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Abstract: In this paper, we study the output tracking control problem based on the event-triggered
mechanism for cascade switched nonlinear systems. Firstly, an integral controller based on event-
triggered conditions is designed, and the output tracking error of the closed-loop system can converge
to a bounded region under the switching signal satisfying the average dwell time. Secondly, it is
proved that the proposed minimum inter-event interval always has a positive lower bound and the Zeno
behavior is successfully avoided during the sampling process. Finally, the numerical simulation is
given to verify the feasibility of the proposed method.
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1. Introduction

A switched system is a dynamic system consisting of a series of continuous or discrete subsystems
and a switching signal that coordinates the switching between these subsystems. This switching signal,
also known as the switching law, is a piecewise constant function that depends on the time or the state
of the system [1]. A switched system provides a uniform framework for mathematical model of many
physical or man-made systems displaying switching features, such as temperature control systems,
chemical procedure systems and mechanical manufacturing procedure systems [2–4]. In general, the
switched control has become one of the hottest topics in the control field.

The majority of control systems are nowadays implemented on digital platforms. The advantage is
that the digital controller is more intelligent and easier to implement complex algorithms. However,
there are some intractable problems to be solved. To this end, periodic sampling mechanisms are
proposed to solve related problems [5–7].

Time-triggered control systems are often implemented by periodic sampling of the sensors and zero-
order holder of the actuators [8–10]. The advantage of periodic sampling mechanism is that the system
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analysis process can be simplified by using a fixed sampling period [11]. Nevertheless, the control
input can only be updated at a fixed sampling instant, and the controller can only apply data at discrete
sampling moments. The real-time state of the system was not considered. Thus, when the amount of
data transmitted by the system is relatively larger, the sampling period will be relatively smaller, and
the sampling scheme will produce a large amount of redundant sampling information. This method
generally results in a waste of resources [12].

Therefore, an event-triggered mechanism (ETM) is considered as an effective way to reduce
communication burden [13–17]. The key of event-triggered mechanism is to reduce data transmission
load in the network, then the performance of the system will be improved, ensuring stability of the
system. A simple event-based PID controller was first presented in the late 1990s [18]. It explained
the idea of event-triggered mechanism from the perspective of simulation and experimentation, and
confirmed that the method can effectively replace periodic sampling control. Wang et al. [19]
investigated the consensus tracking problem for a class of uncertain high-order nonlinear systems
with event-triggered communication mechanism. It is shown that the output consensus tracking errors
will converge to a compact set with the presented distributed adaptive consensus control scheme and
the event-triggered communication mechanism. Based on the event-triggered mechanism, a
sampled-data-based controller was developed to achieve stabilization for the switched linear
system [20].

The importance of the study of tracking control for switched systems arises from the extensive
applications in robot tracking control, and guided missile tracking control, etc. [21–23]. Output
tracking control causes the output of the system to be as close as possible to track an external
reference signal by designing the controller. Yang et al. [24] proposed a state-dependent switching
rule and the switching regions to solve an output tracking problem for a class of delayed switched
linear systems via the state-dependent switching law and the dynamic output feedback control.
Pezeshki et al. [25] studied the problems of stability and H∞ model reference tracking performance
for a class of switched nonlinear systems with uncertain input delay. Tallapragada and Chopra [26]
assumed that the desired trajectory and the exogenous input to the reference system are uniformly
bounded. An event-based controller that not only guarantees uniform ultimate boundedness of the
tracking error, but also ensures non-accumulation of inter-execution times. Lu et al. [27] studied the
event-triggered optimal tracking control method for discrete-time nonlinear systems. For the
time-invariant desired trajectory, the tracking error is asymptotically stable. For the time-varying
desired trajectory, it is shown that the tracking error is uniformly ultimately bounded. The triggering
condition reduces communication costs by relaxing the restriction of the asymptotic stability of the
system.

At present, more and more results of switched systems based on event-triggered mechanism have
been obtained. However, there are few results about the tracking control. Tracking control as one of
the basic problems of control theory is necessary and meaningful to study for the switched nonlinear
system. Motivated by the above discussion, this paper mainly studied the event-triggered tracking
control for switched nonlinear systems by average dwell time method. The main contributions of this
paper are summarized as follows:

1) An integral controller combining the state of the system and tracking error integration is designed,
and the original system is converted into an augmented system. For the cascaded switched nonlinear
system, an event-triggered control scheme is presented, under which the communication resources
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are effectively saved. Based on the event-triggered mechanism, the output tracking error of a closed-
loop system can converge to a bounded region under the switching signal that satisfies the average
dwell time.

2) Using the event-triggered mechanism to study the tracking problem of a switched nonlinear
system, it is clear that infinite events may happen in a limited time interval. Therefore, the minimum
interval of inter-event lower bound is calculated, and the Zeno behavior is successfully excluded during
the sampling process.

2. Problem statement and preliminaries

Consider a continuous-time cascade switched nonlinear system

ẋ1 (t) = A1σ(t)x1 (t) + A2σ(t)x2 (t) + Bσ(t)uσ(t) (t)
ẋ2 (t) = f2σ(t) (x2 (t))
y (t) = Cx1 (t)

(2.1)

where x1 (t) ∈ Rn−d, x2 (t) ∈ Rd are the system states, y (t) ∈ R is the output, which tracks a given
reference signal yd (t) ∈ R. σ : [0 , ∞) → M = {1 , ..., N} denotes the switching signal, where M is a
finite index set. When σ (t) = i, the i−th subsystem is active; ui (t) ∈ Rm is the control input,
{(A1i, A2i, Bi,C) : i ∈ M} are constant matrices with appropriate dimensions, f2i (x2 (t)) are known
smooth vector fields with appropriate dimensions. The switching signal σ (t) can be represented by
the following switching sequence∑

=
{
xt0; (s0, t0) , (s1, t1) , ..., (si, ti) , ...si ∈ M, i ∈ N} (2.2)

which means that the si−th subsystem is active when t ∈ [ti, ti+1), where ti is the switching instant, xt0

is the initial state of the system.
The following assumption is necessary for the output of the system (2.1) to track the reference

signal yd (t).

Assumption 1. The desired output yd (t) is known, bounded and continuous, and max ||yd (t) || = ρ,
where ρ is a positive constant.

Now, consider the following integral controller

ż (t) = y (t) − yd (t)
u (t) = Kσx1 (t) + Lσz (t)

(2.3)

where Ki, Li, i ∈ M are constant matrices with appropriate dimensions.
Set x̄1 (t) = [x1 (t) , z (t)]T . The controller (2.3) can be rewritten as

ż (t) = C̄ x̄1 (t) − yd (t)
u (t) = K̄σ x̄1 (t)

(2.4)

where C̄ =
[

C 0
]
, K̄σ =

[
Kσ Lσ

]
.

Next, the event-triggered condition can be described as follows

eT (t) e (t) ≥ ηx̄T
1 (t) x̄1 (t)+ε (2.5)
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where e (t) = x̄1 (t)−x̄1
(
t̃k
)

means the event-triggered error, x̄1 (t) is real-time state, x̄1
(
t̃k
)

is last state
of event-triggered, η and ε are positive parameters.

Once the event-triggered condition (2.5) is satisfied, sampling occurs immediately. The sampling
mechanism obtains the latest sampled state information at sampling instants and transmits it to the
controller.

Denoting instant with an event happens by
{
t̃k
}∞
k=0. Without loss of generality, assume that the first

event occurs at the time t̃0. With the state x̄1
(
t̃k
)

sampled at the time t̃k, we can describe the next
sampling instant t̃k+1 by

t̃k+1 = inf
{
t > t̃k|eT (t) e (t) = ηx̄T

1 (t) x̄1 (t)+ε
}

(2.6)

In the above event-triggered mechanism,
[
t̃k, t̃k+1

)
is the event-triggered interval, and the controller

only transmits at the sampling time t̃k, in which the form of the controller is as follows

ż (t) = C̄ x̄1
(
t̃k
)
− yd (t)

u (t) = K̄σ x̄1
(
t̃k
) (2.7)

In the following, we consider the augmented system in the form of

˙̄x1 (t) = Ā1σ x̄1 (t) + Ā2σx2 (t) + B̄σe (t) + r (t)
ẋ2 (t) = f2σ (x2 (t))

(2.8)

Denote

Ā1σ =

[
A1σ + BσKσ BσLσ

C 0

]
, Ā2σ=

[
A2σ

0

]
, B̄σ =

[
−BσKσ −BσLσ
−C 0

]
, r (t) =

[
0

−yd (t)

]
.

To obtain the main results, we give a definition and a lemma firstly.

Definition 1. [28] If there exists a constant τd > 0 such that any two switches are separated by at
least τd, then τd is called the dwell time. If there exists a positive constant τa > τd and N0 ≥ 0 such
that Nσ (s, t) ≤ N0 +

t−s
τa

, ∀t ≥ s ≥ 0, then τa > 0 is called the average dwell time.

Lemma 1. [29] For any vectors a, b ∈ Rn, and positive definite matrix H ∈ Rn×n, the following
inequality holds

2aT b ≤ aT Ha + bT H−1b (2.9)

3. Main results

In this section, we consider to design the event-triggered controller and the switching rule for
system (2.8), under which the tracking error can converge to a bounded region. Then, we give a
strictly positive lower bound between any event-triggered interval.

3.1. Event-triggered tracking control

Now, we give the following main result in this section.
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Theorem 1. Consider the closed-loop system (2.8), for the given scalars ε > 0, η > 0, δ > 0, ξ > 0,
k1 > 0, k2 > 0, β > 0, λi > 0, if there exist matrices Pi > 0, Ki, Li, the function Wi (x2 (t)), ∀i ∈ M,
satisfying following inequalities[

ĀT
1iPi + PiĀ1i + PiB̄iB̄T

i Pi + ηI + PiPi + λiPi ĀT
2iPi

∗ (λiξk2 − ξβ) I

]
< 0 (3.1)

Pi ≤ δP j,∀i, j ∈ M (3.2)

k1||x2 (t) ||2 ≤ Wi (x2 (t)) ≤ k2||x2 (t) ||2 (3.3)
∂W (x2 (t))
∂ (x2 (t))

f2i (x2 (t)) ≤ −β||x2 (t) ||2 (3.4)

then for any switching signal σ satisfying

τa >
ln δ̂
λ
, δ̂ = max

{
δ,

k2

k1

}
, λ = min

i∈M
λi > 0 (3.5)

the tracking error of the system (2.8) will converge to a bounded region.

Proof. For the system (2.8), we construct a Lyapunov function as follows

V (t) = x̄T
1 (t) Pσ(t) x̄1 (t) + ξWσ(t) (x2 (t)) (3.6)

When the i−th subsystem is active, the derivative of Vi is

V̇i (t) = ˙̄xT
1 (t) Pi x̄1 (t) + x̄T

1 (t) Pi ˙̄x1 (t) + ξ ∂Wi(x2(t))
∂(x2(t)) ẋ2 (t)

= x̄T
1 (t)

(
ĀT

1iPi + PiĀ1i

)
x̄1 (t) + xT

2 (t) ĀT
2iPi x̄1 (t) + x̄T

1 (t) PiĀ2ix2 (t)
+ eT (t) B̄T

i Pi x̄1 (t) + x̄T
1 (t) PiB̄ie (t) + rT (t) Pi x̄1 (t)

+ x̄T
1 (t) Pir (t) + ξ ∂Wi(x2(t))

∂(x2(t)) f2i (x2 (t))

(3.7)

According to Lemma 1 and event-triggered condition (2.5), we know that

V̇i (t) ≤ x̄T
1 (t)

(
ĀT

1iPi + PiĀ1i

)
x̄1 (t) + 2x̄T

1 (t) PiĀ2ix2 (t) + eT (t) e (t)
+ x̄T

1
(t) PiB̄iB̄T

i Pi x̄1 (t)+rT (t) r (t) + x̄T
1 (t) PiPi x̄1 (t)

− ξβxT
2 (t) x2 (t)

≤ x̄T
1 (t)

(
ĀT

1iPi + PiĀ1i

)
x̄1 (t) + 2x̄T

1 (t) PiĀ2ix2 (t) + ηx̄T
1

(t) x̄1 (t)
+ x̄T

1
(t) PiB̄iB̄T

i Pi x̄1 (t)+rT (t) r (t) + x̄T
1 (t) PiPi x̄1 (t)

− ξβxT
2 (t) x2 (t) + ε

(3.8)

Therefore,

V̇i (t) + λiVi (t) ≤ x̄T
1 (t)

(
ĀT

1iPi + PiĀ1i + PiB̄iB̄T
i Pi + ηI + PiPi + λiPi

)
x̄1 (t)

+ x̄T
1 (t) PiĀ2ix2 (t) + xT

2 (t) ĀT
2iPi x̄1 (t)

+ (λiξk2 − ξβ) xT
2 (t) x2 (t) + ||r (t) ||2 + ε

(3.9)

According to inequality (3.9), we get

V̇i (t) + λiVi (t) − ||r (t) ||2 − ε ≤ φT (t)ψiφ (t) (3.10)
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where
φ (t) =

[
x̄T

1 (t) xT
2 (t)

]T

ψi =

[
ĀT

1iPi + PiĀ1i + PiB̄iB̄T
i Pi + ηI + PiPi + λiPi ĀT

2iPi

∗ (λiξk2 − ξβ) I

]
(3.11)

Then, we have
V̇i (t) ≤ −λiVi (t) + ε + ||r (t) ||2 (3.12)

Integrating (3.12) from ti to t , we can get

Vi (t) ≤ Vi (ti) e−λi(t−ti) +
(
ε + ||r (t) ||2

) ∫ t

ti
e−λi(t−s)ds (3.13)

Let λ = min
i∈M

λi > 0. Combining inequalities (3.2) with (3.6), we conclude

Vi ≤ δ̂V j,∀i, j ∈ M, δ̂ = max
{
δ,

k2

k1

}
(3.14)

According to inequality (3.13), we have

V (t) = Vi (t)
≤ δ̂Vi

(
t−i
)

e−λ(t−ti) +
(
ε + ||r (t) ||2

) ∫ t

ti
e−λ(t−s)ds

≤ δ̂Vi

(
t−i
)

e−λ(t−ti) +
ε+||r(t)||2

λ

(
1 − e−λ(t−ti)

)
≤ δ̂e−λ(t−ti)

(
e−λ(t−ti)Vi−1 (ti−1) + ε+||r(t)||2

λ

(
1 − e−λ(t−ti)

))
+

ε+||r(t)||2

λ

(
1 − e−λ(t−ti)

)
≤ δ̂2e−λ(t−ti−1)Vi−2

(
t−i−1

)
+

(ε+||r(t)||2)δ̂
λ

(
e−λ(t−ti) − e−λ(t−ti−1)

)
+

ε+||r(t)||2

λ

(
1 − e−λ(t−ti)

)
...

≤ e−λ(t−t0)δ̂Nσ(t0,t)V (t0) + (ε+||r(t)||2)δ̂Nσ(t1 ,t)

λ

(
e−λ(t−t2) − e−λ(t−t1)

)
+

(ε+||r(t)||2)δ̂Nσ(t2 ,t)

λ

(
e−λ(t−t3) − e−λ(t−t2)

)
+ . . . +

(ε+||r(t)||2)δ̂
λ

(
e−λ(t−ti) − e−λ(t−ti−1)

)
+

(ε+||r(t)||2)
λ

(
1 − e−λ(t−ti)

)
≤ e−λ(t−t0)δ̂Nσ(t0,t)

(
V (t0) − ε+||r(t)||2

λδ̂

)
+

(ε+||r(t)||2)(δ̂−1)
λ

Nσ(t2 ,t)∑
k=0

δ̂ke−λ(t−ti−k)

+
ε+||r(t)||2

λ

≤ e−
(
λ− ln δ̂

τa

)
(t−t0)

(
V (t0) − (ε+||r(t)||2)δ̂

λ

)
+

(ε+||r(t)||2)(δ̂−1)
λ

Nσ(t2 ,t)∑
k=0

ek(ln δ̂−λτa)

+
ε+||r(t)||2

λ

(3.15)

From (3.3) and (3.6), we know that

V (t) ≥ min
∀i∈M

(λ (Pi)) ||x̄1 (t) ||2 + ξk1||x2 (t) ||2 ≥ a||x̃ (t) ||2 (3.16)

V (t0) ≤ max
∀i∈M

(λ (Pi)) ||x̄1 (t0) ||2 + ξk2||x2 (t0) ||2 ≤ b||x̃ (t0) ||2 (3.17)

where a = min
{
min
∀i∈M

(λ (Pi)) , ξk1

}
, b = max

{
max
∀i∈M

(λ (Pi)) , ξk2

}
.
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Thus, Combining the inequalities (3.15)–(3.17), we have

||x̃ (t) ||2 ≤
b
a

e−
(
λ− ln δ̂

τa

)
(t−t0)

(
||x̃ (t0) ||2 −

ε + ρ

λδ̂b

)
+

(ε + ρ)
(
δ̂ − 1

)
aλ

Nσ(t2 ,t)∑
k=0

ek(ln δ̂−λτa) +
ε + ρ

aλ
(3.18)

In addition, the condition τa >
ln δ̂
λ

means that ln δ̂ − λτa < 0 . Thus, inequality (3.18) can guarantee
the uniform bounded of the error.

The tracking error can converge to a bounded region

Ω =
{
y (t) − yd (t) ≤ ||y (t) || + ||yd (t) || = c

√
Θ + ρ

}
(3.19)

where Θ = (ε+ρ)(δ̂−1)
aλ

Nσ(t2 ,t)∑
k=0

ek(ln δ̂−λτa) + ε+ρ

aλ , ∥ C ∥= c.

3.1.1. Minimum inter-event interval

From another perspective, we know that event-triggered control easily causes infinite triggered
behavior (i.e., Zeno behavior) within a finite time. Therefore, we need to show that there always exists
a positive lower bound of the minimum inter-event interval for the event-triggered sampling
condition (2.5).

Theorem 2. Consider the switched nonlinear system (2.1) and the controller (2.7). With the event-
triggered condition (2.5), the Zeno behavior can be avoided during the control process.

Proof. To exclude the Zeno behavior, namely, we need to find a lower bound on the triggered interval,
and show that infinite trigged event does not occur in a finite time. Suppose that n samplings happen
during an interval [ti, ti+1) and t̃k+1, . . . , t̃k+n are n sampling instants, respectively. For
∀t ∈

[
ti, t̃k+1

)
,
[
t̃k+1, t̃k+2

)
, . . . ,

[
t̃k+n, ti+1

)
, the state x̄1

(
t̃k+l

)
are constants and e (t) = x̄1 (t) − x̄1

(
t̃k+l

)
holds for all l = 1, 2, . . . , n. Hence, for ∀t ∈ [ti, ti+1), we can obtain that

ė (t) = Ā1i x̄1 (t) + Ā2ix2 (t) + B̄ie (t) + r (t)
= Ā1i

(
e (t) + x̄1

(
t̃k+l

))
+ Ā2ix2 (t) + B̄ie (t) + r (t)

=
(
Ā1i + B̄i

)
e (t) + Ā1i x̄1

(
t̃k+l

)
+ Ā2ix2 (t) + r (t)

(3.20)

Let Di = Ā1i + B̄i. Therefore

ė (t) = Die (t) + Ā1i x̄1
(
t̃k+l

)
+ Ā2ix2 (t) + r (t) (3.21)

Integral to both sides of the Eq (3.21)

e (t) = eDi(t−t̃k+l)e
(
t̃k+l

)
+

∫ t

t̃k+l

eDi(t−s)
(
Ā1i x̄1

(
t̃k+l

)
+ A2ix2 (s) + r (s)

)
ds (3.22)

Due to e
(
t̃k+l

)
= x̄1

(
t̃k+l

)
− x̄1

(
t̃k+l

)
, we have

e (t) =
∫ t

t̃k+l

eDi(t−s)
(
Ā1i x̄1

(
t̃k+l

)
+ A2ix2 (s) + r (s)

)
ds (3.23)
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Therefore,

||e (t) || ≤
∫ t

t̃k+l

e||Di ||(t−s)
||Ā1i||||x̄1

(
t̃k+l

)
||ds +

∫ t

t̃k+l

e||Di ||(t−s) (||A2i||||x2 (s) || + ||r (s) ||) ds (3.24)

According to (3.18), we can find a positive constant ℓ such that

||e (t) || ≤
∫ t

t̃k+l
e||Di ||(t−s)||Ā1i||||x̄1

(
t̃k+l

)
||ds +

∫ t

t̃k+l
e||Di ||(t−s)

(
||A2i||

√
ℓ + ||r (s) ||

)
ds

≤ ϕ
(
t̃k+l

) ∫ t

t̃k+l
e||Di ||(t−s)ds

(3.25)

where ϕ
(
t̃k+l

)
=||Ā1i||||x̄1

(
t̃k+l

)
|| + ||A2i||

√
ℓ + ρ.

If ||Di|| , 0, then, we have

||e (t) || ≤
ϕ
(
t̃k+l

)
||Di||

(
e||Di ||(t−t̃k+l) − 1

)
(3.26)

We know that the next event will happen when the event-triggered mechanism (2.6) is satisfied.
Thus, let T = t − t̃k+l denote the lower bound of inter-event interval, we have

ϕ
(
t̃k+l

)
||Di||

(
e||Di ||(t−t̃k+l) − 1

)
≥

√
η||x̄1 (t) ||2+ε (3.27)

e||Di ||T ≥
||Di||

√
η||x̄1 (t) ||2+ε
ϕ
(
t̃k+l

) + 1 (3.28)

T ≥
1
||Di||

ln

 ||Di||
√
η||x̄1 (t) ||2+ε
ϕ
(
t̃k+l

) + 1

 (3.29)

If ||Di||=0, then ϕ
(
t̃k+l

) (
t − t̃k+l

)
≥

√
η||x̄1 (t) ||2+ε

T ≥

√
η||x̄1 (t) ||2+ε
ϕ
(
t̃k+l

) (3.30)

It is known that Zeno behavior does not occur in the event-triggered control of the nonlinear
switched system.

4. Simulation example

In this section, we will show the feasibility of the proposed methods by applying it to a numerical
example.

Consider a cascade switched nonlinear system

ẋ1 (t) = A1σx1 (t) + A2σx2 (t) + Bσuσ (t)
ẋ2 (t) = f2σ (x2 (t))
ż (t) = Cx1 (t) − yd (t)

with
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A11 =

[
−4 0
−1 −3

]
, A21 =

[
0.5
1

]
, B1 =

[
0.3
2

]
, A12 =

[
−3 −1
0 −5

]
, A22 =

[
1

0.6

]
, B2 =

[
1
2

]
,

C =
[

0.3 0.25
]
, f21 (x2) = −x2 − x2sin2x2, f22 (x2) = −2x2 − x2cos2x2, yd (t) = 0.4 sin (2.5t), let

η = 0.5, δ = 1.2, ξ = 1, λ0 = 1.8, ε = 0.01, λ = 0.4, β = 1.3, k1 = 0.3, k2 = 0.5.

Solving the inequality (3.1) and (3.2) yields

P1 =


0.9650 −0.1439 0.0185
−0.1439 0.7264 0.1105
0.0185 0.1105 0.5591

 , P2 =


0.6125 0.1615 −0.2086
0.1615 0.4756 0.3293
−0.2086 0.3293 0.2890



Consequently, the controller gains are obtained as

K̄1 =
[

0.5311 1.3013 0.2715
]
, K̄2 =

[
0.7921 1.2141 0.3755

]
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Figure 1. Output of the switched system and the reference signal.
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Figure 2. Control input of the switched system.
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Figure 3. Inter-event interval of ETM.
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We obtain the average dwell time τ∗a =
ln δ̂
λ
= 1.2771. Meanwhile, by solving inequalities (3.19) in

Theorem 1, we get Ω = 2.4117. Figure 1 shows that the tracking error can converge to this region.
Figure 2 displays the control input of the system. The event-triggered controller can ensure the
dynamic performance of the system while reducing the number of system information transmission
and the calculation amount of the controller. Figures 3 and 4 depict the event-triggered interval and
time-triggered instants, respectively. Compared to the time-triggered scheme, 67% data information is
used to track the reference signal, which proves that the designed event-triggered scheme in (2.5) can
effectively reduce the number of sampling and save the communication resource effectively. Figure 5
demonstrates the switching signal. This simulation example demonstrates the effectiveness of the
proposed method in this paper.

5. Conclusions

In this paper, the tracking control of cascaded switched nonlinear system is studied by an event-
triggered mechanism. By using the average dwell time method, the sufficient conditions for the output
tracking error of the system can converge to a bounded region are given. Moreover, this paper proves
that the proposed minimum event interval is strictly positive, excluding the Zeno behaviour.

Although the event-triggered mechanism has many advantages, there are still many problems to be
solved, such as the event-triggered tracking control for stochastic switched system, the event-triggered
tracking control of switching system under the state dependent switching signal.
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