 is the acquisition function.
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rithm aims to refine its search and converge towards the global maximum, leveraging the

knowledge gained during the exploration phase. This combination of exploration and ex-

ploitation is an effective strategy in escaping local maxima and ensuring that the algorithm

discovers the global maximum.

1.5.2 Bayes’ theorem and Gaussian processes

Behind the Bayesian optimization is the art of design of GPs supported by Bayes’ rule. The

standard Bayes’ theorem proposed the estimation of posterior by prior and likelihood.141

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟
𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ; 𝑝(𝐴|𝐵) = 𝑝(𝐵|𝐴)𝑝(𝐴)

𝑝(𝐵) (1.20)

The simplest understanding of Bayes’ theorem is predicting the probability of an event

after observation of related information, such as estimating the probability of a patient

cached virus (event 𝐷) after receiving a positive test result (event +). The first hypothesis

is both event 𝐷 and event + are independent(no true in real word), and the following two

examples is more realistic that the test accuracy for patient 𝑝(+|𝐷) and the accuracy for

health people 𝑝(−|¬𝐷) are both equal to 90%. The graph explanation is shown below:

(a) Two event 𝐷 and +
are independents

(b) the prior 𝑝(𝐷) of example (b) is
0.1

(c) the prior 𝑝(𝐷) of example (b) is
0.5

Figure 1.10 Three geometric explanations of the Bayes’ theorem. Events including positive
test result(+); negative test result(−); and a patient cached virus(𝐷).𝑝(+|𝐷) is the probability
of a patient given a positive test result as the likelihood. 𝑝(𝐷) is the probability of a patient
in the population as the prior. Each cell of the table represent 1% of population and 100% in
total, where the blue box represented the patient and the grey box represent the health people.
The + denote the positive test result and − denote negative test result. 𝑝(+|¬𝐷) represents
the probability of a positive result given that a person is not diseased, which is commonly
referred to as the false positive rate.
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The posterior 𝑝(𝐷|+) is easy to calculated as 0.1 for example (a)(Figure 1.10(a)), because

the likelihood is equal to the marginal likelihood when 𝑝(𝐷) and 𝑝(+) are two independents

event. However, the test method should identify patients and health people so that the 𝑝(𝐷)

and 𝑝(+) are related. By apply Bayesian inference, the marginal likelihood is transformed

to a different equation as the real probability of the positive result in population (𝑝(+)) is

difficult to measure, but the likelihood 𝑝(+|𝐷) and the accuracy for health people 𝑝(−|¬𝐷)

are easy to estimate since the test method is solid. Therefore, the probability of a people

catch virus when he got a positive result 𝑝(𝐷|+) is mainly determined by the prior and the

Bayes’ theorem equation is written as follows:

𝑝(𝐷|+) = 𝑝(+|𝐷)𝑝(𝐷)
𝑝(+) = 𝑝(+|𝐷)𝑝(𝐷)

𝑝(𝐷)𝑝(+|𝐷) + 𝑝(¬𝐷)𝑝(+|¬𝐷) (1.21)

As shown in Figure 1.10(b) and Figure 1.10(c) with different prior but same test accuracy,

the posterior can be calculated using the Equation 1.21. The probability of people caught

the virus when received a positive test 𝑝(𝐷|+) is 83% in example c, but it reduced to only

50% in example b if the prior 𝑝(𝐷) changed from 0.5 to 0.1. The influence of the prior is

remarkable for example b and c even using the same test method with same accuracy.

The Gaussian processes (GPs) is a random process where the distribution of fitted regres-

sion models is the posterior function and prior function is the joint distribution of observed

data (training data).141 The Bayes’ theorem described the probability of a posterior event

𝑝(𝜔|𝒚, 𝑋) based on the prior probability 𝑝(𝜔) and the likelihood 𝑝(𝒚|𝑋, 𝜔).141

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟
𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ; 𝑝(𝜔|𝒚, 𝑋) = 𝑝(𝒚|𝑋, 𝜔)𝑝(𝜔)

𝑝(𝒚|𝑋) (1.22)

where the 𝜔 is parameters or weight of the GPs model. The dataset 𝒟 has 𝑛 observations,

𝒟 = {(𝑥𝑖, 𝑦𝑖)|𝑖 = 1, 2, … , 𝑛}, where 𝑥 donates an input vector of dimension 𝐷 and 𝑦 is the

measured target value. 𝑋 is the aggregated vector of the input dataset in the 𝐷 × 𝑛 matrix

and 𝒚 donates the collection of targets. A GPs assume that the prior is jointly Gaussian,
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with mean and variance function.141 The prior joint distribution is written as follows:

𝑝(𝑓|𝑋) = 𝒩 (𝑓|𝜇, 𝐾) (1.23)

where the probability 𝑝 is 𝑝(𝑓(𝑥1), 𝑓 (𝑥2), … 𝑓(𝑥𝑛)) with given points and 𝐾𝑖𝑗 = 𝜅(x𝑖, x𝑗).

𝜇 is the mean function, and it is common to use 𝜇 = 0 when there is no prior information.

The function 𝜅 is a positive definite kernel function or covariance function in GPs as

in section 1.3.3 discussed before. Therefore, a GPs is a distribution of functions whose

shape is defined by matrix 𝐾𝑖𝑗 . If object 𝑥𝑖 and 𝑥𝑗 are considered to be similar by the

kernel function, 𝑓(𝑥𝑖) and 𝑓(𝑥𝑗) are expected to be similar as well.

Consider a training dataset with noisy function 𝑦 = 𝑓(x)+𝜖, where the noise 𝜀 ∼ 𝒩 (0, 𝜎2
𝑦)

is independent with each observation.141 The model comes close the observed data be-

cause of noise. Suppose there is a training set 𝑋 of size 𝑁 × 𝐷 and the test set 𝑋∗ of size

𝑁∗ × 𝐷, where the observation is f and predication outputs is f∗. By definition of the GP,

the join distribution of f and f∗ is again a Gaussian with the following form

(
f
f∗) ∼ 𝒩

⎛
⎜
⎜
⎝
0,

⎛
⎜
⎜
⎝

K K∗

K𝑇
∗ K∗∗

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

(1.24)

where K∗ = 𝜅(x, x∗) and K∗∗ = 𝜅(x∗, x∗).141 The posterior of Gaussian with noise is

given by

𝑝(f∗|X∗, X, y) = 𝒩 (f∗|𝜇∗, Σ∗)

𝜇∗ = K𝑇
∗ K−1

𝑦 y

Σ∗ = K∗∗ − K𝑇
∗ K−1

𝑦 K∗

(1.25)

where K𝑦 = K + 𝜎2
𝑦𝐼 .141 The 𝜇∗ and Σ∗ in equation 1.25 is the main function to calculate

the mean prediction and variance for each predicted points.141 The parameter, 𝜎, controls

the noise level including the range of variance, and fitting between over fitting and under

fitting.

Since kernel parameters are introduced in Equation 1.25 and 1.13, the estimation of these
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values can be quite slow if using an exhaustive search such as grid search. (This is com-

monly used in kernel SVM and KRR.) The advantage of GPs approach is utilizing the

Bayes rule that allow continuous optimization methods to search parameters in a faster

way. In this case, the optimal parameter values can be estimated by maximizing the log

marginal likelihood.141

log 𝑝(y|X) = −1
2y𝑇 K−1

𝑦 y − 1
2 log |K𝑦| − 𝑁

2 log(2𝜋) (1.26)

The first term is a data fit term, the second term is the complexity term which is similar with

the regularization term in linear regression, and the third term is a constant. This function

represents the probability of generating observation from a prior so that the optimization

of parameters of kernel in GPs is also the maximizing the probability of observations.141

Finally, the kernel parameters can be estimated by this equation and its derivative using

a standard gradient-based optimizer. To avoid local minimal problem, multiple starting

points are randomly selected to do the optimization.

Algorithm 1.3 Gaussian process regression141

Input: X, training set
y, targets
𝜅, kernel function
x∗, test-set

Data: 𝑛, the number of restarts optimization
𝜃, the kernel parameters
ℝ, the space of each parameter
𝜎𝑦, the noise level

Output: 𝜇∗, predicted targets
Σ∗, variance

for 𝑖 = 0 to 𝑛 do
̂𝜃 ∈ ℝ // Random select the start point of parameters;

K = 𝜅(x, x);
K𝑦 = K + 𝜎2

𝑦𝐼 ;
log 𝑝(y|X) ←using Equation 1.26;
𝜃𝑖 ←min(− log 𝑝(y|X), ̂𝜃) // Gradient-based optimization;

end
𝜃∗ ←min(− log 𝑝(y|X), 𝜃𝑖);
K∗ = 𝜅(x, x∗);
K∗∗ = 𝜅(x∗, x∗);
𝜇∗ and Σ∗←using Equation 1.25
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To apply GPs algorithm in data analysis, various kernel function are available including

previous mentioned RBF kernel (Equation 1.13), linear kernel (Equation 1.12), Matérn

kernel, and polynomial kernel.141 Future more, the distance measurement also has sev-

eral forms of estimation that allow the implementation of cheminformatics features into

numerical equation. By integrating the advantage of kernel function, Gaussian processes,

and Bayesian optimization, the active learning process is attainable to searching both ex-

ploitation and exploration in designed chemical space.24

1.6 The object of thesis

The subsequent sections of this PhD project delve into various aspects of chemical re-

search, including chemical data visualization, data-driven methodologies for catalyst dis-

covery, and the utilization of machine learning techniques. The subsequent sections of this

PhD project delve into various aspects of chemical research, including chemical data visu-

alization, data-driven methodologies for catalyst discovery, and the utilization of machine

learning force fields. By harnessing the power of data-driven methodologies, advanced

computational techniques, and interdisciplinary collaboration, researchers can unlock new

opportunities for innovation and accelerate the development of novel chemicals and ma-

terials.
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CHAPTER 2 DIGITAL NAVIGATION OF
HIGH-DIMENSIONAL CHEMICAL DATASETS

2.1 Introduction

Thanks to the rapid development of algorithms and computing hardware, many chemin-

formatics methods and machine learning algorithms for data visualization are well estab-

lished in both chemical and computing science community. Using modern algorithms and

simulation methods, large chemical dataset, containing tens of thousands of molecules,

are routinely calculated at quantum mechanical levels on supercomputers. Computational

methodologies and toolkit are of paramount importance in facilitating the design and dis-

covery of novel materials with unparalleled performance, guiding and providing inspira-

tions for laboratory efforts.20,142 The high throughput measure equipments also increased

the availability of experimental data. This leads the formation of large, diverse machine

learning community in chemistry which are developing and utilizing the dataset (by exper-

iments or calculation) to explore chemical knowledge. Here, cheminformatics methods,

dimensionality reduction techniques, and visualization toolkit are presented to show how

a typical high throughput virtual screening(HTVS) and data visualization workflow is per-

formed and designed for chemists.

2.2 Dimensionality reduction algorithms

A general request for data driven research topic is how to make a human interpretable

format of a complex, high dimensional dataset.143-144 A major question concerning the

application of HTVS is how to find an efficient way to visualize the generated datasets.

In this case, dimensionality reduction is an important section in data science, being a fun-

damental technique in both visualization and pre-processing for machine learning. Most
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dimensionality reduction algorithms fall into two categories: those that favour the preser-

vation of the distance in original space (principal component analysis and multidimen-

sional scaling) and those that prefer to preserve local over global topology of the data;

for example, t-distributed stochastic neighbour embedding (t-SNE).134 The t-SNE algo-

rithm has been a popular choice for visualization of high-dimensional data. However, it

is difficult for t-SNE to preserve the global topology of the data as it uses Gaussian joint

probabilities to represent the affinities in the original space and Student’s t-distributions in

the embedded space. The t-distribution, like the Gaussian distribution, is bell-shaped and

symmetric, but it has heavier tails, meaning that it tends to produce values that fall far from

its mean. Therefore, to minimize the cross entropy between the two distance matrices in

their spaces, the t-SNE algorithm ‘shrinks’ and ‘rescales sequence’ of the Gaussian dis-

tribution matrix in the original space to fit the t-distribution matrix. The algorithm also

needs to arbitrarily add the missing information about long distances to the embedded

space, due to the Gaussian distributions not preserving such information from the original

space. Recently, a novel manifold learning algorithm, Uniform Manifold Approximation

and Projection (UMAP),135 was devised and has been shown to often outperform t-SNE in

both preserving global information and computational costs of calculations. UMAP is the

same as t-SNE, in terms of manifold learning, but uses topology theories to construct the

cluster group instead of Gaussian functions. Then, UMAP minimizes the cross-entropy

between the topological representation and the layout of representation in the low dimen-

sional space to improve the retention of distance between clusters.

The t-SNE algorithm134 is modified from stochastic neighbour embedding (SNE) which

starts by encoding the distance of neighbours in the original high dimensional space into a

conditional probability representing similarities and converts it to a Student t-distribution

in the output low dimensional space. The similarity of data point 𝑥𝑗 to 𝑥𝑖 is the condi-

tional probability 𝑝𝑗|𝑖 if point 𝑥𝑗 is considered as a neighbour of 𝑥𝑗 . Mathematically, the
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conditional probability 𝑝𝑗|𝑖 is given by

𝑝𝑗|𝑖 =
exp (− ‖𝑥𝑖 − 𝑥𝑗‖

2 /2𝜎2
𝑖 )

∑𝑘≠𝑖 exp (− ‖𝑥𝑖 − 𝑥𝑘‖
2 /2𝜎2

𝑖 )
(2.1)

where 𝜎𝑖 is the variance of the Gaussian centred on point 𝑥𝑖. The property of Gaussian

distribution gives high 𝑝𝑗|𝑖 if the distance of neighbour ‖𝑥𝑖 − 𝑥𝑗‖
2 is small, whereas 𝑝𝑗|𝑖

will be almost infinitesimal for widely separated data points. The parameters 𝜎𝑖 in Equa-

tion 2.1134 determine shape of the Gaussian distribution as a key control of the SNE

techniques. Thus, hyperparameter called perplexity is introduced to evaluate the value of

𝜎𝑖 for different point 𝑥𝑖 and control how many and smooth of neighbours is counted in

SNE. For the low dimensional mapped points 𝑦𝑗 and 𝑦𝑖 from points 𝑥𝑗 and 𝑥𝑖 in the high

dimensional space, the similarity of 𝑦𝑗 and 𝑦𝑖 is also computed by

𝑞𝑗|𝑖 =
exp (− ‖𝑦𝑖 − 𝑦𝑗‖

2
)

∑𝑘≠𝑖 exp (− ‖𝑦𝑖 − 𝑦𝑘‖
2
)

(2.2)

as the conditional probability 𝑞𝑗|𝑖. If this mapping is precisely described the similarity

between the points in high dimensional space and low dimensional space, the conditional

probability 𝑝𝑗|𝑖 and 𝑞𝑗|𝑖 will be equal. The aim of the dimensionality reduction algorithm

SNE is finding a representation to minimize the difference between 𝑝𝑗|𝑖 and 𝑞𝑗|𝑖.134 This

difference can be calculated by Kullback-Leibler (KL) diverge as the cost function which

describes the statistic similarity between two probability distributions.

There is a limitation using KL diverge on the gradient descent optimization because of the

complexity and non-symmetry of the conditional probability 𝑝𝑗|𝑖 and 𝑞𝑗|𝑖.134 Therefore,

a symmetric joint probability 𝑝𝑖𝑗 = 𝑝𝑗|𝑖+𝑝𝑖|𝑗
2𝑛 is used here to reduce the complexity of the

gradient calculation of the KL diverge. The pairwise similarities of joint probability 𝑝𝑗𝑖

and 𝑞𝑗𝑖 have similar mathematical form with conditional probability (Equation 2.1 and
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2.2)134 so that the KL diverge 𝐾𝐿(𝑃 ||𝑄) is

𝐶 = 𝐾𝐿(𝑃 ||𝑄) = ∑
𝑖

∑
𝑗

𝑝𝑖𝑗 log
𝑝𝑖𝑗
𝑞𝑖𝑗

(2.3)

and the gradient of symmetric SNE is given by

𝛿𝐶
𝛿𝑦𝑖

= 4 ∑
𝑗

(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑦𝑖 − 𝑦𝑗) (2.4)

The so-called ‘crowding problem’ is also introduced by using the distance to measure

the similarity in the high dimensional space since the neighbour region around point 𝑖

with moderate distance is much larger in high dimensional space than represented in low

dimensional space. Here, a Student t-distribution with single degree of freedom (Equation

2.5)134 is introduced as the joint probability in low dimensional space 𝑞𝑖𝑗 to solve this

problem.

𝑞𝑖𝑗 =
(1 + ‖𝑦𝑖 − 𝑦𝑗‖

2
)

−1

∑𝑘≠𝑙 (1 + ‖𝑦𝑘 − 𝑦𝑙‖
2
)

−1 (2.5)

Overall, the t-SNE algorithm is proposed below:

Algorithm 2.1 t-Distributed Stochastic Neighbour Embedding134

Input: dataset 𝜒 = {𝑥1, 𝑥2, … , 𝑥𝑛}
cost function parameter: 𝑃 𝑒𝑟𝑝 perplexity
optimization parameters: number of iterations 𝑇 , learning rate 𝜂, momentum 𝛼(𝑡)
Output: 𝒴𝑇 = {𝑦1, 𝑦2, … , 𝑦𝑛}
begin

calculate 𝑝𝑗|𝑖 ← with 𝑃 𝑟𝑒𝑝 using Equation (2.1);
𝑝𝑖𝑗 = 𝑝𝑗|𝑖+𝑝𝑖|𝑗

2𝑛 ;
sample initial 𝒴0 = {𝑦1, 𝑦2, … , 𝑦𝑛} from 𝒩 (0, 10−4𝐼);
for 𝑡 ← 1 to 𝑇 do

calculate 𝑞𝑖𝑗 using Equation (2.5);
calculate the gradient 𝛿𝐶

𝛿𝒴 ; Update 𝒴 𝑡 by counting the gradient with a momentum
term 𝒴 𝑡 = 𝒴 𝑡−1 + 𝜂 𝛿𝐶

𝛿𝒴 + 𝛼(𝑡)(𝒴 𝑡−1 − 𝒴 𝑡−2);
end

end

As mentioned in Chapter 1, the UMAP135 algorithm provides more advantages compared
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with t-SNE. The mathematical process of UMAP135 is similar with t-SNE, but topological

analysis technique is introduced to evaluate the similarity of neighbours in high dimen-

sional space. The first step of UMAP can be considered as constructing a K-neighbour

graph using the nearest neighbour algorithm.135 A hyperparameter 𝑘 is introduced here

to set the 𝑘 nearest neighbours as a group for each point 𝑥𝑖.

𝜌𝑖 = min {𝑑(𝑥𝑖, 𝑥𝑖𝑗 )|1 ≤ 𝑗 ≤ 𝑘, 𝑑(𝑥𝑖, 𝑥𝑖𝑗 ) > 0} (2.6)

where the metric 𝑑 is the distance measure for given dataset 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁}. The

selection of 𝜌𝑖 ensures that every 𝑥𝑖 connects at least one neighbour with an edge. The

weighted graph 𝐺 = (𝑋, 𝐸, 𝜔) can be defined with edges 𝐸 = {(𝑥𝑖, 𝑥𝑖𝑗 )|1 ≤ 𝑗 ≤ 𝑘, 1 ≤

𝑖 ≤ 𝑁} and weight function 𝜔 by Gaussian function.135

𝜔((𝑥𝑖, 𝑥𝑖𝑗 )) = exp
(

− max(0, 𝑑(𝑥𝑖, 𝑥𝑖𝑗 ) − 𝜌𝑖)
𝜎𝑖 )

(2.7)

where the 𝜎𝑖 corresponds to a smoothed factor. The weight of edge can be considered as

the probability of given edge exists. A similar approach is given in the low dimensional

space to construct the representation by measuring cross-entropy. With introducing the

graph theory to describe the similarity, the UMAP is capable to separate clusters as tightly

packed and try to reach maximal separation compared with t-SNE.135

2.3 Plotting chemical structure activities relationships

2.3.1 Visualization of crystal structure dataset

Large-scale computational screening has become an indispensable tool for functional ma-

terial discovery. It, however, remains a challenge to adequately interrogate the large

amount of data generated by a screening study. For example, Pulido et al. have demon-

strated a step-change strategy for how new, functional molecular materials can be discov-

ered: by carrying out a priori prediction of both the crystal structure and its functional

42



CHAPTER 2 DIGITAL NAVIGATION OF HIGH-DIMENSIONAL CHEMICAL DATASETS

properties: Energy-structure-function (ESF) maps are created to aid researchers, with-

out computational expertise, in realizing several remarkable porous materials promising

for different possible applications. The in-silico crystal structure prediction (CSP)41-42 is

a class of methods to determine the stable crystalline arrangements that are available to

a molecule. Here, the process of generating a stability-ranked list of crystal structures

involves several steps. Initially, the geometries of all molecules are optimized using the

B3LYP/6-311G(d,p) level of theory. These optimized molecular geometries are kept fixed

during both crystal structure generation and lattice energy minimization. A quasi-random

sampling procedure is employed to define the chemical system, which includes specifying

information about the unit cell, molecular positions, orientations, and lattice parameters

within each space group. The application of space-group symmetry allows for the gener-

ation of trial crystal structures, and a geometric test is performed to check for any over-

lap between molecules. Subsequently, lattice energy calculations are conducted using an

anisotropic atom-atom potential. To ensure the uniqueness of the generated structures,

structural relaxation techniques are applied to remove duplicate structures that may have

been generated during the process. This helps to refine the list of distinct crystal struc-

tures. CSP can generate a list of predicted crystal structures ranked by stability of a given

material without perform the time/labour expensive experiments.

In the published dataset,145 5679 crystal structures generated by CSP and are presented

on a 2D diagram(Figure 2.1(a)) using density against relative lattice energy (build block

T2, Figure 2.2(d)), with each point corresponding to a computed crystal structure. Thus,

chemists need efficient design to overview the big data (thousands of crystal structures in

ESF maps), narrow down the possibilities, and identify promising candidates for further

investigation. Except this, it is also a challenge of interpretation and visualization with

large-scale of generated CSP dataset.

While projecting an ESF map onto individual dimensions is a useful way of exploring
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data, it can be laborious when many structural and functional properties are associated

with 1000s to 10,000s of structures typically on a single ESF map, even with the help

of the interactive ESF Explorer(Chapter 2.3). It is therefore desirable to devise a sim-

ple and general approach to represent the high-dimensional data of ESF maps, allowing

researchers to systematically inspect ‘landmark’ structures on the map, be they either en-

ergetically favourable or functionally interesting structures. With the implementation of

the published CSP data (Figure 2.1(a)), machine learning algorithms can help to identify

local representing structures and reducing the screening time. The screening requirement

of such structure space is reduced from viewing 5679 structures to less than 100 struc-

tures. Such 2D diagrams, with additional information easily conveyed by colour coding

and symbol size, are a powerful tool to allow for direct visualization of high-dimensional

data and to help with deciphering the multivariate structure-property relationships.

(a) Crystal structure prediction (CSP) energy-density
plots for T2

(b) 2D embeddings of the porosity
space of T2

Figure 2.1 Transforming the CSP landscape from energy-density space to algorithm embed-
ded space. The symbols in (a) are colour coded by the dimensionality of the pore channels,
assessed using a CH4 probe radius, 1.7 Å. The arrow in (b) represents the observed poly-
morph transformations from T2-𝛾 to T2-𝛿.

After investigating the published T2 CSP dataset, a series of awkwardly shaped molecules

with different hydrogen-bonding functionalities (Figure 2.2) were selected to analysis their

CSP landscape, with the input of collaborators.22 To influence crystal packing, the molec-

ular cores were functionalized by different hydrogen-bonding moieties.
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(a) TH2 (b) TH4 (c) TH5 (d) T2

Figure 2.2 The four candidate building blocks for porous solids and invested by CSP

To identify ‘landmark’ structures of these CSP data, each of the crystal structures was

encoded by a number of pore descriptors as applied on T2 data. In the end, the UMAP

algorithm was implemented to project the ‘landmark’ structures on a 2D representation

and coloured by the number of pore dimensionality (Figure 2.3). In addition to the existing

colour axis, it is possible to change it to other properties, such as relative lattice energies.

This modification would enable researchers to identify the position of the global minimum

structure on the 2D map. Implementing such features in the subsequent online interactive

application would allow for a more comprehensive analysis and interpretation of the data.

Figure 2.3 2D UMAP embeddings of the porosity spaces of TH2(diamond), TH4(circle),
TH5(cross) and T2(diamond), colour coded by the dimensionality of the pore channels, as-
sessed using a CH4 probe radius, 1.7 Å.

Since the selected porosity descriptors were agnostic to the molecular structure, ‘land-
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mark’ structures can be compared across the different molecules in a single projection.

The structures that have isostructural pore channels—for example, TH2-A, TH4-A, TH5-

A and T2-𝛾 all have hexagonal pore channels—are located in proximity on the 2D UMAP

representation (left top corner on Figure 2.3). The 2D embedding approach shown here

makes ESF maps machine-readable. To give one use case: it is often desirable to make

comparisons between ESF maps for different molecules to assess whether two molecules

will be functionally similar or not. This unified embedding process will be useful for

comparing multiple CSP datasets and identifying functionally similar structures using the

encoding representation. This might be used, for example, to select the most synthetically

accessible molecule in a set of candidates that is likely to express the property of interest,

such as a specific pore size. This approach automatically and systematically identifies a

small set of ‘landmark’ structures (typically, 10s to 100s) from the whole CSP landscape

(typically, 1000s to 10,000s structures), which allows chemists to focus more expensive

calculations on a smaller set of structures.

2.3.2 Methods of clustering and identifying ‘landmark’ structures

The simulated porous features including pore diameters, surface areas and some variants

of these in order to capture, to some extent, the heterogeneity of pore/channel sizes within

a given map. To enhance the efficiency of visualization and screening, a machine learn-

ing guided workflow is built for working with the CSP dataset. This method involves the

following steps: (I) featuring the CSP dataset; in this case engineered descriptors char-

acterizing porous structures are used; (II) calculating the similarity matrix of the whole

dataset, using pairwise Euclidean distances between the structures in the high-dimensional

space (III) using clustering algorithms (here being affinity propagation146 ) to group simi-

lar structures, and select the lowest-energy structure in each cluster to represent the cluster;

(IV) Applying MDS techniques to transform the high-dimensional feature space into a 2D
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diagram (Figure 2.1(b)), or using the UMAP algorithm to project the ‘landmark’ struc-

tures, in which the distances between data point respect their counterparts in the original,

high-dimensional space.

2.3.3 Web interactive application

In order to improve the interoperability and accessibility of the ESF map embedding re-

sults and other cheminformatics figures, a web based shareable interactive analytic ap-

plication was developed for direct visualization of most information obtained from the

dataset. A general interactive application includes data operation as the back-end and

HTML components as the front-end. Here, Dash is chosen as the low-code front-end

framework to rapid develop apps in Python and deployed on Heroku server. This visual-

ization tool allows users to scan any selected columns up to five dimensions simultane-

ously. For instance, three descriptors can be selected as the axes for visualization in the

3-dimensional (3D) diagram against other two descriptors as colour coding and symbol

size. Furthermore, additional textual information is labelled for each data point, which is

activated by hovering the cursor over the plot. Within some python frameworks, such as

Pandas,147 Plotly148 and Dash,149 such visualization apps are customise-able and can be

rendered on the web by a few hundred lines of scripting.

By integrating the 2D UMAP embedding map and traditional 2D ESF maps, the web appli-

cation allows researchers to interactive inspect identify ‘landmark’ structures on different

structure property relationship figures by either changing the chart type or colour type.

Figure 2.4 is a snapshot of one such web-based application (https://www.interactive-esf

-maps.app/), showing an interactive 2D scatter plot with three dimensions of displayable

information chosen by the user. The visualization is not only interactive but also highly

user-friendly; for example, each plotting dimension is defined via a drop-down menu giv-

ing the user full control at ease, while slider bars allow the user to choose the value range
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Figure 2.4 The energy-structure-function (ESF) maps of TH4 molecules on web application

for plotting/display. Chemical structures can be interactively displayed upon selection of

data points on the plot to allow comparison of different crystals and molecules.

More generally, the visualization interface is highly customizable and extendable. For

instance, the 2D embeddings of the porosity spaces of TH2, TH4, TH5 and T2 landmarks

figure can also be represented online with flexible of colour bar and 3D structure visual-

ization. Users can switch the chart type between ESF map and 2D UMAP embeddings

figure to inspect crystal structures of each sample. Furthermore, pre-built components,

such as HTML images and JavaScript plugin models for 3D chemical structure visualiza-

tion(Jsmol),150 can be easily linked up with the interface. The Dash package provides

many flexible web components to interactive the plots such as live updating new data,

cross filter data between multiple figures, and searching/filtrating samples by input text.

The above approach is interchangeable and can be readily adapted to other classes of
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Figure 2.5 The web application of 2D UMAP embeddings of the porosity spaces of TH2,
TH4, TH5 and T2

materials; for example, Figure 2.6 is a screenshot of an interactive, web-based applica-

tion implemented a library of candidates organic photocatalysts (https://www.molecula

r-photocatalysts-library.app/).151 Drawing on the laboratory’s existing chemical stocks,

my collaborators identified 572 aromatic molecules and investigated their performance

for photocatalytic hydrogen evolution rate (HER) activity using high-throughput prop-

erty measurements. A range of key optoelectronic, excited-state properties, and energy

levels are determined computationally using density functional theory (DFT). Such fea-

tures presented on a 5D interactive application (Figure 2.6(a)) allows for new physical

insights and/or new design principles to be developed by other catalysis researchers. Sim-

ilarly, all the molecules were first encoded, here using the SOAP descriptor,123 with their

pairwise distances determined by the REMatch kernel152 implemented by DScribe pack-

age.153 Then, they were spatially arranged onto a 2D diagram (Figure 2.6(b)) respecting

their similarities, using the UMAP dimensionality reduction method, and colour-coded by
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(a) 5D explorer of HER and molecular proper-
ties

(b) 2D UMAP embeddings of SOAP and RE-
match chemical space

Figure 2.6 Structure-activity relationship map of the molecular photocatalyst library

their photo-catalytic activities. This interactive explorer was future migrated to visualize

another MOFs dataset (https://www.ch3i-capture-by-mofs.app).154

Another future challenge for HTVS is the infrastructure for data storage and retrieval that

is safe, flexible and efficient. One of the most common approaches is the use of Structured

Query Language (SQL)155 in relational dataset management system; in other words, the

structured orthogonal data always have the same dimensional features. Other related al-

ternatives include NoSQL (originally referring to “non-SQL” but often to “not-only-SQL”

as well) databases that are often found to be better suited to chemical data, because of their

flexibility and capability of handling rapidly changing data types. In this project, Mon-

goDB,156 a cross-platform document-oriented database programme, is chosen to manage

the storage and retrieval of the HTVS data. Briefly, each molecule or crystal structure

is stored as an entry in a JavaScript Object Notation (JSON) format document—either

directly or, for crystal structures, converted by the Pymatgen toolkit157 —and stored in

a MongoDB database, allowing the user to retrieve data via its python API and to inter-

face it with other python functions. The standardized data storage format allows collecting

chemical information across different research groups and will be beneficial to build larger

chemical dataset for the research community.
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2.4 Summary

Overall, the demonstrated process provides a simple and general framework for repre-

senting the high-dimensional data of ESF maps and for systematically identifying ‘land-

mark’ structures on the map. By applying machine learning algorithms to pore features,

calculated electronic features, as well as SOAP representations, 2D embedded chemi-

cal feature space could be learned, which are human interpretable. This approach of en-

coding, learning, and representing high throughput chemical dataset enables an efficient

navigation of the complex ESF space within a unified framework, allowing researchers

to identify energetically favourable or functionally interesting structures across different

systems, as well as revealing complex structure-function correlations that are hidden when

inspecting individual structural features. This makes a step forward an automated anal-

ysis of HTVS, which will be beneficial in facilitating autonomous searches for chemi-

cal materials. Besides, the online interactive explorer that were developed here (https://

www.interactive-esf-maps.app/, https://www.molecular-photocatalysts-library.app/, and

https://www.ch3i-capture-by-mofs.app) might allow for new physical insights and/or new

design principles to be developed by other researchers.
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CHAPTER 3 FUNCTIONAL PHOTOCATALYTIC
MOLECULES SCREENING BY MACHINE LEARNING

AND EXPERIMENTS

3.1 Introduction

There is a continuous interest in organic materials, including conjugated polymers, cova-

lent organic frameworks, and π-conjugated molecules, as alternatives to inorganic materi-

als for the photocatalytic generation of solar fuels.158-161 However, it remains a challenge

to predict the activity of an organic photocatalyst, based on intuitions or guided by com-

putations. The performance is influenced by a host of factors spanning multiple length

scales, such as light absorption, thermodynamic driving force, exciton binding energy,

charge carrier mobility, and so on.162 To de-convolute such complex, multivariate rela-

tionships, sufficient data are required, which should ideally be collected consistently to

diminish uncontrollable sources of errors, for example, from different labs. However,

most studies in the literature are individually focused on only a handful of catalysts, hence

making it significantly hard, if not impossible, to establish a predictive model considering

more than a couple of factors.

ML-based approaches are often referred to as data-driven approaches, implying that they

require sizeable datasets to train on. This could make them unattainable when the acquisi-

tion of experimental data is time-consuming and expensive. For photocatalysts, this chal-

lenge is further compounded by the fact that mining the literature is rarely an option due to

data inconsistencies originating from the lack of a field-wide standard for data collection

and reporting. Currently, the largest library of organic photocatalysts which was measured

under identical conditions by high throughput equipment contained 175 conjugated linear

polymers.64 To extend the application of ML techniques on photocatalyst, a more large and
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diverse organic molecule library was created using a high-throughput, automated method

by experimental collaborators. This library of candidate organic molecules is diverse, as it

includes many molecules that were originally obtained or synthesized for other purposes,

such as the production of porous organic cages, conjugated microporous polymers, and

covalent organic frameworks. Additionally, it contains some molecules that had been pre-

viously investigated for photocatalytic related issues. The aim is to establish en extensive

and diverse library of potential organic compounds that could be promptly obtained and

evaluated as a training set for sacrificial photocatalytic hydrogen evolution.

With creating the largest dataset of hydrogen evolution by organic photocatalyst, the den-

sity functional theory calculations and machine learning was applied to analyse and predict

the activity of the molecules. Through unsupervised learning, the identified correlations

between molecular structure and photocatalytic activity, which were human interpretable

to some extent. These correlations were also found to be machine learnable and were used

to predict the photocatalytic activity through supervised classification algorithms and cal-

culated molecular descriptors. Finally, the potential of machine learning to assist chemists

in discovering new photocatalysts was proved through in silico virtual experiments and ex-

perimental blind tests.

3.2 Building a library of candidate organic photocatalysts

Drawing on the laboratory’s existing chemical stocks, experimental collaborators iden-

tified 572 aromatic molecules and investigated their performance for photocatalytic hy-

drogen evolution activity to build the large dataset of organic photocatalyst activities in

hand. This library presents a great opportunity for applying ML methods to interpret the

data and to establish possible structure-activity relationships for organic photocatalysts.

To ensure that no prior human knowledge of the molecular structure was utilized in as-
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sessing photocatalytic performance, every organic molecule available in stock was tested,

to minimize ‘intuitions’ skewing the true structure-activity correlation. A total of 11 ele-

(a) Polar bar chart (b) Statistical summary of the HER

Figure 3.1 A library of 572 aromatic candidate organic photocatalyst molecules. (a) Polar
bar chart showing the percentage of molecules in the library containing the 11 different chem-
ical elements that occur: 100% contain C, 96% contain H, and so on. The radial coordinates
are on a logarithmic scale. (b) Statistical summary of the photocatalytic hydrogen evolu-
tion performance of the candidate molecular catalysts in the library. The hydrogen evolution
rate (HER) was classified against two conjugated polymers as a benchmark: carbon nitride
PCN29 (2.2 μmol/h)163 and a covalent triazine framework CTF-1 (ref. 30) (17.0 μmol/h).164

ments occurred in this library of molecules; the frequencies of their occurrence is shown

in Figure 3.1(a). Figure 3.1(b) shows a statistical summary of the photocatalytic hydro-

gen evolution rates (HERs) of the dataset. In comparison with two benchmark conjugated

polymers PCN29 and CTF-1.

To assess the chemical diversity of molecules in terms of the chemical space coverage, it

was compared with the linear polymer photocatalysts reported by Bai et al. , which is the

largest library of organic photocatalysts in a single study to date. The Smooth Overlap of

Atomic Positions (SOAP) descriptor123 was used to encode atomic neighbour environ-

ments for the H, C, N and O elements in both libraries. For visual comparison, the Uni-

form Manifold Approximation and Projection (UMAP)135 technique was applied to learn

a mapping from the high-dimensional SOAP vectors to a two-dimensional (2D) represen-

tation (Figure 3.2). This showed that the library of 572 molecules covers a significantly
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Figure 3.2 Comparison of the diversity of atomic neighbour environments for H, C, N and
O elements found in this molecular library (red points) and in the library of 99 conjugated
polymers(blue points)64

larger chemical space than the polymer library,64 as expressed by the four key elemental

types (Figure 3.2). The higher chemical diversity of the molecular library stems from the

larger number of occurring elements (11 vs. 8), as well as this library containing a signif-

icantly larger number of different molecules than the total number of unique monomers

in the polymer library (572 vs. 99). Also, that polymer library was constructed by using

chemical knowledge: specifically, it was biased to include comonomers such as dibenzo-

sulfone that were already known to promote photocatalytic activity.165

The photocatalytic hydrogen evolution performance for the small molecule library was in-

vestigated using a high-throughput parallel photocatalysts screening platform that utilizes

a solar simulator, as described previously.64 Figure 3.1(b) shows a statistical summary of

the photocatalytic hydrogen evolution rates (HERs) of the dataset. The generalized cat-

alytic mechanism proposed here is that the photo-generated excitons on the molecule can

either undergo a single-electron reduction or oxidation, mediated by the sacrificial elec-
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tron donor (TEA) and the proton reduction catalyst (Pt), respectively. In comparison with

two benchmark conjugated polymers PCN29163 and CTF-1,164 synthesized in-house and

measured under exactly the same conditions, 63 molecules showed HERs higher than for

PCN (2.2 μmol/h), and 6 molecules surpassed the HER for CTF-1 (17.0 μmol/h). The

highest HER among these molecular photocatalysts (ID153; see Figure 3.3 for structure)

was 28.3 μmol/h (5660 μmol/g/h), which is comparable to the highest HER (around 6000

μmol/g/h) measured for the 175 conjugated polymers using the same experimental setup

using a more design-led approach.64

3.3 Mapping structure-activity relationships of experimental data

3.3.1 Mapping structure-activity correlations

To investigate possible structure-activity correlations in this library, the SOAP descriptor

is used to encode the molecules and, together with a regularized entropy match (REMatch)

kernel,152 to quantify the similarity between all pairs of molecules. The resulting simi-

larity matrix was then projected onto a 2D space by a UMAP embedding, as shown in

Figure 3.3(a), where each point represents a molecule. The size of each point relates to

the photocatalytic activity of the molecule (the HER). The points are arranged spatially

such that the closer the two points are on the plot, the more similar the two molecules

are, as described by SOAP. Then, the k-means algorithm is used to identify clusters on

the 2D UMAP space, showing that the 572 molecules can be broadly clustered into five

groups (colour coded in Figure 3.3(a)), based on their chemical and structural similarity.

This figure shows that there are correlations between molecular structure and hydrogen

evolution activity in the dataset. For example, the molecules in the library with high

HERs are mostly located in group 1 (red points on plot). Within each of the five larger

sub-groupings, molecules with relatively high catalytic performance tend to form smaller,
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(a) (b)

Figure 3.3 Structure-activity map of the molecular photocatalyst library. (a)2D UMAP em-
bedding of the chemical space of the photocatalyst library, colour-coded by k-means clusters
identified using the 2D UMAP coordinates; symbol size denotes the experimentally measured
hydrogen evolution rate (HER). (b)Plots showing relative HERs for groups of structurally
similar molecules; the locations of these three groups (Z1-Z3) are circled on the UMAP plot
in (a).

local clusters. Structural analysis of the molecules with the highest activities (>9 μmol/h)

revealed that all but one examples (ID566) shared the common structural feature of hav-

ing at least one aryl carbonyl moiety. However, it is worth noting that molecules with

similar structures can show large differences in hydrogen evolution activities; for exam-

ple, the structural isomers shown in sub-cluster Z1-Z3(Figure 3.3(b)). In group Z1, the

molecules feature fluorine and cyanide substituent on the benzene ring, while group Z2

consists of molecules sharing a methoxy group. Similarly, group Z3 comprises molecules

that share a cyanide group. Despite their structural similarities, these molecules exhibit

distinct hydrogen evolution activities.

3.3.2 Machine learning the hydrogen evolution activity

For an organic molecule to act as an efficient hydrogen evolution photocatalyst, it must

absorb light efficiently and drive thermodynamically the reduction of protons and the ox-

idation of water or, in this study, a sacrificial agent (TEA). To achieve this, the density
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functional theory (DFT) calculation was performed by collaborators using Gaussian 16

software166 to represent the catalytic activity by 11 molecular electronic features, which

includes the electron affinity (𝐸𝐴), the exciton electron affinity (𝐸𝐴∗), the exciton bind-

ing energy (𝐸𝑒𝑏), the solvation energy of the molecule in water (𝐸𝑠𝑜𝑙), the self-binding

(in a dimer) energy (𝐸𝑏), and a range of key optoelectronic and excited-state properties:

(I) light absorption (optical gap, Δ𝐸𝑆1→𝑆0), (II) change in dipole moment between S1

and S0 (Δ𝐷), (III) degree of spatial extension of hole and electron distribution in the

charge-transfer direction (𝐻𝐶𝑇 ), (IV) the difference in the extent of spatial distribution

between electron and hole (Δ𝜎), (V) electron-hole overlap (𝑆𝑟), (VI) the energy gap be-

tween the first singlet (S1) state and the first triplet (T1) state (Δ𝐸𝑆1→𝑇1). To gain insight

into the dependence of HER on these various calculated descriptors, the Pearson’s cor-

relation coefficients for individual features and their binary combinations were explored

firstly (Figure 3.4(a)).

(a) (b)

Figure 3.4 Visualization of the feature correlation. (a)Bivariate Pearson’s correlation be-
tween the HER and all pairs of the calculated molecular descriptors, where the scale runs
between -0.1 and +0.1; the diagonal running from the top-left corner to the bottom-right
corner shows the correlation between the HER and individual descriptors. (b)One-to-one
correlation between all pairs of the calculated molecular descriptors and the measured HER.

The cells on the diagonal (top-left to bottom-right) of Figure 3.4(a) shows the extent of
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linear correlation of the HER with individual variables, while the off-diagonal cells con-

tain the geometric mean of the correlation of HER with each of the two descriptors. The

absolute value of the Pearson correlation coefficient is less than 0.1 for all variables and

variable pairs, indicating a weak linear correlation, if any, between the HER and single de-

scriptors or binary combinations of them. This shallow statistical analysis will not capture

any complicated or non-linear behaviours dependent on multiple features, but it confirms

that any possible structure-property-activity relationship in our dataset is of a non-linear,

multivariate nature. Figure 3.4(b) shows that the HERs are not linearly dependent on any

individual descriptors, nor is any pair of the calculated molecular descriptors correlated

in a simple way.

Next, a number of machine learning (ML) models were evaluated for their suitability

to construct predictive models together with the computed molecular descriptors. This

included k-nearest neighbours (KNN), random forests (RF), support vector machines

(SVM), Gaussian processes (GP), gradient boosted decision trees (GB-DT), and multi-

layer perceptron (MLP), all of which have been used in various areas of chemistry and

materials science.11,167-168 The models are trained for tiered classification tasks based on

optimized HER thresholds. By transforming a regression problem into a lower-resolution

classification problem, the models act as a filtration step for flagging potentially pho-

toactive candidate molecules. For binary classification, this resulted in one class being

assigned to HER values smaller than 1.07 μmol/h, with the other class assigned to val-

ues larger than 1.07 μmol/h. The class thresholds (in μmol/h) for ternary classification

were 1.07 and 12.5; that is, low: HER ⩽ 1.07, medium: 1.07 < HER ⩽ 12.5, high:

HER > 12.5. The quaternary classification was also attempted, as well as regression

tasks, but no satisfactorily predictive models could be achieved(Figure 3.5).

Leave-one-out results showed that the calculated molecular descriptors were successful at

producing binary and ternary classifications with greater than 87% accuracy, independent
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Figure 3.5 The 5-fold cross validation result of KNN regression. Number of neighbours=5;
using SOAP REMatch kernel as the precomputed metrics.

of the model type (Tables 3.1). The use of 10-fold cross-validation affords computational

efficiency but fails to produce high F1-scores. This was a result of class imbalance: there

are far more data points in the ‘low’ performance class than in the ‘high’ performance

class (492 vs. 80), and 59% of molecules in the library produced no hydrogen at all, thus

exposing the classifier to more information related to the low-performance case. This oc-

curs when the dataset is sampled uniformly for each fold of cross validation; this issue

remains when using biased sampling to force each fold to have a constant amount of each

class. Class imbalance is a core challenge in applying machine learning to a wide range of

research problems in the physical sciences, such as diversity-oriented screening for new

photocatalysts, where there are often far more zeros in a dataset than non-zero values.

Overall, our results show that the use of molecular descriptors that quantify a range of

photochemical and electronic features of the molecule, in conjunction with ML models,

can predictively assign HER performance levels (low, medium or high) to candidate pho-
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Table 3.1 Binary and ternary classification metrics across all models, obtained by 10-fold
and leave-one-out (LOO) cross-validation procedures

Model
Binary Ternary

10-fold LOO 10-fold LOO

Accuracya F1-scoreb Accuracy Accuracy F1-score Accuracy

KNN 0.89 0.69 0.89 0.89 0.61 0.89

GP 0.87 0.57 0.87 0.87 0.42 0.87

RF 0.89 0.69 0.88 0.88 0.57 0.89

GB-DT 0.89 0.69 0.88 0.88 0.57 0.89

SVM 0.87 0.68 0.87 0.88 0.58 0.87

MLP 0.89 0.71 0.89 0.89 0.56 0.88

a The sum of the number of true positives (TP) and true negatives (TN) divided
by the sum of the number of true positives, true negatives, false positives (FP),
and false negatives (FN).

b Weighted harmonic mean of precision and recall, where precision is the number
of true positives divided by the sum of the number of true positives and false
positives; recall is the number of true positives divided by the number of true
positives and false negatives. For ternary classification, metrics are computed
independently for each class and then averaged (macro average).

tocatalysts, albeit with limitations.

Comparing KNN with the other ML models (Tables 3.1), it is more important than the

ML model itself that the relative similarity of the models and the largely interpolative

behaviour of them, with characterization. This is unsurprising because of the class imbal-

ance challenge described above as well as missing any mesoscale experimental factors,

which are not captured by the current set of molecular descriptors, as discussed further in

Chapter 3.5.

To assess the practical utility of these models, how the models failed was explored. From

the confusion matrices shown in Figure 3.6, it is clear that the experimentally high-

performing catalysts are more often mislabelled as being ‘low’ performers than the op-
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(a) K-nearest neighbours (b) Gaussian process

(c) Gradient boosted decision trees (d) Multilayer perceptrons

Figure 3.6 Confusion matrix for binary and ternary classifiers based on different models

posite case. This is a result of the significant class imbalance, discussed above. The

current models are robust against producing false positives (more than 95% ‘low’ per-

formers are correctly labelled by all the models), and hence useful to screen out candi-

dates that would show zero or low hydrogen evolution activities. Some ‘high’ performing

molecules will also be eliminated because they are mislabelled as ‘low’ performing, but

this behaviour could be acceptable when the cost of experiment is high and evaluating an

excess of candidates becomes expensive—for example, to guide investigations that can-

not access high-throughput screening facilities, as used here. To minimize the model’s

proneness to false negatives—that is, mislabelling ‘high’ performers as ‘low’—more data

points in the ‘high’ HER class would be required to improve the model’s performance. By

examining these confusion matrices and the performance metrics in Table 3.1, the MLP

models was identified as the strongest binary and ternary classifiers.

Binary and ternary classification tasks were also performed for the 572 molecules, using

only the molecular structure as input representation. To encode the molecules for machine

learning, both Morgan fingerprints and SOAP descriptors were tested, together with us-

ing the Tanimoto index or the REMatch kernel as the similarity measure (further details
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are given in Table 3.1). KNN and SVM models were evaluated for both structural rep-

resentations, using their respective, precomputed distance metrics. All the KNN models

Table 3.2 Binary and ternary classification metrics across models based molecular finger-
prints or SOAP descriptors, obtained by 10-fold cross-validation procedures

Representation Model
Binarya Ternary

Accuracy F1-score Accuracy F1-score

Fingerprintsb KNNd 0.88 0.68 0.88 0.63

Fingerprints SVMe 0.77 0.48 0.77 0.34

SOAPc KNN 0.87 0.73 0.88 0.60

SOAP SVM 0.75 0.47 0.84 0.32

a The class thresholds were the same as those in Table 3.1.
b Morgan fingerprints with a radius=2, generated by RDKit; similarity

measure: Tanimoto index.
c SOAP descriptors with r=6.0, n=8, l=6, generated by DScribe; similarity

measure: regularized entropy match (REMatch) kernel. The similarity
matrix for the 572 molecules used here is the same as the one used for
Figure 3.2.

d number of neighbours=5; metric=precomputed.
e C=15.6; metric=precomputed.

outperformed their SVM counterparts, in both binary and ternary classifications, for both

structural representations (Table 3.2). The SOAP-based KNN model was identified as the

strongest binary classifier, while the Morgan fingerprints-based KNN model was identi-

fied as the strongest ternary classifier; both of these models performed well in both binary

and ternary classification tasks. These results show that the structure-activity correlations

that are only somewhat human-interpretable in Figure 3.3 are machine-learnable, achiev-

ing equivalent levels of predictive ability to the strongest ML models using engineered

descriptors (Table 3.1). It would be particularly advantageous to use structure-based ML

models to guide large-scale experimental screening of molecular photocatalysts, as ex-

pensive descriptor calculations would otherwise become the bottleneck to increasing the

throughput. Naturally, such models do not intuitively highlight physical features of high-

performance photocatalysts, which could then be used to guide the design of better cata-
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lysts, nor do they reveal directly the structural features that may have correlated with the

photocatalytic activity.

3.3.3 Understanding the important molecular features for photocat-

alytic activity

Beyond their predictive ability, interpretability is a key goal for ML models to understand

the importance of each descriptor and to obtain physical insights into structure-property-

activity relationships. Permutation importance was calculated for four of the models pre-

sented in Figure 3.7. It works by randomly permuting the values of a particular feature

and then evaluating the decrease in a model score of these changes on feature. Permu-

tation importance can vary across different machine learning models due to differences

in model architecture, training algorithms, data characteristics, feature interactions, and

randomness. The emphasis on features can vary depending on the model structure. For

instance, the training techniques are also different for these ML models. GP using the log

marginal likelihood as the cost function to assign the hyperparameters, whereas MLP us-

ing the softmax function for the classification task. Except this, in a tree-based model, the

importance of features is often determined based on their frequency of use for splitting.

On the other hand, a linear model assigns importance to features based on the magnitude

of their coefficients. The MLP models, the strongest binary and ternary classifiers, assign

high relative importance to exciton electron affinity (𝐸𝐴∗), electron affinity (𝐸𝐴), exciton

binding energy (𝐸𝑒𝑏), optical gap (Δ𝐸𝑆1→𝑆0), and singlet-triplet energy gap (Δ𝐸𝑆1→𝑇1)

for both binary and ternary classification tasks. 𝐸𝐴∗ estimates the thermodynamic driving

force for the molecular photocatalyst to oxidize the sacrificial agent, TEA. 𝐸𝐴 estimates

the thermodynamic driving force for proton reduction. Δ𝐸𝑆1→𝑇1 estimates the optical gap

of the molecular photocatalyst. 𝐸𝐴∗, 𝐸𝐴 and Δ𝐸𝑆1→𝑆0 are intuitively important, because

they are essential optoelectronic requirements for a molecule to act as a photocatalyst: that
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(a) K-nearest neighbours (b) Gaussian process

(c) Gradient boosted decision trees (d) Multilayer perceptrons

Figure 3.7 Extracted permutation feature importance based on different models in binary
and ternary classification tasks

is, the molecule must absorb light efficiently over a broad range in the visible spectrum

as well as having enough thermodynamic driving force to oxidize TEA (𝐸𝐴∗) or to re-

duce protons (𝐸𝐴). Importantly, the MLP models identified two additional molecular

properties, 𝐸𝑒𝑏 and Δ𝐸𝑆1→𝑇1 , that correlate strongly with a high photocatalytic activity.

Molecules ID146, ID153, ID255, ID338 and ID487 are among the most active photocat-

alysts in this study and share the common structural feature of having at least one aryl

carbonyl moiety (Figure 3.3). Their high HERs might be attributed, at least in part, to

their ability to generate triplet excitons.123,169 However, an attempt to correlate HERs

for some molecules with their reported triplet-state yields in isolation failed to produce

any correlation. This is perhaps unsurprising since the hydrogen evolution activity of

a photocatalyst is rarely governed by a single physicochemical or optoelectronic prop-

erty but rather by a host of molecular and mesoscale factors. As such, more sophisti-

cated approaches—such as the structure-based or the descriptor-based machine learning
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demonstrated here—hold the promise for using data-driven strategies to probe the complex

structure-property-activity relationship for molecular photocatalysts. In addition to the in-

trinsic challenge of classifying reactions that are dictated by a complex, interrelated set

of factors, there are other experimental factors that may contribute to the difficulty of this

classification task. While all reactions were conducted under the same experimental con-

ditions, the generalized mechanism of hydrogen evolution makes various assumptions: the

hydrogen produced is generated from the water, rather than from the organic molecule it-

self. Normally, this can be conformed for each reaction via isotopic labelling experiments,

but this is more challenging for such a large library of reactions. Another consideration

is solubility: while the molecules selected have, on the whole, low aqueous solubility,

some molecules in the library might have finite solubility in the water/TEA/MEOH mix-

ture, and this feature was not accounted in the descriptors. Also, the interaction between

the organic molecules and the Pt co-catalyst is important—which could be influenced by

particle size, surface properties, or the Pt loading method—but these factors were not cap-

tured explicitly by any of the descriptors used. That said, the objective of this work was

to build a useful classifier with affordable experimental cost, and in this respect, a balance

must be struck between exactness and complexity of the experiments.

3.4 Virtual experiments and blind tests

To assess the potential for using an ML ‘advisor’ to discover molecular photocatalysts,

the in silico experiments was designed on the 572 molecules using their measured HERs

as the ground truth to evaluate the search performance. Figure 3.8(a) shows that it took,

on average, about 3.8 and 4.0 batches to discover 50% of the active and high-activity

catalysts, respectively, using the ML advisor. Using the random selection approach, it

took 6 batches to discover the same proportion of active and highly active photocatalysts.

Similarly, using binary and ternary classifiers both built on SOAP-based KNN models
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(Figure 3.8(b)), the adaptive approach was able to discover 50% of the active and high-

activity catalysts within, on average, about 3.0 and 4.5 batches, respectively. The use

of this adaptive ML advisor to assist the chemist could therefore significantly reduce the

experimental cost for finding promising photocatalysts, thus providing a predictive method

to explore large molecular search spaces.

(a) Molecules encoded by the molecu-
lar descriptors

(b) Molecules encoded by the SOAP
descriptors

Figure 3.8 Virtual experiments comparing an adaptive machine learning approach with
random sampling: the 572 molecules were encoded by the molecular descriptors(MD) and
trained with MLP models (a) or encoded by the SOAP descriptors and trained with KNN
models (b). Active samples were defined as having HERs > 1.07 μmol/h and high-activity
samples as having HERs > 12.5 μmol/h. The average number of batches taken to find 50%
of the active and highly active catalysts is marked by the red arrows. A total of 200 in silico
experiments was carried out for both the ML approach and for the random sampling method,
each with a different random starting point, to obtain these average results.

To better assess its potential in real-world applications, 96 extra molecules that were not

included in the initial 572-molecule photocatalyst library were tested on the ML advi-

sor. The 96 molecules, referred to as the blind-test set, were selected considering only

their aromaticity and (again) availability in the lab, as for the first 572 molecules. They

were measured in two batches using our high-throughput parallel photo-catalysis screen-

ing platform by collaborators. The blind-test set falls within the chemical space of the

572-molecule library (Figure 3.9(a)) and has a similar percentage (10%) of active samples

to that of the 572-molecule library (14% in Figure 3.9(b))-— 10 out of the 96 molecules
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(a) (b)

Figure 3.9 Comparison of the 572-molecule library and the blind-test set. (a) 2D UMAP
embedding of the chemical space (encoded by SOAP) of the 572-molecule library (in blue)
and the blind-test set (in red); the symbol size is scaled by the experimentally measured HER.
(b) Percentages (in red) of the active samples (HERs > 1.07 μmol/h) in the 572-molecule
library and the blind-test set.

had HERs larger than 1.07 μmol/h, none of which was greater than 12.5 μmol/h.

In predicting for the blind-test set, the MLP model was again identified as the strongest bi-

nary classifier, when combined with the calculated molecular descriptors (Figure 3.10(e));

the MLP model was ranked second for ternary classification, with a slightly inferior per-

formance to the KNN model (Figure 3.10(a)). Binary classification for the blind-test sam-

ples directly from their molecular structures (Figure 3.10(f)), encoded by SOAP descrip-

tors, using KNN yielded an equivalent level of predictive accuracy to that achieved by

the strongest binary classifier using molecular descriptors. For ternary classification, the

descriptor-based KNN (Figure 3.10(a)) markedly outperformed the structure-based KNN

(Figure 3.10(f)). These blind-test results confirmed the potential of using an ML advisor to

assist the chemists in the discovery of new molecular photocatalysts, as well as highlight-

ing the promise for structure-based ML models to facilitate large-scale high-throughput

screening.
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(a) K-nearest neighbours (b) Gaussian processes

(c) Gradient boosted decision trees (d) support vector machine

(e) Multilayer perceptrons (f) K-nearest neighbours of SOAP features

Figure 3.10 Confusion matrices for the predictions of the blind-test set by models based on
electronic features and structure features

Looking forward, the predictive ability of machine learning for molecular photo-catalysis

might be improved by capturing additional information for the higher-activity molecules.

For example, efficient charge transfer between the molecular photocatalyst and the sac-

rificial agent or the co-catalyst is key to catalytic performance, but such intermolecular

effects are not considered explicitly in this study. Future work in engineering descrip-

tors might focus on better capturing the charge-transfer characteristics of the system, as

well as the exciton lifetime and transport properties. Second, populating the dataset in the

high-activity region is essential for training robust, predictive machine-learning models.

Besides, model assembling might increase the robustness of the ML models discovery.

Ensembles should include models trained against a variety of descriptors, for example,

including those derived from the molecular structure and those abstracted from graph

neural networks.102 Transfer learning may be a particularly promising strategy because
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the acquisition of large experimental datasets can be time-consuming and expensive; here,

models are pre-trained on large datasets with relevant or surrogate properties, followed by

task-specific fine-tuning for predictive modelling. The experimental study presented here

was a single batch process; that is, all the experiments were done prior to model building,

because it was tractable to attempt measuring HERs for all 572 molecules in the available

library using the high-throughput automated methods in the lab. For much larger libraries,

or where such automation is not available, a more efficient approach would be to build the

model ‘on the fly’, as in the virtual experiments above, and to recommend the next batch of

molecules as the model evolves. This could also tackle the class imbalance problem that is

discussed above. In this respect, a closed-loop autonomous search would be particularly

attractive.75,170-172

3.5 Methods of machine learning and virtual experiments

For data visualization, the Uniform Manifold Approximation and Projection (UMAP)

technique was used for dimensionality reduction for mapping high-dimensional data to

2D representations, while preserving both global and local topological structures of the

data in the high-dimensional space as much as possible. For Figure 3.2, all atoms of one

of the four elemental types were used to learn the 2D UMAP embedding of their atomic

neighbour environments, in which atoms of any elemental types may be present. In the

resulting UMAP-learned 2D representation, points will overlay in the 2D space if they are

at the same position in the original high-dimensional space. All machine-learning mod-

els were implemented using the scikit-learn package173 except for the MLPs, which were

implemented in PyTorch.174 Hyperparameters were optimized using a discrete Bayesian

optimization170 and the scikit-optimise package.175 During model training and optimiza-

tion, the dataset was split between 80% training and 20% test across 10 different folds.

The target metric—accuracy and F1-score for classification—of the resulting 10 models
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is averaged across all folds during hyperparameter optimization.

To do the virtual experiments, an adaptive ML advisor was used to compare with random

sampling. In these in silico virtual experiments, 48 samples were ‘measured’ in each

batch, which matches the batch-size of the real high-throughput experiments. In the ML

advisor approach, an MLP binary classifier and an MLP ternary classifier were trained on

all known data after each batch, and then used to predict a class for each of the remaining

untested molecules. The next batch was then chosen from the untested molecules until the

48 slots were filled by selecting, in the following priority order: (i) molecules predicted by

the ternary classifier to have high-activity (HER > 12.5 μmol/h); (ii) molecules predicted

by both the ternary classifier and the binary classifier to be active (HER > 1.07 μmol/h);

and (iii) molecules predicted by the binary classifier to be active. When necessary, the

batch of 48 molecules was completed with molecules selected randomly from the non-

active class. The classification models were then rebuilt after each batch. For the random

sampling approach, each batch of 48 molecules was simply chosen randomly from the

untested molecule pool.

3.6 Conclusions

Here the largest library of organic photocatalysts was assembled and tested experimen-

tally to date and tested all 572 molecules under identical experimental conditions using a

high-throughput testing methodology. Further tested 96 molecules as a blind-test set for

evaluating the trained ML models were added, bring the combined total of experimentally

measured molecules to 668. This is a tiny fraction of the total available chemical space,

but large enough to construct useful ML structure-property-activity models. Unsuper-

vised learning and supervised classification were used to reveal the structural features and

optoelectronic properties that positively impact the activity of these molecular photocat-
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alysts for sacrificial hydrogen production. This suggests further exploration of molecules

known for inter-system crossing. Despite being sourced simply on the basis of availability

in the laboratory, rather than any more sophisticated rationale, 1% of the molecules in

the library (5 in total) performed comparably (4040-5660 μmol/g/h) to the highest HER

(around 6000 μmol/g/h) measured for the 175 conjugated polymers using the same exper-

imental setup from a more design-led but much more synthetically expensive approach.

Virtual experiments show that an adaptive ML-assisted selection approach outperforms

random sampling (Figure 3.8), significantly reducing the experimental cost of identifying

the active photocatalysts in the library. A further evaluation of the trained ML advisor on

a blind test set of 96 molecules confirmed its potential in assisting the discovery of new

molecular photocatalysts. While some active catalysts discovered could have been prior-

itized based on existing literature reports (e.g., ID67, ID146, ID153, and ID566),176-178

others were unknown and non-intuitive, such as ID183 and ID237. As such, these fast

screening methods can create new inspiration for future research directions. The ML-

assisted rapid screening method could be particularly helpful for problems where there is

little or no prior literature to draw upon—for example, in the search for photocatalysts that

illicit new, unknown reactivity in organic transformations, where the initial hit rate will be

low by definition. In summary, this is one of a relatively small number of studies where

machine learning methods have been integrated with high-throughput property measure-

ments across a sizeable and diverse set of materials (668 organic molecules in total). This

makes an important step towards for the acceleration of the discovery of molecular pho-

tocatalysts by considering a much broader chemical space than previously explored.
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CHAPTER 4 CLOSE LOOP DISCOVERY OF
PHOTOCATALYSTS

4.1 Introduction

As the studied photocatalysts hydrogen evolution in previous chapter, it is challenging to

predict the catalytic activities from first principles, either by expert knowledge or by using

a priori calculations.179 This is because the collected molecular library covered variety of

organic compounds, and the hydrogen evolution activity depends on a complex range of

interrelated properties,64,160 which are difficult captured by several simulated descriptors.

However, the virtual experiment of the photocatalysts hydrogen evolution proved that the

close loop discovery is feasible of screening catalysts from a designed chemical space.

Here, with the input of experimental collaborators, a two-step data-driven approach to

the targeted synthesis of organic photoredox catalysts (OPCs) and the subsequent reaction

optimization for metallophotocatalysis, as demonstrated for decarboxylative sp3-sp2 cross-

coupling of amino acids with aryl halides.180

The activation of organic substrates via single-electron transfer using photoredox catalysts

is a powerful tool in organic synthesis.162,181-184 Metallophotocatalysis merges photore-

dox catalysis with transition-metal catalysis to allow organic reactions that are challeng-

ing with a single catalyst.180,185-188 The photoredox catalyst (PC) must exhibit suitable

redox potentials in both the excited and ground states to allow for electron transfer to the

substrates/transition-metal catalysts. So far, PCs have mostly been discovered through a

mix of design, trial and error, and serendipity.189 In some cases, high throughput synthe-

sis and testing have been used, particularly when the PCs can be generated in situ and do

not require an elaborate purification procedure, as demonstrated for the discovery of tran-

sition metal complexes as PCs.190 However, photoredox catalysis is by nature a multivari-
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ate problem, involving the intersection of many molecular and mesoscale factors. Besides

selecting the best photoredox catalysts, the optimization of reaction conditions—that is,

the pairing of photoredox catalysts and transition-metal catalysts, reaction concentrations,

and so on—can yield significant improvements in metallophotocatalysis activity. Both of

the optimization process can be achieved by the close loop discovery in the defined high

dimensional search space.

This data-driven approach comprises two sequential closed-loop optimization workflows,

both integrating predictive machine learning with experiments under algorithmic control.

The algorithm uses Bayesian optimization (BO) to explore the search space and to inform

subsequent experiments.76,170 First, to identifying promising OPCs, a virtual library of

560 novel yet potentially synthesisable organic molecules was designed using a common

molecular scaffold with different functional groups. A batched BO was used to build a

model that could be updated and queried to guide the experimental search for the most

valuable catalysts. This strategy explored led the experimental collaborator to synthesize

55 molecules out of the total library of 560 candidates, achieving reaction yields of 67%

for the target reaction. In the second step, 18 of these synthesized molecules were selected

for optimization of the reaction conditions, along with varied concentration of the nickel

catalyst and its coordinating ligands. After screening a small fraction of the available cata-

lyst formulation space (107 / 4500 possible sets of reaction conditions), the target reaction

yield reached 88%, which surpasses the well-studied organic photocatalyst, 4CZiPN, and

is comparable to or better than the performance of iridium photocatalysts, depending on

the nickel cocatalyst concentration. This research shows that Bayesian, data-driven ex-

perimental design is a promising approach for the discovery of new metallophotocatalysis

formulations, and by extension for other research challenges where there is a large search

space and limited prior knowledge.
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4.2 In silico design of the candidate organic photoredox catalysts

The Hantzsch pyridine synthesis is a multi-component organic reaction that produces pyri-

dine compounds from an aldehyde, two equivalents of a β-ketoester and a nitrogen donor,

such as ammonia (Figure 4.1).191 This reaction is metal-free and features high atom ef-

ficiency, using common reactants and facile reaction conditions, which is used here to

synthesis the designed OPCs. A virtual library of 560 molecules that all share a common

cyanopyridine (CNP) core, functionalized by different chemical moieties is constructed

by combining 20 benzoylacetonitrile derivatives and 28 aromatic aldehydes—these func-

tional groups are denoted hereafter as Ra and Rb, respectively. All of these 560 CNP

molecules are in principle synthesisable (Figure 4.1). These chemically and structurally

Figure 4.1 A virtual library of 560 candidate CNPs as potential photoredox catalysts. The
reaction scheme for the Hantszch pyridine synthesis is shown along with the various chemical
moieties that may be attached to the cyanopyridine (CNP) core at the Ra or Rb positions.
The different combinations of Ra and Rb moieties leads to 560 potential CNP molecules in
this chemical space. Dashed purple and blue lines indicate sub-groupings of the Ra and Rb
moieties based on their structural and chemical similarities.

diverse Ra and Rb moieties generate 560 different binary Ra/Rb combinations when com-
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bined into CNP molecules, offering the potential to tune the optoelectronic properties and

the redox potentials of the CNPs over a broad range. The cyanopyridine core of the CNPs

is analogous to cyanoarenes, many of which are known to be active photocatalysts.162,192

This diverse library of CNP molecules might contain promising OPCs for both reductive

and oxidative photoredox reactions, as photoredox/nickel dual catalysed cross-coupling

reactions.193

Figure 4.2 The target reaction: a photoredox/Ni dual catalytic sp3-sp2 cross-coupling reac-
tion

However, initially there were no clear physical principles to follow when selecting

molecules from this library for the target reaction depicted shown in Figure 4.2. Syn-

thesizing and testing all 560 molecules was unrealistic. Therefore, an active learning

approach was designed for the selection of CNPs for experiment, which made the use of

a closed-loop BO workflow with real-time feedback between experiment and prediction.

4.3 Close loop discovery of organic photoredox catalysts

4.3.1 Encoding the chemical space of CNP photocatalysts

The decarboxylative sp3-sp2 cross-coupling reaction that was considered here (Figure 4.2)

involves two interwoven catalytic cycles: one is photoredox catalysis and the other is

nickel catalysis. This dual catalysis mechanism was discussed in detail previously.180

Briefly, the photo-excited CNP, CNP*, oxidizes the 𝛼-amino acid substrate via a single

electron transfer (SET) event, generating an 𝛼-amino radical and the corresponding CNP-.

Concurrently, the nickel catalytic cycle involves oxidative addition of the Ni(0) species

into the aryl halide substrate, producing a Ni(II)-aryl intermediate, which captures the �-
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amino radical and produces an alk-N(III)-aryl adduct. The desired C(sp3)-C(sp2) bond

is subsequently forged via reductive elimination. A second SET event between the CNP-

species and the Ni(I) species expelled after the C(sp3)-C(sp2) bond formation completes

both the photoredox cycle and the nickel catalytic cycle simultaneously, regenerating the

CNP photocatalyst and the Ni(0) species.

Thermodynamically, the excited-state photocatalyst, CNP*, must be a strong oxidant for

the 𝛼-amino acid substrate, Boc-Pro-OH, which has a reduction potential, Ered, of 1.19

V versus standard hydrogen electrode (vs SHE). Using density functional theory (DFT)

and time-dependent (TD) DFT calculations, the reduction potential for the CNP*→CNP-

half-reaction, 𝐸𝑟𝑒𝑑
1/2 [CNP∗/CNP−], was determined for all the 560 CNP molecules. All but

four of these CNPs had a calculated value of 𝐸𝑟𝑒𝑑
1/2 [CNP∗/CNP−] that exceeded 1.19 V

vs SHE, meaning that the oxidation of Boc-Pro-OH by CNP* should be thermodynami-

cally favourable for most of the candidate CNPs. The resulting CNP-, from the oxidation

process, must then act as a strong reductant to regenerate the Ni(0) species, for which

𝐸𝑟𝑒𝑑
1/2 [Ni𝐼 /Ni0] = -1.17 V vs SHE. All but one of the 560 CNPs were calculated to have

an 𝐸𝑟𝑒𝑑
1/2 [CNP/CNP−] < -1.17V vs SHE, suggesting that they should be able to drive the

Ni reduction process. These computational results suggest that many of the candidate

CNP molecules could potentially serve as photocatalysts for the target reaction. However,

these findings also demonstrate that the use of redox potentials as selection criteria is not

sufficient, since the catalytic activity of these species is not solely determined by their

thermodynamic redox potential.

Since there is no straightforward predictive guideline for selecting CNPs for experiment,

the selection process was approached as an exploration of the chemical space avail-

able to maximize an objective metric, which was defined as the reaction yield for the

cross-coupling reaction. Similar to previous features design of photocatalysts, the 560

CNPs were encoded by 16 molecular descriptors that captured a range of thermody-

77



CHAPTER 4 CLOSE LOOP DISCOVERY OF PHOTOCATALYSTS

namic, optoelectronic, and excited-state properties with input of quantum chemistry col-

laborators. To be thermodynamically viable in the reaction, the electron affinity (EA,

equivalent to 𝐸𝑟𝑒𝑑
1/2 [CNP/CNP−]) and the exciton electron affinity (EA*, equivalent to

𝐸𝑟𝑒𝑑
1/2 [CNP∗/CNP−]) of the CNP molecule must straddle the Ni(I) reduction and the Boc-

Pro-OH oxidation potentials. Also, the optoelectronic and excited-state properties of the

molecule may strongly influence its photocatalytic activity, which were also used to en-

code the chemical space. The molecular features include: (I) light absorption (first singlet

excited state, Δ𝐸𝑆1→𝑆0 , together with the oscillator strength, 𝑓 , of this transition); (II)

excited-state charge distribution (change in dipole moment between 𝑆1 and 𝑆0, Δ𝐷; de-

gree of spatial extension of hole and electron distributions in the charge-transfer direction,

𝐻𝐶𝑇 , 𝐻 index, 𝑡 index); (III) excited-state charge separation (difference in the extent of

spatial distribution between electron and hole, Δ𝜎; electron-hole overlap, 𝑆𝑟; distance

between the centres of the electron and hole, 𝐷 index; Coulomb attraction between the

electron and hole, 𝐸𝐶 ); (IV) the energy gap between the first singlet state and the first

triplet state (Δ𝐸𝑆1→𝑇1); and (V) the internal reorganization energy of CNP acting as a

reductant for the Ni(I) compound.

4.3.2 Selecting and measuring priori samples

To implement Bayesian optimization and Gaussian processes, the priori knowledge need

to be sampled systematically, because the priori in GPs is set to zero if there is no priori

knowledge. Starting from the complete, unexplored chemical space, a small subset of

six CNPs (molecular structures in Appendix A1) was selected across the feature space

using the Kennard-Stone (KS) algorithm (Algorithm 4.1).194 This sampling technique is

a sequence method to collect 𝑁 number of representation subset uniformly over the entire

dataset based on the pairwise distance in the feature space. The first step started by choose

two objects which have the longest distance between them. The following subsequent
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sample is added by computing the distance of a candidate object from the selected subset

and requiring this distance to be the longest. The KS technique, which uniformly samples

points in the search space, provides a general overview of the ‘full picture’.

Algorithm 4.1 Kennard-Stone (KS) algorithm
Input: 𝑘, the number of samples to select
Data: 𝜅(x), distance matrix
Output: 𝐴, the selected subset
𝐷(𝑥𝑖, 𝑥𝑗) = max𝑥𝑖,𝑥𝑗 ∈x 𝜅(x) // The init-selection;
𝐴 = {𝑥𝑖, 𝑥𝑗};
for 𝑛 = 2 to 𝑘 do

max (min𝑥𝑛∈x⧵𝐴 𝜅(𝑥𝑛, 𝐴));
𝐴+ = 𝑥𝑛;

end

Data sampling by the KS algorithm is unique given a predefined number of samples to

pick, yielding a deterministic starting set of points in the chemical space. These six CNPs

were then synthesized and tested for the target cross-coupling reaction, forming step 0 in

the optimization process. All CNPs were tested under identical reaction conditions: 4

mol% CNP photocatalyst, 10 mol% NiCl2 glyme (glycol ether), 15 mol% dtbbpy (4,4-di-

tert-butyl-2,2-bipyridine), 1.5 equivalents Cs2CO3 base, DMF, and blue LED irradiation

source. All catalysis measurements were repeated three times; the resulting average re-

action yield is reported here. The highest reaction yield achieved in step 0 was 39% for

CNP-129, which combines Ra05 and Rb18. The yields achieved in step 0 gave confidence

that some but not all the CNPs in the virtual library had the potential to facilitate a syner-

gistic combination of photoredox catalysis and nickel catalysis for the target C(sp2)-C(sp3)

cross-coupling reaction.

4.3.3 Identifying synthetic targets using Bayesian optimization

For target selection from the virtual library of 560 CNPs (Figure 4.1), a batched, con-

strained, discrete Bayesian optimization was used to explore the encoded chemical space
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of the CNPs, driving forward sequential experiments to improve the reaction yield. The

BO scheme comprised two main steps: first, a surrogate model based on Gaussian pro-

cesses was trained on all available observations; that is, measured reaction yields for all

the synthesized CNPs at that point; second, a new set of CNPs was proposed for subse-

quent experiments, based on predictions by the surrogate model. This equates to the BO

predicting the performance of candidate CNPs using available data and requesting new

CNPs to be synthesized to verify its predictions. The parallel sampling strategy is an in-

tuitive and inexpensive approach to proposing multiple points (forming a batch) in the

search space, using a portfolio of acquisition functions favouring exploitation or explo-

ration of the search space. This BO implementation follows closely that used previously

in a robotic workflow used to find improved photocatalysts for hydrogen production.

The Bayesian optimization started by building a Gaussian-processes-based surrogate

model using the six data points in step 0. The pre-calculated 16 electronic molecular

properties are the feature space of the designed 560 CNPs. The Matérn kernel was used to

combine the GPs algorithm with multiple length scales respective feature dimension and

the smooth parameter 𝜈 = 2.5. Since there were only 6 samples after step 0, the PCA was

applied to reduce the dimension of features from 16 to 5 allowing GP model fitted properly

at the beginning of the close loop optimization. The sum of the percentage of variance of

the 5 dimensions is 0.9897 shows the reduced features still maintains the major variance

of the original feature space.

After fitting the GPs model, based on the current, predicted mean and uncertainty, an

acquisition function is required to hypothesize the most promising setting for the next

experiment. To take the advantage of BO, the ideal condition is adding one sample se-

quentially by the acquisition function. Subsequent sampling of 12 points per optimization

step was done using sets of 12 upper confidence bound (UCB) functions (Equation 1.19),

a weighted sum of the posterior mean 𝜇(𝑥), and uncertainty 𝛿(𝑥), controlled by a hyper-
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Figure 4.3 The value and density of 12 samples(blue points) on an exponential distribu-
tion(the black curve).

parameter 𝛽. For each step, the set of 12 𝛽 values was generated on a random exponential

distribution (Figure 4.3), with small 𝛽 values favouring predicted high performance, 𝜇(𝑥),

or exploitation, and large 𝛽 values favouring high uncertainties, 𝛿(𝑥), or exploration. From

these 12 BO-proposed CNPs, a subset of around 6-8 CNPs per suggested batch were se-

lected to do experiments, ensuring that the selected CNPs exploited a trade-off between

exploitation and exploration, ensued by their different 𝛽 values. The experimental col-

laborator can choose 2-3 samples from either the high 𝛽 suggestion or low 𝛽 suggestion,

which allows for intuitive biasing toward exploitation or exploration of the search space

by assigning different β values to the acquisition functions of different BO instances at

each step. This protocol of joint decision-making for candidate CNPs selection combines

both BO and insight from the chemist.

By integrating the UMAP method and the encoded electronic feature space, 560 CNPs

molecules are projected to a 2D space. The synthesized CNP molecules are colour-coded

by experimental batches, using the same colour scheme as in Figure 4.4(b), the molecules

that were not synthesized are coloured in grey Figure 4.4(a). Symbol size denotes the

experimentally measured reaction yield for the target reaction. The black points refer to

a baseline control experiment conducted for a set of 15 molecules chosen in a way that
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(a) 2D UMAP embedding of the chemical space of the 560 CNP molecules.

(b) Measured yield for the target cross-coupling reaction plotted against the experiment
batch

Figure 4.4 Targeted synthesis of CNPs for organic photoredox catalyst discovery. The CNP
molecules synthesized in this work are colour-coded by experimental batches in (a), using the
same colour scheme as in (b); the molecules that were not synthesized are coloured in grey.
Symbol size in (a)denotes the experimentally measured reaction yield for the target reaction
shown in (Figure 4.2). The blue line in (b) represents the yield of the highest selected sample
at different steps. The highest yield attained after 8 batches (Optimization steps 0-7) was 67%.
The black points refer to a baseline control experiment conducted for a set of 15 molecules
chosen in a way that maximized the structural diversity of the set.
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maximized the structural diversity of the set. Seven such batches (Figure 4.4) resulted in a

total of 49 additional CNPs that were synthesized and tested. The number CNPs tested by

experiment was 6, 6, 4, 8, 11, 6, and 8 in steps 1 to 7, respectively (molecular structures

in Appendix A1). The highest reaction yield attained increased from 39% at step 0 to

67% by step 7 (Figure 4.4(b)), which was achieved in step 6 using CNP-127 (Figure 4.5).

The iteration was stopped after these seven optimization steps because a yield of 67% was

considered acceptable in the absence of reaction condition optimization.

One might ask whether the ‘sweet spots’ discovered by the BO search within this virtual

library of 560 CNPs constitutes a global optimum, or at least close to one. It could not

be guaranteed without synthesizing the entire library, which was impractical. However,

to probe this further, a diverse set of 20 CNPs was picked from the 2D structural space of

the 560 CNPs encoded by Morgan fingerprints, using the KS algorithm, as was used to

pick the CNPs for step 0. Of the selected 20 CNP samples, three were un-synthesizable

within the time available and two (CNP-459 and CNP-244) were already picked up by

the BO algorithm; as such, 15 additional CNPs (molecular structures in Appendix A1)

were synthesized and tested for the photoredox reaction (black points in Figure 4.4(a)).

The results obtained were in line with the structure-activity relationship summarized for

the CNP samples arising from the BO search. The CNPs with Rb moieties, Rb04, Rb06,

Rb08, Rb13 and Rb15, which were not explored by BO search, showed no or little activity

(Yield < 3%). The highest yield attained by the molecules in this structurally selected

baseline control set was 32%.
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4.4 Close loop discovery of the reaction conditions

4.4.1 Encoding reaction conditions

After identified high performance CNPs from the first BO search, a similar Bayesian strat-

egy was set out to optimize the reaction overall conditions. The target decarboxylative

C(sp3)-C(sp2) cross-coupling reaction requires a photoredox catalyst (in this case CNPs)

and an organometallic nickel catalyst. As discussed above, these two catalysts must work

synergistically in completing two interwoven catalytic cycles. The diffusional electron

transfer between CNP- and CNP1 not only depends on the thermodynamic driving force

but also on the concentration of Ni catalysts and Ni ligands. The maximum observed yield

of 67% was achieved with fixed Ni loading and Ni ligands. Varying the concentrations of

the Ni catalyst (10 mol% or 1 mol%) affected reaction yields for the target cross-coupling

reaction markedly.

To further optimize the reaction yield, three key variables were studied: (I) the choice

of CNP photocatalyst (Figure 4.5(a)); (II) the concentration of the Ni catalyst, and (Fig-

ure 4.5(b)); (III) the choice of the Ni-coordinating pyridyl ligands. Here, 18 carbazole-

containing CNPs that were selected in the first BO (Figure 4.4), were chosen to exhibit

widely varying catalytic performance. The reason of choose this range of carbazole cata-

lysts, rather than simply the best material from the first BO selection (CNP-127), since it

was initially unclear that this catalyst would also be optimal at all Ni concentrations and

with all Ni ligands. A range of 25 pyridyl compounds was selected with different coordina-

tion environments and different molecular shape, size, and degree of bulkiness. Because

these three dimensions comprise both discrete and continuous features, the conventional

gradient optimization of the acquisition function is incompatible with these designed key

variables when applying the BO optimization. Thus, regarding the continues variables,

the concatenation of the NI catalyst was studied between 1 mol% and 10 mol%, with 1

84



CHAPTER 4 CLOSE LOOP DISCOVERY OF PHOTOCATALYSTS

(a) Candidate carbazole CNPs and their EA

(b) Candidate pyridyl ligands

Figure 4.5 A total of 18 candidate carbazole CNPs and 25 candidate pyridyl ligands were
considered in these experiments

85



CHAPTER 4 CLOSE LOOP DISCOVERY OF PHOTOCATALYSTS

mol% intervals, resulting in 10 distinct Ni concatenation values. These three variables

gave rise to a total of 4500 (18 × 25 × 10) unique potential experiments. After this trans-

formation, the gradient optimization is no longer required, and the acquisition function’s

value is evaluated at each sampling point to determine the optimal solution.

Then, the 4500 sets of reaction conditions were encoded into a chemical space as fol-

lows. First, each combination of a CNP, a pyridyl ligand, and a Ni concentration was

encoded by the concatenation of (I) the experimentally measured reduction potential

𝐸𝑟𝑒𝑑
1/2 [CNP/CNP−] (labelling in Figure 4.5(a) under each CNPs), a measure of the reduc-

ing ability of the CNP- species to regenerate Ni(0); (II) the Morgan fingerprint of the

CNPs; (III) the Morgan fingerprint of the pyridyl ligand, and; (IV) the concentration of

the Ni(II) source. Second, the distance between two sets of reaction conditions was given

by a combined distance from these four encoding elements, which is the summation of (I)

the scalar difference between the reduction potentials; (II) the Tanimoto distance between

the CNPs’ fingerprints (radius = 2; 2048 bits); (III) the Tanimoto distance between the

pyridyl ligand fingerprints, and; (IV) the scalar distance between the Ni concentrations.

All four component distances were normalized before being added together to give the

combined distance. Last, the chemical space encoding the 4500 sets of reaction condi-

tions took the form of a 4500 × 4500 distance matrix, containing pairwise distances for

all sets of reaction conditions. Figure 4.6(a) shows the resulting chemical space as a 2D

UMAP embedding of the distance matrix.

4.4.2 Identifying the best reaction condition by Bayesian optimization

Similar with the first close loop optimization in chapter 4.3.2, the initial 19 sets of reaction

conditions (step 0, Figure 4.6(b)) were selected by the KS algorithm as the priori knowl-

edge of this optimization, and then they were used to training Gaussian process-based

surrogate models to suggest the first batch of experiments (step 1) in the optimization
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(a) 2D UMAP embedding of the chemical space of the 4500 sets of reaction
conditions

(b) Measured yield (average of 3 repeats) for the target cross-coupling reaction plotted
against the experiment batch, optimization steps or baseline

Figure 4.6 Reaction condition screening of CNPs, pyridyl ligands, and the amount of Ni.
The tested set of conditions are colour-coded by experimental batches in (a), adopting the
same colouring scheme as in (b), with all the untested conditions coloured in grey. Symbol
size denotes the experimentally measured reaction yield. Number of samples: 19 samples
at step 0; 8 samples at steps 1-11 each; 44 samples were included in a random selection as
a baseline (black points). The blue line in (b) represents the yield of the highest selected
sample at different steps.
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workflow. The same BO parallel sampling approach was used as for the synthetic can-

didate selection workflow (Figure 4.4). Eight samples were acquired at each BO step,

covering a portfolio of upper confidence bound functions with varying degrees of bal-

ance between exploitation and exploration. From step 0 to step 6, the maximum reaction

yield achieved at each step continuously increased from 71% to 88%. No further im-

provement in the maximum yield was attained in the subsequent five steps (40 reactions);

the optimization was therefore terminated at step 11 having evaluated 88 sets of reaction

conditions. The highest yield achieved during the 11 BO steps was 88%; this occurred

when CNP-127 (Figure 4.5(a)) was used at 2, 4, or 5 mol% Ni concentration, in all cases

with the ligand (L2 in Figure 4.5(b)). In step 0, CNP-239 (Figure 4.5(a)) was the highest-

performing photocatalyst, reaching a yield of 71%, together with the ligand L3 in Figure

4.5(b) and a 1 mol% Ni concentration. As such, CNP-127 is ‘rediscovered’ in this sec-

ond BO search, but the reaction conditions are re-optimized to improve the photocatalytic

yield significantly (from 71% to 88%).

4.4.3 Comparison between random and algorithm searched condi-

tions

For baseline comparison, 44 sets of conditions for catalysis measurements were randomly

selected (Figure 5d); only two sets attained a yield above 67% (the blue bars in Figure

4.7(b)): these reactions gave yields of 75% (CNP-240, L1, and 5 mol% Ni) and 72%

(CNP-239, L7, and 8 mol% Ni), respectively. By comparison with the BO-acquired sam-

ples (Figure 4.7), a more uniform sample distribution was generated by random sampling

for the candidate CNPs, Ni concentrations, and pyridyl ligands. The BO search markedly

outperformed the random sampling, attaining a higher maximum reaction yield (88% ver-

sus 75%). Also, the BO method gave a much larger proportion of high-activity samples;

for example, 39/88 reaction conditions (44%) gave yields of more than 67% for the BO
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(a) The 88 samples obtained during the BO search

(b) The 44 samples obtained by random selection

Figure 4.7 Histograms of measured reaction conditions over three different variable ranges:
candidate CNPs(CNP ID), Ni concentrations (𝐶𝑁𝑖), and pyridyl ligands(Ligand ID). These
histograms were calculated separately for each value range in either the BO set or the random
set. The bars are coloured red, blue, or grey to indicate a yield greater than 80%, 67-80%, or
lower than 67%, respectively.

search whereas just 2/44 (4.5%) of conditions gave a comparable yield in the random se-

lection. This shows that BO explores the high-performing areas of the chemical space

much more effectively than random sampling.

Overall, the 88 sets of conditions requested by the BO algorithm covered all the 18 CNPs

(that is, each was selected at least once), all the 10 Ni concentrations, and 18 out of the

25 available pyridyl ligands (Figure 4.7(a)). Only 10 out of the 88 sets of conditions gave

a reaction yield greater than or equal to 80% (the red bars in Figure 4.7(a)), all of which

involved CNP-127 or CNP-323 as the photocatalyst and L2 as the Ni-coordinating ligand.

It should be noted that CNP-323 is a structural isomer of CNP-127 (Figure 4.5(a)).
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4.5 Analysing structure-properties relationships

To gain insight into the relationship between calculated descriptors and measured catalytic

activities, multiple machine learning algorithms was evaluated (Table 4.1). These models

were trained for regression task based on the average yield of each catalyst reaction in first

BO search. In the training and validation process, 70 objects (55 samples from steps 0-7

and 15 samples from the baseline control) were utilized, with 16 electronic features that

had been scaled being used as the training dataset. The kernel function was the same as

the one used during the BO search for kernel methods. However, due to the small size of

the training set, the application of an MLP model was still limited.

Table 4.1 Regression metrics across different models of catalysts, obtained by 5-fold and
leave-one-out(LOO) cross-validation procedures

LOO 5-fold

Model R2 MAE R2 MAE

GP 0.906 0.046 0.863 0.051

KRR 0.912 0.041 0.844 0.053

GBRT 0.820 0.059 0.824 0.059

RF 0.818 0.065 0.767 0.072

SVR 0.801 0.070 0.633 0.095

The 5-fold cross validation results showed the GP model has the best performance and

second strongest in leave-one-out (LOO) validation with a slightly inferior performance

to the KRR model. These results show that the descriptors can predictively assign the cross

coupling reaction activity under a homogenous reaction condition. It is not surprised that

GP outperformed other machine learning tasks since the training set was suggested by BO

optimization with GP as the surrogate model. This could introduce some systemic bias to

reduce the error of GP model.

Furthermore, similar tests were also performed for the reaction condition task with the
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pre-defined RBF kernel function (Equation 4.2) as the input and measured reaction yield

as the target during the reaction condition optimization. Due to the limitation of encoded

descriptors (fingerprints for molecular and ligands), only kernel methods were tested here

in Table 4.2. The parity plots

(a) (b)

Figure 4.8 Leave-one-out(LOO) validation of regression task on different experimen-
tal dataset. (a)Evaluating on the optimization of organic photocatalysts data by GP.
(b)Evaluating on the optimization of reaction condition data by KRR.

Table 4.2 Regression metrics across different models of conditions, obtained by 5-fold and
leave-one-out(LOO) cross-validation procedures

LOO 5-fold

Model R2 MAE R2 MAE

GP 0.773 0.114 0.673 0.140

KRR 0.836 0.091 0.715 0.123

SVR 0.765 0.114 0.677 0.134

The aforementioned result instils confidence in further exploring the relationships between

features and properties in greater detail. To make the model explainable, a machine learn-

ing interpretability technique, SHapley Additive exPlanations(SHAP),195 was introduced

and assigned each feature a Shapley value. The Shapley values are computed by compar-
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ing the model’s predictions with and without the feature present, over all possible feature

combinations. The resulting Shapley values are then used to produce a feature importance

ranking, showing the relative importance of each feature in the model’s predictions.

(a)

(b)

Figure 4.9 The SHAP explanation of feature importance. (a)A beeswarm plot of top 6 im-
portant features, showing the distribution of SHAP values for each input feature across all
instances in the dataset. (b)A force plot explaining the ML model’s prediction for the best-
forming catalyst, CNP-127, showing how each input feature contributes to the prediction.
Each feature’s contribution is represented by an arrow, with the length of the arrow propor-
tional to the magnitude of the SHAP value. Red arrows pointing to the right indicate positive
contributions, while blue arrows pointing to the left indicate negative contributions.

By fitting the molecular features with GPs model, the SHAP values were evaluated for all

training samples in Figure 4.9(a) to get an overview of the features’ importance. Features

were sorted by the sum of SHAP value magnitudes over all samples, and colour coded by

the feature value in Figure 4.9(a). The feature contribution of the best CNP catalyst (CNP-

127) in Figure 4.9(b) shows both 𝐸𝐴, Δ𝐸𝑆1→𝑇1 and 𝑆𝑟 contribute to push the prediction

(𝑓(𝑥)) higher. The two most important features (𝐸𝐴, and Δ𝐸𝑆1→𝑇1) proved again the
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discovery of feature importance of photocatalyst in chapter 3.3.3. Besides, The 𝐸𝐴 has

negative relationship with the SHAP value in Figure 4.9(a), which indicates the potential

correlation with the cross-coupling reaction activity. In general, donating groups (on Ra)

raise the reduction potential to more negative energy level, increasing the driving force of

the electron transfer from the reduced CNP- to Ni catalysts, a key step that couples the PC

and nickel catalyst catalytic cycles.

(a) Linear correlation between calcu-
lated EA and experimentally measured
𝐸𝑟𝑒𝑑

1/2 [CNP/CNP−]

(b) Reaction yield versus calculated reduc-
tion potential for the experimentally mea-
sured CNPs

Figure 4.10 The correlation between reduction potentials and reaction yield

The weak negative correlation between 𝐸𝐴 of CNPs and the SHAP values suggests that

it may be possible to search for CNPs with more negative calculated reduction potentials

in the virtual library of 560 CNPs. CNP-239 and CNP-234, were both explored experi-

mentally by BO but did not show the best performance under the explored conditions, de-

spite having the strongest reduction potentials in the library (-1.92V and -1.91V in Figure

4.5(a), respectively). Following this, a computationally-led search of 100 additional CNP

molecules (in Appendix A2) comprising donating Ra groups and carbazole Rb groups was

performed. It was found that CNP-624 has a calculated reduction potential of -2.17 eV vs

SHE. However, no activity was observed for the cross-coupling reaction using CNP-624.

In addition, it is worth to emphasize here that the correlation of reduction potential with

yield observed fails to apply to the whole CNP molecules (Figure 4.10(b)). Again, these
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observations indicate that the performance of CNPs is determined by a range of factors,

rather than a single photophysical feature, rationalizing the use of a BO-led search strategy

rather than more classical computational design.

4.6 Methods of Bayesian optimization and machine learning

Bayesian optimization (BO) is a sequential hypothesis testing approach to global optimiza-

tion of ‘black-box’ functions, i.e., functions that do not have a closed-form representation

and does not provide function derivatives, thus only allowing for point-wise evaluation.

Here, it equates to finding the highest reaction yield in the chemical space of CNPs or

reaction conditions.

Gaussian processes were used as the surrogate model, together with the Matérn similarity

kernel. A Gaussian process maintains a belief over the design space, by simultaneously

predicting the mean, and the uncertainty, at any point in the input space, given existing

observations. To hypothesize the most promising setting for the next experiment, based

on the current, predicted mean and uncertainty, an acquisition function is required; here,

the upper confidence bound (UCB) function was used, which is given by

𝑓𝑈𝐶𝐵(𝑥) = 𝜇(𝑥) + 𝛽𝛿(𝑥) (4.1)

where 𝜇(𝑥) is the posterior mean, 𝛿(𝑥) is the uncertainty, and 𝛽 is a hyperparameter. For

each optimization step, the highest value of the acquisition function (Equation 4.1) was

used as the next experimental suggestion.

The syntheses and photocatalytic measurements of CNPs were time-consuming, but were

amenable to parallelization; that is, they could be made and tested in batches. To facilitate

an efficient parallel search, a batched, discrete BO approach was adopted; that is, multiple

BO instances were run in parallel, all using the same existing observations and contribut-
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ing to the subsequent steps. Here, a set of 12 BO instances were run at each optimization

step. This parallel sampling strategy allowed for intuitive biasing toward exploitation or

exploration of the search space by assigning different 𝛽 values to the acquisition func-

tions of different BO instances at each step. Small values of 𝛽 prioritized areas where the

mean was expected to be largest (i.e., exploitation), while large values prioritized areas

where the model was most uncertain (i.e., exploration); a random exponential distribution

function was used to generate 𝛽 values within a batch.

For optimization of reaction conditions, a customized RBF kernel was defined as follows:

𝜅(𝑃𝑖, 𝑃𝑗) = 𝛼 exp −(𝜃1𝑑𝐸𝐴(𝑀𝑖, 𝑀𝑗)2+𝜃2𝑑𝑓𝑝𝑠(𝑀𝑖, 𝑀𝑗)2+𝜃3𝑑𝑓𝑝𝑠(𝐿𝑖, 𝐿𝑗)2+𝜃4𝑑𝑁𝑖(𝐶𝑖, 𝐶𝑗)2)

(4.2)

where 𝑃𝑖 and 𝑃𝑗 are two sets of reaction conditions, each involving a CNP molecule (𝑀𝑖 or

𝑀𝑗), a Ni-coordinating ligand (𝐿𝑖 or 𝐿𝑗), and a Ni concentration (𝐶𝑖 or 𝐶𝑗). 𝑑𝐸𝐴(𝑀𝑖, 𝑀𝑗)

refers to the Euclidean distance between the values of electron affinity (EA) of the two

CNPs (𝑀𝑖 and 𝑀𝑗), 𝑑𝑓𝑝𝑠(𝑀𝑖, 𝑀𝑗) refers to the fingerprints distance of CNPs, 𝑑𝑓𝑝𝑠(𝐿𝑖, 𝐿𝑗)

represents the fingerprints distance of pyridyl ligands, and 𝑑𝑁𝑖(𝐶𝑖, 𝐶𝑗) is the Euclidean

distance between the values of Ni concentration of the two reaction condition sets. Four

scaling hyperparameter 𝜃1, 𝜃2, 𝜃3, and 𝜃4 regulated the relative weighting of the four dis-

tances and were tuned during the training of Gaussian processes. The RBF kernel is a

robust kernel to fit the measured experimental yield without introducing too much noise

section during the fitting of GP model. All four component distances were normalized

before being added together to give the combined RBF kernel. Last, the chemical space

encoding the 4500 sets of reaction conditions took the form of a 4500 dimensions distance

matrix, containing pairwise distances for all sets of reaction conditions.

The SHapley Additive exPlanations (SHAP) algorithm to provide explanations for the ma-

chine learning model predictions. We used the python implementation of SHAP, version

0.35.0, available via the conda-forge channel (https://anaconda.org/conda-forge/shap).
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SHAP combines game theory with local explanation, enabling accurate interpretations

on how the model predicted a particular value for a given sample. The explanations are

called local explanations and reveal subtle changes and interrelations that are otherwise

missed when these differences are averaged out. Local explanations allow the inspec-

tion of samples that have extreme phenotypes values (e.g., a high or low photocatalytic

reactivity).

4.7 Conclusion

A Bayesian optimization strategy was used to identify promising OPCs from a virtual li-

brary of 560 candidate molecules while exploring a small fraction of the available chemi-

cal space (55 / 560 organic photoredox catalysts in the first BO search; 107 / 4500 reaction

conditions in the second reaction condition optimization). This identified OPCs with re-

action yields for a cross-coupling reaction of up to 88% that could match iridium catalysts

at high nickel concentrations and outperform iridium catalysts at lower nickel concentra-

tions. BO is a promising approach for the discovery of metallophotocatalyst formulations,

and by extension for other research challenges where there is a large search space and lim-

ited prior knowledge. The Bayesian optimization approach also has some limitations; for

example, the Hanztsch synthesis is broadly generalizable, but it is not ubiquitous for all

combinations of Ra and Rb functionalities. This was addressed by fusing BO algorithms

with human decisions as to which molecules to pursue in each batch. It would be desirable

to fully automate such workflows, but this would require some technical developments;

for example, to carry out trial syntheses for candidate OPCs and to make autonomous

decisions about which OPCs to carry forward into catalysis testing.
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CHAPTER 5 EXTENDING THE APPLICABILITY OF THE
ANI POTENTIAL TO INTERMOLECULAR

INTERACTIONS

5.1 Introduction

The application of machine learning can also be success in the area of quantum prop-

erty predication to achieve higher accuracy predication of such interatomic information

and maintain a computational cost comparable to classical force field.8,28 Such ML based

force field techniques can calculate molecular atomization energies, forces, potential en-

ergy surfaces(PES), and even including atomic partial charges and dipoles.196 The speed,

accuracy of these model are beneficial by the rapid development of modern machine learn-

ing algorithms and the computing hardware such as deep learning and accelerated calcu-

lation by GPU.

One of the successful application is the ANAKIN-ME (ANI) method124 for building

transferable machine learning potential using symmetry function as the atomic descriptor

(Behler and Parrinello-type descriptors34 ). The original ANI-1124 model was developed

by training 4 multilayer neural networks on a dataset of 22 million randomly selected

conformers of small HCNO-only organic molecules. The reference force and energy in-

formation were calculated using the wB97X/6-31G* DFT level. Tests of molecular di-

hedral rotation and bond stretch demonstrated that ANI-1 accuracy is superior to that

of two popular semi-empirical methods (DFTB and PM6) and comparable to the refer-

ence data level. Subsequently, several future studies extended the applicability of ANI

by increasing its accuracy to a higher level (ANI-1ccx)35 through transfer learning and

by adding new molecules to the training dataset to support additional elements, such as

sulfur and halogens (ANI-2x).197 The development of a fast and transferable machine
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learning potential model holds great potential for the prediction of crystal structures in

molecules, particularly in the context of crystal structure prediction (CSP).145 This is be-

cause the current methodology employed in our research group for predicting molecular

crystal structures is limited to rigid organic molecules. Additionally, the simulated CSP

datasets often consist of thousands of polymorphs, making it computationally challenging

to perform high-accuracy simulations for each individual structure. However, calculating

the lattice energy of the predicted CSP dataset using ANI-2x and ANI-1 model failed due

to the lack of intermolecular interaction features in these models.

Thus, this study aims to use similar methodologies to extend the applicability of ANI

to describe intermolecular interactions, such as hydrogen bonding. The TorchANI soft-

ware,198 which was recently released, presents a standardized approach for creating and

training new ANI models with PyTorch, which is a valuable tool for researchers. To cre-

ate additional training data, the S66a8 dimer dataset199-200 was sampled to generate new

geometries, then these structures were calculated under DFT level with dispersion cor-

rection. Expect this, modifications were introduced to TorchANI’s workflow to facilitate

this process. By augmenting the symmetry function’s hyperparameters and incorporating

the new dimer dataset to account for intermolecular interactions, the newly trained ANI

model can capture the desired information, although improvements are still required to

enhance the accuracy and expand the range of applications of this model.

5.2 The structure of ANI model

The atomic centred symmetry functions, developed by Behler and Parrinello in 2007,34

was used in ANI as the atomic environmental descriptor. The original design of ACSFs

introduced a given centre atom with a cutoff radius 𝑅𝐶 to describe the atomic neighbour

environment, so that it can avoid the permutation and symmetry problems of 3D coordi-
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nates. The restriction of using a cutoff reduces the computational requirement for large

chemical systems. Besides, the atomic environment represented by pairwise distances in

the cutoff range is invariant when doing symmetry operation. A frequently used cutoff

form in symmetry function is the decaying of cosine function

𝑓𝑐(𝑅𝑖𝑗) =
⎧
⎪
⎨
⎪
⎩

0.5 × cos(𝜋𝑅𝑖𝑗
𝑅𝐶

) + 1 𝑅𝑖𝑗 < 𝑅𝐶

0 𝑅𝑖𝑗 > 𝑅𝐶

(5.1)

where 𝑅𝑖𝑗 is the distance between centre atoms 𝑖 and neighbour 𝑗, whereas 𝑅𝐶 is the cutoff

radius boundary. If 𝑅𝑖𝑗 is larger than 𝑅𝐶 the cutoff function and its derivative become

zero. The cutoff function must decay to zero at cutoff radius and be differentiable in all

region since the atomic force is calculated by derivative of energy.201 Despite the cosine

function, other cutoff function can be used here if they match the above requirement, such

as hyperbolic tangent function (Tanh), exponential function, and polynomial function.

To simulate atomic radius interaction behaviour, the radial function 𝐺𝑅
𝑚(Equation 5.2)

is designed to slope at the cutoff radius by multiplying one or more cutoff functions

𝑓𝑐(𝑅𝑖𝑗)(Equation 5.1). Therefore, atoms beyond the cutoff distance are not counted in

the atomic energy calculation. Function 𝐺𝑅
𝑚 below is a sum of Gaussian multiplied by

cutoff functions for all neighbouring atoms

𝐺𝑅
𝑚 =

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

∑
𝑗≠𝑖

exp−𝜂(𝑅𝑖𝑗−𝑅𝑆 )2 𝑓𝑐(𝑅𝑖𝑗) (5.2)

where parameter 𝜂 control the width of the Gaussian decaying and extending to the cutoff

radius. The centre of the Gaussian is shifted to a certain distance from the central atom by

parameter 𝑅𝑆 , which forms a diffusion sphere around the central atom to describe neigh-

bour atoms only located at the predefined distance from the central atom (Figure 5.1). The

summation over the Gaussian functions provides a single value to describe the environ-

ment of the centred atom 𝑖, so that independents with the number of neighbouring atoms

within the cutoff distance 𝑅𝐶 . This feature fixes the vector size of ACSFs satisfying one

99



CHAPTER 5 EXTENDING THE APPLICABILITY OF THE ANI POTENTIAL TO
INTERMOLECULAR INTERACTIONS

Figure 5.1 Examples of the radial function (Equation 5.2) with different parameter of 𝑅𝑆 .
𝑅𝐶 = 6, 𝜂 = 2

of important requirements in machine learning algorithms. In a real application, multiple

parameter 𝑅𝑆 are defined to ensure a reasonable resolution around the radial distance.

The size of a radial section of a ACSFs is 𝑁(𝑠𝑝𝑒𝑐𝑖𝑒𝑠) × 𝑁(𝑅𝑆) × 𝑁(𝜂) so that single 𝜂 is

used to reduce the vector to a reasonable size.

The radial functions are constructed only for two-atom environments whereas multi-atom

environments, such as the difference between tetrahedral and square planar position, are

not distinguished if the neighbour has same distance. Therefore, the angular environment

also need to be captured by ACSFs as neighbour atoms are spread in 3D space. Follow-

ing function 𝐺𝐴
𝑚 is defined as the angular function, a sum over all cosines multiplied by

Gaussian of the interatomic distances in the triplet atoms and the respective cut off func-

tions,124

𝐺𝐴
𝑚 = 21−𝜁

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

∑
𝑗,𝑘≠𝑖

(1 + 𝜆 cos(𝜃𝑖𝑗𝑘))𝜁 exp[−𝜂(𝑅𝑖𝑗 + 𝑅𝑖𝑘 + 𝑅𝑗𝑘)2]𝑓𝑐(𝑅𝑖𝑗)𝑓𝑐(𝑅𝑖𝑘)𝑓𝑐(𝑅𝑗𝑘)

(5.3)

where given atoms 𝑖𝑗𝑘 selected to measure their angular 𝜃𝑖𝑗𝑘 centred on atom 𝑖 and paired

distance 𝑅𝑖𝑗 , 𝑅𝑖𝑘,and 𝑅𝑗𝑘. The Gaussian parameter 𝜂 control the width of the Gaussian
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peaks in the angular part. For complex chemical structures, different values of 𝜂 is used

to form several shells around the central atom as same as in radial function (5.2). The

exponent parameter 𝜁 defines the angular resolution in 3D space, which normally needs

multiple values to represent environment. The angular degree parameter 𝜆, is used to

centre the pick of cosine terms at either 0 or 360 degree by +1 and -1.

Equation 5.2 and 5.3 are determined by several parameters that dictate the spatial shape of

the ACSFs, making it essential to carefully select the appropriate values for these param-

eters. To systematically generate the necessary parameters and select suitable functions

for a given dataset, optimization approaches can be employed. Alternatively, one may opt

to use default ACSFs definitions based on previous experience. While the former method

can provide an accurate description of the dataset, the latter method aims to create an

unbiased ACSFs function.

Figure 5.2 Examples of the ANI neural network structure from the ANI paper.124 Copyright
2017 Royal Society of Chemistry. The left one represents the algorithmic structure of an
atomic number specific neural network potential, while the right-hand side illustrates the
high-dimensional atomic neural network potential (HD-NNP) model for a water molecule.
The input atomic coordinates 𝑞 are used to calculate their ACSFs vector 𝐺𝑋

𝑖 for atom 𝑖 with
element 𝑋.

Once the atomic environmental descriptors were created, a fully connected multilayer

neural network was employed to obtain atomic energies. The total energy of a molecule
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was then calculated as the sum of the individual atomic energies. In ANI, the ACSFs were

processed by distinct neural network leads for each of the elements H, C, N, and O(Figure

5.2). Consequently, a total of four neural networks were employed, one for each of the

HCNO elements.

5.3 Generating new dimer reference data

The database of dimer molecular systems used to build the new ANI model training dataset

is composed of small organic dimer molecules from the widely used SS66 benchmark.200

The dataset is named after the 66 molecular complexes it contains, which span a diverse

range of chemical species and interaction types, including electrostatic dominated (hy-

drogen bounding), dispersion dominated (�-�stacking and van der Waals interaction), as

well as mixed interactions. In addition to equilibrium geometries, extra extension of this

dataset, S66x8,200 was also made by same research group to describe the non equilib-

rium position, 8 geometries were provided along their dissociation curve of each dimer.

Since the dimer binding geometries in S66 were accuracy calculated at their equilibrium

position, it is straightforward to samples one of the molecule to different position to rep-

resenting the intermolecular interactions.

To systematically generate training datasets, a Python program was developed to identify

monomers and provide an interface to allow steric variation including transformation and

rotation. Additionally, the program was designed to calculate the shortest distance be-

tween two monomers within a dimer system, which serves as a measure of their relative

position. Since the molecular relative position in crystal structure is not always along the

path of the dissociation of binding dimer, the training set need include wide range of posi-

tion away form the path in the 3D space. Here, more than 1500 geometries were obtained

through random sampling from various directions, with the condition that the shortest
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distance between two monomers falls within the range of 0.6 to 3 times their distance at

equilibrium position. Then, structures where the distance between two monomers was

longer than 8 Angstroms were discarded since ACSFs are designed to capture the neigh-

bouring environment up to a certain distance, and larger distances may not be adequately

represented by these descriptors. In addition to using the S66 dataset, the sampling pro-

cess also included the S66a8 dataset. The S66a8 dataset was utilized due to its provision of

more rotated geometries, which include rotations in both directions (±) within the molec-

ular plane, and rotations perpendicular to it by 30°. Finally, the total energy and atomic

force of all geometries were calculated at the density functional theory level, using the

ωB97XD/6-31G*202 level of theory to cover dispersion interactions, as implemented in

Gaussian 16.166 Two examples of the dimer dataset are presented in Figure 5.3

(a) Between water and acetamide (b) Between ethene and ethane

Figure 5.3 The binding energy of two examples of sampled dimer structures

where the binding energy of each geometry was used to against their shortest dimer dis-

tance. The curve described the Lennard-Jones potential properly since many of geome-

tries located in the range of intermolecular interactions. The size of this dimer dataset

increased to approximate 1M, and was merged with the 5.5M size ANI-1x203 dataset to

prepare training new ANI model.
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5.4 Modifying TorchANI API and training the model

The recent availability of the TorchANI program has significantly expedited the devel-

opment of new ANI models. This is partly due to the use of PyTorch and ASE Python

implementation, which have made TorchANI a lightweight, user-friendly, cross-platform,

and easily modifiable software tool. The initial creation of ANI-1, ANI-1x, and ANI-2x

involved the use of the NeuroChem package. Consequently, there is no direct Application

Programming Interface (API) within TorchANI for reading PyTorch neural network files

and using them as a force field calculator for the ASE. To overcome this limitation, sev-

eral modifications were made to the TorchANI program in order to enable the development

of the training, implementation, and benchmark processes. The ACSFs calculator, data

loader, and the ASE interface were kept the same as in the original TorchANI program.

Modern deep learning frameworks, such as PyTorch,174 incorporate an automatic dif-

ferentiation engine. This feature is particularly advantageous when performing certain

physical properties calculations, such as force calculations. Therefore, incorporating both

total energy and atomic force as the cost function in the ANI model is feasible without

incurring significant computational costs. Furthermore, this approach has the potential

to improve the stability of the ANI model in molecular dynamics since the geometry and

energy of molecules are determined by force. Integrating force training into PyTorch is

a straightforward process, requiring only a few lines of code to be added to the energy

trainer.

To effectively capture intermolecular interactions in the ANI model, it is necessary to

increase the cutoff distance (𝑅𝐶 in Equation 5.1) hyperparameter of the ACSFs. Accom-

plishing this requires the addition of more shift parameters (𝑅𝑆), which in turn enhances

the resolution in the atomic neighbourhood environment. A serial of 𝑅𝑆 was generated us-

ing an arithmetic progression generator. Other parameters such as 𝜂, 𝜁 were also included
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in the optimization of ACSFs hyperparameters. The training of the model was conducted

using the high-performance computing system (HPC) available at the University of Liv-

erpool. In order to accelerate the calculations, an Nvidia V100 graphics processing unit

(GPU) was employed.

Figure 5.4 The loss and learning rate curves of ANI during training process. Different
colour represents different running jobs on HPC for searching hyperparameters of ACSFs.

Figure 5.4 displays several training curves, with each colour representing a distinct training

process. Some model training processes had to be split into multiple runs and considered

as continuous training due to the running time limitation on Barkla. The training curves

depict how the performance of the model changes as training progresses over time. The

x-axis represents the number of training epochs, and the y-axis shows the loss (top) and

learning rate (bottom). A learning rate scheduler was utilized to facilitate learning rate

decay and regulate the learning rate.
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5.5 Benchmark of the new trained ANI model

To illustrate the performance improvements of the above changes on the training pro-

cess, several case studies were conducted including testing dimer Lennard-Jones poten-

tial, trimer molecules binding energy, and the lattice energy of published CSP dataset.

All the selected compounds only contains HCNO elements. The dimer benchmark struc-

tures were sourced from both the S66x8 and S12L204 datasets, which encompass small

organic molecules and large supramolecular complexes, respectively. To represent a rel-

ative many-body non-covalent interaction, the trimer structures were selected from the

3B-69205 dataset. Additionally, the simulated CSP datasets were generated in accordance

with a previous publication from our research group.

5.5.1 Testing the Lennard-Jones potential on dimer complexes

In order to assess the effectiveness of the newly trained ANI model, the binding energies

of four distinct systems sourced from the S66x8 dataset were computed. These systems

include water-water and methanol-nethylamine, which serve to represent electrostatically

dominated interactions, as well as benzene-benzene (face to perpendicular) and benzene-

cyclopentane (face to face), which are representative of dispersion dominated interactions.

The binding energy is determined by calculating the difference between the energy of the

dimer complex (𝐸𝑎𝑏) and the combined energies of the individual molecules (𝐸𝑎 and 𝐸𝑏)

at corresponding geometries (Equation 5.4).

𝐸 = 1
2(𝐸𝑎𝑏 − (𝐸𝑎 + 𝐸𝑏)) (5.4)

The Figure 5.5 illustrates the assessment of binding energy as a function of distance along

the dissociation curve for each complex. The displaced complexes in S66x8 are generated

by adjusting the intermolecular distance in the optimized structure. Here, more 75 points

for each complex are created to ensure a precise reconstruction of the dissociation curve
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Figure 5.5 The binding energy test for four different systems from S66. New trained ANI
model are labeled as training 1, 2, and 3 using different hyperparameters. CCSD(T) data
came from S66.200

through interpolation. The newly trained ANI models 1, 2, and 3, as depicted in Figure

5.5 exhibit an enhancement in binding energy as compared to ANI-1x. It is important to

note that the reference data used in this study (ωB97XD/6-31G* level) is not the most

accurate hybrid functionals for describing hydrogen bonds, as indicated by a benchmark

study.206 According to this benchmark, the error for a smaller set of 16 hydrogen-bonded

complexes using this level of theory is reported to be 0.7 kcal/mol when compared to the

highly accurate CCSD(T) method, which is often considered the gold standard in com-

putational chemistry for single-reference systems.206 When comparing the results with

the S66 data, which also provides CCSD(T) level binding energy, it is observed that the

reference functional underestimates the binding energy of hydrogen bonds between wa-

ter molecules. On the other hand, the three new ANI models trained in this study tend

to overestimate the binding energy. This discrepancy could potentially be attributed to

the increased cut-off distance of ACSFs utilized during the training of these ANI models.
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Table 5.1 shows the MAE of the binding energies calculated with different ANI model

comparing with DFT level. The training 2 model has the best error compared with other

ANI model, although both new trained model have larger MAE compared with ANI-1x

in the water dimer test.

Table 5.1 The MAE between ANI-1x, three new trained ANI model against ωB97XD/6-
31G* on the binding energy test

Dimer name ANI-1x Training 1 Training 2 Training 3

Water-Water 0.49 1.74 1.59 1.56

MeOH-MeNH2 0.71 0.89 0.34 0.49

Benzene-Benzene TS 2.79 0.53 0.51 0.69

Benzene-Cyclopentane 1.70 0.98 0.32 0.56

a All in kcal/mol.

In addition to the aforementioned dimer small molecule test, larger molecular complexes

were also included in the benchmark. Two supramolecular complexes from S12L and

three trimer examples from 3B-69 were selected to assess their binding energies against

DFT calculations (Figure 5.6). As expected, the ANI model demonstrated satisfactory

performance on the trimer uracil and benzene tests, as these monomers were part of the

training dataset. However, it still tended to overestimate the binding energy of the trimer

water system. Regarding large molecular complexes, the ANI model exhibited a reason-

able degree of transferability with limited improvements compared to ANI1-x, although

the values remained comparable. Among these ANI models, the training 2 model exhibits

the best performance, and it is selected for the subsequent molecular crystal structure tests

consequently.

5.5.2 Testing the lattice energy landscape on CSP dataset

To further stress the application of ANI machine learning potential on organic crystal,

simulated CSP datasets were chosen to show the performance of the new ANI model
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Figure 5.6 The binding energy test for large molecular complexes and trimer system against
ωB97XD/6-31G* level

in these complex systems. To visually represent the landscape of crystal structures, a

commonly used approach is to plot the lattice energy or relative lattice energy against the

density of each structure.

As a preliminary step, a dispersion dominated system (Figure 5.7(c)) was tested, as de-

picted in Figure 5.7 provided below. The corresponding structure was obtained through

CSP, and subsequently, ANI was utilized to calculate the lattice energy without conduct-

ing any structure optimization. The training 2 model (in Figure 5.7(b)) successfully cap-

tured the observed negative relationship between lattice energy and density, when com-

pared to the CSP landscape. However, accurately evaluating the performance is challeng-

ing due to the variation in the ranking of minimal structures. This discrepancy arises from

the limitations of the employed CSP technique, which solely incorporates full structure

optimization of individual molecules while keeping them rigid during crystal structure

generation and lattice energy minimization to reduce the cost.

Further investigations were undertaken using our research group’s recently published

dataset of organic cage crystals (cage-3-NH2 in Figure 5.8(e)).207 In this study, the au-

thors not only performed CSP calculations but also conducted high-level structure op-

timization, enabling a comparison with structures of relatively high accuracy. From the
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(a) CSP landscape (b) Training 2 ANI model landscape (c) Monomer

Figure 5.7 The lattice energy test of a no-hydrogen bound CSP dataset

energy landscape of the CSP, structures located on the ‘leading edge’ (Figure 5.8(a)) were

selected and re-optimized using density functional theory-based tight binding (DFTB)208

(Figure 5.8(c)). Furthermore, the relative lattice energy of these crystal structures was

calculated using both the training 2 ANI model (Figure 5.8(b)) and the PBE method209

(Figure 5.8(d)), allowing for a comprehensive comparison.

In Figure 5.8, three highlighted polymorphs were marked as red (Figure 5.8(f)), green

(Figure 5.8(g)) and black (Figure 5.8(h)), receptively. The polymorph 3 represents the

minimum lattice energy structure identified within the CSP landscape, while the poly-

morph 2 represents the minimum lattice energy structure identified by the DFTB, PBE,

or ANI calculations. Additionally, the polymorph 1 represents the minimum lattice en-

ergy structure of a distinct feature referred to as a ‘spike’. This valuable configuration

exhibits the potential to be synthesized as a highly porous material. The DFTB, PBE, and

ANI calculations were carried out utilizing the crystal structure optimized through DFTB.

This optimized structure, along with its corresponding density, provides a higher level of

accuracy when compared to the CSP method.

While the ANI model successfully identifies the minimum energy structure, it tends to un-

derestimate the energy of several other structures, including the highly porous polymorph

(depicted in red). One possible hypothesis is that the ACSFs descriptor may not ade-

quately capture longer-range interactions beyond the cut-off sphere (typical 8 Å), whereas

electronic-dominated interactions continue to influence and contribute to the lattice en-
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(a) CSP landscape (b) Training 2 ANI model

(c) DFTB (d) PBE

(e) Cage-3-NH2 (f) Polymorph 1 (g) Polymorph 2 (h) Polymorph 3

Figure 5.8 Energy-density distributions of the leading edge structures on the CSP landscape
using different calculation methods
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ergy in crystals within this range. The lattice energy of many high-porosity, low lattice

energy polymorphs in the CSP dataset is primarily influenced by intermolecular hydrogen

bonding. This limitation is inherent in the design of the ANI model and other symmetry

function-based machine learning force fields, as they were primarily developed to simulate

interatomic interactions rather than intermolecular interactions.

5.6 Conclusion and future works

The rapid advancement and refinement of machine learning force fields present a promis-

ing approach to molecular simulation. In this study, a new training model for the ANI

has been introduced, focusing on enhancing the accuracy of intermolecular interactions

in molecules containing HCNO elements. The improvement was achieved by incorporat-

ing a new dimer training dataset, calculating energy using a dispersion-corrected method

(ωB97XD/6-31G*), and modifying the hyperparameters of ACSFs.

The modified ANI model was tested on both small dimer organic molecules, which

are considered as classic benchmarks for intermolecular interactions, and two larger

supramolecular complexes. In comparison to the ANI1x model, the modified ANI model

exhibited improved accuracy, reaching a level comparable to density functional theory

(DFT) calculations, for small dimer organic molecules. However, for the larger molecular

complexes, the performance was not as satisfactory as initially anticipated. Except this,

this fast and flexible force field offers a potential method for optimizing organic molecular

crystal structures generated through CSP techniques. While the ANI model can identify

structures with minimum lattice energy from the extensive CSP dataset, it still falls short

in capturing the full spectrum of features present in the CSP landscape due to the lack of

long-range information in its current description.

Moving forward, it is apparent that the inclusion of long-range interactions through the
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addition of a dimer dataset and modifications to the ACSFs alone are insufficient to fully

address the missing long-range interaction issue. Future studies should therefore concen-

trate on implementing advanced sampling methods to generate reference data and explore

the utilization of additional deep learning networks specifically designed to capture in-

teractions beyond the cutoff sphere. Notably, Behler has proposed the concept of ‘third

generation’ high-dimensional neural network potentials,33 which could serve as a promis-

ing direction for these investigations. These advancements hold the potential to signifi-

cantly enhance the accuracy and capability of machine learning force fields in capturing

long-range interactions and improving their overall predictive power.
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6.1 Data driven material discovery by in-silico design

While high throughput virtual screening (HTVS) has been topical in materials discovery

and applied to a wide range of materials classes and functional properties, automated (big-

)data analytics are still rarely used to assist the visualization and interpretation of HTVS

results that are often high-dimensional and convoluted. With the modern dimensionality

reduction algorithms and online visualization tools, high dimensional chemical datasets,

calculated by organic crystal structure prediction, are capable for screening ‘landmark’

structures and visualizing their structures on the interactive data explorers on the fly with

dynamical data input. The visualization and ML tools developed herein were then used

to help accelerate the discovery of molecular photocatalysts by concerting efforts from

experiment and computation.

To expedite the energy calculation process in crystal structure prediction, machine learn-

ing potential offers a promising approach for evaluating and optimizing the structures of

organic molecules. An extension and refinement of Torch-ANI and ANI-1x models were

conducted to effectively capture long-range intermolecular interactions, which dominated

the lattice energy surface of organic crystal structures. By adding new dimer dataset to

the ANI-1x training set and optimizing the ACSFs hyperparameters, the new trained ANI

model is capable to describe the interactions in dimer complexes. However, the testing

of the newly trained ANI model on larger and more complex systems, such as the CSP

dataset, did not yield satisfactory results due to the limitations of the cut-off sphere. De-

spite the substantial growth in the size of simulated chemical data, the neural network

potential model still requires further enhancement to effectively capture intermolecular in-

teractions. Moreover, its transferability might be constrained when applied to large-sized
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molecules during testing. Future development could involve the introduction of additional

neural networks and descriptors.

It is worth noting that those porous materials has the potential application of adsorption

which related to the host-guest interactions.210 Although this study did not investigate the

application of porous organic molecular crystals, the accurate prediction of crystal struc-

tures is crucial because it allows researchers to understand the arrangement of atoms within

the material. By accurately predicting the structure of porous organic molecular crystals,

researchers can gain insights into the arrangement of pores and channels within the ma-

terial. This information is vital for determining the suitability of the material for specific

adsorption applications, such as gas storage, separation processes, or catalysis.211-212 One

limitation of this estimate could be the difficulty in accurately calculating the electron den-

sity distribution for organic molecular crystals.213

6.2 Screening organic photocatalysts by machine learning

Organic molecules present a promising avenue for the photocatalytic production of hy-

drogen from water. By applying both unsupervised learning and supervised regres-

sion/classification to a large library of organic photocatalysts tested experimentally, struc-

tural and electronic features that positively impact the catalytic performance were identi-

fied. For example, the formation of triplet excitons has been suggested to be a key, ben-

eficial effect on HERs. The chosen of DFT methods for calculating optoelectronic and

physicochemical properties is indeed crucial and should be tailored to the specific type

of molecules under investigation. While the regression task of targeting these properties

to hydrogen evolution reaction (HER) activity have been unsuccessful, the application of

binary and ternary classification still allows for the examination of important features re-

lated to HER. For instance, one important feature that may emerge as influential for HER
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is the energy difference (Δ𝐸𝑆1→𝑇1) between the first singlet excited state(𝑆1) and the first

triplet excited state (𝑇1). Furthermore, conducting virtual experiments with an adaptive

ML-assisted selection approach can significantly reduce experimental costs. By leverag-

ing machine learning techniques, the selection of experiments can be optimized, leading

to a more efficient use of resources and reducing the overall experimental burden. Addi-

tionally, in an effort to make this library accessible to all, an online web application has

been developed, enabling users to derive independent insights from the data. The ma-

chine learning models trained through this process can be deployed in future studies and

will be continuously refined with the inclusion of new experimental data as they become

available.

Based on the high throughput screening of organic photocatalysts of hydrogen evolution,

a Bayesian optimization strategy was used to identify promising OPCs and their ideal

reaction conditions from a virtual library of 560 candidate molecules while exploring a

small fraction of the available chemical space. The results revealed OPC formulations

with target reaction yields of up to 88%, which were found to be comparable to iridium

catalysts at high nickel concentrations and superior to iridium catalysts at lower nickel

concentrations. It is shown that Bayesian, data-driven experimental design is a promis-

ing approach for the discovery of new photocatalysts formulations, and by extension for

other research challenges where there is a large search space and limited prior knowledge.

Except the discovery of highly active catalysts, the valuable photoredox results obtained

can be utilized in a binary classification task by SVM, GBDT etc. to predict the poten-

tial activity of newly designed organic CNPs. This approach is similar to the discovery

made by Raccuglia et al. . The ‘failed’ attempts were also incorporated during the training

of GPs in the Bayesian optimization loop. This means that unsuccessful reactions were

considered as part of the training data for the GPs, providing valuable information on the

factors that contribute to lower activity. The chemical intuition regarding the substituent

Rb was initially identified through the first close loop optimization. The CNPs consisting
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of carbazole Rb moieties paired with donating Ra moieties provide optimal yields, but the

computationally-led search of 100 additional CNP molecules did not discover new high

activity catalysts, highlights the complexity of the photoredox reaction.

In addition to applying calculated optoelectronic properties to small organic molecules

for photocatalysis, extending such methodologies to other porous materials like COFs

(covalent organic frameworks) and MOFs (metal-organic frameworks) can be valuable

for screening potential photoactive materials. This is because the photocatalytic mecha-

nisms in these materials are still closely related to processes such as light absorption and

electron transfer between donors and acceptors.160,212 In the case of COFs and MOFs,

computational calculations can be simplified by representing the material using a single

representative piece of the framework, thereby reducing the computational time required.

Additionally, the substructure of the building blocks within these porous materials has

been found to influence the photocatalytic activity.119 Therefore, combining substructure

fingerprints as representatives and graph representations of the frameworks may aid in the

design of efficient porous photocatalysts.

As large-scale computational screening studies become routinely carried out by

chemists,11 new opportunities have arisen for accelerating materials discovery by tak-

ing advantage of the availability of big data, and spanning from computer-generated data

to recorded laboratory results. However, it remains a challenge to properly understand and

use the vast amount of data generated by simulations or experiments.140 Obtaining a big,

homogeneous, experimental dataset and their reproducibility is challenging due to the var-

ious physical factors that can influence experimental outcomes even with high throughput

testing methodology.8

Another important step towards making experimental data accessible, interoperable, and

reusable is to collect and publish the data using a standardized ecosystem. In addition to

the challenge of collecting chemical data, chemists are often constrained by limitations
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in the featurization of materials for properties that require numerical representation. For

instance, substructure characterization for organic molecules, electronic behaviours for

photocatalysts, and geometric measurements for forcefield development all require appro-

priate numerical representation. Such insights are particularly important to enable mate-

rials discovery and design paradigms to go beyond serendipitous discoveries and even the

currently most successful predict-make-measure approach, which is nevertheless some-

times undesirably linear.
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