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Abstract

he advanced computing system with a bionic nervous neuromorphic structure to

facilitate parallel data updates for artificial neural networks (ANNs) has aroused

extensive concern due to the limitations of conventional logic operation rules

based on the von Neumann architecture. In order to construct the core units for the ANN

system, the artificial synaptic transistors were then proposed for multi-level storage and

parallel computing, which has been being intensively investigated to mimic the behavior and

function of the biological synapses. At present, the development of both end devices has

become increasingly mature, and the latest research is to be able to run basic neural networks

and perform complex tasks on millions of scale integrated chips. Thus, the comprehensively

deepen innovation of three terminal neural devices must be explored in all related fields,

including model algorithm, software, chip, and data. According to the various storage

mechanisms and physics, the ferroelectric transistors, floating-gate transistors, electrolyte gate

transistors, and electret-based organic transistors have been researched to realize the neurons

behaviors. Nevertheless, neuromorphic device , synaptic long-term plasticity and mechanisms

of bionic synapse must be further explored to simultaneously enable signal transmission,

iterative learning, and timely surveillance. Furthermore, briefly summarize the evolution of

neural networks from the first generation to the third generation. The first generation neural

network uses mathematical and physical modeling to abstract the human brain neural network

and establish a simplified model. ANN mainly uses weight and multiplication to simulate

synaptic characteristics, and addition to simulate the interconnection of dendrites. Further

algorithm optimization is carried out on the structure of error feedback, and various

frameworks and strategies (such as convolution, loops, and residuals) are added to form the

second generation neural network. Compared to the first generation, the second generation

neural network can perform more complex tasks. Faster speed and higher efficiency. In order

T
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to better fit the working mechanism of the human brain (low power consumption), the third

generation neural network has been proposed to achieve higher levels of biological neural

simulation. In addition to neuronal and synaptic states, the third generation neural network

also incorporates the concept of time into its operations. It can more accurately simulate the

dynamics of brain neurons. Then it also can perform complex intelligent tasks at low energy

consumption.

In this work, we propose the ion-doped eco-friendly solution-processed indium oxide

(InOx)/aluminum oxide (AlOx) electrolyte gate transistors (EGTs) with typical and reliable

synaptic behavior. The lithium (Li) ions doped into the AlOx solid state layer to facilitate the

generation of electrical double layers (EDLs) and doped into InOx to improve the stability of

long-term potentiation/depression (LTP/LTD) cyclic update and enhance the synaptic

plasticity. For the application, an ANN (first generation) simulator is well designed to

electrocardiogram (ECG) signal recognition based on the Gmax/Gmin ratio and nonlinearity of

weight update curve. According to the results, the device possesses tremendous potential for

bio-signal prediction and neural intervention. Moreover, for the first time, the recognition

accuracy of the abnormality of the cardiovascular can reach over the 94.8% obtained from the

confusion matrix. Consequently, this research article presents a stable and robust

neuromorphic device for bio-signal recognition based on solid state EGTs via the synaptic

long-term plasticity (Chapter 2).

Second, to effectively control the non-volatile conductance, dynamic deep learning is

considered to simulate the nonlinear memory process of human brain during the long-term

potentiation and long-term depression of weight update process to implement complex tasks.

Here, we firstly propose a photoelectrically modulated synaptic transistor based on two-

dimensional material (MXenes), which well adjusts the nonlinearity and asymmetry by

mixing controllable electric pulses and optical pulses. According to the advantage of the
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residual deep learning (second generation) can amplify the difference between labels, the rule

of dynamic learning is thus elaborately developed to improve significantly the accuracy of

highly similar and homologous database (using a classic Rabbit IgG antigen as the

colorimetric enzyme-linked immunosorbent assay (c-ELISA) sensing target at microfluidic

paper-based analytical devices (μPAD) from 80.9% to 87.2% and therefore realize the fast

convergence. Besides, photoelectric mixed stimulation also remarkablely shortens the

iterative update time to 11.6 s during training epochs as a result that the photoelectric effect

accelerates the relaxation of ion migration. Then, we even further extend the dynamic learning

strategy to Long Short-Term Memory (LSTM) and standerd data sets (Cifar10 and Cifar100)

which well proves the strong robustness. This work firstly represents a significant advance

and pave the way towards potential synaptic-device-based bionic retina for computer aided

detection in immunology about quantitative analysis of immune protein and also lays a

foundation for selecting matching neural network and tasks according to the synaptic

plasticity of synaptic devices (Chapter 3).

Third, deeply explore the functions of neural devices, match neural networks that best match

biological characteristics, and build an overall architecture. Spiking neural networks (SNNs)

incorporating synaptic plasticity hold great potential because of the temporal correlation and

low power consumption. Leaky intergrate-and fired (LIF) model and spike timing dependent

plasticity (STDP) are the core and specific components of SNNs. Here, the neural device is

first demonstrated by zeolitic imidazolate frameworks (ZIFs) as essential part of synaptic

transistor to simulate the neuromorphic computing in SNNs. Significantly, three kinds of

typical functions between neurons, the memory function achieved through hippocampus,

synaptic weight regulation and membrane potential triggered by ion migration, are effectively

described through the short-term memory/long-term memory (STM/LTM), long-term

depression/long-term potentiation (LTD/LTP) and LIF, respectively. Further, update rule of
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iteration weight in the back propagation based on the time interval between pre-synaptic and

post-synaptic pulses is extracted and fitted from the synaptic transistors. Besides, the

postsynaptic currents of channel directly connect to the Very Large Scale Integration (VLSI)

implementation of the LIF mode that can convert high-frequency information into spare

pulses based on the threshold of membrane potential. Leaky integrator block, firing/detector

block and frequency adaption block instantaneously release the accumulated voltage to form

pulse. Finally, we recode the Steady-State Visual Evoked Potentials (SSVEP) belongs to

electroencephalogram (EEG) with filter characteristics of LIF. SNNs deeply fused by synaptic

transistors are designed to recognize the 40 different frequencies of EEG and improve

accuracy to 95.1 %. This work represents an advanced contribution for brain-like chip and

promotes the systematization and diversification of artificial intelligence (Chapter 4).

Keywords: synaptic transistors, neural network, neuromorphic computing
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摘要

基于 von Neumann 架构的传统逻辑运算规则具有并行运算的局限性，因此，具有仿生

神经形态结构的计算系统，由于具备可以模拟人工神经网络（ANN）的架构和可以并

行更新数据等特点，引起了类脑计算研究员们的广泛关注。为了构建神经网络系统的

核心单元，我们提出了用于多级存储和并行计算的多种突触薄膜晶体管，并对其进行

深入研究，用以模拟生物突触的特征行为和功能。现在为止，两端器件的类脑器件的

发展已经接近商用，最新的研究进展是能够在百万级的集成芯片上运行完整的神经网

络并执行识别任务。因此，三端突触器件需要在模型算法、软件架构、芯片设计，数

据匹配和实际应用等相关联领域进行深入全面的挖掘和研究。根据各种机制和实现突

触的原理，许多发表的工作已经研究了铁电突触晶体管、浮栅突触晶体管、电解质突

触晶体管，驻极体突触晶体管，有机突触晶体管和光突触晶体管来实现神经元的生物

行为。但是还须进一步探索神经形态器件的架构、突触的长/短期可塑性和其他生物突

触行为，以同时实现信号传输、迭代学习和及时监测的功能。并为三端器件作为核心

单元运行完整的神经网络奠定了坚实的基础。此外，简要总结了神经网络从第一代到

第三代的发展历程。第一代神经网络使用数学和物理建模来模拟人脑神经网络并建立

简化模型。人工神经网络主要利用权重和乘法来模拟突触特性，并利用加法来模拟树

突的互连。接着对误差反馈策略进行了进一步的算法优化，并添加了各种框架和策略

（如卷积、循环和残差），从而形成了第二代神经网络。与第一代相比，第二代神经

网络可以用更快的速度和更高的效率执行更复杂的任务。进一步地，为了更好地匹配

人脑的工作机制（低功耗），第三代神经网络被提出以实现更高水平的生物神经模拟。
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除了对于神经元和突触状态的建立，第三代神经网络还将时间的概念融入其框架中。

它可以更准确地模拟大脑神经元的动力学，并以低能耗执行复杂的智能任务。

在初步的探究中，我们提出了具有典型和可靠突触行为的氧化铟（InOx）/氧化铝

（AlOx）电解质栅晶体管（EGT)。核心是将锂（Li）离子掺杂到 AlOx固态介电层中以

促进双电层（EDL）的产生，将离子掺杂到 InOx 中以提高循环长时程增强 /抑制

（LTP/LTD）过程的稳定性并巩固突触可塑性。在实际应用方面，我们基于 Gmax/Gmin

比值和权重更新曲线（LTP/LTD）的非线度，并通过模拟实际的电导变化设计出了一

个用于心电图信号识别的 ANN（第一代神经网络）模拟架构。该架构在生物信号预测

和神经干预方面具有巨大的潜力。并且从混淆矩阵中获得的判断心血管异常的准确率

首次达到 94.8%以上。本章节提出了一种基于离子迁移机制的神经形态薄膜晶体管，

实现了基本的突触可塑性和非易失性，并将该特性应用于基础生物信号的识别任务

（第 2 章）。

进一步地，在第二章研究工作的基础上。为了能够有效地控制电导的非易失性，我们

使用采取了和第二章不同的刺激方式。更重要的是，构建提出了动态学习规则来模拟

人脑在记忆和学习过程中的规律，并用以执行更加复杂任务。因此，我们顺势提出了

一种基于二维材料（Mxenes)的可光电调制的突触晶体管，该晶体管通过混合电脉冲和

光脉冲被有效地调节电导的非线性度和不对称性。根据所使用的残差网络可以放大标

签之间的差异的优点，因此，特别地将该网络融合此突触器件特有的动态学习规则，

以显著提高高度相似数据类型的识别准确率。针对实现硬件和软件深度结合这一目标，

高度同源数据库将使用经典的兔 IgG 抗原作为比色酶联免疫吸附测定（c-ELISA）传感

靶点。结合硬件学习规则的神经网络把识别率从 80.9%（基准）提高到 87.2%，同时还

可以实现快速收敛。因此，光电混合刺激也显著地将训练周期的迭代更新时间缩短到
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了 11.6s，这一优势归因于光电效应加速了离子恢复的弛豫过程。进一步地，为了验证

我们提出的动态学习规则的鲁棒性，将硬件中的动态学习策略进一步扩展到 LSTM 神

经网络和标准数据集（Cifar10 和 Cifar100）。本章工作探究出了突触更新规则的关键

参数，并且为免疫学中免疫蛋白定量分析检测奠定了基础，为根据突触器件中突触可

塑性的不同特点定制专属的神经网络和识别任务奠定了基础（第 3 章）。

第三，根据前面两章探究的结果和经验，我们下一步深入探索神经器件的潜在功能，

匹配最符合生物特征的神经网络，进而构建整体神经网络架构。结合突触可塑性的脉

冲神经网络 （SNN)（第三代神经网络), 由于其具备时序相关性和低功耗等特点而具

有巨大的超大规模并行计算潜力。其中 LIF 模型和尖峰时间相关塑性（STDP）是 SNN

的核心和特定组成部分。综上，我们构建的神经形态器件首次通过沸石咪唑盐框架

（ZIFs）作为突触晶体管的重要组成部分来模拟 SNN 网络。此外我们还挖掘出此器件

具备的三种生物功能。神经元之间的三种典型功能，即记忆功能、突触权重调节和膜

电位产生，分别通过短期记忆 /长期记忆（STM/LTM）、长时程抑制 /长时程增强

（LTD/LTP）和 LIF 得到有效模拟和展示。进一步地，不同于前两章节，突触晶体管

中的 STDP 特性将用于迭代更新权重。该更新规则基于突触前脉冲和突触后脉冲之间

的时间间隔(时序相关性）。除了基础的模拟之外，我们还实现了将突触后电流直接连

接到 LIF 电路（超大规模集成电路（VLSI））进行模拟。该电路可以基于膜电位的阈

值将高频信息转换为稀疏脉冲。搭建的主要三种模块（泄漏积分器块、点火/检测器块

和频率自适应块）瞬间释放累积电压以形成脉冲。匹配的相关应用是将稳态视觉诱发

电位（SSVEP）重新编码并通过 LIF 滤波形成新的脑电图（EEG）。结合突触晶体管

时序特性的 SNN 被设计用于识别 40 种不同频率的新 EEG，并将原有的准确率提高到

95.1%。本章整体实现了三个方面的突破和创新，突触晶体管有了初步的膜电位阈值特
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性，SNN 和 STDP，LIF 的兼容性模拟，复杂的高频信息可以通过神经器件得到滤波。

此章节工作促进了以三端神经器件为核心的类脑架构的系统化和多样化（第 4 章）。

关键词：突触薄膜晶体管，神经网络，神经形态计算
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Chapter 1 Introduction

Section 1.1 Synaptic device and brain-like chip

Section 1.1.1 Synaptic device

There are about 1011 neurons and about 1015 synaptic connections in human brain. The

synaptic structure is the key part of information transmission between neurons and the basic

unit of human cognitive behavior. Therefore, the development of synaptic devices is of great

significance for neuromorphological engineering. In recent years, brain-like neuromorphic

devices are becoming an important branch of artificial intelligence and neuromorphic field,

which will inject new vitality into the development of artificial intelligence in the future. The

human brain is able to process large amounts of information at ultra-low power consumption,

thanks to the plasticity of synapses in the human brain. If we can use nano-sized artificial

devices to simulate biological synapses, artificial neural networks and even artificial brains

will be realized. In the age of information explosion, the demand for storage capacity is

increasing rapidly. The development of small-size multi-value non-volatile memory can be

widely used in military and civil fields, which is in line with the major national needs. Tri-

terminal memristor materials and devices are the best way to realize small size multi-value

non-volatile memory and should be developed vigorously. Reducing energy consumption and

improving efficiency is the ultimate development direction of information processing chips.

Brain-like chips, with their inherent advantages of low power consumption and high

efficiency, will become the final choice of information processing chips in the future and have

a huge market prospect. Three-terminal memristor materials and devices are the basis for the

construction of brain-like chips. It is of great practical significance to increase the investment

in its science and technology. Nano-sized memristor resistors can be continuously adjusted

and maintained by electric field, and are considered as the most promising information
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electronic devices to simulate biological synapses. High performance memristors need to be

based on specially designed nano-memristor materials, controlling electrons or ions to change

the resistance of the memristor materials. At present, the function of realizing memristor by

controlling ions is developing rapidly. The resistance can be adjusted continuously by

controlling oxygen ions or metal ions to form conductive wires in the matrix of memristor

materials. It is an international trend to develop CMOS-compatible memristor materials and

process memristor devices using standard CMOS technology, which is the only way to obtain

low-cost brain-like chips. At present, the following research contents need to focus on: the

development of continuously adjustable multi-valued memristor, the construction of artificial

neural network; A quantum memristor is developed and multi-value non-volatile memory is

constructed to improve the stability of the memristor. Quantified the different defect

formation and migration energies of different memristor material systems, and quantified the

controllability and stability of conductive channels of memristor devices. To develop

memristor devices based on carbohydrate materials, artificial neural network and biological

neural network are fully integrated.

Section 1.1.2 Brain-like chip

With the upsurge of artificial intelligence (AI) sweeping all walks of life, the "Al chip", as the

core of AI, has become popular. It is an essential core device for all intelligent devices,

dedicated to processing Al related computing tasks. The field of Al chips is not only a

competitive arena for semiconductor chip companies, but also Internet companies and cloud

computing companies have released plans to launch chips. AI chips include two fields of

content: one is the field of computer science, which simply refers to software, that is, research

on how to design efficient intelligent algorithms; The other is the field of semiconductor chips,

which is simply referred to as hardware, which is the study of how to effectively implement

these algorithms on silicon wafers and turn them into final products that can be combined
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with supporting software. Starting from the Industrial Revolution, machines have gradually

replaced human repetitive manual labor and heavy manual labor. Nowadays, part of human

mental and intellectual work can gradually be replaced by machines with artificial intelligence.

This "intelligent machine" with AI chips has powerful computing and learning capabilities,

and can operate independently. Intelligent machines can not only imitate human muscles to

perform tasks, but also become replacements for brain functions. This intelligent machine will

become increasingly popular and its performance will continue to improve. It will be widely

used in face recognition, car driving, artistic creation, new material synthesis, new drug

development, medical diagnosis, robotics, and people's daily lives. The emergence of Al's

idea and the subsequent development of neural network mathematical models and algorithms

have been accompanied by the evolution of semiconductor chips along the way. Although

some people were studying human brain function in the 1930s and 1940s and trying to

establish a mathematical model, it did not have a significant impact. Until 1957, the invention

of the Perceptron, which simulates the human brain, was seen as the first breakthrough in

"artificial neural networks.". The sensor was invented by Frank Rosenblatt, who worked at the

Cornell Aerospace Laboratory at the time. As the simplest form of forward artificial neural

networks, perceptrons have a simple structure, but they have the ability to learn and evolve

continuously to solve more complex problems. In 2012, everything changed. A series of

influential papers have been published, such as Alex Krizhevsky, Ilye Sutskever, and Hinton's

"ImageNet Classification with Deep Convolutional Neural Networks", demonstrating their

achievements in the lmageNet Image Recognition Challenge. Many other laboratories are

already engaged in similar work. Before the end of the year, deep learning had become the

front page of the New York Times and quickly became the most well-known technology in

artificial intelligence. After that, the experimental results of deep learning in image

recognition and speech recognition have been improved year by year, until they exceed the
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recognition rate of humans, causing great attention and once again setting off an Al craze. It

can be seen that Al and the development of semiconductor chips are closely linked (Figure

1.1). Without the rapid development of semiconductor chips such as GPUs in recent years, Al

would not be so hot as it is today [1-5].

Figure 1.1 Comparison of the evolution of AI and chips.
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Section 1.2 Synaptic plasticity in three terminal neural device

Section 1.2.1 Nonvolatile Memory: short-term potentiation and long term potentiation

STP and LTP are important mechanisms for information transfer between neurons. STP is a

transient signal enhancement that typically lasts for several hundred milliseconds to a few

seconds. STP can be achieved through rapid modulation of neurotransmitter release from

presynaptic neurons, changes in postsynaptic membrane potential, and synaptic plasticity.

STP is important for rapid information processing and short-term memory [6-9]. LTP is a

persistent signal enhancement that can last for several hours to several days. LTP is mainly

achieved through changes in postsynaptic membrane potential and synaptic plasticity. LTP is

important for learning and memory formation because it can strengthen connections between

neurons, thereby enhancing information transfer and storage. STP and LTP are important

regulatory mechanisms for information transfer between neurons [6]. They can be regulated

through various ways, such as neurotransmitter release, receptor density, presynaptic and

postsynaptic neuronal activity, and membrane potential of neurons. Understanding the

mechanisms and regulation of STP and LTP is crucial for understanding the fundamental

principles of information transfer between neurons.

Figure 1.2 EPSC triggered by three pulses with different amplitudes (4, 5, and 6 V) at VDS= 4

V.
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Figure 1.3 Biological synapse behavior similar to electrical synapses.

To simulate the synaptic memory-guided behavior inspired from short-term memory (STM)

and long-term memory (LTM) in the human brain, the EGTs are stimulated by the appropriate

and complex voltage pulses for STP and LTP [7]. The regular renewal of synaptic weight is

the foundation of procedures for learning and memory, and the weight change is correlated

with a presynaptic signal from the neurotransmitter. In a synaptic EGT, the channel

conductance (G) represents the synaptic weight (W), and the conductance is also directly

related to EPSC. To analyze the STP and LTP modes of the EGTs deeply, a series of voltage

pulses (4, 5, and 6 V) with a duration of 40ms are applied to the gate terminal (Figure 1.2).

Similar to biological synapses, electrical synapses are a mechanism for rapid signal

transmission between neurons. The conductance of electrical synapses can change the
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strength of connections between neurons by rapidly transmitting ion currents, thereby

regulating the efficiency of information transfer between neurons (Figure 1.3). Thus, the

conductance values of electrical synapses can represent the connection strength between

neurons, similar to the synaptic transmission efficiency between pre-synaptic and post-

synaptic neurons in biological synapses. In artificial neural networks, electrical synapse

models can be used to simulate the behavior of biological synapses [8]. Similar to biological

synapses, electrical synapse models can simulate the strength of connections between neurons

by adjusting the conductance, thereby achieving information transmission and processing. In

many applications, electrical synapse models can achieve efficient information processing and

learning because they can quickly adjust the connection strength between neurons by

regulating the conductance, thereby adapting to different tasks and environments [9].
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Section 1.2.2 Synaptic weight array with LTP/LTD

Figure 1.4 The weight update rule (a) The weight increase method based on the LTP/LTD

curve of synaptic transistor. (b) The weight decrease method based on the LTP/LTD curve of

synaptic EGT. (c) Two synaptic device represents a signle neural unit in neural network.

First, from the most basic ANN to briefly introduce the working principle. In short, the neural

network is mainly divided into training and testing. The training part trains the weight value

through the labeled data set. The most basic connection method is full connection. The

measured conductance states of the synaptic devices had only positive values; however, the

synaptic weight should have both positive and negative values for neuromorphic computing in

ANNs. Therefore, the synaptic weight (W = G+ - G-) could be represented by the difference

between the values of each conductance state (represented by G+ and G-) of two synaptic

devices (Figure 1.4). In the weight updating process, the output vector (foutput) obtained by a

sigmoid activation function was determined as mentioned above. Then, W was calculated

using the difference between the output values (foutput) of the output vector and the label value

(fexpect) of the input image [10]. To determine whether the synaptic weight was potentiated or
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depressed, the sign of ∆W (sgn(ΔW)) should be calculated.

When the synaptic weight is in the potentiation phase (sgn(ΔW) > 0), G+ should be increased

and G- should be simultaneously decreased (W ↑= G+ ↑-G- ↓). On the other hand, in the

depression phase (sgn(ΔW) < 0), G+ should be decreased and G- should be simultaneously

increased (W ↓= G+ ↓-G- ↑). The amount of conductance change (ΔG) of G+ and G- can be

determined according to the following equations.

Gn+1 = Gn + ΔG = Gn + αe−β
Gn−Gmin

Gmax−Gmin） (1.1)

Gn+1 = Gn + ΔG = Gn − αe−β
Gmax−Gn
Gmax−Gmin (1.2)

Gn and Gn+1 denote the value of the present conductance state and the value updated using the

equation, respectively. Further, parameters α and β denote the step size of the conductance

change and the NL value, respectively.

In conclusion, the synaptic weight matrix in the iterative process makes the actual mapping

relationship between output (foutput) and input consistent with the expected (fexpect) mapping

relationship. Actual changed value of weight updating depends on the difference between the

conductance state of two synaptic EGTs which extracted from the LTP/LTD curve [11].

In addition, the weight matrix that is iteratively updated in neural networks is simulated by an

array of synaptic devices (Figure 1.5). The updating effect can be verified by changes in the

values of each node on the array. Similar to biological synapses, the synaptic devices in the

array can adjust their conductance values to simulate the strength of connections between

neurons [12]. During training, the weight matrix is updated by adjusting the conductance

values of the synaptic devices according to the error between the predicted output and the

actual output. The updating effect can be monitored by observing the changes in conductance

values of the synaptic devices on the array, allowing for real-time feedback and optimization.

This approach has been shown to be effective in achieving high accuracy and efficiency in

various neural network applications.
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Figure 1.5 Neural network algorithm and weight updating process with synaptic weight array.
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Section 1.2.3 Temporal correlation analysis (PPF, STDP, LIF)

Figure 1.6 PPF index versus interval time Δt between two negative pulses (5 V). Inset:

definitions of A2 and A1with two successional 60 ms pulses.

PPF is a method used to study synaptic plasticity. It evaluates the short-term plasticity of

synapses by observing signal transmission between two stimuli sent in a short time period. In

PPF testing, the first stimulus (P1) causes a certain degree of neuron excitation, while the

second stimulus (P2) enhances the effect of the first stimulus, resulting in a stronger neuron

excitation response. If synaptic plasticity occurs, the effect of P2 will be more pronounced

[10-13]. The biological significance of PPF testing is to explore the physiological

mechanisms underlying short-term synaptic plasticity. PPF is usually caused by factors such

as an increase in the frequency of presynaptic neurons, changes in the membrane potential of

postsynaptic neurons, and calcium ion concentration. An increase in the frequency of

presynaptic neurons can promote the release of neurotransmitters, leading to an enhancement

of the P2 effect. Changes in the membrane potential of postsynaptic neurons and an increase

in calcium ion concentration can also enhance the P2 effect, thereby regulating the efficiency

of synaptic transmission. PPF testing that can further evaluate the short-term plasticity of

synapses [14-16]. In double-pulse testing, synapses receive two consecutive electrical stimuli,
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and the time interval between the two stimuli can be adjusted. By adjusting the time interval,

the response of synapses to stimulus frequency can be evaluated, thereby gaining a deeper

understanding of the biological significance of synaptic plasticity.

Two stationary amplitude and width pulses (5 V, 60 ms) are applied to the presynaptic

terminal with the interval of 2 s, and the postsynaptic current is evaluated with source-drain

voltage (VDS) of 1 V (Figure 1.6). EPSC will continue to decay after the end of the first pulse

(A1) stimulation before the arrival of the second stimulation until the Li+ ions in the electrolyte

return to the equilibrium position. If the second stimulus (A2) is triggered before the whole

remaining Li+ ions are recovered, the remaining Li+ ions will be superimposed by the second

stimulus, furthermore, increase the amplitude of EPSC. The following expression can be

described and evaluated as the PPF index.

PPF = A2
A1
∗ 100% (1.3)

Under the minimum time interval, the double-pulse facilitation coefficient((A2/A1) is the

maximum. The following function expresses the relation between PPF and Δt.

PPF = C0 + C1 e
−Δt
τ1 + C2 e

−Δt
τ2 (1.4)

Initial constants of rapid and slow phases C0, C1, and C2 are 1, 23%, and 45%. The relaxation

times are �1(20 ms) and �2(65 ms).

Figure 1.7 Multiple STDP curves (hebbian STDP, anti-hebbian STDP, and symmetrical

STDP).

STDP is a synaptic plasticity mechanism that can be used in neuromorphic chips to achieve

information transmission and synaptic connection regulation between neurons [1-15]. In
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neuromorphic chips, STDP can be implemented by changing the synaptic connection strength

to simulate information transmission between neurons. When repeated activation of

information transmission between neurons occurs, the STDP mechanism in neuromorphic

chips can enhance the synaptic connections between them, promoting the formation of

memory and learning. Additionally, STDP can also be used to regulate the plasticity of

information transmission and synaptic connections between neurons. The STDP mechanism

in neuromorphic chips can regulate the enhancement and weakening of synaptic connection

strength by simulating the time difference of action potentials between pre- and post-synaptic

neurons, thus achieving the regulation and coordination of information transmission between

neurons [16-18]. Therefore, STDP has significant implications in neuromorphic chips, as it

can help achieve information processing and learning capabilities similar to those of

biological neural networks, promoting the development of artificial intelligence and

neuroscience. Hebbian STDP, anti-Hebbian STDP, and symmetrical STDP are three different

synaptic plasticity mechanisms that differ in how the synchrony of pre- and post-synaptic

neuron activity affects synaptic connection strength (Figure 1.7).

Figure 1.8 Fluctuation area of membrane voltage in biological neurons.



14

The LIF neuron model is commonly used to simulate the behavior of neurons. The LIF model

can simulate how neurons receive and process signals from other neurons and fire a spike

when a certain threshold is reached (Figure 1.8). Additionally, the leaky integration

mechanism in the LIF model can mimic the gradual decrease of membrane potential in

biological neurons over time. Membrane potential: The potential difference between the two

sides of the cell membrane plays an important role in neuronal communication. When the

membrane potential exceeds a threshold, a pulse is fired.

Resting potential: Neurons are in a polarized state and have a constant membrane potential.

Action potential: When a cell receives external stimuli, ions on both sides of the cell

membrane move rapidly across the membrane, causing a change in membrane potential.

Leaky refers to the leakage of the membrane potential, meaning that if only one input is

received by a neuron, it is not enough to exceed the threshold and the membrane potential will

gradually fall back to the resting state due to the continuous exchange of ions inside and

outside the cell membrane. Integrate refers to integration, meaning that a neuron receives all

the pulses arriving at its axon terminal (from the previous neuron) that are connected to it.

Fire refers to the firing of a neuron, meaning that when the membrane potential exceeds the

threshold, the neuron will send out a pulse. After sending out the pulse, the neuron enters the

hyperpolarization state, followed by the refractory period, during which even if it is

stimulated, it will not respond, and the neuron no longer receives stimulation, maintaining the

resting potential.
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Section 1.3 Synaptic device based neural networks and overall architecture.

Section 1.3.1 Neural network for matching synaptic device.

ANN (Artificial Neural Networks), CNN (Convolutional Neural Networks), and SNN

(Spiking Neural Networks) are common neural network models, each with their own

characteristics (Figure 1.9). ANN is an artificial neural network model based on biological

neuron models, and is suitable for various machine learning and data processing tasks. Its

advantages include easy implementation and training, applicability to various problems, and

high accuracy [10-17]. Its disadvantages are that it usually requires more computing resources

and storage space, and has relatively weaker data processing capabilities. CNN is mainly used

in image processing and computer vision, and has the following characteristics: local

connection, weight sharing, and pooling. This enables CNN to effectively extract local

information in images, while reducing the number of network parameters and computational

complexity, resulting in fast processing speeds and good robustness. SNN is a neural network

model based on spiking neurons, which can be used to simulate behavior in biological neural

systems. SNN features include temporal properties, synaptic plasticity mechanisms, and

sparse coding [11-18]. These characteristics make SNN suitable for simulating complex

neural system behavior, such as vision, hearing, and motor control. In addition, SNN models

have low power consumption, high efficiency, and fault tolerance, making them widely

applicable in edge computing and biomedical applications. Therefore, these three neural

network models have different characteristics and application scenarios. ANN is suitable for

various machine learning and data processing tasks, CNN is suitable for image processing and

computer vision, while SNN is suitable for simulating behavior in biological neural systems

and edge computing applications.
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Figure 1.9 Three common neural network architectures. (a) ANN. (b) CNN. (c) SNN.
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Section 1.3.2 Integrated architecture for hardware implementation of neural networks.

A neuromorphic chip is an interdisciplinary research based on neuroscience and computer

engineering, which aims to simulate the computational principles and behavior of the human

brain(Figure 1.10). Its typical architecture includes the following parts:

Figure 1.10 Simplified diagram of brain like chip architecture.

Synaptic device array: Synaptic devices array in neuromorphic chips typically use adjustable

synaptic weight simulation devices, such as variable resistors and capacitors. These circuits

can simulate the synchronicity of pre- and postsynaptic neuron activity and synaptic plasticity

mechanisms [13-20].

Neuron circuits: Neuron circuits typically use pulse neuron circuits to simulate the behavior of

biological neurons. These circuits can simulate the membrane potential, spike generation, and

input and output of synapses.

Chip interconnection network: The chip interconnection network connects synaptic circuits

and neuron circuits, as well as different neuron circuits. These networks typically use layered,

hierarchical, and grouped structures to achieve efficient information transmission and

processing.

Processing units: Processing units are used to implement the computation and control

functions of neuromorphic chips. These units can use digital and analog hybrid methods to

achieve efficient computing and low-power operation.

In summary, the architecture of neuromorphic chips aims to simulate the computational

principles and behavior of the human brain and achieve efficient information processing and
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control functions through synaptic circuits, neuron circuits, chip interconnection networks,

and processing units.
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Section 1.4 Object of the Thesis

Figure 1.11 The overall article logic consists of three aspects: materials, synaptic functions,

and neuromorphic computing.

The article elaborates on brain-like computing and its related applications from three aspects

(material, synaptic function, and neuromorphic computing) through three chapters (chapter 2,

chapter 3, and chapter 4) (Figure 1.11). From the perspective of materials, the logical

relationship between metal oxides, 2D materials (Mxene), and MOFs as synaptic devices can

be described as follows. Complexity: Metal oxides represent relatively simple materials with

well-established properties, while 2D materials like Mxene introduce added complexity with

unique features arising from their two-dimensional structure. MOFs are the most complex

among these materials, offering highly customizable structures and functionalities. Evolution:

The development of synaptic devices can be seen as an evolution from metal oxides to more

advanced materials like Mxenes and MOFs. This progression demonstrates an increasing

demand for customizable, high-performance, and multifunctional materials in the field of

neuromorphic computing. Complementarity: While each material possesses its unique

advantages, they can also complement each other when combined or integrated. For example,

hybrid structures incorporating metal oxides, Mxenes, and MOFs can lead to novel devices

with enhanced properties or additional functionalities, thereby pushing the boundaries of what
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is possible with neuromorphic systems. Application-driven: The choice of material for a

synaptic device depends on the specific requirements and constraints of a given application.

Metal oxides, Mxenes, and MOFs each offer their unique advantages, and their use in

synaptic devices may be dictated by factors such as power consumption, scalability, flexibility,

or sensitivity [14-22].

For synaptic function, synaptic plasticity, the ability to adjust nonlinearity and symmetry, and

the implementation of STDP are all critical aspects of synaptic devices in neuromorphic

systems. The logical relationship between these three aspects can be described as follows.

Synaptic plasticity serves as the foundation for learning and adaptation in both biological and

artificial neural networks. It enables synaptic devices to change their strength and connectivity

in response to neural activity, facilitating learning, memory, and adaptability in neuromorphic

systems [21-24]. Adjusting nonlinearity and symmetry in synaptic devices is essential for

achieving biological fidelity and enhancing computational efficiency. Nonlinear and

asymmetric synaptic behavior can improve the implementation of learning algorithms,

including STDP, and allow neuromorphic systems to process information more effectively

and adapt to various tasks and inputs. STDP is a specific form of synaptic plasticity that is

biologically relevant and crucial for unsupervised learning and temporal information

processing in neuromorphic systems. The implementation of STDP relies on the interplay

between pre- and post-synaptic neural activity and can be affected by the nonlinearity and

symmetry of the synaptic devices.

For neuromorphic computing, artificial Neural Networks (ANNs), residual Networks

(ResNet), and Spiking Neural Networks (SNNs) each play a unique role in neural

computation. ANNs are computational models inspired by the structure and function of

biological neural networks. They consist of interconnected artificial neurons that process and

transmit information through weighted connections. ANNs have been widely used in a variety
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of applications, such as image recognition, natural language processing, and recommendation

systems. The primary role of ANNs in neural computation is to perform complex pattern

recognition and classification tasks through supervised or unsupervised learning. ResNet is a

specific type of ANN architecture designed to address the vanishing gradient problem that

occurs in deep neural networks. ResNet introduces shortcut connections, also known as skip

or residual connections, that allow the network to learn residual functions and improve the

flow of gradients during backpropagation. These connections help mitigate the degradation of

performance and accuracy in deep networks. ResNet has been particularly successful in

computer vision tasks, such as image classification and object detection. The main role of

ResNet in neural computation is to enable the efficient training of deep neural networks,

leading to improved performance and generalization. SNNs are a distinct class of neural

networks that more closely emulate the behavior of biological neurons. In SNNs, artificial

neurons communicate through discrete spikes or events, rather than continuous values as in

traditional ANNs. SNNs can process temporal information more effectively, making them

suitable for tasks involving time-varying data, such as speech recognition or sensory

processing. Additionally, SNNs can be more energy-efficient, as they only consume power

when spikes are generated. The primary role of SNNs in neural computation is to provide a

more biologically realistic and energy-effiANNs, ResNet, and SNNs each contribute

differently to neural computation. ANNs provide a general framework for pattern recognition

and classification, ResNet enhances the training of deep neural networks, and SNNs offer a

more biologically plausible and energy-efficient approach to neural processing. These distinct

roles enable the development of advanced and versatile neural computing solutions tailored to

various tasks and applications.cient alternative to traditional ANNs for various learning and

processing tasks.
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Section 1.4.1 Achieving basic synaptic plasticity and simple neural networks

The chapter 2 demonstrates the practicability of the solution-processed oxide synaptic thin-

film transistors. We have proposed an advanced weight update mechanism by voltage spike

stimulation that the Li+ ions accumulate and across between the AlOx-Li and InOx-Li layer.

EPSC, IPSC, and PPF are basic information flow and the typical manifestation of short-range

synaptic plasticity. In this work, we analyze the conductance and nonlinearity that

significantly impact the learning accuracy rate based on the LTP/LTD characteristic. Besides

simulating the matrix data recognition, the artificial neural network composed of crossbar

EGTs array and back-propagation is then developed. Integrated memory and computing

synaptic EGTs are utilized as the cardiovascular management system. The Li-doped solution-

processed EGTs enriched a variety of synaptic devices alternatives and further evolved in the

generation of neural morphological systems as a core component for an intelligent

computational machine.

Section 1.4.2 By combining pulses to regulate the plasticity of devices and designing

modern networks to match them.

The chapter 3 demonstrates the Al/InOx/MXenes/ZrOx-Li/Si/Al structure of synaptic

transistor as bionic retina and proposes dynamic neuromorphic deep residual learning strategy

for the recognition of ELISA_IgG in immunology. PPF, STP/LTP and EPSC are basic

information flow, also are the typical manifestation of synaptic plasticity. Here, we analyze

that the dynamic learning rate, update interval, and learning accuracy rate according to the

various LTP/LTD curves which regulated separately by three modulation modes (Type I, Type

II, and Type III). The synaptic devices stimulated by Type III have high linearity and

symmetry, which is necessary to reduce the number of training epochs in the neural network.

At the same time, the fast conductance recovery trend can reduce the interval of each

calculation. Moreover, recognizing the Rabbit IgG of ELISA to demonstrate the potential in
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immunology for immune protein detection and other neural networks (LSTM) composed of

the Cifar10 and Cifar100 database are then developed to verify the robustness and feasibility.

The synaptic transistor based on 2D materials and dynamic learning strategy enriches weight

update process of neural morphological systems and further developed as bionic retina to

successfully complete complex visual perception tasks.

Section 1.4.3 Develop multiple biological functions of devices and implement spiking

neural networks

The proposed concepts in chapter 4 open many new avenues for the syanptic devices

combined the neuron circuits as the core components of SNNs. From a deep learning

perspective, the improved SNN makes it possible to explore the capabilities of more advanced

biologically inspired neural models based on the LIF model and to benefit from its low

computational complexity as well as its simplicity. From a neuro-scientific perspective, ZIF-

67 SNNs system offers a new framework for modelling and understanding the neural

dynamics that could benefit from the memory, synaptic plasticity and membrane potential.

From a neuromorphic computing perspective, the design of in-memory accelerators combined

with SNN-based STDP weight update rule will increase the adoption of spiking neural

networks for SSVEP recognition applications (rate=95.1 %) and unlock the benefits of power-

efficient neuromorphic hardware implementations. Finally, multi-functional synaptic

transistor are integrated into the improved SNNs allows the use of existing or forthcoming

network accelerators to be expanded for the whole SNN implementation and deployment.
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Chapter 2 Basic synaptic plasticity and simple neural networks (Solid state

electrolyte gate transistor with ion doping for bio-signal classification of

neuromorphic computing)

Section 2.1 Experimental Section

Section 2.1.1 Synthesis and fabrication of synaptic EGTs

Synthesis of EGTs: The AlOx precursor solution was obtained by dissolving 2.5M aluminum

nitrate hydrate (Al(NO3)3·xH2O) in 5 ml 2-methoxyethanol (2-Me). AlOx-Li precursor

solution was obtained by mixing 2.5 M aluminum nitrate hydrate (Al(NO3)3·xH2O) and 0.25

M indium nitrate hydrate with 10 ml deionized water. The InOx precursor solution was

obtained by dissolving indium nitrate hydrate (In(NO3)3·xH2O) into 20 mL deionized water.

The InOx-Li precursor solution was obtained by mixing 0.15 M indium nitrate hydrate

(In(NO3)3·xH2O) and 0.015 M LiOH with 20 ml deionized water. All solutions were

vigorously stirred under atmospheric conditions for 5 hours and filtered before spin coating

using 0.25 μm polytetrafluoroethylene (PTFE) syringe filters, respectively.

Fabrication of Synaptic EGTs:

First, a heavily doped Si (n++) substrate was cleaned by deionized water and dried under N2

flow. Afterward, the processed substrate was further treated by Plasma for 15 minutes to allow

the film surface hydrophilic treatment. The AlOx and AlOx-Li films were spin-cast with

precursor solution at 3500 rpm for 20 s and then annealed for 30 mins at 200°C in the air

atmosphere. The InOx and InOx-Li films were spin-cast with precursor solution at 3500 rpm

for 30 s and then annealed for 1h at 200°C for the in the air atmosphere. The 30 nm thick Al

source/drain(S/D) electrodes were fabricated by thermal evaporation through the shadow

mask.
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Section 2.1.2 Characterization and ANN simulation

Characterization:

A semiconductor parameter analyzer (Agilent B1500) with transistor characterization

software under atmospheric conditions was operated to test the electrical properties of the Li

doing InOx/AlOx synaptic EGTs. In order to measure the EPSC/ IPSC current flowing

between the S/D electrodes, the 0.1 V steady voltage bias was applied to the postsynaptic

terminal (Vpost). Two sets of continuous weight control pulses (Voltage = ±4 V, width = 40ms

∆t = 150ms) were added to the weight control terminal to describe each weight state. The

surface roughness of the AlOx, InOx, AlOx-Li, and InOx-Li thin-films were analyzed by atomic

force microscopy (AFM). The chemical compositions of dielectric and semiconductor layers

were measured by X-ray photoelectric spectroscopy (XPS).

ANNs Simulation:

Figure 2.1 The effect the range of learning step on recognition rate.

The calculated conductance of synaptic EGTs in the crossbar array was applied with the

positive synaptic weight value. The measurement of the neurocomputing in ANNs includes

negative values. Subsequently, the synaptic weight (W = G+ – G-) was expressed as the
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difference between the state of two synaptic devices (expressed as G+ and G-) between each

conductance value. The 2001 input neurons corresponded to the 2000 sampling points of ECG

and 1 bias input, and the 10 output neurons referred to 10 classes of timing signal. The initial

weights were set up random fluctuation near 0 and the value between Gmin and Gmax

normalized to (-1,1). When the random floating value is less than one learning step in random

process, the initial weight will not affect the recognition rate (Figure 2.1).The synaptic weight

matrix in the iterative process makes the actual mapping relationship between output (foutput-

activation function) and input consistent with the expected (fexpect) mapping relationship.

Actual changed value of weight updating depends on the difference between the conductance

state of two synaptic EGTs (G+ and G-) which extracted from the LTP/LTD curve. The

synaptic weight defined as the difference of conductance in two synaptic EGT which

represent single neuron. When sgn(ΔW) > 0, the formula W ↑= G+ ↑-G- ↓ will be used. And

when sgn(ΔW) < 0, the W ↓= G+ ↓-G- ↑ will be used.
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Section 2.2 Results and discussion

Section 2.2.1 The mechanism and phenomenon of formation of electrical synapses

Figure 2.2 Schematics illustration of the biological synapse and the solution-processed

synaptic EGTs.

Synapse is a juncture that conveys biological impulses between the presynaptic and

postsynaptic terminals (Figure 2.2, left). Typically, neurotransmitters in the synaptic vesicle,

which carry the biological and chemical information, travel through the synapse to enter the

dendritic receptor. This mechanism transforms the chemical signal into an electrical pulse,

eventually producing an EPSC [1-7]. Structural and functional resemblances between a

biological synapse and a solution-processed artificial synapse are reflected about the gate

electrode can be regarded as a presynaptic terminal and the drain electrode as a postsynaptic

terminal (Figure 2.2, right). In addition to the mechanism of ion migration, the formation of

synaptic thin film transistors can also be attributed to band barrier and quantum tunneling

(floating gate transistor), polarization effect (ferroelectric transistor), and photogenerated

carrier (optical transistor) [1-15].
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Figure 2.3 Schematic illustration of signal transmission in biological synapse and electrical

evaluation for artificial synaptic plasticity.

The information transmission between presynaptic and postsynaptic terminals can be

simulated by applying an electrical pulse to the gate and a monitoring voltage to the drain

(Figure 2.3).

Figure 2.4 Li+ ion migration in the dielectric layer under weak gate bias stimuli for short-term

potentiation and Li+ ion migration in the dielectric layer under strong gate bias stimuli for

long-term potentiation.

In order to explain the phenomenon of conductance change in the dielectric layer due to Li+

migration in detail, the schematic diagram of the movement of ions by voltage stimulation is

proposed (Figure 2.4). Via two modules of ion electronic modulation processes, these Li+

ions accumulate, and electrons are attracted near the dielectric layer/channel interface:

electronic double layer modulation (under weak electric field in Figure 2.4 left side) and

electrochemical doping (under enhanced electric field in Figure 2.4 right side). When the

programmed V-pre is added to the EGTs presynaptic terminal, the limited radius and larger

diffusion coefficient Li+ ions effortlessly drift towards and cross the dielectric layer/channel

interface due to the field accelerated ion migration [10-18]. With the weak spike stimulation

(0-3 V), Li+ ions shift under the electric field and accumulate at the interface and attract
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electrons, resulting in short-term potential. With the enhanced spike stimulation (4-6 V), Li+

ions across the AlOx-Li/InOx-Li interface, subsequently led to the formation of

electrochemical doping. Li+ ions and electronics gradually diffuse back to the original state of

equilibrium with uniform composition when Vpre = 0 in both situations (weak and robust

stimulation). According to the above mechanism, the hysteresis phenomenon in the transfer

characteristic curve of EGT can be explained clearly. When a positive voltage applied to the

gate from -2 to 4 V, the Li ions in the electrode migrate to the interface (form the EDL) and

then intercalated into the channel with increasing the voltage amplitude (electrochemical

doping) [19-21]. Then the positive reduced from the 4 V, the Li+ ions accumulated in the

interface recover into the dielectric layer (electrolyte) due to the concentration gradient of ions

(internal field). With the negative voltage decrease to the -2 V, the ions migrate back to the

electrode and the conductance restore the initial state.

Figure 2.5 Characteristic parameters of synaptic EGTs (a) Transfer characteristics of four

different doping EGTs (AlOx/InOx AlOx-Li/InOx, AlOx/InOx-Li, and AlOx-Li/InOx-Li). (b)
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Output characteristic curves of the four different types EGTs. (c) Parameters (on/off current

ratio, mobility, and hysteresis) of EGTs extracted from the transfer characteristics curves.

In order to compare the n-type transistor characteristic parameters of the synaptic EGTs with

four doping types, the transfer curves of the system with VGS (gate voltage) sweeping at a rate

of 20 mV s-1 were evaluated and plotted (Figure 2.5a). The AlOx-Li/InOx-Li EGT

demonstrate a clear counterclockwise hysteresis and a large change ratio of 2630 at Vg=0 due

to the Li+ ions migration. Different Li+ ions doping concentration in AlOx thin film would

determine the formation strengths of electrostatic and electrochemical modulations. The

synaptic plasticity of STP/LTP at different doping concentrations is analyzed and compared

by applying incremental electric pulse to the gate [20-24].The electronic solution-processed

synaptic transistors generate artificial EPSC and realize diverse synaptic plasticity based on

the gate voltage applied to the n+ Si bottom electrode activates a similar presynaptic pulse

signal. The spin coated AlOx and InOx layers have the advantage of high k material, stability in

the air and less defect states. The thin films were fabricated on heavily doped n+ -Si substrates

by alumina (AlOx), Li+ ion-doped doped alumina (AlOx-Li), indium oxide (InOx), and Li+ ion-

doped doped indium oxide (InOx-Li) precursor solutions. The AlOx and AlOx-Li layers

(dielectric) were both annealed at 200°C, the InOx and InOx-Li layers (semiconductor) were

both annealed at 300°C. The doping concentration in the InOx layer is based on the stability of

the cyclic test. The on/off current ratios are 100, 8000, 10000, and 6000, respectively

belonging to AlOx/InOx, AlOx/InOx-Li, AlOx/InOx-Li, and AlOx-Li/InOx-Li EGTs. The

migration of Li+ within the AlOx and InOx layers contributes to the hysteresis behavior, which

can be observed through the transfer characteristic curves of four synaptic EGTs. The large

hysteresis indicates channel conductance changes, which is a significant synaptic

characteristic in the EGTs for neural network simulation [13-27]. Hysteresis phenomenon is

not only because of ion migration and ion pass through the interface between dielectric and
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channel but also due to oxygen vacancy from the low-temperature technology. The output

curves indicate the apparent pinch-off voltage and saturation current indicating good ohmic

contact between Al electrodes and the InOx or InOx-Li channel layer (Figure 2.5b). Three-

dimensional graphic displays the comparison of three parameters (on/off current ratio,

mobility, and hysteresis) between four types of synaptic EGTs (Figure 2.5c). It could be

clearly observed that all the Li+ doped EGTs, including AlOx-Li/InOx, AlOx/InOx-Li, and

AlOx-Li/InOx-Li, exhibit more symmetrical hysteresis window than the AlOx/InOx device,

which complies with the principle of ion migration.
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Section 2.2.2 Physical characterization and effect of ion doping

Figure 2.6. Analyze the chemical environment on the surface of the layer (a) XPS Al 2p

spectra for dielectric thin-films. (b) XPS Al In 3d spectra for semiconductor thin-films. (c)

XPS Li 1s spectra for dielectric thin-films. (d) XPS Li 1s spectra for semiconductor thin-films.

The chemical compositions of Li-ion doping synaptic EGTs are verified by X-ray

photoelectron spectroscopy (Figure 2.6). The normalized Li 1s spectra of four type EGTs are

obtained by standard the C 1s peak. In addition, the relatively smooth film surface can

improve the yield and synaptic plasticity of the EGTs. Significantly, the smooth and uniform

dielectric (AlOx and AlOx-Li) and semiconductor (InOx and InOx-Li) thin films are obtained

by AFM deflection images (Figure 2.7). The root mean square (RMS) roughness of AlOx,

AlOx-Li, InOx, and InOx-Li thin films are 1.552, 2.084, 0.380 and 0.306 nm, respectively. A

simulated parallel neural computing system requires high plasticity and stability of the synapt-

(a) (b)

(c) (d)
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Figure 2.7 AFM images of (a) AlOx thin-films, (b) AlLiO thin-films, (c) InOx thin-films and

(d) InLiO thin-films.

-ic EGTs to update synaptic weights accordingly. Similarly, the SEM image clearly

demonstrates the synaptic device structure for the AlOx (30 nm)/InOx (15 nm) and the

parameters about the channel are W=150 μm and L=10 μm (Figure 2.8).

Figure 2.8 Cross sections and top view of synaptic EGTs (a) Scanning electron microscope

image for the synaptic electrolyte gate transistor. (b) The actual example of the synaptic

device (show the drain and source electrodes).

The determination of the doping concentrations in the dielectric and semiconductor layers is
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based on synaptic plasticity and the stability of the cyclic tests (Figure 2.9). As can be seen

from the figure, when 5% lithium ions are doped in the dielectric layer, the exhibited synaptic

plasticity is the best. The value of the stabilized conductivity is the highest. When 5% lithium

ions are doped in the semiconductor layer, the conductivity difference in the cyclic tests is the

smallest, which is more conducive to large-scale preparation.

Figure 2.9 Synaptic plasticity and stability of transistor without Li doping (a) EPSC triggered

by spike (6 V width = 50ms) for different Li doping concentration (0%, 3%, 5%, and 10%) in

AlOx thin-films. (b) The cycle-to-cycle difference for different Li doping concentration (0%,

3%, 5%, and 10%) in InOx thin-films.
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Section 2.2.3 Synaptic plasticity for solid state electrolyte gate transistor

Figure 2.10 Typical EPSC and IPSC (a) EPSC property triggered by pre-synaptic spikes (6 V

50 ms) in 1 s. (b) IPSC property triggered by pre-synaptic pulses (-6 V 50 ms) in 4s.

EPSC and IPSC are the elemental information flow, processing processes, and synaptic

plasticity for a neuron to carry out intricate computing and retain synaptic weight. In order to

indicate the synaptic behaviors acquired from the typical EPSC and IPSC curves, the two

numerical equivalent positive (6 V, 50 ms) and negative (-6 V, 50 ms) voltage spikes were

applied to the gate terminal (Figure 2.10). The insert figures of EPSC/IPSC show long-term

potentiation for the longer period [26-30]. The EPSC increased rapidly from the initial value

to 2.4 mA after electrical stimulation, which is shown in the active region, and then decreased

slowly from peak value to 310 μA in 1 s (Figure 2.10a). The postsynaptic current (PSC) stays

steady as a result of no change in conductance prior to the operation of the pre-terminal

voltage pulse. When a voltage pulse is applied to the gate of a synaptic transistor, lithium ions

will migrate from AlOx to the channel, resulting in an improvement in channel current and the

formation of EPSC. When the pulse stimulation ends, the ions near the channel electrolyte

interface will diffuse away from the interface due to the Li+ concentration gradient [22-32].

Thereafter, the downward trend in the channel contributes to the inhibition of PSC when the

presynaptic impulses are negative, thus generating an IPSC (Figure 2.10b). The IPSC

includes the rapid decline region, recovery area, and conductance stability section. The
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current after negative voltage stimulation changes from initial value 230 μA to steady 118 uA

since Li+ ions are considered to cross from the InOx layer to the AlOx layer.

Change of the conductance illustrates that the accelerated concentration of electrons/holes

enhancement or suppression in the channel results from broad positive or negative voltage,

resulting in a comparatively large (EPSC) and low (IPSC) conductivity than the original ones

until the pulse is withdrawn [31-33]. The change of channel conductance is simultaneously

triggered by the pulse voltage modulation of the gate. This partly originated by the oxygen

vacancy in the dielectric layer. Under the action of the electric field, oxygen vacancies act as

traps to attract electrons or holes into the AlOx or AlOx-Li layer. Interestingly, presynaptic

neurons regulate EPSC/IPSC through neurotransmitter transduction, while gate electrodes

control channel conductance through the transfer of the charge carrier.

Figure 2.11 The energy consumption per spike of EGT extracted from the EPSC curve which

is triggered by presynaptic spike (Vgs=3V, Vds=0.1V, Pulse Width=500ms) in 20 s.

Further, to verify the low energy consumption of synaptic EGT, the energy consumption per

spike of EGT is calculated by the Equation E= Ipeak × t × V =22.79 nJ (Figure 2.11). Ipeak is

the maximum value (455.8 nA) of generated EPSC, t is the spike duration (500 ms), and V is

the voltage applied to the drain electrode (0.1 V).
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Figure 2.12 Synaptic plasticity under multiple conditional stimuli (a) EPSC triggered by three

pulses with different amplitudes (4, 5, and 6 V) at VDS = 4 V. (b) EPSC triggered by five

pulses with different durations (50, 100, 200, 300, and 400 ms) at VDS=4 V. (c) Stable

conductance multi-level from STP to LTP for different voltages and widths. (d) EPSC

stimulated by a sequence of 15 voltage pulses (5, 10, and 15 pulses) with the 50 ms period

and 4 V amplitude. (e) STP to LTP conversion process in 0.8 s under 5, 10, and 15 presynaptic

pulses. (f) EPSC stimulated by five continuous pulses (4 V, 40 ms) with different frequencies

(1, 2, and 5 Hz). (g) Process of STP to LTP conversion in 2 s with different frequencies. (h)

Fitting of the attenuation process to the curve of Farazdaghi-Harris function showing a trend

of the three parameters (a, b, c).
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To simulate the synaptic memory-guided behavior inspired from STM and long-term memory

LTM in the human brain, the EGTs are stimulated by the appropriate and complex voltage

pulses for STP and LTP [28-32]. The regular renewal of synaptic weight is the foundation of

procedures for learning and memory, and the weight change is correlated with a presynaptic

signal from the neurotransmitter [30-34]. In a synaptic EGT, the channel conductance (G)

represents the synaptic weight (W), and the conductance is also directly related to EPSC. To

analyze the STP and LTP modes of the EGTs deeply, a series of voltage pulses (4, 5, and 6 V)

with a duration of 40ms are applied to the gate terminal (Figure 2.12a). The peaks of EPSCs

are observed to escalate maximums (2.3 mA, 2.2 mA, and 1.1 mA), subsequently slowly

decay to the stable value (380, 350, and 65 µA), respectively. Large values of EPSC indicate

that ion migration has a significant effect on conductance. Considering that continuous spike

input deepens synapse plasticity to be facilitated, a standard principle is proposed that

maintains a 3-minute interval between every two tests to ensure the accuracy.

Figure 2.13 Synaptic plasticity of without Li ion doped (a) The EPSC triggered by the same

width time (40 ms) pulses with three pulse amplitudes (4, 5, and 6 V) at VDS = 4 V without Li

ion doped. (b) The EPSC triggered by positive pulses (4 V) with five pulse durations (50, 100,

200, 300, and 400 ms) at VDS=4 V without Li ion doped.

Meanwhile, the solution EGTs (AlOx/InOx) without Li doping has no STP-LTP response

(Figure 2.13). This phenomenon further proves that Li+ ion plays an irreplaceable role in

(a) (b)
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channel conductance update for neuromorphic computing. Therefore, the conversion from

STP to LTP is similarly realized by increasing the presynaptic pulse width (Figure 2.12b).

This figure indicates that the intensity of EPSCs rise linearly from 50 ms to 400 ms. These

peak values (2.5, 2.4, 2.05, 1.7, and 1.1 mA) descend gradually to the stable value (481, 475,

302, 254, and 52 µA), which is also attributed to Li ions accumulate at the AlOx/InOx

interface. Stimulated by different presynaptic pulse amplitudes and pulse widths, EGTs can

realize multi-level storage for neural networks (Figure 2.12c). The figure also demonstrates

the stability of long-term potentiation after 10 minutes and 30 minutes. The characteristic of

maintain conductance for a long time further illustrates the excellent synaptic plasticity of

EGT [31-36].

Figure 2.14 The 30 minutes and 300 minutes error after the presynaptic electric pulse

stimulation.

Further, the differences between the initial conductance and the maintained conductance

(refers to error) after 300 minutes are summarized to show the excellent level of stability due

to the substantial part of errors below the 0.5% (Figure 2.14).
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Conductance is positively correlated with the EPSC curve that has the potential for process

controlling and parallel computing. Meanwhile, enough large difference between the

maximum and minimum conductance (Gmax, Gmin) satisfies the neural calculation

requirements. Moreover, the gate terminal is then stimulated by a variety of continuous spikes

to achieve complex synaptic plasticity. The nonvolatile portion of conductance gradually

increased to the saturation state with increasing the pulse number (5, 10, and 15) to

demonstrate the effect of continuous multi-pulse on synaptic weight (Figure 2.12d, e). The

transition from STP to LTP occurs as pre-terminal pulses increase from 5 to 15 mainly due to

electrochemical doping effects. The initial conductance values increased from the 118µA and

finally stabilize at 120 µA (5 pulses), 370 µA (10 pulses), and 490 µA (15 pulses) in 0.8 s,

respectively. The three parameters of the Farazdaghi Harris function vary with the frequency

and number of pulses (Figure 2.12h). All fast natural forgetting processes from STP to LTP

are accurately fitted by the above function. Moreover, synaptic EGTs exhibit filter

characteristics under different series frequencies (1, 2, 5 Hz) of presynaptic pulse signals

(Figure 2.12f, g). With the series of pulses increases to 5 Hz, the solution-processed synaptic

EGTs are applied to verify high-pass filtering characteristics. The potentiation of channel

conductance from 180 µA to 620 µA with the frequency increasing from 1 to 5 Hz which can

be observed in the case of the initial state value is 100 µA before stimulation. The EGTs with

STP/LTP characteristic have limited transmitter release probability which are similar to the

biological synapse, and the signal transduction process in neurons is effectively regulated.

Consequently, these results can be confirmed that the signal transduction process in EGTs is

effectively controlled and the EGTs acquired various electrical stimulation methods to further

modify neural communication.
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Section 2.2.4 Synaptic weight update process for neural network

Figure 2.15 Stability testing of LTP/LTD (a) Increasing and decreasing of channel

conductance illustrating the long-term potentiation and long-term depression (LTP/LTD)

characteristics triggered by 100 positive (5V, 50 ms) and 100 negatives (-4 V, 50 ms)

continuous spike signals. (b) Channel conductance modulation of weight update for 10

repeated 100 positive pulses (4 VΔt = 50 ms) and 100 negative pulses (-4 VΔt = 50 ms).

Through the analysis of several cycle-to-cycle curves of LTP/LTD, a cycle-to-cycle error was

negligible after 10 cycles, showing the excellent robustness of the proposed EGTs device

(Figure 2.15a). For weight updating process in neuromorphic computing, the parameters for

emulating the learning process in ANN are extracted from long-term potentiation and long-

term depression curves under the 100 positive pulses (5 V, width= 50 ms and Δt = 30 ms) and

100 negative pulses (-4 V, width = 50 ms and Δt = 30 ms). With alternate positive and

negative voltage pulses, the synaptic EGTs have excellent LTP/LTD properties to contribute

weights update in ANN, such as 100 level conductance states, Gmax/Gmin = 67, appropriate Ap

(3.1), Ad (-2.7) (Figure 2.15b). The continuous combination under different conductance

states (G) is defined as assessing the nonlinearity of potentiation and depression.

Gp = � 1 − e
− p
Ap + Gmin (2.1)

Gd =− � 1 − e
p− Pmax

Ap + Gmin (2.2)

B = (Gmax − Gmin)/ 1 − e
-Pmax
Ap,d (2.3)
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Gp is the potentiation conductance, Gd is the depression conductance, Pmax is the maximum

number of pulses, and A is the parameter describing the potential and depression nonlinearity

[35-39].

Figure 2.16 ΔG in the potentiation and depression process.

Figure 2.17 Update parameters under different LTP/LTD curves (a) The nonlinearity (NL)

change characterized by the LTP/LTD curves with different voltage stimulation (4, 5, and 6 V).

(b) Gmax/Gmin as functions of (15, 40, and 65) pulses at different pulse heights (4, 5, and 6 V).

Besides, two curves about ΔG in the potentiation and depression process, which relate to the

number of pulses, are plotted (Figure 2.16). The difference between every two neighboring

(a) (b)
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average conductance values is ΔG. The conductance (G) analysis aims to measure the Signal

Noise Ratio (SNR) for synaptic transistors.

To match higher learning efficiency in the ANN algorithm, the changing trend of Gmax/Gmin

and nonlinearity with the increase of pulse number under incremental voltage stimulations (4-

6 V) are researched (Figure 2.17). The larger Gmax/Gmin creates the larger storage range for

weight update (under 4 V spike stimulation).
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Section 2.2.5 The bio-signal classification based on the synaptic transistor and ANN.

Figure 2.18 Recognition application of synaptic EGTs (a) Schematic diagram of

cardiovascular abnormality monitoring and timely intervention system. (b) 10 ECG signals

from the MIT-BIH database include one normal beat and 9 arrhythmia beats. (c) Confusion

map of 10 heartbeat types labeled as N, L, R, V, F, J, A, S, E, Q. (d) Trend of the number of

synaptic weight extreme regions in the three states (safe, warning, and serious) with the
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stimulation time. (e) Synaptic weight map in three monitoring statues with the increase of

training epochs.

To further investigate the efficiency and application of the ANN in the field of cardiovascular

recognition, we utilized the simulator for training and recognizing ECG signals from the

Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) database and extracted

the synaptic weight with multi-level memory for the timely intervention of abnormal

heartbeat (Figure 2.18a). One significance of ECG recognition is related to health care since

the abnormal beating of the cardiovascular system cannot be consciously sensed by the brain

nerve in time. Recent researches have proven that the specific parts of the brain (Lateral

Habenula, LHb) could regulate the cardiovascular system [27-29]. Therefore, it is possible to

intervene and stimulate the LHb to adjust the abnormal heartbeat when a serious heartbeat is

recognized. This intervening also due to the number of extreme weight regions exceed a safe

and warning threshold. Further, we simulate a single-layer-perception (SLP)-based ANN with

the back-propagation algorithm and Manhattan update rules in MATLAB. The training

datasets are collected from the MIT-BIH. The inputs of SLP-based ANN consist of 2001

presynaptic electrical signals, which include 1 bias signal and 2000 input signals. The 2000

input neurons based on time-domain signals of ECG, and 10 output neurons recognize 10

kinds of ECG. In the ANN simulator, the EGTs array is served as a weight unit of iterative

operation and is updated due to the error gradient between the weighted sum and expected

output. The 10 kinds of ECG signals from the MIT-BIH database include one normal beat and

9 arrhythmia beats, which could be labeled as N, L, R, V, F, J, A, S, E, Q (Figure 2.18b).

According to the extent of the irregularity, these time-domain signals could be divided into

three types (safe, warning, and serious) and converted to the input (within 2000 points) of the

neural network. The confusion map shows that the 500 ECG matrixes are utilized for the

testing section, and the recognition rate achieved 94.8% after 350 epochs (Figure 2.18c). The



49

more stable and equilibrium recognition rate illustrates that the ECG signal is more suitable

for neural networks than MNIST. When the data cannot pass through the neural network at

one time, it is necessary to divide the data set into several batches.

Figure 2.19. The recognition rate with different batch (500, 200 and 50 batch) for quick speed.

Figure 2.20. Accuracy of electrical signal (a) The recognition rate for different weightd

updates time. (b) The comparison between the different situations (test, train and test after

compensate) for recognition rates.

The Figure 2.19 demonstrate the fast operation speed when the more batches (50, 200, 500)

added in to the train process of ANN. Besides neural computing, the synaptic weight matrixes

based on EGTs as a full connection for error back-propagation also have memory capacity.

Moreover, The algorithm in ANN need a tradeoff between computing speed and accuracy
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because One of the drawbacks of electrolyte gate transistor (memory) is conductance decay.

To decrease the error caused by the large decay, we adjust update method in algorithm to

compensate for the decay during the computing. We reconstruct a weight update rule with

compensation measures in algorithm according to the recognition rate for different weigh

updates frequency (0.1 s, 0.3 s, 0.5 s and 1.0 s) (Figure 2.20). When the computing speed is

0.1 s, the accuracy difference between the test and train process is the 9.5%.

The stored weight values of the matrix were extracted from the training process, showing that

the more abnormal beats, the more extreme weight regions (Figure 2.18d, e). As the number

of training epochs is increased to 350, the three areas of safe, warning, and serious were

clearly separated. This clearly distinguished result indicates that the network can be designed

for Computer-aided Diagnosis and timely intervention systems. This can be expected that in

special risk situations without first aid measures, the health management system based on

synaptic EGTs can stimulate LHb to enhance heart function when the extreme weight regions

beyond the safe threshold.
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Section 2.3 Conclusion

In the chapter 2, solid state electrolyte gate transistor with Li+ ions doping has been proposed

for neuromorphic computing. The Li+ ions doping into AlOx (dielectric layer) to enhance the

synaptic long-term plasticity and charge storage ability. Purpose of Li+ doping into the InOx

(semiconductor) layer for improving the stability apparently due to the cyclic update (cycle-

to-cycle error). The doping concentration in the AlOx and InOx layers have been well

discussed systematically. The typical synaptic behaviors, including IPSC/EPSC, LTP/LTD,

STP, and PPF, have been successfully illuminated through the voltage spikes applied to the

presynaptic terminal. It is worth noting that both the EPSC and IPSC are induced by the

increase and decrease of channel conductance, respectively, which could be regarded as the

change of synaptic weight. According to the Gmax/Gmin ratio and nonlinearity trend curves of

LTP/LTD curve, the iterative update of synaptic weight matrix is demonstrated with the

increase of epoch and the recognition accuracy of the bio-signal (ECG) can reach over the

94.8%. Moreover, the neural network can predict the abnormal beats of the cardiovascular

due to extreme weight regions. We believe that this systematic research of Li+ ion-doped solid

state EGTs would pave the way for future neuromorphic computing networks.
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Chapter 3 Adjust the non-linearity and symmetry for matching

improved neural network (Dynamic Residual Deep Learning with

Photoelectrically Regulated Neurons for Immunological

Classification)

Section 3.1 Experimental Section

Section 3.1.1 Synthesis and fabrication of 2D synaptic transistor

The ZrOx precursor solution was obtained by dissolving 1.5M aluminum nitrate hydrate

(Zr(NO3)2·xH2O) in 20 mL 2-methoxy ethanol (2-Me). ZrOx-Li precursor solution was

obtained by mixing 1.5 M aluminum nitrate hydrate (Zr(NO3)2·xH2O) and 0.15 M indium

nitrate hydrate with 20 mL deionized water. The InOx precursor solution was obtained by

dissolving In(NO3)3·xH2O into 20 mL deionized water. All solutions were vigorously stirred

under atmospheric conditions for 5 hours and filtered before spin coating using 0.25 μm

polytetrafluoroethylene (PTFE) syringe filters, respectively.To prepare MXenes, first, 2 grams

of lithium fluoride (LiF) with 99.99% metals basis from Aladdin and 40 mL of hydrochloric

acid (HCl) with a concentration of 36.0-38.0% from Sinopharm Chemical Reagent Co., Ltd.

were mixed and stirred in a polytetrafluoroethylene (PTFE) beaker for 30 minutes. Next, 2

grams of titanium aluminium carbide MAX (MAX-Ti3AlC2) with a purity of 98% from 11

technology Co., Ltd. was gradually added to the beaker under continuous stirring, and the

reaction temperature was maintained at 35°C for 24 hours in a fume hood. After the reaction

was completed, the resulting solution was centrifuged for 10 minutes at 3500 rpm, and the

supernatant was discarded. Then, 40 mL of deionized water (DI) was added to the sediment in

the centrifuge tubes, and the tubes were manually shaken to mix the sediment with DI water.

The mixture was further ultrasonicated for 15 minutes using a high-power ultrasonic machine

with 750 W output. These centrifugation and ultrasonication steps were repeated until the pH
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of the supernatant reached 5. Subsequently, 40 mL of ethanol (CH3CH2OH) with a purity of

99.7% from Sinopharm Chemical Reagent Co., Ltd. was added to the centrifuge tubes, and

the mixture was ultrasonicated for 1.5 hours using an intercalator function. Then, the mixture

was centrifuged at 10,000 rpm for 10 minutes, and 20 mL of DI water was added to the

sediment. The mixture was further ultrasonicated for 20 minutes and then centrifuged again at

3500 rpm for 3 minutes to obtain a black-brown few-layer dispersion with a concentration of

approximately 5 mg mL-1. Finally, the MXenes dispersion was stored in an argon atmosphere

and the storage time was limited to 14 days.

First, a heavily doped Si (n++) substrate was cleaned by deionized water and dried under N2

flow. Afterward, the processed substrate was further treated by Plasma for 15 minutes to

allow the film surface hydrophilic treatment. The ZrOx and ZrOx-Li films were spin-cast with

precursor solution at 4500 rpm for 30 s and then annealed for 80 mins at 250°C in the air

atmosphere.Then, the MXenes solution was then diluted to 1 mg/mL and spin-coated at 3000

rpm for 20 s on the surfaces of ZrOx and ZrOx-Li films. Substrates with solution film were

then oxidized at 80°C for 1 min on a hotplate in air condition. The InOx film was spin-cast

with precursor solution at 3500 rpm for 30 s and then annealed for 1h at 200°C for the in the

air atmosphere. The 30 nm thick Al S/D electrodes were fabricated by thermal evaporation

through the shadow mask.

Section 3.1.2 ELISA Detection

Rabbit IgG is the most common model sensing target in c-ELISA assays, and a schematic of

the direct c-ELISA protocol for Rabbit IgG on our multi-well uPAD is shown in Figure 1b.

Typically, direct c-ELISA is carried out in six steps: (1) biofunctionalization of the test zone

using periodate potassium, (2) immobilization of the rabbit IgG antigen on test zone, (3)

blocking the test zone to prevent non-specific adsorption of rabbit IgG proteins, (4) labeling

the immobilized rabbit IgG antigen with ALP-conjugated anti-rabbit IgG antibody, (5)
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washing away the unbound antibody using PBS buffer, (6) adding the BCIP/NBT substrate

[1-8].

Section 3.1.3 Characterization

A semiconductor parameter analyzer (Agilent B1500) with transistor characterization

software under atmospheric conditions was operated to test the electrical properties of the

Al/InOx/MXenes/ZrOx-Li/Si/Al synaptic transistor. In order to measure the EPSC and

LTD/LTP current flowing between the S/D electrodes, the 0.1 V steady voltage bias was

applied to the postsynaptic terminal (Vpost) [9-13]. The chemical compositions of dielectric

and semiconductor layers were measured by XPS. The crystallization and structural

information of the thin films were displayed using XRD- BRUKER D8 ADVANCE with Cu

Kα radiation (λ = 1.542 Å).

Section 3.1.4 ResNet simulation

We use a Resnet as the base model, which is a compact and efficient neural network. After we

convert the image data into RGB three-channel matrix data, we could directly pass it into the

residual block. The residual block is the main component of Resnet. Compared with the

ordinary neural network structure, the residual block could not only perform weighted

operations through the convolution layer and activation function mechanism to extract

features, and also retain the initial information of the input data and fuse it with the obtained

feature information. Two residual blocks and one linear layer are used in our model. The input

image data is passed through two residual blocks to complete the feature extraction, and then

passed to the linear layer to complete the final classification task [10-15]. Usually, this is a

complete ResNet workflow, and we use a dynamic learning rate in the training step. After

each training of the network, different learning steps are used to update the network

parameters according to the change direction of the loss.
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The calculated conductance of synaptic transistors in the crossbar array was applied with the

positive synaptic weight value. The measurement of the neurocomputing in ResNet includes

negative values. Subsequently, the synaptic weight (W = G+ – G-) was expressed as the

difference between the state of two synaptic devices (expressed as G+ and G-) between each

conductance value. The initial weights were set up random fluctuation near 0 and the value

between Gmin and Gmax normalized to (-1,1). Actual changed value of weight updating

depends on the difference between the conductance state of two synaptic devices (G+ and G-)

which extracted from the LTP/LTD curve [13-18]. The synaptic weight defined as the

difference of conductance in two synaptic transistors which represent single neuron. When

sgn(ΔW) > 0, the formula W ↑= G+ ↑-G- ↓ will be used. And when sgn(ΔW) < 0, the W ↓= G+

↓-G- ↑ will be used.

In order to make the model converge earlier, we use two functions to adjust the learning rate

dynamically. After each round of training, we conducted a round of tests to test the model's

performance. If the classification error of the current round is smaller than that of the previous

round, we use the function [e* (e+1)] ^(1/2) to appropriately increase the learning rate, where

e is the number of training rounds to adjust the value of the learning rate. If the classification

error of the current round is more significant than that of the previous round, we use the

function e/(e+1) to reduce the learning rate appropriately.
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Section 3.2 Results and Discussion

Section 3.2.1 The structure and mechanism of synaptic device

Figure 3.1 2-D synaptic transistor (a) Schematics illustrate the biological synapse and the

Al/InOx/MXenes/ZrOx-Li/Si/Al synaptic transistor. (b) Transfer characteristics of with and

without Li+ ion doping transistors.

To achieve the application of computer aided detection in immunology of the concentration of

immune protein, the Al/InOx/MXenes/ZrOx-Li/Si/Al structure is designed to achieve synaptic

plasticity by simulating the internal linkage between the learning speed and visual receptors

through the virtual neuron light-operated and electric pulse controlled (Figure 3.1a). In

comparison to the bionic neural network created using the von Neumann architecture and

CMOS process currently available, synaptic devices offer more efficient parallel processing

speeds and lower energy consumption when dealing with complex tasks. The two-

dimensional material depends on the short ion transport distance, excellent electron transport

dynamics, and photoelectric response to compose the part of synaptic transistors [19-21].

Compared with the organic materials and metal oxide materials as the partial structure of

synaptic transistors, the 2Dimensional materials have the advantage of simple technology,

high product yield, fast electronic transmission speed, and stability in environmental change.

The clear layered structure is observed by SEM (Figure 3.2).The X-ray diffraction spectrum

for Ti3C2Tx MXenes presents a small peak of 6.4° typical of MXenes (Figure 3.3)
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Figure 3.2 Layered structure of MXenes (a) The SEM of MXenes with 1 μm from vertical

view. (b) The SEM of MXenes with 20 nm from vertical view. (c) The SEM of MXenes with

1 μm from section view. (d) The SEM of MXenes with 500 nm from section view.

Figure 3.3 The X-ray diffraction spectrum for Ti3C2Tx MXenes.
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Figure 3.4 The Ti 2p X-ray photoelectron spectroscopy spectra of MXene.

The Ti 2p X-ray photoelectron spectroscopy spectra of MXene demonstrate the apparent

peaks of TiO2 (2p3/2) and TiO2 (2p1/2) due to the oxidation during the InOx fabrication process

(Figure 3.4).

In the previous studies, optoelectronic synaptic transistors have the advantages of large

bandwidth, low energy consumption, and ultrafast signal transmission for artificial neural

networks and retina. In the weight update process that has been widely employed in previous

works, neural computing adopts one of the LTP/LTD curves from light stimulated or

electrically stimulated nonvolatile. To tackle the limitations of the nonlinearity extracted from

conductance and the single update rule adopted, the double dynamic update rule is developed

according to the conductance change when the preterminal is stimulated by electric pulse and

mixed pulse. The schematic diagram of synaptic transistor and synapse demonstrates that the

gate electrode as the pre-synaptic terminal and the drain electrode as the post-synaptic

terminal. The transmission of information in the synapse is that the chemical signals are

converted into electrical signals when the synaptic vesicles release neurotransmitters [22-25].

To verify the synaptic plasticity, the transfer characteristics curves with Li+ doped into the
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ZrOx layer (5% doping concentration) demonstrate the large hysteresis of typical synaptic

characteristics (Figure 3.1b). And this phenomenon benefits achieving multilevel storage.

Furthermore, the transfer characteristics of an undoped transistor have no evident hysteresis

clarifying that Li+ ion migration changes the channel conductance [18-20]. To briefly

expound the transformation from STP to LTP and the dynamic update decision, the schematic

diagram shows the mechanism when electric pulse and optical pulse are applied to the gate

and channel, respectively. When a positive voltage is applied to the pre-synaptic terminal, Li+

ions with a large diffusion coefficient and small atomic radius will migrate from the ZrOx

layer to the MXenes and semiconductor layer with the increase of voltage amplitude [21-24].

For applying the optical pulse at the channel (photon radiation: ��+ ℎv→ ��2++2�− ), the

oxygen vacancies in the metal oxide network generate the electron-hole pairs (Figure 3.5).

The competitive advantage of this work is the update interval and the symmetry of long-term

potentiation and long-term depression.

Figure 3.5 Basic mechanism of neural devices (a) Schematic diagram of mechanism for

Li+ ion migration under the stimulation of electric pulse. (b) Schematic diagram of

mechanism for photon radiation under the stimulation of optical pulse.

(a) (b)
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Section 3.2.2 The synaptic plasticity of Mxenes synaptic transistor

Figure 3.6 PPF index versus interval time Δt under various voltage amplitude (0.50 V, 0.75 V,

1.0 V, 1.25 V, and 1.50 V). Inset: definitions of A2 and A1 with two successional 50 ms pulses.

To verify the synaptic plasticity of the transistor, the nonvolatile conductance is recorded

when optical and electrical pulses are applied to the channel and pre-synaptic terminal,

respectively [20-27]. PPF preliminarily shows the short-term synaptic plasticity, which is the

basic function of biological synapse for processing temporal information (Figure 3.6). The

interval (Δt) between pulses from 20 ms to 1000 ms and the amplitude of electric pulses from

0.5 V to 1.5 V with each increase of 0.25 V.

Figure 3.7 The PPF index versus interval time Δt with two successional optical pulses.
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Figure 3.8 Linearly increasing synaptic plasticity (a) EPSC triggered by 19 single pulses with

different durations (20, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375,

400, 425, 450, 475, and 500 ms) at VDS = 0.5 V. (b) Extracted stable conductance for various

pulses width and the ratio of stimulated conductance over initial conductance (AF/AO).

Figure 3.9 The initial conductance level to determine the retention of the memory.

The expression of the PPF index depends on the ratio of the first and second peak value

(A2/A1) of EPSC [22-28]. The PPF fitting curves include the initial constants of rapid (C0, C1,

and C2) and the relaxation times (�1 and �2) that describe the convergence rate and downward

trend. The highest PPF index of Δt =20 ms is attained by the appropriate voltage stimulation (1 V), and

the parameters of the fitting curve about C0=1, C1=35%, C2=48%, �1=35 ms, and �2=35 ms.

Similarly, the PPF index curve (C0=1, C1=28%, C2=36%, � 1=22 ms, and � 2=56 ms)

stimulated by blue light also shows the synaptic plasticity when the photoelectric effect occurs

in the channel (Figure 3.7). Further, the conversion from short-term to long-term synaptic
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plasticity is obtained by increasing the electric pulse width to 500 ms (Figure 3.8a). The 19

initial conductance values increased from the 14.9 nA (Figure 3.9). The phenomenon is

attributed to the Li+ ion migration in the ZrOx and MXene layers, leading to multiple

conductance states [26-30]. With the width increasing linearly, the changing trend of 19 levels

tends to be linear, proving the conductance is precisely programmed by electrical pulse width

(Figure 3.8b).

Figure 3.10 Synaptic plasticity of synaptic transistor without Li doping (a) Common: the

EPSC triggered by the same width time (40 ms) pulses with three pulse amplitudes (1.0, 1.5,

and 2.0 V) at VDS = 1 V without Li ion doped. (b) The EPSC triggered by positive pulses (1 V)

with three pulse durations (50, 100, and 300 ms) at VDS=1 V without Li ion doped.

Figure 3.11 EPSC property triggered by presynaptic spike (Vgs=1.5 V, Vds=0.1 V, Pulse

Width=20 ms) in 0.5 s.

(a) (b)
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Figure 3.12 Synaptic plasticity under electrical and light stimulation (a) EPSC stimulated by

five continuous electric pulses (1 V, 40 ms) with different frequencies (1, 2, 5, and 10 Hz). (b)

Relaxation process of EPSC stimulated by the different number of red, green, and blue pulses

(10, 20, and 30). (c) Time constant extracted from the natural forgetting process. (d) EPSC

triggered by two mixed pulses (0.5 V + blue and 1.0 V + red), which means the electric pulse

combined with the optical pulse. (e) Long-term potentiation stimulated by ten groups of

combined pulses that red, green, and blue optical pulses involved, respectively. (f)

Conductance errors of 30 minutes and 300 minutes later under electric and combined pulses

modulated.

The (ZrOx/Mxenes) without Li doping has no STP-LTP response. This phenomenon further

proves that Li+ ion plays an irreplaceable role in channel conductance update for

neuromorphic computing, and the common ZrOx gate dielectrics are not adequate for a large

retention range (Figure 3.10). Further, to verify the low energy consumption of synaptic

device, the energy consumption per spike of TFTs is calculated by the Equation E= Ipeak × t ×

V =80.19 pJ (Figure 3.11). Ipeak is the maximum value (80.19 nA) of generated EPSC curve, t

is the spike duration (20 ms), and V is the voltage applied to the drain electrode (0.05 V).

Similarly, pulse frequency (1, 2, 5, and 10 Hz) also affects the conductance observed from the
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EPSC curves. Five consecutive pulses stimulated these curves with the same parameters (1 V

and 40 ms) except frequency (Figure 3.12a). The inset figure can analyze the obvious multi-

conductance and stable nonvolatile within 6 s. On the other hand, to research the optically

controlled synaptic plasticity, three wavelengths of light (red, green, and blue) are applied to

the InOx and MXene layers [29-33]. Compared with electrical plasticity, the photocurrent can

also be accumulated through the superposition of the number of pulses. The main

photoelectric response of MXene under the light with three wavelengths (Red=680 nm,

Green=540 nm, and Blue=490 nm) causes a long relaxation time (Figure 3.12b). Light with a

small wavelength carries strong photon energy, which excites a high photocurrent. Analysis

of the relaxation process based on the time constant ( �10 = 1.91, �20 = 1.08, �30 = 1.08)

illustrates that the fastest decay rate. belongs to red light (Figure 3.12c). This phenomenon

provides potential feasibility for combined pulse stimulation, which means optical pulse and

electric pulse are used alternately during conductance updates [34-38]. According to the

previous research, one of the drawbacks of the synaptic transistor (memory) is conductance

decay. It is always a trade-off between computing speed and accuracy. In short, if the

computing speed is fast, the extensive decay will significantly increase the error. The

combined pulses are adopted to shorten the decay process and maintain the conductance state

to solve this bottleneck. The first step is to apply an electrical pulse (0.5 V) to the pre-synaptic

terminal, and then an optical pulse (blue) is applied to the channel (Figure 3.12d).

Maintaining the peak conductance value can be observed from the EPSC trend compared with

the red pulse. The benefit is to accelerate the conductance update speed greatly [38-40].

Afterward, the same pulse combination rule is extended to red, green, and blue pulses, with

the electric pulse amplitude being 0.5 V (Figure 3.12e). After ten cycles of combined pulses,

the conductance values of three conditions for adding red, green, and blue pulses are 11.5 ns,

13.2 ns, and 16.3 ns, respectively. In addition, as a synaptic device for neuromorphic
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computing, nonvolatile conductance is also a necessary factor. To demonstrate all aspects of

stability, the conductance errors are counted in three states (10 minutes later, 30 minutes later,

and 120 minutes later) after stimulation by ten combined pulses (Figure 3.12f). The error

range for combined pulses is floating between 0.7 and 1.2, satisfying the storage and

computing requirements for the neural network. Similarly, the conductance controlled by the

gate can hold relatively stable after 10, 30, and 120 minutes as a result of a 0.25%-0.60%

error range. To demonstrate the high level of stability, the variances between the initial

conductance and the conductance maintained after 300 and 600 minutes are compared, and

the results indicate that the majority of errors are below 0.5% (Figure 3.13).

Figure 3.13 The 300 minutes and 600 minutes error after the presynaptic electric pulse
stimulation.

Figure 3.14 Arrayed memory and erasure (a) Three 5×5 matrices for demonstrating the

change of conductance of the cycle of 1 and 3 combined pulses. (b) Maintain ratio and

stabilization time for 1 and 3 cycles.

Above all show, the Al/InOx/MXenes/ZrOx-Li/Si/Al synaptic transistor has a variety of stable

modulation modes. To further verify the feasibility of large-scale integration, the combined
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pulse update rule applied in a single device is extended to the 5×5 matrix (Figure 3.14a). The

electric pulse amplitude in all combined pulses is 0.5 V, and the pulse width is 50 ms. When

combined pulses are electric pulse and blue light, the ratio of peak value over stable value

attains 91% showing that the relaxation time is shorter (Figure 3.14b). The short relaxation

time enormously curtails the interval between each weight update for the neural network.

Every two 5×5 matrices demonstrate the conductance distribution in two states (after one

cycle and three cycles), and one cycle represents the complete stimulus of combined pulses.

In addition, the conductance value after receiving circulatory stimulation can still maintain

99% of the stable value within 30 s. Therefore, the above results provide novel and efficient

rules for simulating the weight updating process in the neural network [41-44].
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Section 3.2.3 Adjust the long-term potentiation and long-term depression (nonlinearity

and symmetry)

Figure 3.15 Three testing schemes and results (a) Illustration of three types (Type I, Type II,

and Type III) are positive pulse/negative pulse, optical pulse/negative pulse, and combined

pulse/combined pulse. (b) LTP/LTD curves for various electric pulse numbers under the

incremental pulse amplitude from 0.50 V to 1.25 V. (c) Conductance error of cycle-to-cycle

for different pulse numbers. (d) Synaptic weight update rule of two synaptic transistors (G+

and G-) for the above three types. (e) Change trend of ∆G in LTP and LTD stages under

electrical stimulation. (f) Type III: the LTD/LTD stimulated by combined pulses. (g) Change

trend of ∆G in LTP/LTD stages of Type III. (h) Combined pulse stimulation can regulate the
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nonlinearity and symmetry of LTP/LTD. (i) Nonlinearity, symmetry, and update intervals for

the Type I, Type II, and Type III.

Replacing the weight matrix in a neural network with a synaptic device matrix is

indispensable for developing neural morphological electronics [40-45]. The update rules of

the simulated weight matrix according to the periodic trend of LTP/LTD in the synaptic

transistor. The mode of pulses applied for three types (Type I, Type II, and Type III) are

positive pulse/negative pulse, optical pulse/negative pulse, and combined pulse/combined

pulse, respectively (Figure 3.15a). The parameters extracted by LTP/LTD curves and applied

to the neural calculation are Gmax/Gmin, nonlinearity, cycle-to-cycle error, and symmetry. Then,

the modification of Gmax/Gmin and nonlinearity by electric pulse amplitude and pulse number

in Type I is researched. When the number of pulses is 100, the number of conductance

updates increases, resulting in a larger ratio of Gmax/Gmin. Further, when the voltage amplitude

increases from 0.5 V to 1.25 V in a step of 0.25 V, the number of pulses required becomes

small and makes the conductance reach relative saturation, resulting in the curve fitting into a

convex function gradually (Figure 3.15b). The range and resolution of the weight update

depend on the Gmax/Gmin, the learning step of each epoch depends on the nonlinearity,

symmetry, and the stability of training and testing depends on the error of cycle-to-cycle [46-

48]. Above, all factors together affect the final classification accuracy. The cyclic stability of

LTP/LTD is verified by alternately applying the positive (0.5 V, 40 ms) and negative (-0.5 V,

40 ms) electric pulses to the pre-synaptic terminal. With the increase in the number of pulses

(20, 30, 40, and 100), the error of cycle-to-cycle rise to 1.31%, 1.56%, 1.36%, and 1.33%

after ten cycles, respectively (Figure 3.15c). The errors floating within a specific limit show

the robust stability of LTP/LTD that benefits the training and test process. During the update

process, three update modes are proposed to demonstrate the influence of electric pulse and

optical pulse on parameters extracted from the LTP/LTD curve [49-50]. Then, the
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modification of Gmax/Gmin and nonlinearity by electric pulse amplitude and pulse number in

Type I is researched. When the number of pulses is 100, the number of conductance updates

increases, resulting in a larger ratio of Gmax/Gmin. Moreover, the conductance difference (∆G)

between the two synaptic transistors (G+ and G-) is used to represent the weight range (-1 to 1)

in the algorithm (Figure 3.15d). Notably, the left and right parts of the curve need to match

the symmetry because the rising and decline stages of conductance should have one-to-one

correspondence [50-53]. To explore the regulation of optical pulse on nonlinearity and

symmetry, type II and type III are developed. The curvature of the fitting curve determines the

sign and magnitude of the nonlinearity. The nonlinearity and ∆G affect the learning step of

each training, which is also called the learning rate (Figure 3.15e) [51-55]. The convex

function (positive nonlinearity) causes the dynamic change of learning step to weaken

gradually. On the contrary, the concave function (negative nonlinearity) gradually enhances

the learning step size. However, in the standard case, the learning step of the primary function

(nonlinearity=1) is a fixed value.

Figure 3.16 ΔG in the 100 potentiation and 100 depression stages for under various voltage

stimulation.

Besides, the ΔG in the potentiation and depression process is analyzed to measure the SNR

and learning step size for synaptic transistors (Figure 3.16).
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To explore the regulation of optical pulse on nonlinearity and symmetry, type II and type III

are developed. As depicted in Figure 3.15f, the 20 optical pulses (red, green, and blue) are

adopted in the potentiation stage, and the 20 negative electric pulses (-0.5 V) are adopted in

the depression stage. Compared with Type I, the symmetry defined as the ratio of ∆G1/∆G2 is

greatly improved in Type II. ∆G1 is the difference between the potentiation and depression

stages (GLTP
n and GLTD

n ) at the same level, and ∆G2 is the difference between the two adjacent

levels (Gn and Gn-1) of conductance. Furthermore, Type III fundamentally solves the problem

of insufficient symmetry based on the advantage of shortening the relaxation time.44

Therefore, three Type III composed of three optical pulses (red, green, and blue) and the same

electrical pulse (0.5 V for LTP and -0.5 V for LTD) has excellent symmetry as the result of

the ratio of ∆G1/∆G2 floats within 2.1% (Figure 3.15g). To match higher learning efficiency

in the ResNet algorithm, the number of conductance that can be effectively utilized (Nseff)

and nonlinearity from 16 LTP/LTD curves are researched. Moreover, the conductance

difference (∆G) between the two synaptic transistors (G+ and G-) is used to represent the

weight range (-1 to 1) in the algorithm. Notably, the left and right parts of the curve need to

match the symmetry because the rising and decline stages of conductance should have one-to-

one correspondence [56]. To explore the regulation of optical pulse on nonlinearity and

symmetry, type II and type III are developed (Figure 3.15h). To clearly show the modulation

of three modes for updating rules, the parameters, including the nonlinearity, symmetry, and

update interval, are analyzed to highlight the prominent advantage of applying Type III

(Figure 3.15i). Consequently, the RegNet of neural network based on the dynamic learning

rate according to the nonlinearity, symmetry, and update interval of the update rule is

proposed for the classification task. To match higher learning efficiency in the ResNet

algorithm, the number of conductance that can be effectively utilized (Nseff) and nonlinearity

from 16 LTP/LTD curves are researched (Figure 3.17).
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Figure 3.17 Specific update rule parameters (a) The Nonlinearity extracted from the 16

LTP/LTD curves. (b) The effective conductance number for the 16 LTP/LTD curves.
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Section 3.2.4 The immunological classification based on dynamic update process

(ResNet matching ELISA)

Figure 3.18 Immunological application of MOF transistor (a) Schematic diagram of the

visual receptor accepts light stimulation of short, middle, and long wavelengths through three

kinds of cone cells. (b) Significance of c-ELISA in immunology and its detection methods. (c)

Schematic diagram of a direct c-ELISA performed in a μPAD and the image results of seven

Rabbit IgG concentrations (0, 6.7 pM, 67 pM, 670 pM, 6.7 nM, 67 nM and 670 nM).

The human brain processes the external information mainly through various senses and

perceptions-most behaviors and decisions from neurons and synapses are based on the visual

receptor. Pyramidal cells and optic nerve are connected one-to-one, distinguishing the short-

wave, middle-wave, and long-wave light (Figure 3.18a). Artificial retina based on the

synaptic devices identify RGB values from a single pixel [50-57]. The c-ELISA is the gold

standard in immunoassays for the quantitative detection of antibodies, antigens, proteins,

hormones, etc. (Figure 3.18b). Also, c-ELISA can be widely used for rapid antibody

screening tests for viruses (human immunodeficiency virus (HIV), Covid-19 virus, etc.),

autoimmune diseases, progesterone HCG, laboratory and clinical studies, and other
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diagnostics. Figure 3.18c shows the schematic diagram of a direct c-ELISA performed in a

μPAD and the image results of seven Rabbit IgG concentrations (0, 6.7 pM, 67 pM, 670 pM,

6.7 nM, 67 nM and 670 nM). The specific experimental steps will be described in the

experimental section.

Figure 3.19 Algorithm framework and matching data-set (a) Block diagram of feedforward

for the dynamic neuromorphic deep residual learning. (b) Standard and dynamic learning rule

based on the Embinghaus memory. (c) Image database of ELISA of seven Rabbit IgG

concentrations (0, 6.7 pM, 67 pM, 670 pM, 6.7 nM, 67 nM and 670 nM).

To track the problem of deeper neural networks being more difficult to train, the ResNet with

a residual learning framework is proposed to simplify the training of networks and gain

accuracy from considerably increased depth [57]. The degradation in the convergence process

indicates that not all systems are similarly easy to optimize and can be solved by a deep

residual learning framework (Figure 3.19a). The building block demonstrates that
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feedforward neural networks with shortcut connections can realize the formulation. Moreover,

a backward neural network updates the synaptic weight layers with a dynamic learning rate

according to the parameters extracted from the LTP/LTD curves. Inspired by the Embinghaus

memory map, dynamic learning rules are more in line with the memory behavior of biological

synapses (Figure 3.19b). The ResNet contains the dynamic algorithm adopted to execute the

classification task of ELISA for rabbit IgG. The collected data includes the 0, 6.7 pM, 67 pM,

670 pM, 6.7 nM, 67 nM and 670 nM seven concentrations (Figure 3.19c).

The error feedback part in the algorithm is based on the update rules measured by type III

(electric pulse combines blue light pulse). Compared with the standard case (lr=0.1), the

classification accuracy for seven rabbit IgG is improved from 80.9% to 87.2% after 100

weight iterations. The influence of different colors of light in Type III on the dynamic

learning step shows the regulation ability of light (Figure 3.20a). Inspired by the first

impression of human brain cognition, the dynamic learning rate makes the update step in the

initial epoch larger than in the later epoch of the training process because the LTP/LTD curve

trend is a convex function [58-60]. Each output in the last layer is connected to 128 neurons,

so Figure 3.20b shows the iterative updated 7×128 weight matrix. The complex disordered

weight matrix proves that the weight value gradually differentiates into two extreme values

(Gmax and Gmin) by relying on the Manhattan rule.

Figure 3.20 Iterative changes in conductance (a) Trend of normalized dynamic learning step

with the number of iterations. (b) 7×128 weight matrix connects the last output layers.
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Figure 3.21 Robustness dynamically updating weights (a) Accuracy of standard and dynamic

conditions for three modulation modes. (b) Update time during the ResNet neural network

training process for Type I, Type II, and Type III. (c) Verify the robustness of dynamic

learning rules which extend to the ResNet-ELISA, ResNet-Cifar10, ResNet-Cifar100, and

LSTM-ELISA tasks.

Figure 3.22 The detailed training process of Resnet-ELISA, Resnet-Cifar100, and the LSTM-

ELISA.

To analyze the modulation effects of the three modes, the standard accuracy and dynamic

accuracy under seven conditions (Type I, Type II_Red, Type II_Green, Type II_Blue, Type

III_Red, Type_Green, Type III_Blue are displayed (Figure 3.21a). On the one hand, the

dynamic accuracy is higher than the standard accuracy in Type III modulation due to the

nonlinearity and excellent symmetry. On the other hand, the small update interval in Type III

shortens the whole iteration update time for the training process. As shown in Figure 3.21b,
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the update times for red, green, and blue modes of Type III are 11.6 s, 18.4 s, and 27.4 s,

respectively. Consequently, the ResNet combined with characteristics can improve the

classification compared with the standard situation and reduce the update time when the

modulation mode Type III is adopted.

Figure 3.23 Impact of initial setting on accuracy (a) The effect of random number on

recognition rate. (b) The effect the range of learning 87step on recognition rate.

Figure 3.24 Validation of robustness using other standard datasets (a) The database of

Cifar10 and Cifar100. (b) The accuracy and loss for Cifar100. (c) The accuracy and loss for

Cifar10.

(a) (b)

(a) (b)

(c)
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Furthermore, to verify the robustness of the dynamic learning rules in a similar deep neural

network, the accuracy of different algorithm structures in identifying different classification

tasks is compared (Figure 3.21ec). The four neural networks and corresponding tasks are

ResNet-ELISA, ResNet-Cifar10, ResNet-Cifar100, and LSTM-ELISA. The Figure 3.22

demonstrate operation speed of Resnet-ELISA, Resnet-Cifar100, and the LSTM-ELISA

through the detailed training epochs. The recognition rate is not significantly affected by the

initial weight when the random floating value is smaller than the learning step in a random

process(Figuer 3.23). The database of Cifar10 and Cifar100 and the results of verifying

robustness explicitly demonstrate the feasibility of a dynamic learning rate (Figure 3.24). The

obvious result is that above neural networks with dynamic learning rate strength, the

classification ability resulting from the average improved accuracy is 6.8%.



83

Section 3.3 Conclusion

Applying stimulation (electric pulse, optical pulse, or stress) to the pre-synaptic terminal

simulates the realization of synaptic plasticity for the bionic nerve. The stability and

controllability of the storage process has to be strengthened, despite the results of

optoelectronic hybrid mode's significant in low power consumption. Moreover, the dimension

of materials influences the transmission efficiency and data processing when the synaptic

devices are integrated for parallel computing. A comprehensive modulation of mixed

photoelectric pulses for LTD and LTP has been lacking in recent years. Furthermore, the

influence of the fundamental symmetry and linearity of conductance in the rising and falling

stages during the algorithm of error feedback is also not properly considered, and the weight

updating process is merely simulated in accordance with the fitted LTP/LTD curves. In

previous research, the standard case (LTP/LTD) are two straight lines) generally adopted is

that the learning step in each epoch is the fixed value. Afterward, inspired by the first

impression of human cognition, the relationship between learning efficiency and temporal

memory is nonlinear. In other words, a great of accurate information can be retained and

learning is generally particularly efficient in the early stages. The ∆G between two synaptic

transistors is normalized to represent the synaptic weight connection strength of two neural

units due to the weight range in the neural algorithm containing the negative value.

Consequently, the convex function composed of LTP/LTD curves can provide a tight

connection strength at the initial epoch of training, and the strength gradually decreases with

the increase of the number of iterations. According to each non-fixed stage on the curve, the

proposed dynamic learning rule provides the mapping relationship between the dynamic

learning step and epochs. The one-to-one symmetry of conductance in the potentiation and

depression stages, in addition to nonlinearity, provides assist dynamic response of

neuromorphic computing. The iteration direction of synaptic weight is based on the
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Manhattan rule in the error backpropagation. Therefore, the updated trend of non-

monotonicity requires strong symmetry of LTD/LTP. The strength of symmetry is then

suggested to be measured by the ratio of ∆ G1/ ∆ G2. Previous research has shown that

conventional neural networks (such as ANN and CNN) are unable to accomplish

indistinguishable categorization tasks due to degradation presents both challenges on by the

depth of network layers. The residual learning framework is proposed to simplify the training

of networks that are substantially deeper than those previously used. The layer as the learning

residual function is explicitly redefined by the reference layer, instead of the learning the

unreferenced function. Besides, the differences between various tags are amplified as network

layers increase, making it easier to distinguish between tags with a high level of similarity.

In conclusion, this Chapter 3 demonstrates the Al/InOx/MXenes/ZrOx-Li/Si/Al structure of

synaptic transistor as bionic retina and proposes dynamic neuromorphic deep residual learning

strategy for the recognition of ELISA_IgG in immunology. PPF, STP/LTP and EPSC are basic

information flow, also are the typical manifestation of synaptic plasticity. Here, we analyze

that the dynamic learning rate, update interval, and learning accuracy rate according to the

various LTP/LTD curves which regulated separately by three modulation modes (Type I, Type

II, and Type III). The synaptic devices stimulated by Type III have high linearity and

symmetry, which is necessary to reduce the number of training epochs in the neural network.

At the same time, the fast conductance recovery trend can reduce the interval of each

calculation. Moreover, recognizing the Rabbit IgG of ELISA to demonstrate the potential in

immunology for immune protein detection and other neural networks (LSTM) composed of

the Cifar10 and Cifar100 database are then developed to verify the robustness and feasibility.

The synaptic transistor based on 2D materials and dynamic learning strategy enriches weight

update process of neural morphological systems and further developed as bionic retina to

successfully complete complex visual perception task.
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Chapter 4 Exploration of complex biological characteristics,

neural networks similar to the human brain, and systematic

architecture (Synaptic Transistor with Multiple Biological

Function Based on Metal-Organic Frameworks Combined with

LIF Model of Spiking Neural Network to Recognize Temporal

Information)

Section 4.1 Experimental Section

The preparation processes of the InOx and ZrOx precursor solutions are introduced in

Chapter 2.1 and Chapter 3.1, respectively. The characterization of synaptic plasticity and

SNN simulation are also introduced in Chapter 2.1 and Chapter 3.1.

Section 4.1.1 Synthesis and fabrication of synaptic transistors

All solutions were vigorously stirred under atmospheric conditions for 5 hours and filtered

before spin coating using 0.25 μm PTFE syringe filters, respectively. Typically.1.0 mmol of

cobalt nitrate hexahydrate and 4.0 mmol of 2-methylimidazole are dissolved in 15,0mL

methanol,respectively. Then, the 2-methylimidazole solution is slowly poured into the soution

of cobalt nitrate hexahydrate under stirring for 6h, After aging at room temperature for 16 h, a

purple precipitate is collected by centrifugation, washed with methanol, and dried at 70 ºC

12h. Then, ZIF-76 (the purple powder) is obtained characterized by XRD. Finally, the

obtained mixture was centrifuged again at 3500 rpm for 3 min to obtain a black-brown few-

layer dispersion of about 5 mg mL-1. The dispersion is stored in an argon atmosphere, and the

storage time does not exceed 14 days.

First, a heavily doped Si (n++) substrate was cleaned by deionized water and dried under N2

flow. Afterward, the processed substrate was further treated by Plasma for 15 minutes to
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allow the film surface hydrophilic treatment. The ZrOx and ZrOx-Li films were spin-cast with

precursor solution at 4500 rpm for 30 s and then annealed for 80 mins at 250°C in the air

atmosphere.Then, the ZIF-67 solution was then diluted to 1 mg/mL and spin-coated at 3000

rpm for 20 s on the surfaces of ZrOx and ZrOx-Li films. Substrates with solution film were

then oxidized at 80°C for 1 min on a hotplate in air condition. The InOx film was spin-cast

with precursor solution at 3500 rpm for 30 s and then annealed for 1h at 200°C for the in the

air atmosphere. The 30 nm thick Al S/D electrodes were fabricated by thermal evaporation

through the shadow mask.

Section 4.1.2 SNN simulation

We use a SNNs as the base model, which is a compact and efficient neural network. After we

convert the SSVEP data into two-dimensional matrix data, we could directly pass it into the

block. The LIF block is the main component of SNNs. Compared with the ordinary neural

network structure, the LIF and STDP block could not only perform weighted operations

through the convolution layer and activation function mechanism to extract features, and also

retain the initial information of the input data and fuse it with the obtained feature information.

Two blocks and one linear layer are used in our model. The input image data is passed

through two residual blocks to complete the feature extraction, and then passed to the linear

layer to complete the final classification task. Usually, this is a complete SNNs workflow, and

we use a standard learning rate in the training step. After each training of the network,

different learning steps are used to update the network parameters according to the change

direction of the loss.
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Section 4.2 Results and Discussion

Section 4.2.1 Basic transistor characteristics, device structure, and characterization

Figure 4.1 MOF synaptic transistor (a) Structure diagram of the synaptic transistor and basic

crystal of ZIF-67. (b) Biological chemical synapse is illustrated schematically, comprising a

pre-synaptic terminal, receptor, and a post-synaptic terminal.

To promote the systematization of three-terminal neuromorphic devices, we have constructed

a modifiable synaptic device with MOFs as the main functional layer (Figure 4.1a) [1]. The

device is composed of the following layers, from top to bottom: source/drain, InOx, ZIF-67,

ZrOx, substrate, and gate. The ZIF-67 layer, acting as the trapping layer, can capture and

release carriers to change the conductance in the channel when a positive/negative voltage is

applied to the gate [2, 3]. In order to provide a vivid explanation of the relationship between

biological synapses and electronic synapses, we liken the process of converting chemical

signals into electrical signals from the pre-synaptic terminal to the post-synaptic terminal

(neurotransmitters released by synaptic vesicles are accepted by receptors on the membrane)

to applying a pulse to the gate of the device and receiving a corresponding pulse between the

source/drain (EPSC) (Figure 4.1b).
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To clearly display the MOF structure of ZIF-67, we analyzed SEM images at four different

resolutions (Figure 4.2a). These results provide valuable insights into the design of

neuromorphic computing devices and the potential for energy-efficient processing.

Figure 4.2 Exploring the properties of MOF (a) SEM images of the ZIF-67. (b) XRD patterns

of the ZIF-67. (c) Channel current dependence of the gate voltage analyzed at Vpost of 0.5 V.

The SEM images of the as-prepared ZIF-67 sample reveal that it exhibits a uniform size

distribution with well-defined cubic morphology, demonstrating excellent dispersion and a

solid interior. These observations provide valuable insights into the structural characteristics

of the MOF material and its potential for use in neural applications, including neuromorphic

computing devices. The uniform size and cubic morphology of the ZIF-67 particles suggest

that they could offer excellent stability and reproducibility in device fabrication processes.

Additionally, the well-defined morphology and solid interior of the particles suggest that they

could provide a high surface area-to-volume ratio, potentially enhancing their performance in

various applications. Overall, the SEM images provide important information about the

structural properties of ZIF-67 and its potential for use in a wide range of AI and

neuromorphic applications. The crystalline structure of the ZIF-67 sample was analyzed using

XRD, which revealed that the main characteristic peaks of the bare ZIF-67 matched well with

those reported in the literature (Figure 4.2b). These results indicated the successful synthesis

of the MOF material on the ZrOx substrate [1-5]. The XRD analysis was further supported by

the SEM characterization, which demonstrated that the ZIF-67 particles exhibited a uniform

size and cubic morphology with good dispersion and a solid interior. The successful synthesis
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of ZIF-67 on the ZrOx substrate has been confirmed by both SEM and XRD characterizations.

The transfer characteristics of the device are presented in Figure 4.2c, where the channel

current increases as the applied voltage from -1 V to 5 V, exhibiting a typical n-type transfer

behavior [6-8]. The application of a higher positive gate voltage results in the migration of

more cations from the electrolyte into the porous MOF channel, leading to n-type doping of

the MOF channel and an increase in its conductivity [9-12]. The porous nature of MOFs

allows for easy penetration of cations into the channel under low gate voltage, thereby

enabling the ZIF-67 synaptic device to operate as a low-voltage transistor with low power

consumption.
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Section 4.2.2 Three biological function and correspond synaptic characteristics.

Figure 4.3 Special biological functions of MOF (a) Device simulates three typical functions

of synapse: forming memory, synaptic plasticity, and stimulating membrane potential. (b)

PPF index is a measure of synaptic facilitation defined as the ratio of the amplitudes of the

first (A1) and second (A2) EPSCs, plotted against the pulse interval (Δt).

In order to demonstrate the three typical neuronal functions of the proposed synaptic

transistor, standard electrical tests are performed for validation (Figure 4.3a). Firstly, the

memory function (STM/LTM) of the human brain primarily originates from the hippocampus,

which is the foundation of memory and the basis of all intelligent life [10-14]. The

hippocampus also promote frequent association of events and forgetting unimportant

information. Secondly, synaptic weight and plasticity refers to the strength or amplitude of the

connection between two nodes, which in biology corresponds to the amount of influence that

one neuron has on another node through its discharge [15-17]. Thirdly, biological neurons

only transmit stimuli to other neurons they are connected to when they receive external

stimuli that exceed a certain threshold, thereby facilitating information exchange through

membrane potential. The occurrence of PPF is associated with the release of neurotransmitters

by pre-synaptic neurons and is typically believed to be regulated by calcium. The synaptic

plasticity characteristics of the ionotronic synaptic transistor were investigated by analyzing

the PPF index, which is crucial for recognizing visual signal information in biological neural

systems. Paired input spikes with various time intervals (∆t) are used to trigger the PPF index

(A2/A1), and the resulting secondary EPSC peak (A2) is compared to the first one (A1) to
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determine the presence of facilitation behavior. In Figure 4.3b, the generated A2 is 301%

higher than A1when the time interval is 20 ms. The PPF index reflects the extent of synaptic

connection enhancement between neurons and can be simulated using the double-exponential

function. Initial constants of rapid and slow phases C0, C1, and C2 are 1, 15%, and 33%. The

relaxation times are �1 (15 ms) and �2 (20 ms).

Figure 4.4 Temporal Synaptic plasticity (a) EPSC behaviours activated and modified by

electric pulses with 9 different widths (50 ms, 100 ms, 150 ms, 200 ms, 250 ms, 300 ms, 350

ms, 400 ms, and 450 ms) at VDS=0.5 V. (b) EPSC triggered by 5 single electric pulse with

different amplitude (3 V, 4 V, 5V, 6 V, and 7 V). (c) Low-pass filtering characteristics are

shown by 10 continuous pulses of different frequencies (10 Hz, 12.5 Hz, 20 Hz, 30 Hz, and

40 Hz) applied to the pre-synaptic terminal.

To accurately assess the impact of a single pulse on synaptic plasticity, we analyze the effects

of electric pulses with different widths and amplitudes on EPSC excitation. We measure the

dynamic current behaviors responsive to gate voltage pulses with different width (50 ms to

450 ms) and the same amplitude of 1.5 V (Figure 4.4a). After reaching a peak value, the

EPSC returns to its original current state, indicating that the peak values are proportional to

the amplitude of the voltage pulses. Nevertheless, it has been observed that pulses with a

width greater than 50 ms do not fully return to their original state, indicating significant

nonvolatile properties. This behavior is similar to that seen in biological excitatory synapses.

Additionally, low power consumption is crucial for developing an energy-efficient

neuromorphic chip. By multiplying the peak value of the EPSC, the drain voltage, and the
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pulse duration, it is estimated that the power of a single spike generated by the gate voltage of

−1 V is 1.8 nJ [18-21]. In order to further discuss the effect of temporal properties on synaptic

plasticity, we demonstrate the EPSCs responsive to the gate voltage pulses with different

amplitudes (3 to 7 V) and the same duration times of 50 ms (Figure 4.4b). Ion doping into the

ZrOx layer plays an important role in lowering the range of width. Curiously, ZIF-67 synaptic

transistor has the characteristic of filtering high-frequency information which is similar to the

LIF neuron (Figure 4.4c). High frequency pulses actually result in lower conductance

increments than low frequency pulses.

Figure 4.5 The long-term retention of synaptic plasticity after 30 minutes and 60 minutes. (b)

Typical EPSC when Li ion doping concentration is 5 %.

Figure 4.6 Hardware parameters required for simulating SNN (a) LTP/LTD characteristic

demonstrates the controllable range and level of conductance. (b) Threshold effect of synaptic

device as biological neurons. (c) Trend of STDP curve as weight update rule transform the

temporal information.
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To demonstrate the conductance retention characteristics of the synaptic device, Figure 4.5a

shows the fluctuation of the currents within 30 minutes and 90 minutes, respectively. In order

to further verify the effect of ion migration on synaptic plasticity, Figure 4.5b shows the

EPSC when the doping concentration is 5%.

Detailed investigations have been carried out on the characteristics of LTP/D, which are

essential features for synaptic operation in neuromorphic computing. The various conductance

states of synaptic devices were demonstrated in Figure 4.6a, where a sequence of excitatory

spikes (VDS = +1 V, td = 50 ms, ∆t = 100 ms) and inhibitory spikes (VDS = -1 V, td = 50 ms, ∆t

= 100 ms) were applied. The peak current increased gradually from 8.9 μA to 42.5 μA as the

quantity of pulses rises from 20 to 100 and recovered to the initial level under application of

the excitatory and inhibitory spikes, respectively [22-25].The LTP/LTD curves show the

conductance margins (Gmax/Gmin) between the maximum and minimum conductance values as

a function of the number of spike pulses. In neuromorphic computing, the iterative update rule

between neurons is constrained by weights represented by conductance of synaptic device

[22-24]. To further verify the membrane potential threshold of synaptic transistors, we applied

continuous pulses (VDS = +0.5 V, td = 50 ms, ∆t = 200 ms) that avoid the potentiation of

conductance (Figure 4.6b). As observed from the red line, the transient accumulation of ion

migration in MOFs can result in the release of an instantaneous pulse exceeding the threshold

(1 μA). The measured alteration of synaptic weight following each neuron spiking event is

depicted in Figure 4.6c using the synaptic device structure. An increase (decrease) in synaptic

weight occurs when the pre-neuron spikes before (after) the post-neuron [25-29]. Moreover,

the synaptic weight change with respect to the spike timing difference (∆t) can be accurately

described by exponential decay functions, confirming that the STDP properties are similar to

those observed in biological synaptic systems. It is apparent that upon approaching ∆ t = 0

from ∆t = 0.1 s, the synaptic weight is potentiated. While for ∆t < 0, the synaptic weight is
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depressed. This behavior is known as the asymmetric Hebbian learning rule. Different ratios

(3.809, 14.481, 22.905, 52.620, and 53.36) indicate the resolution between synaptic weight

updates and the corresponding learning step size (Figure 4.7a). Furthermore, we measured

the extreme conditions that trigger STDP to ensure that the neural device can be efficiently

and continuously updated (Figure 4.7b).

Figure 4.7 Timing rules required for pulse weight update (a) The Gmax/Gmin ratio of 10, 20, 40

100, and 200 LTP/LTD curves. (b) The minimum voltage that can trigger the STDP.
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Section 4.2.3 Systematic architecture includes the LIF model combine with synaptic

device and SNN.

Figure 4.8 Block diagram of feedforward and back propagation for spiking neural network

based on the LIF neuron model and STDP weight update rule.

Figure 4.9 LIF model with random input spikes (50% firing probability).

The desire to replicate the remarkable energy efficiency of biological systems has been a

significant driving force behind the advancement of SNNs (Figure 4.8).One main theory for

the superior energy efficiency of SNNs is their significantly higher information capacity when

compared to other neural network models, like the multi-layer perceptron, which is based on
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firing rates. In contrast to SNNs, training firing-rate networks often involves the use of

backpropagation algorithms, which can be challenging to implement efficiently due to the

centralized method for computing weight updates and the need for large amounts of high-

precision memory [30-32]. In SNNs, the LIF neuron model is commonly used to simulate the

behavior of neurons. The LIF model can simulate how neurons receive and process signals

from other neurons and fire a spike when a certain threshold is reached. Additionally, the

leaky integration mechanism in the LIF model can mimic the gradual decrease of membrane

potential in biological neurons over time. STDP is a key mechanism in SNNs that describes

how the strength of synapses between neurons changes over time based on the timing of their

spike activities.

Figure 4.9 shows the LIF model of standard SNNs with random input spikes (50% firing

probability). Synaptic weights are updated through the STDP mechanism to simulate learning

and adaptation between neurons. Together, the LIF neuron model and STDP mechanism play

crucial roles in SNNs, enabling the simulation of neuronal activity and plasticity.

Figure 4.10 The core unit of SNN (a) 3-layer of improved Spiking Neural network based on

the STDP of synaptic transistor. (b) Fluctuation area of membrane voltage in biological

neurons.

Figure 4.10a demonstrate the 3-layer of improved spiking neural network based on the STDP

of synaptic transistor. The LIF neuron model simulates the changes in membrane potential



105

(Vm) of a neuron over time (Figure 4.10b). The Vm changes are determined by the flow of

ions through various channels in the neuron's membrane [33-34]. Initially, the neuron is at rest

with a resting membrane potential. When a presynaptic neuron sends a signal to the

postsynaptic neuron, it causes a small increase in Vm, known as the postsynaptic potential

(PSP). If enough PSPs are received, Vm reaches a threshold voltage, at which point an action

potential or spike is generated and sent down the axon of the neuron. After a spike is

generated, the neuron enters a refractory period where it cannot generate another spike,

known as the absolute refractory period [34-36]. The reason for the lack of spike generation is

the deactivation of ion channels.

Figure 4.11 Leaky integrator block, fire & detector block, buffer block, and frequency

adaption block combine with output of ZIT-67 synaptic devices to form the complete LIF

system.

To address this issue, a highly compact electronic circuit has been developed that can

implement the leaky integrate-and-fire model of artificial neurons (Fig. 4.11). The leaky and

integrate characteristics of the model are implemented through the use of an RC pair. The

capacitor (C) integrates the incoming current spikes, while the resistor (R=R1+R2) allows the

charge to leak out during the time intervals between spikes. The crucial firing feature of the
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Figure 4.12 Change of membrane potential under different input pulses.

model is achieved by setting the voltage threshold of the silicon controlled rectifier (SCR)

through its anode-cathode tension, which is adjusted by the gate via resistors R1 and R2. Once

the voltage threshold is reached, the SCR switches to the on-state, and the capacitor

discharges rapidly through the small R3, producing a spike of current. The SCR remains in the

on-state until the current decreases to the value of Ihold, which occurs when the capacitor is

nearly fully discharged [37-40]. The observed process can be correlated with the relaxation or

refractory period of the artificial neuron. In order to ensure that the spike can activate a

downstream neuron, the strength of the signal must be enhanced. Therefore, we propose a

design for an ultra-compact (UC) neuron that uses only one SCR and two transistors, in
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addition to a "membrane" capacitor and several resistors. This construction has a minimal

number of components. Specifically, we have assigned each of the three features of the LIF

model to three respective devices: a resistor, a capacitor, and an SCR. These components

enable the non-linear process of threshold spike generation in the "soma" of the artificial

neuron. Change of membrane potential under limiting input pulse is given in the Figure 4.12.

Figure 4.13 illustrates the simulation outcomes of the VLSI circuit when subjected to

different types of excitatory inputs, namely a train of synaptic transistor pulses.36 Consistent

with a LIF neuron's behavior, increasing the pulse amplitude results in a decrease in the

number of required pulses to trigger a response. The three curves (red, green, and blue)

demonstrate that the circuit necessitates 10 pulses of 1 μA and 8 pulses of 1.25 μA to reach

the threshold.

Figure 4.13 Operation of the VLSI circuit with input pulses of synaptic device (ton = 100 ns,

trise = tfall = 1 ns, period = 2μs, Iin = 2.0 mA and 3.3 mA).
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Section 4.2.4 SSVEP identification task is based on the modified SNN.

Figure 4.14 BCI data-set (a) SSVEP is a favored signal in brain-computer interface (BCI)

systems due to its high information transfer rate (ITR). (b) Eight types of EEG waveforms

from 40 different frequencies in the same channel.

SSVEP (steady-state visual evoked potential) is a type of brain activity that occurs in response

to repetitive visual stimuli with a fixed frequency (Figure 4.14a). One of the main advantages

of SSVEP-based brain-computer interface (BCI) is their high information transfer rate (ITR),

which refers to the amount of information that can be transmitted per unit of time. In terms of

data characteristics, SSVEP signals are typically characterized by a strong response at the

stimulus frequency and its harmonics, which can be easily detected and separated from

background EEG activity. SSVEP signals are also highly reproducible across trials and

participants, which allows for reliable classification and decoding [32-40]. Further, SNNs are

biologically inspired models that mimic the behavior of neurons in the brain, and have been

shown to be particularly well-suited for processing spatio-temporal data such as EEG signals.

Figure 4.14b directly demonstrates the 11 EEG curves within 400 ms under different

stroboscopic stimuli (8 Hz- 14.0 Hz). Further analysis of different samples reveals that

SSVEP, possesses the following advantages for neural computation: wide frequency

selectivity range, high amplitude response, sensitivity to stimulus brightness and contrast

factors, high stability across different experimental repetitions, and modulation by various
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cognitive tasks. These above characteristics make SSVEP a valuable tool for applications in

human-computer interaction, brain-machine interfaces, and biofeedback.

Figure 4.15 Process temporal information (a) SSVEP is processed into a visualized two-

dimensional matrix through temporary coding.(b) The Temporal coding for SSVEP with

different gain (0.25 and 1).

Besides, temporal coding is a neural coding scheme that encodes information through the

precise timing and pattern of action potentials, or spikes, in individual neurons or groups of

neurons (Figure 4.15a). SSVEP is processed into a visualized two-dimensional matrix

through temporary coding. The temporal coding for SSVEP with different gain (0.25 and 1)

and the distribution of neurons in the input layer combined with synaptic characteristics are

analyzed in Figure 4.15b. Temporal coding plays a significant role in neural information

processing and is thought to be particularly important for encoding information such as sound,

visual stimuli, and motor commands. One adopted way is rate coding, where the frequency of

(a)

(b)
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spikes within a given time window is used to convey information about the intensity or

duration of a stimulus. Another improved method is phase coding, where the timing of spikes

relative to a particular phase of a periodic stimulus is used to encode information. we

conducted an experimental demonstration of the hardware-in-the-loop training using a

prototype synaptic device-based simulation environment. This environment includes a tested

array of ZIF-67 synaptic transistor with a conductance response. The purpose of our

experiment was to verify the efficacy of our proposed training approach. The results of our

study provide evidence of the successful implementation of our hardware-in-the-loop training

method, which can be a promising approach for developing more efficient and effective

neuromorphic computing systems.

Figure 4.16 Weight changes in the different layers (a) Synaptic efficacy (Conductance of

channel), defined as the strength of the communication between neurons, undergoes temporal

modulation characterized by both facilitatory and inhibitory changes. (b) Inner state of

neurons based on STDP in SNNs. (c) Output spike of neurons in SNNs. (d) Test accuracy of

recognition task for SSVEP in improved network.
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The conductances of the synaptic devices are iteratively adjusted during training by the

framework through STDP update rules, with communication established between the LIF

neurons (Figure 4.16a). The synaptic weights of the SNNs are implemented using a double

differential configuration with two devices, where G+ and G- represent the synaptic weight in

proportion to the difference of their conductances (w=G+-G-).

Figure 4.17 Inner state value for different neurons (a) Inner state value of neurons for layer 1

with different LTP/LTD. (b) Inner state value of neurons for layer 0 with different STDP.

To increase the weight w, the conductance of G+ is increased, while to decrease the weight w,

the conductance of G- is increased. The conductance of the device increases gradually through

ion migration in the ZrOx layer by applying low-power pulses, which allows for gradual
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weight updates (∆w) during training. The pre-processed sample is subsequently transmitted to

the network, causing the input neurons to spike, as illustrated in Figure 4.16b. The resulting

spike rasters for the output layer neurons during the speech recognition procedure are

displayed in Figure 4.16c. Inner state value of neurons for layer 1 with different LTP/LTD

and inner state value of neurons for layer 0 with different STDP are both demonstrate in the

Figure 4.17a and Figure 4.17b. In order to evaluate the feasibility of the proposed network, it

is reflected by comparing the difference between the recognition rate of the standard network

and the enhanced network (Figure 4.16d). The ultimate arrangements of synapses proved to

be effective and showed that the method can be utilized for creating an analog core that serves

as a very efficient in-memory inference engine, without relying on the von Neumann

architecture.
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Section 4.3 Conclusion

The novel concepts put forward have opened up numerous opportunities for combining

synaptic devices with neuron circuits to serve as the core components of SNNs. This

improved SNN, based on the LIF model, offers advanced biologically-inspired neural models

with low computational complexity and simplicity, enabling exploration of their capabilities

from a deep learning perspective. Furthermore, the ZIF-67 SNN system provides a new

framework for modeling and understanding neural dynamics, which can benefit from memory,

synaptic plasticity, and membrane potential, from a neuroscientific perspective. The in-

memory accelerators, combined with SNN-based STDP weight update rule, offer the potential

for high adoption rates of spiking neural networks for SSVEP recognition applications (with a

rate of 95.1%), and enable power-efficient neuromorphic hardware implementations from a

neuromorphic computing perspective. Finally, the integration of multi-functional synaptic

transistors into the improved SNNs expands the use of existing or forthcoming network

accelerators for the entire SNN implementation and deployment.
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Chapter 5 Conclusion

The synaptic EGTs with transparent metal oxide as the dielectric layers and semiconductor

layers possess the potential to obtain multi-level storage and cyclic update. The gate

dielectrics manufactured by general mechanism are not considered to be adequate for the

requirements of a large retention range for memory and learning due to the lack of large

hysteresis observed from the transfer characteristics curve. Inspired by the biological nerve,

ion doping can effectively solve this bottleneck which is also the mechanism of EGT.

Compared with the bionic neural network produced by current CMOS process based on the

von Neumann architecture, the synaptic devices have efficient parallel processing speed and

low energy consumption for complex tasks. The EGT makes it possible to achieve synaptic

plasticity, weight updating and bionic neural networks with small-scale and lower energy

consumption per spike. The ions in the electrolyte layer of EGTs are regulated to migrate

under the electric field effect and adjust the channel conductance. According to the migration

extent of ions in the electrolyte layer, the working modes of adjusting the conductance could

be divided into electrostatics modulation mode and electrochemical modulation mode.

According to previous studies, the Li+ ion has been proved to facilitate the formation of EDL

easily belongs to electrostatics mode due to the small ion radius and high diffusion coefficient.

In addition, Li+ ion doping in the semiconductor could effectively reduce the oxygen vacancy,

which significantly benefits the stability of the device. Compare with the organic materials

and 2Dimensional material as the partial structure of synaptic transistors, the solution-

processed metal oxide materials have the advantage of large-scale preparation, simple

fabrication and stability in environmental change. However, recently, few studies have

focused on the influence of Li+ doping in the dielectric and semiconductor layers of EGTs for

neural computation.
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For the Chapter 2, solid state electrolyte gate transistor with Li+ ions doping has been

proposed for neuromorphic computing. The Li+ ions doping into AlOx (dielectric layer) to

enhance the synaptic long-term plasticity and charge storage ability. Purpose of Li+ doping

into the InOx (semiconductor) layer for improving the stability apparently due to the cyclic

update (cycle-to-cycle error). The doping concentration in the AlOx and InOx layers have been

well discussed systematically. The typical synaptic behaviors, including inhibitory/excitatory

postsynaptic current IPSC/EPSC, LTP/LTD, STP, and PPF, have been successfully

illuminated through the voltage spikes applied to the presynaptic terminal. It is worth noting

that both the EPSC and IPSC are induced by the increase and decrease of channel

conductance, respectively, which could be regarded as the change of synaptic weight.

According to the Gmax/Gmin ratio and nonlinearity trend curves of LTP/LTD curve, the

iterative update of synaptic weight matrix is demonstrated with the increase of epoch and the

recognition accuracy of the bio-signal (ECG) can reach over the 94.8%. Moreover, the neural

network can predict the abnormal beats of the cardiovascular due to extreme weight regions.

We believe that this systematic research of Li+ ion-doped solid state EGTs would pave the

way for future neuromorphic computing networks.

For the Chapter 3, applying stimulation (electric pulse, optical pulse, or stress) to the pre-

synaptic terminal simulates the realization of synaptic plasticity for the bionic nerve. The

stability and controllability of the storage process has to be strengthened, despite the results of

optoelectronic hybrid mode's significant in low power consumption. Moreover, the

dimension of materials influences the transmission efficiency and data processing when the

synaptic devices are integrated for parallel computing. A comprehensive modulation of mixed

photoelectric pulses for LTD and LTP has been lacking in recent years. Furthermore, the

influence of the fundamental symmetry and linearity of conductance in the rising and falling

stages during the algorithm of error feedback is also not properly considered, and the weight
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updating process is merely simulated in accordance with the fitted LTP/LTD curves. In

previous research, the standard case (LTP/LTD) are two straight lines) generally adopted is

that the learning step in each epoch is the fixed value. Afterward, inspired by the first

impression of human cognition, the relationship between learning efficiency and temporal

memory is nonlinear. In other words, a great of accurate information can be retained and

learning is generally particularly efficient in the early stages. The∆G between two synaptic

transistors is normalized to represent the synaptic weight connection strength of two neural

units due to the weight range in the neural algorithm containing the negative value.7

Consequently, the convex function composed of LTP/LTD curves can provide a tight

connection strength at the initial epoch of training, and the strength gradually decreases with

the increase of the number of iterations. According to each non-fixed stage on the curve, the

proposed dynamic learning rule provides the mapping relationship between the dynamic

learning step and epochs. The one-to-one symmetry of conductance in the potentiation and

depression stages, in addition to nonlinearity, provides assist dynamic response of

neuromorphic computing. The iteration direction of synaptic weight is based on the

Manhattan rule in the error backpropagation. Therefore, the updated trend of non-

monotonicity requires strong symmetry of LTD/LTP. The strength of symmetry is then

suggested to be measured by the ratio of ∆ G1/ ∆ G2. Previous research has shown that

conventional neural networks (such as ANN and CNN) are unable to accomplish

indistinguishable categorization tasks due to degradation presents both challenges on by the

depth of network layers. The residual learning framework is proposed to simplify the training

of networks that are substantially deeper than those previously used. The layer as the learning

residual function is explicitly redefined by the reference layer, instead of the learning the

unreferenced function. Besides, the differences between various tags are amplified as network

layers increase, making it easier to distinguish between tags with a high level of similarity.
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Further, the immunology c-ELISA image data format fully complies with the requirements of

high similarity. As the most widely used technique in immunoassays, c-ELISA based on the

microfluidic μPADs is the gold standard for detecting protein biomarkers in disease-related

clinical samples and can be applied to detect diseases such as HIV, COVID-19, and Lyme

disease etc. Then in recent years, μPADs of one kind of point-of-care (POC) diagnostics have

received a lot of attention for their ability to perform real-time, rapid on-site testing in non-

laboratory settings and provide accurate diagnostic results. Especially, the c-ELISA produces

color signals that are correlated with the specific binding of the enzyme-labeled antibody to

the sensing target molecule, with high color signals, representing high concentrations of

sensing target molecules. These color signals can be easily picked up by the naked eye or by

smartphones without the need for more sophisticated equipment. However, the differences in

color signals displayed by different concentrations of sensing target molecules are not obvious,

especially at low concentrations. Therefore, the ability to effectively distinguish color signal

differences of sensing target molecules remains an urgent requirement to improve the

performance of colorimetric μPADs analysis. Consequently, this problem can be well solved

by using 2D (MXenes) synaptic transistor combined with dynamic learning strategies in

residual neural networks.

In the Chapter 3, we for the first time report the deep residual learning strategy based on

dynamic rules and Al/InOx/MXenes/ZrOx-Li/Si/Al structure. The nonlinearity and symmetry

of LTP/LTD trends are successfully modulated by adopting the proposed three applied pulse

modes (Type I (Electrical stimulation), Type II (Light stimulation), and Type III (Combined

stimulation). Further, we constructed dataset by using a classic Rabbit IgG antigen as the c-

ELISA sensing target at μPAD. The feasibility of combining a dynamic deep neural strategy

with synaptic transistors is explored by analyzing image results of seven different

concentrations of c-ELISA for Rabbit IgG. The combined stimulation can obviously improve
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the standard accuracy (fixed learning rate) and shorten the update time in neuromorphic

computing. The robustness of dynamic tracking rules under different training structures

(ResNet and LSTM) and different classification tasks (ELISA, Cifar10, and Cifar100) are

further analyzed to verify the advantages of combined stimulation. Finally, bionic retina

combined with the dynamic neuromorphic residual deep learning strategy is successfully

implemented by adopting the highly homologous database of immunology. This mainly

depends on the high nonlinearity and symmetry after photoelectric hybrid control, which

effectively shortens the number of neural network training epochs. Meanwhile, the high

homology of c-ELISA also further highlights the advantages of residual deep learning, which

well matches the synaptic plasticity of device to practical applications.

The low energy consumption and high-speed parallel operation of non-volatile neural devices

are the competitive advantages compared with the separated chip. CIM has the same protocols

and standards for storage and memory, which is the top research to eliminate boundaries. In

recent years, RRAMs as memristors are integrated with microprocessors and peripheral

circuits to realize the AI)functionalities of neural networks. The NeuRRAM-a chip is an

advanced RRAM-based CIM chip that offers comparable inference accuracy to software

models with four-bit weights for various AI tasks. It also boasts energy efficiency that is twice

as good as previous state-of-the-art RRAM-CIM chips across different computational bit-

precisions. Additionally, the NeuRRAM-a chip allows for flexible reconfiguration of CIM

cores to accommodate diverse model architectures. From the perspective of energy

consumption, three-terminal neural devices have more potential to approach the power of

human brain (25W) in large-scale computing. However, due to the limitations and

deficiencies of array fabrication technology for three-terminal neural devices, synaptic

transistors as cross-bar weight combined with functional circuits are rarely explored to

completely simulate the neural network. And a great quantity of research focuses on the
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synaptic plasticity of a single device and the non-volatile regulation mechanism.3,8

Consequently, the bionic performance of the synaptic transistor is utilized to expand the

fusion circuit and match the high-performance network, which has a great contribution to

accelerating the improvement of the system of brain-like computing.

For the Chapter 4, the essence of brain-like computing is learning from the information

processing method or structure of biological neural systems and then developing the matching

computer theory, chip architecture, and application models and algorithms. Brain-like

computing is considered a significant research avenue in the post-Moore era, which has the

potential to break through a technological bottleneck in future intelligent computing. At

present, spiking neural networks, which closely replicate biological nervous systems, are a

promising technology due to their low-overhead online learning and energy-efficient

information encoding, stemming from their intrinsic local training principles. Thus, the

comprehensively deepening innovation of SNNs must be explored in all related fields,

including model algorithms, software, chip, and data. Several multiterminal synaptic devices,

including floating-gate synaptic transistors (STs), ferroelectric-gate STs, electrolyte-gate STs,

and optoelectronic STs, have been developed for producing synaptic plasticity. This plasticity

is classified based on factors such as the retention time and the number of pulses. These

devices effectively provide the ability to manipulate synaptic strength. Respectively, the

working principles of the above STs, including the thermal emission or quantum tunneling,

promote electrons into the floating gate, the interaction between the carriers in the channel

and the polarization of the ferroelectric insulator is known as the coulomb interaction,

electrostatic modulation and electrochemical doping and interfacial charge trapping through

photogenerated electron pairs. Moreover, the functional layer, comprising a variety of

materials (metal oxide, organic material, two-dimensional, quantum dot and perovskite), can
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enhance or expand the synaptic properties of a system with regard to energy consumption,

computing speed, and compatibility. However, up to now, the Al applications of MOFs in

non-volatile neural devices have been rarely reported. MOFs are a type of crystalline porous

material that are created by combining polytopic organic ligands with metal centers. These

MOFs possess several advantageous characteristics, such as highly ordered pores, a

substantial surface area, and a modifiable structure., which conveniently makes designing

controlled and multifunctional biological spiking neural devices uncomplicated. Further,

deeply introducing the core unit of SNN, SNNs commonly adopt LIF neurons as the

fundamental building blocks for constructing neural networks. The LIF neuron model is a

well-known type of neuron that offers a combination of the user-friendliness and simplicity of

IF model, along with the capability to simulate various physiological properties of biological

neurons, similar to the H-H neuron model. For synaptic devices, the LIF model is

computationally efficient due to its simplicity, making it suitable for large-scale simulations.

Then, the LIF model is biologically plausible and can simulate a wide range of physiological

properties of biological neurons, such as action potential generation, synaptic integration, and

adaptation. For the Al application, the LIF model is compatible with a range of learning rules

(LTP/LTD and STDP) and can be used to train SNNs for various tasks, such as classification,

pattern recognition, and control. Especially, the researches on constructing LIF neuron circuits

and composing forward propagation process of SNNs with output signal from synaptic weight

cross-bar are rarely reported. Therefore, the barrier from the extraction of single device

characteristics to the building of an integral neural network system needs more resources to

excavate. In terms of operation speed, the appropriate data type is conducive to improving the

working efficiency of the neural network. In addition, the advantage of SNNs is to process

complex temporal information which has obvious differences in the frequency domain.

SSVEP is a neural reaction that occurs in response to visual stimuli. When the eyes receive
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periodic flashes of light, the brain generates a stable electrical signal that oscillates at the

same frequency as the stimulus. This response can be recorded via EEG and is typically

observed as a periodic waveform at a specific frequency. SSVEP is widely used in the

development of BCIs, which enable individuals to control external devices by monitoring

their brain activity. For instance, in an SSVEP-based BCI system, users can select different

commands or controllers by fixating on visual stimuli that flash at distinct frequencies on a

computer screen. The system identifies the choice of the user by analyzing their EEG and

executes the corresponding operation. SSVEP-based BCIs have diverse applications in fields

such as virtual reality, game control, and medical diagnosis.

In the Chapter 4, we have proposed the new-type spiking neural network that utilizes ZIF-67

synaptic transistor, LIF neuron circuits, and SSVEP to achieve efficient and accurate neural

computations. Forward propagation in our network relies on time sequence coding,

accumulation of postsynaptic current, and the membrane potential threshold voltage of LIF

neurons. Backpropagation in the proposed SNNs involves determining the iteration update

rules and integrating the STDP curve to adjust the synaptic weights between neurons. The

functional diversity of the prepared artificial neurons can be clearly observed through the

results of STM/LTM, PPF, STDP, and LTP/LTD. More importantly, a LIF circuit capable of

producing a matching array output has been simulated, allowing the SNNs to efficiently

convert high-frequency information into sparse signals using the four blocks. Ultimately, the

task of recognizing EEG signals was achieved using the modified SNN, with the final

recognition rate stabilized at 95.2%.

In summary, At the beginning, we used basic metal oxide materials to make electrically

controlled synaptic thin film transistors, explore the basic synaptic plasticity and apply it to

identify electrical signals in combination with ANN. Furthermore, in order to control the

linearity and symmetry of the weight change process, we add Mxenes to make the ions
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orderly during migration. Then it deeply combines the characteristics of conductivity changes

under electrical and light stimuli, proposes dynamic learning rules and applies them to

immunological recognition. Finally, based on the previous two parts of the research, we

further explore neural devices based on MOF materials, which have particularly high

frequency screening characteristics. This feature can perfectly integrate SNN and embed its

three biological functions into the third generation neural network, thereby achieving filtering

and recognition of high-frequency information.
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Section 5.1 Future work

For many years, despite the rapid development of computer technology, scientists still

struggle to build efficient and exquisite brain biomimetic computers. Although we have

constructed several artificial synapses, these synapses have improved the efficiency of

computer simulation of the human brain and effectively promoted the development of this

field. But the human brain is an extremely complex structure. To process complex parallel

events with power close to the human brain, it is first necessary to conduct in-depth

exploration of brain science. And find suitable hardware to replace and imitate. Just exploring

plasticity has already invested a lot of effort and funds. Therefore, the next step is to delve

deeper into the connection between brain science and materials and devices.

On the other hand, parallel computing requires a large number of neural nodes, so the scale of

neural devices is also one of the factors determining the development of brain like computing.

The next step is to build on the previous work and further reduce the size of synaptic devices

to achieve large-scale manufacturing. Due to its excellent characteristics such as high

integration density, fast read and write, low power consumption, and perfect compatibility

with CMOS technology. However, the special application of "integration of memory and

computing" puts forward higher requirements for the device characteristics of memristor. The

existing device characteristics such as linearity, durability and discreteness are still not ideal.

Therefore, it is necessary to explore ways to improve the device performance, increase the

effective number of bits available for calculation, improve the accuracy of different resistance

state regulation, shorten the pulse time required for conductance regulation, and suppress the

conductance drift effect, reduce device fluctuations and fluctuations.
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