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Mars has a lower atmospheric density than Earth, and the speed of sound is lower due to its

atmospheric composition and lower surface temperature. Consequently, Martian rotor blades

operate in a low-Reynolds-number compressible regime that is atypical for terrestrial helicopters.

Non-conventional airfoils with sharp edges and flat surfaces have shown improved performance

under such conditions, and second-order accurate Reynolds-Averaged Navier-Stokes (RANS)

and Unsteady RANS (URANS) solvers have been combined with Genetic Algorithms to optimize

them. However, flow over such airfoils is characterized by unsteady roll-up of coherent vortices

which subsequently break down / transition. Accordingly, RANS/URANS solvers have limited

predictive capability, especially at higher angles of attack where the aforementioned physics are

more acute. To overcome this limitation, we undertake optimization using high-order Direct

Numerical Simulations (DNS). Specifically, a triangular airfoil is optimized using DNS. Multi-

objective optimization is performed to maximize lift and minimize drag, yielding a Pareto front.

Various quantities including lift spectra and pressure distributions are analyzed for airfoils

on the Pareto front to elucidate flow physics that yield optimal performance. The optimized

airfoils that form the Pareto front achieve up to a 48% increase in lift or a 28% reduction in

drag compared to a reference triangular airfoil studied in the Mars Wind Tunnel at Tohoku

University. The work constitutes the first use of DNS for aerodynamic shape optimization.

I. Introduction
Throughout the last century, designers have worked to optimize airfoils for a wide range of terrestrial conditions.

However, Martian atmospheric density is less than 1% of that on Earth, and Martian surface temperature and atmospheric

composition lead to a lower speed of sound. Consequently, rotors for a Martian helicopter must operate in a low

Reynolds number compressible regime that is seldom encountered on Earth, and for which conventional terrestrial

airfoils have not been optimized.

The design of airfoils for Martian helicopters is a new and emerging field, recently catalyzed by the success of
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Ingenuity, which flew on Mars for the first time in 2021 [1]. Studies by Munday et al. [2] and Konig et al. [3] have

investigated the use of airfoils with sharp leading edges and flat surfaces that rely on unsteady lift generation mechanisms.

These induce earlier separation compared to conventional airfoils, leading to an unsteady roll-up of coherent vortices on

the suction side of the airfoil, which improves performance. Studies by Koning et al. [4] and Sasaki et al. [5] have also

looked to optimize such airfoils by combining Reynolds-Averaged Navier Stokes (RANS) or unsteady RANS (URANS)

solvers with Genetic Algorithms (GA). However, given the nature of the flow — which is unsteady, vortex-dominated,

and transitional — RANS/URANS solvers have limited predictive capability, especially at higher angles of attack where

the aforementioned flow physics are more acute [3, 4].

The current study overcomes this limitation by optimizing Martian airfoils using high-order accurate Direct

Numerical Simulations (DNS). Specifically, a triangular airfoil is optimized at an angle of attack 𝛼 = 12◦ with a

chord-based Reynolds number 𝑅𝑒 = 3, 000 and Mach number 𝑀 = 0.15 using three-dimensional (3D) DNS with

periodic boundary conditions in the spanwise direction, via PyFR [6]. The chosen Reynolds number, Mach number and

angle of attack 𝛼 are representative of conditions at the root/mid-section of a rotor blade on a Martian helicopter. Flow

physics associated with the optimal airfoils is analyzed, and compared with flow over a triangular airfoil previously

studied by Munday et al. [2] and Caros et al. [7], henceforth referred to as the Reference Airfoil, to understand how the

optimal airfoils achieve improved performance.

Sec. II details the methodology for the current work. Subsequently, Sec. III presents the results and analysis of the

associated flow physics. Future work is presented in Sec. IV and finally conclusions are drawn in Sec. V.

II. Methodology

A. Optimization

1. Overview

A triangular airfoil is optimized at an angle of attack of 𝛼 = 12◦, a chord-based Reynolds number of 𝑅𝑒 = 3000,

and a Mach number of 𝑀 = 0.15, using 3D DNS with periodic boundary conditions in the spanwise direction. Genetic

Algorithms (GA) [8] are used for the optimization. These algorithms are based on the theory of evolution and make use

of genetic operators to advance towards the global optimum. Specifically, GAs explore the design space to find the fittest

set of design variables for the given objective functions by evolving populations of individuals through generations.

Although these algorithms require multiple evaluations to converge, they are considered suitable for problems with

multiple objectives and nonlinear objective spaces with various local optima. Moreover, they do not require gradient

information, which is challenging to obtain for the chaotic unsteady flow solutions produced by DNS. The particular GA

used here is the Non-dominated Sorting Genetic Algorithm II (NSGA-II) by Deb et al. [9] implemented in Pymoo [10];

an open-source Python-based framework for single- and multi-objective optimization.

2



Figure 1 shows a flowchart of the optimization process. Prior to undertaking the 3D DNS optimization, a precursor

two-dimensional (2D) DNS optimization is run, using 2D DNS to evaluate the objective functions. The result of the

precursor 2D DNS optimization is then taken as the initial population for the 3D DNS optimization. Whilst it is well

established that 2D DNS miss important flow physics when 𝛼 = 12◦ [7], we anticipate that enough is retained such

that using the result of the precursor 2D DNS optimization as the initial population for the 3D DNS optimization will

accelerate convergence of the latter, and thus reduce the overall cost (since 2D DNS are of order 100× cheaper that 3D

DNS).

Fig. 1 Flowchart of optimization process.

2. Design variables and objective functions

The design variables are the 𝑥 and 𝑦 coordinates of airfoil apex, 𝑥𝑎 and 𝑦𝑎, respectively, as shown in Figure 2. The

coordinates are measured from the leading edge of the airfoil when 𝛼 = 0◦. Design space constraints are applied such

that

0.1 ≤ 𝑥𝑎 ≤ 0.9, 0.02 ≤ 𝑦𝑎 ≤ 0.4, 𝑦𝑎 − 𝑥𝑎 ≤ 0, 𝑥𝑎 + 𝑦𝑎 − 1 ≤ 0. (1)

These avoid unfeasible/unrealistic geometries such as airfoils that are too thin to manufacture, or airfoils with very blunt

leading/trailing edges, whilst retaining substantive coverage of the design space (see Figure 3).

The objective functions are the time-averaged lift coefficient, which is to be maximized, and the time-averaged drag

coefficient, which is to be minimized.
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Fig. 2 Triangular airfoil with design variables 𝑥𝑎 and 𝑦𝑎.

3. Optimization Parameters

The optimization begins with an initial population of individuals. Each individual is a set of apex coordinates

representing an airfoil shape. The population size is constant, meaning that the optimum individuals of generation 𝑛

might be replaced by better offspring from generation 𝑛 + 1. The NSGA-II uses an elitist-preserving approach, meaning

that the best individuals are not discarded, they are transferred directly to the next generation. This approach speeds up

the performance of the GA significantly and helps prevent the loss of good solutions once they are found. The number

of offspring determines how many new individuals are produced by the optimizer and evaluated at each generation. In

this work, we have selected a population size of 30 individuals and 15 offspring based on the nature and availability

of the computational resources. The environmental survival operator used in this work is Tournament Selection [11].

When generating the offspring, evolutionary operators (crossover and mutation) are applied to balance exploitation and

exploration of the solution space. The operators used in this work are Simulated Binary Crossover [12] and Polynomial

Mutation [12]. At each generation a restriction step is applied, in which any individuals violating the design space

constraints were moved to the nearest point within the design space.

4. Initial Sampling

The initial population of the precursor 2D DNS optimization is obtained via a Latin Hypercube Sampling of the

region 0 < 𝑥𝑎 < 1, 0.02 < 𝑦𝑥 < 0.4, followed by a restriction step in which any individuals violating the design space

constraints were moved to the nearest point within the design space.

Figure 3 shows the design space along with the initial population for the precursor 2D DNS optimization. The initial

population of the 3D DNS optimization is the Pareto front at the 25th generation of the precursor 2D DNS optimization.

5. Termination and Convergence

The precursor 2D DNS optimization is terminated after 25 generations, and the 3D DNS optimization is terminated

after 16 generations. Convergence is assessed using a hypervolume metric [13], which is calculated as the area

dominated by the Pareto front at a particular generation with respect to a reference point. Hypervolume is a widely

used performance metric [14] since it is Pareto compliant [15] and captures both convergence and diversity in a single
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Fig. 3 Design space (green) along with initial population for the precursor 2D DNS optimization (grey dots).

value [16]. Figure 4 shows hypervolume, normalized by its value at the final generation, as a function of the number of

generation for the precursor 2D DNS optimization and the 3D DNS optimization. Note how the 3D DNS optimization

converges faster than the precursor 2D DNS optimization, since the former is seeded with the result of the latter.
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Fig. 4 Normalized hypervolume convergence as a function of the number of generations for the precursor 2D
DNS optimization and the 3D DNS optimization, where the latter was initialized with the result of the former.
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B. Objective Function Evaluation

1. Overview

The objective functions are the time-averaged lift and drag coefficients, which are evaluated by automatically

meshing the geometry with Gmsh [17], solving the flow physics with PyFR [6], and extracting the time-averaged

aerodynamic forces.

2. Governing Equations

PyFR [6] solves the compressible Navier-Stokes equations for an ideal gas with constant viscosity. These can be

written in 3D as
𝜕u
𝜕𝑡

+ ∇ · f = 0, (2)

where u = u(x, 𝑡) = (𝜌, 𝜌𝑣𝑥 , 𝜌𝑣𝑦 , 𝜌𝑣𝑧 , 𝐸) is the solution with 𝜌 the fluid density, v = (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) the fluid velocity and

𝐸 the total energy per unit volume, and where f = f (u,∇u) = fi − fv is the flux, with fi the inviscid flux given by

fi =



𝜌𝑣𝑥 𝜌𝑣𝑦 𝜌𝑣𝑧

𝜌𝑣2
𝑥 + 𝑝 𝜌𝑣𝑦𝑣𝑥 𝜌𝑣𝑧𝑣𝑥

𝜌𝑣𝑥𝑣𝑦 𝜌𝑣2
𝑦 + 𝑝 𝜌𝑣𝑧𝑣𝑦

𝜌𝑣𝑥𝑣𝑧 𝜌𝑣𝑦𝑣𝑧 𝜌𝑣2
𝑧 + 𝑝

𝑣𝑥 (𝐸 + 𝑝) 𝑣𝑦 (𝐸 + 𝑝) 𝑣𝑧 (𝐸 + 𝑝)



, (3)

in which 𝑝 is the pressure, which for an ideal gas is given by

𝑝 = (𝛾 − 1)
(
𝐸 − 1

2
𝜌∥v∥2

)
, (4)

with 𝛾 = 𝑐𝑝/𝑐𝑣 , where 𝑐𝑝 and 𝑐𝑣 are specific heat capacities at constant pressure and volume, respectively, and fv is the

viscous flux given by

fv =



0 0 0

T𝑥𝑥 T𝑦𝑥 T𝑧𝑥

T𝑥𝑦 T𝑦𝑦 T𝑧𝑦

T𝑥𝑧 T𝑦𝑧 T𝑧𝑧

𝑣𝑖T𝑖𝑥 + Δ𝜕𝑥𝑇 𝑣𝑖T𝑖𝑦 + Δ𝜕𝑦𝑇 𝑣𝑖T𝑖𝑧 + Δ𝜕𝑧𝑇



, (5)

6



where the stress-energy tensor is given by

T𝑖 𝑗 = `(𝜕𝑖𝑣 𝑗 + 𝜕 𝑗𝑣𝑖) − 2
3
`𝛿𝑖 𝑗∇ · v, (6)

with ` the dynamic viscosity, Δ = `𝑐𝑝/𝑃𝑟, with 𝑃𝑟 the Prandtl number, and 𝑇 is the static temperature, which for an

ideal gas is given by

𝑇 =
1
𝑐𝑣

1
𝛾 − 1

𝑝

𝜌
. (7)

In the current study values of 𝛾 = 1.4 and 𝑃𝑟 = 0.71 were employed.

We note that the continuum approximation is valid when 𝑀 = 0.15 and 𝑅𝑒 = 3, 000 since the Knudsen number

𝐾 ≈ 𝑀/√𝑅𝑒 < 0.01 [18, 19].

3. Solver and Numerical Method

PyFR is a cross-platform solver based on the high-order Flux Reconstruction approach of Huynh [20]. In the present

work, fourth-order polynomials were used to represent the solution within each element of the mesh, thus nominally

achieving fifth-order accuracy in space. A Rusanov Riemann solver was used to calculate the inter-element inviscid

fluxes and the Local Discontinuous Galerkin approach was used to calculate the inter-element viscous fluxes. An explicit

5th stage 4th order Runge-Kutta time-stepping scheme, specifically version RK45[2R+] [21], with a fixed time-step was

employed to advance the solution in time. These schemes are designed to have large time step stability limits, and have

been widely adopted in a range of other high-order simulations [22, 23]. No anti-aliasing was employed, and all runs

were performed using double-precision arithmetic. All simulations were undertaken using PyFR v1.15.0.

4. Computational Domain and Mesh

The triangular airfoils are defined to have a chord of 1.0 and infinitely sharp leading and trailing edges. The origin in

the streamwise-vertical 𝑥𝑦-plane is located at the leading edge of the airfoil when 𝛼 = 0◦. The airfoil is rotated about its

trailing edge to achieve an angle of attack of 𝛼 = 12◦. The dimensions of the computational domain are 𝑥 ∈ [−10, 20]
in the streamwise direction, 𝑦 ∈ [−10, 10] in the vertical direction and for the 3D DNS optimization 𝑧 ∈ [0, 0.6] in the

spanwise direction. These dimensions are based on the computational study of Caros et al. [7], which shows that a

spanwise extent of 0.6 chords is required in order to avoid constraining the breakdown of coherent vortices at angles of

attack 𝛼 > 7◦ for a triangular airfoil.

Gmsh [17] was used to automatically mesh the domain around each airfoil proposed by the optimizer. Gmsh is an

open-source meshing tool that can be used to create unstructured meshes around complex geometries. A notable feature

of Gmsh is that it can be scripted via a Python API.

In terms of topology, for the precursor 2D DNS optimization a structured quadrilateral mesh is located adjacent to
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the airfoil surface, and an additional structured quadrilateral mesh is located in the wake region, extending a distance of

6.0 downstream of the airfoil. The remainder of the domain is then tessellated with an unstructured mix of quadrilaterals

and triangles. For the 3D DNS optimization meshes are produced by extruding 2D meshes of the form described above

by 18 elements in the span-wise 𝑧 direction, generating hexahedra and triangular prisms throughout the domain. Figure

5 shows a streamwise-vertical 𝑥𝑦-plane view of the mesh for the Reference Airfoil with 𝛼 = 12◦.

In terms of element count, for the precursor 2D DNS optimization meshes had approximately ∼ 6 × 103 elements

and ∼ 16 × 103 degrees of freedom per equation, and meshes for the 3D DNS optimization had ∼ 155 × 103 elements

and ∼ 19.4 × 106 degrees of freedom per equation. These were similar to or greater than those used by Caros et al.

[7] for the Reference Airfoil — which were themselves determined via a grid independence study, and were found to

achieve good agreement with previously published DNS and experiments by Munday et al. [2]. Moreover, for four

representative airfoils on the Pareto Front, DNS resolution was verified a posteriori in Appendix A. Specifically, it was

determined that 3.5[ > Δ throughout the wake, where

Δ =
3√𝑉
𝑝 + 1

(8)

is an estimate of the local solution point spacing, with 𝑉 the local element volume and 𝑝 the polynomial order used to

represent the solution within each element of the mesh, and

[ =

(
a3

Y

)1/4
(9)

is the Kolmogorov length scale, with a the kinematic viscosity and

Y = 2a𝑆𝑖 𝑗𝑆𝑖 𝑗 (10)

the dissipation rate, where 𝑆𝑖 𝑗 is the fluctuating rate-of-strain tensor. This is within the threshold required to achieve

DNS resolution given the simulations are nominally fifth-order accurate in space [24].

5. Boundary conditions

A characteristic char-riem-inv PyFR boundary condition with density 𝜌 = 1.0, velocity v = {𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧} =

{1.0, 0.0, 0.0} and pressure 𝑝 = 31.746, is applied at the 𝑥 = −10 inflow, 𝑥 = 20 outflow, 𝑦 = −10 bottom, and 𝑦 = 10

top boundaries to achieve 𝑀 = 0.15 and 𝑅𝑒 = 3, 000. An impermeable no-slip adiabatic no-slp-adia-wall PyFR

boundary condition is applied at the airfoil surface. A periodic boundary condition is applied at the side planes. No

turbulence is injected at the inflow.

Note that for an initial 5𝑡𝑐 of the 3D DNS, the velocity prescribed at the inflow plane is modified to have a
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Fig. 5 Streamwise-vertical 𝑥𝑦-plane view of mesh for the Reference Airfoil with 𝛼 = 12◦. Reused with permission
from L. Caros [7]. Copyright 2022, Lidia Caros.

time-dependent component as follows v = {1 + 0.2 sin(100𝑡), 0.2 sin(100𝑡), 0.2 sin(100𝑡)} in order to trigger flow

instabilities, with 𝑡𝑐 = 1.0/𝑣∞ where 𝑣∞ is the free-stream velocity.

6. Data extraction

At 𝑡 = 0, the simulations are initialized with uniform density 𝜌 = 1.0, velocity v = {𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧} = {1.0, 0.0, 0.0} and

pressure 𝑝 = 31.746 throughout the domain. Simulations are advanced a period 𝑡𝑡 to remove initial transients and then

for a further 𝑡𝑒, henceforth referred to as the Data Extraction Period, during which data is extracted for analysis. For the

precursor 2D DNS optimization 𝑡𝑡 = 50𝑡𝑐, 𝑡𝑒 = 50𝑡𝑐, and for the 3D DNS optimization 𝑡𝑡 = 75𝑡𝑐, 𝑡𝑒 = 75𝑡𝑐.

Instantaneous lift and drag coefficients are defined as

𝐶𝐿 =
𝐹𝐿
𝑞∞

, 𝐶𝐷 =
𝐹𝐷
𝑞∞

, (11)

respectively, where 𝐹𝐿 and 𝐹𝐷 are the instantaneous forces on the airfoil per unit area measured as the sum of viscous

and pressure forces in the 𝑦 and 𝑥 directions, respectively, and 𝑞∞ is obtained via

𝑞∞ =
1
2
𝜌∞𝑣2

∞ (12)
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where 𝜌∞ is the free-stream density. Time-averaged lift and drag coefficients 𝐶𝐿 and 𝐶𝐷 , can then be obtained by

time-averaging 𝐶𝐿 and 𝐶𝐷 , respectively, over the Data Extraction Period.

Note that values for 𝑡𝑡 and 𝑡𝑒 were selected apriori for the precursor 2D DNS optimization and the 3D DNS

optimization by manually analyzing the behaviour of 𝐶𝐿 and 𝐶𝐷 for each airfoil in each respective initial population.

For reference, Figure 6 plots 𝐶𝐿 as a function of time for a subset of nine airfoils from the initial population of the

3D DNS optimization. Moreover, the behaviour of 𝐶𝐿 and 𝐶𝐷 was manually analysed a posteriori for every airfoil to

ensure 𝑡𝑡 and 𝑡𝑒 were suitable. However, we note that such a manual process may result in inefficiencies and/or potential

averaging errors. Future work should investigate how to automatically determine 𝑡𝑡 and 𝑡𝑒 on-the-fly for each simulation

as per Bergmann et al. [25].

Fig. 6 𝐶𝐿 as a function of time for a subset of 9 airfoils from the initial population of the 3D DNS optimization.
The horizontal red line marks 𝐶𝐿 . The vertical dotted lines mark the start and end of the Data Extraction Period.

C. Deployment and Costs

The optimization was performed on Piz Daint at the Swiss National Supercomputing Centre (CSCS). Pymoo and

Gmsh were invoked on the login node (Intel Xeon E5-2650 v3 2.30GHz CPU) via Bash scripts, PyFR was invoked on

the compute nodes (Tesla P100-16GB GPUs). The precursor 2D DNS optimization was run for 25 generations, with 15

individuals in each generation except for the first, which had 30 individuals. Each of the 2D DNS took approximately 2

hours to run on 1 Tesla P100-16GB GPU, therefore, the precursor 2D DNS optimization required approximately 780

GPUhs. The 3D DNS optimization was run for 16 generations, with 15 individuals in each generation except for the

first, which had 30 individuals. Each of the 3D DNS took approximately 23 hours to run on 36 Tesla P100-16GB GPUs,

10



therefore, the 3D DNS optimization required approximately 88,000 GPUhs. Note that the 3D DNS were run on 15 Tesla

P100-16GB GPUs in order to achieve a run time below 24h, which is the maximum job duration limit on Piz Daint.

This avoided re-queuing to complete a given run. In total, the overall cost of the optimization was ∼ 200,000 GPUhs.

III. Results

A. Optimal airfoils

Figure 7a plots apex locations in the 𝑥𝑎, 𝑦𝑎 design space for the optimal airfoils from the 15th generation of the final

3D DNS optimization, along with the apex location for the Reference Airfoil. The optimal airfoils are thicker than the

Reference Airfoil, and their apexes are shifted downstream. Figure 7b plots the Pareto front of optimal airfoils in the 𝐶𝐿 ,

𝐶𝐷 objective space from the 15th generation of the final 3D DNS optimization. All the airfoils on the Pareto front have

improved 𝐶𝐿 and 𝐶𝐷 compared to the Reference Airfoil. Specifically, 𝐶𝐿 is increased by up to 48% and 𝐶𝐷 is reduced

by up to 28%.

Based on associated flow characteristics, four distinct groups of airfoils can be identified on the Pareto front, defined

as per Table 1. A detailed discussion of the flow physics associated with each group, including analysis of Q-criterion

isosurfaces, lift coefficient 𝐶𝐿 , time-averaged pressure coefficient 𝐶 𝑝 , time-averaged velocity line integral convolutions

(LICs) and time-averaged skin friction 𝐶 𝑓 , is presented below.

Group CL and CD
Spanwise

breakdown
𝐶𝐿 temporal
behaviour

𝐶 𝑝 distribution 𝐶 𝑓 distribution

1 Lowest
Rib-roller

vortex structure
Low amplitude with

dominant freq. St ≈ 1.1
Plateau with

early fall
Change of sign at

trailing edge

2 Intermediate
Rib-roller

vortex structure
Low amplitude with

dominant freq. St ≈ 1.1
Plateau with

later fall
Change of sign at apex

and trailing edge

3 Intermediate
Spanwise

unstructured
High amplitude with

dominant freq. St ≈ 0.65
Plateau with

later fall
Change of sign at apex

and trailing edge

4 Highest
Spanwise

unstructured
High amplitude with

dominant freq. St ≈ 0.65
Plateau with

later fall
Change of sign at

trailing edge

Reference
Airfoil

-
Spanwise

unstructured

High amplitude with
dominant freq. St ≈ 1.1 and
energy content at low freq.

Plateau with
smooth fall and
lower suction

Change of sign at
trailing edge and

weaker recirculation

Table 1 Flow characteristics associated with each of the four distinct groups of airfoils on the Pareto front,
along with flow characteristics associated with the Reference Airfoil.

B. Q-criterion Isosurfaces and Lift Coefficient

Figure 8 shows, for a representative airfoil of each group and the Reference Airfoil, instantaneous Q-criterion

isosurfaces colored by velocity magnitude |𝑣 | (left), 𝐶𝐿 time series for the Data Extraction Period (middle) and 𝐶𝐿
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Fig. 7 Plots of 𝑥𝑎, 𝑦𝑎 for the initial population (hollow circles), and optimal airfoils (solid circles), for the 3D
DNS optimization (a). Plots of 𝐶𝐿 , 𝐶𝐷 for the initial population (hollow circles), and optimal airfoils (solid
circles), forming the Pareto front, for the 3D DNS optimization (b). Optimal airfoils are from the 15th generation
of the 3D DNS optimization.

spectra for the Data Extraction Period (right).

The Q-criterion isosurfaces show the inherently unsteady nature of the flow over all airfoils, with separation from the
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sharp leading edge and subsequent roll-up of large coherent structures on the suction side of the airfoils. In all cases, the

flow breaks down in the spanwise direction and becomes three-dimensional. For Groups 1 and 2, it is easy to identify

the rib-roller vortex structure in the wake, typical of a mixing layer [26], with periodically repeating cells of span ∼0.3

chords. For Groups 3 and 4, the breakdown is unstructured, with no repeating spanwise structures. The 𝐶𝐿 time series

also reflect the unsteadiness of the flow that is characteristic of these sharp-leading-edge airfoils, with large-amplitude

oscillations corresponding to the vortex roll-up. Groups 1 and 2 show lower amplitude fluctuations than Groups 3 and 4.

A correlation between large amplitude fluctuations and high 𝐶𝐿 can be identified from the plots, with Groups 3 and 4

having the highest of both. The spectra show the dominant frequencies of the 𝐶𝐿 time series for the representative

airfoils of each group. Groups 1 and 2 have a dominant frequency at 𝑆𝑡 ≈ 1.1, while Groups 3 and 4 have a dominant

frequency at 𝑆𝑡 ≈ 0.6. The Reference Airfoil induces similar flow behaviour to Groups 3 and 4 in terms of span-wise

breakdown and 𝐶𝐿 time series. However, its dominant frequency of 𝑆𝑡 ≈ 1.1 is closer to that of Groups 1 and 2.

C. Pressure Coefficient Distribution

Time-averaged pressure coefficient 𝐶 𝑝 is defined as

𝐶 𝑝 =
𝑝 − 𝑝∞
𝑞∞

(13)

where 𝑝 is the time-averaged static pressure, 𝑝∞ is the free-stream static pressure and 𝑞∞ is the free-stream dynamic

pressure obtained via Eq. (12). Figure 9 plots mid-span 𝐶 𝑝 distributions on the surface of a representative airfoil from

each group on the Pareto front, and the Reference Airfoil, as a function of 𝑥 = 𝑥/𝑎, where 𝑎 is the 𝑥-wise distance

between the leading and trailing edge of the airfoil. The vertical dashed lines show the position of the apex for each

airfoil.

The optimal airfoils exhibit a region of lower 𝐶 𝑝 above the upstream portion of the suction surface, followed by

a downstream pressure recovery region, which is typical of a laminar separation bubble [27–30]. Specifically, 𝐶 𝑝

remains broadly constant over the upstream portion of the suction surface. There is then a rapid pressure recovery region

immediately upstream of the apex, followed by a final slower recovery region downstream of the apex; although in all

cases 𝐶 𝑝 does not fully recover to the free-stream value prior to the trailing edge.

The Reference Airfoil exhibits a relatively much flatter 𝐶 𝑝 distribution over the suction surface of the airfoil,

attaining significantly higher 𝐶 𝑝 than the optimal airfoils over the upstream portion of the suction surface, but a slightly

lower value over the downstream portion of the suction surface.

13



(a) Group 1

(b) Group 2

(c) Group 3

(d) Group 4

(e) Reference Airfoil

Fig. 8 Instantaneous Q-criterion isosurfaces colored by velocity magnitude |𝑣 | (left), 𝐶𝐿 time-series (middle)
and 𝐶𝐿 spectra (right) for one representative airfoil of each group on the Pareto front and the Reference Airfoil.
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Fig. 9 Plots of mid-span 𝐶 𝑝 distributions on the surface of a representative airfoil from each group on the
Pareto front, and the Reference Airfoil, as a function of 𝑥. The dashed lines show the position of the apex for each
airfoil.

D. Velocity Line Integral Convolutions (LICs) and Skin Friction Distribution

The time-averaged skin friction coefficient 𝐶 𝑓 is defined as

𝐶 𝑓 =
𝜏𝑠
𝑞∞

(14)

where 𝜏𝑠 is the stream-wise component of the time-averaged wall shear stress and 𝑞∞ is obtained via Eq. (12).

Figure 10 plots time-averaged velocity magnitude |𝑣 | in a span-wise constant plane, with superimposed time-averaged

velocity Line Integral Convolutions (LICs) [31] (left), and 𝐶 𝑓 distributions on the suction surface as a function of 𝑥

(right), for a representative airfoil from each group on the Pareto front, and the Reference Airfoil. The dashed lines show

the position of the apex for each airfoil.

For the optimal airfoils, the LIC plots show two large recirculation regions adjacent to the suction surface, which are

responsible for the increased lift. The recirculation regions can also be identified from the two pronounced negative

peaks in the 𝐶 𝑓 distributions. Airfoils in Groups 2 and 3 experience a change in sign of 𝐶 𝑓 near the apex, which

signifies reattachment in the time-averaged sense. The flow then separates again downstream of the apex, with vortices

rolling up on the downstream suction surface of the airfoil. Airfoils in Groups 1 and 4 show a similar 𝐶 𝑓 distribution

to those in Groups 2 and 3, but without reattachment; they induce separated flow, in the time-averaged sense, for the
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entirety of the chord. All the airfoils induce a change of sign of 𝐶 𝑓 near the trailing edge due to the vortex generated by

the flow coming from the pressure surface being sucked upwards to the suction surface.

The Reference Airfoil exhibits fully separated flow from the leading edge with a recirculation region further

downstream and further away from the suction surface compared to the optimum airfoils. Consequently, the Reference

Airfoil is unable to create such a strong overall suction effect, as observed in the 𝐶 𝑝 distribution in Fig. 9.

E. Summary

The airfoils on the Pareto front achieve optimal performance by exploiting vortex roll-up as a lifting mechanism.

Specifically, they aim to retain a strong vortex close to the upstream portion of the suction surface, prior to the apex,

whilst avoiding excessive inclination of the downstream portion of the suction surface, which would result in a high

pressure drag. This is achieved by positioning their apexes downstream of 𝑥 ≈ 0.5 and at 𝑦 ≈ 0.15; setting the upstream

portion of the suction surface approximately parallel to the free-stream flow when 𝛼 = 12◦.

Airfoils in Group 1 have the lowest 𝐶𝐿 values, since their apexes are upstream of those in Groups 2, 3 and 4, which

reduces the extent of the low-pressure region on the upstream portion of the suction surface (see Fig. 9 and Fig. 10).

Group 1 airfoils also have the lowest 𝐶𝐷 values, likely because the downstream portion of their upper surface is less

steeply inclined (see Fig. 7a). Airfoils in this Group exhibit a rib-roller vortex structure with a low amplitude 𝐶𝐿

fluctuations and a dominant frequency at 𝑆𝑡 = 1.1.

Airfoils in Groups 2 and 3 are in the middle of the Pareto front, with intermediate values of 𝐶𝐿 and 𝐶𝐷 . The airfoils

in these groups are characterized by reattachment of the flow near the apex in the time-averaged sense (see Fig. 10).

They have intermediate values of 𝐶𝐿 and 𝐶𝐷 because the low-pressure region on the upstream portion of their suction

surface is larger than for Group 1, but therir vortices roll-up further from the suction surface compared to Group 4

(see Fig. 9 and Fig. 10). Groups 2 and 3 differ in their vortex structures and 𝐶𝐿 behaviour, with airfoils in Group 2

having a rib-roller vortex structure with low-amplitude 𝐶𝐿 fluctuations and a dominant frequency at 𝑆𝑡 = 1.1, similar to

Group 1, whereas Group 3 airfoils show higher values of 𝐶𝐿 and 𝐶𝐷 compared to those in Group 2, and they exhibit an

unstructured spanwise breakdown, with high-amplitude 𝐶𝐿 fluctuations and a dominant frequency at 𝑆𝑡 = 0.65.

Finally, airfoils in Group 4 have the highest values of 𝐶𝐿 and 𝐶𝐷 because the low-pressure region on the upstream

portion of their suction surface is larger than for Group 1, and their vortices roll-up closer to the suction surface compared

to Groups 2 and 3. Airfoils in this Group exhibit similar flow structures and 𝐶𝐿 behaviour to those in Group 3, with an

unstructured spanwise breakdown, high amplitude 𝐶𝐿 fluctuations and a dominant frequency at 𝑆𝑡 = 0.65.

IV. Future Work
Airfoils with sharp edges can be very sensitive to flow instabilities such as incoming turbulence, especially when

the flow is separating from the sharp leading edge, and when the flow experiences reattachment. Since these airfoils
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are being optimized for use on helicopter blades, their inflow conditions will most likely be affected by ambient

turbulence and the wake of the previous blade. Future work should investigate the effect of incoming turbulence and/or

inflow-outflow periodicity on the optimization of triangular airfoils. Also, the edges of the airfoils in the current work

are infinitely sharp, which is unrealistic when considering fabrication tolerances. Thus, performance of the optimal

airfoils should be assessed after rounding the edges, since it may have an effect on how flow separates. In terms of the

optimization, the angle of attack should be added as a design variable, and more complex shapes should be investigated,

as well as tradeoffs around structural realisability and weight. Finally, further convergence acceleration strategies should

be explored to reduce the cost of 3D DNS optimization, such as the use of surrogate models.

V. Conclusions
A triangular airfoil has been optimized at an angle of attack 𝛼 = 12◦ with a chord-based 𝑅𝑒 = 3, 000 and Mach

number 𝑀 = 0.15 using 3D DNS with periodic boundary conditions in the spanwise direction via PyFR. The chosen

Reynolds number, Mach number and angle of attack 𝛼 are representative of conditions at the root/mid-section of a

rotor blade on a Martian helicopter. Specifically, multi-objective optimization was performed to maximize lift and

minimize drag, yielding a Pareto front of non-dominated airfoils. Q-criterion isosurfaces, lift coefficient spectra,

pressure coefficient distributions, velocity line integral convolutions and skin friction distributions were analyzed for

airfoils on the Pareto front to elucidate the flow physics that yield optimal performance. It was found that the optimal

airfoils exploit vortex roll-up as a lifting mechanism. Specifically, they aim to retain a strong vortex close to the upstream

portion of the suction surface, prior to the apex, whilst avoiding excessive inclination of the downstream portion of the

suction surface, which would result in a high pressure drag. This is achieved by positioning their apexes downstream of

𝑥 ≈ 0.5 and at 𝑦 ≈ 0.15; setting the upstream portion of the suction surface approximately parallel to the free-stream

flow when 𝛼 = 12◦. The optimized airfoils that form the Pareto front achieve up to a 48% increase in lift or a 28%

reduction in drag compared to the Reference Airfoil. The work constitutes the first use of DNS for aerodynamic shape

optimization.

Appendix A
3D DNS for a representative airfoil from each group was re-started from 𝑡 = 150𝑡𝑐 and run for a further 400𝑡𝑐,

during which data was extracted for analysis. Figures 11, 12, 13 and 14 show plots of Δ/[ along various mid-span

lines for the representative airfoils from Groups 1, 2, 3 and 4, respectively, where Δ is an estimate of the solution point

spacing given by Eq. (8) and [ is an estimate of the Kolmogorov length scale given by Eq. (9).

17



Acknowledgements
The authors are grateful for support from the Engineering and Physical Sciences Research Council via an EPSRC

Fellowship (EP/R030340/1) and compute allocations on Cirrus at the Edinburgh Parallel Computing Centre (EPCC)

and Piz Daint at the Swiss National Supercomputing Centre (CSCS).

References
[1] Balaram, J. B., Canham, T., Duncan, C., Golombek, M., Grip, H. F., Johnson, W., Maki, J., Quon, A., Stern, R., and Zhu, D., “Mars

helicopter technology demonstrator,” AIAA Atmospheric Flight Mechanics Conference, 2018. https://doi.org/10.2514/6.2018-

0023.

[2] Munday, P., Taira, K., Suwa, T., Numata, D., and Asai, K., “Non-linear lift on a triangular airfoil in low-Reynolds-number

compressible flow,” Journal of Aircraft, Vol. 52, 2015, pp. 924–931. https://doi.org/10.2514/1.C032983.

[3] Koning, W. J., Romander, E. A., and Johnson, W., “Performance optimization of plate airfoils for Martian rotor applications

using a genetic algorithm,” 45th European Rotorcraft Forum 2019, ERF 2019, Vol. 1, 2019.

[4] Koning, W. J. F., Romander, E. A., and Johnson, W., “Optimization of low Reynolds number airfoils for Martian rotor

applications using an evolutionary algorithm,” AIAA Science and Technology Forum and Exposition (AIAA SciTech), 2020.

https://doi.org/10.2514/6.2020-0084.

[5] Sasaki, G., Tatsukawa, T., Nonomura, T., Oyama, A., Matsumoto, T., and Yonemoto, K., “Multi-objective optimization of

airfoil for Mars exploration aircraft using genetic algorithm,” Transactions of the Japan Society for Aeronautical and Space

Sciences, Aerospace Technology Japan, Vol. 12, 2014, pp. 59–64. https://doi.org/10.2322/tastj.12.Pk_59.

[6] Witherden, F., Farrington, A., and Vincent, P., “PyFR: An Open Source Framework for Solving Advection-Diffusion Type

Problems on Streaming Architectures using the Flux Reconstruction Approach,” Computer Physics Communications, Vol. 185,

2014, pp. 3028–3040. https://doi.org/10.1016/j.cpc.2014.07.011.

[7] Caros, L., Buxton, O., Shigeta, T., Nagata, T., Nonomura, T., Asai, K., and Vincent, P., “Direct numerical simulation of flow

over a triangular airfoil under Martian conditions,” AIAA Journal, 2022. https://doi.org/10.2514/1.J061454.

[8] Goldberg, D., Genetic Algorithm in Search, Optimization, and Machine Learning, Vol. XIII, Addison-Wesley Longman

Publishing Co., Inc., 1989.

[9] Kalyanmoy, D., Sameer, A., and Meyarivan, T., “A fast elitist non-dominated sorting genetic algorithm for multi-objective

optimization NSGA-II,” IEEE Transaction on Evolutionary Compution, Vol. 6, 2002, pp. 182–197. https://doi.org/10.1007/3-

540-45356-3_83.

[10] Blank, J., and Deb, K., “Pymoo: multi-objective optimization in Python,” IEEE Access, Vol. PP, 2020, pp. 1–1. https:

//doi.org/10.1109/ACCESS.2020.2990567.

18

https://doi.org/10.2514/6.2018-0023
https://doi.org/10.2514/6.2018-0023
https://doi.org/10.2514/1.C032983
https://doi.org/10.2514/6.2020-0084
https://doi.org/10.2322/tastj.12.Pk_59
https://doi.org/10.1016/j.cpc.2014.07.011
https://doi.org/10.2514/1.J061454
https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1109/ACCESS.2020.2990567


[11] Goldberg, D. E., and Deb, K., “A Comparative Analysis of Selection Schemes Used in Genetic Algorithms,” , 1991.

https://doi.org/10.1016/b978-0-08-050684-5.50008-2.

[12] Deb, K., Sindhya, K., and Okabe, T., “Self-adaptive simulated binary crossover for real-parameter optimization,” Proceedings

of GECCO 2007: Genetic and Evolutionary Computation Conference, 2007. https://doi.org/10.1145/1276958.1277190.

[13] Zitzler, E., and Thiele, L., “Multiobjective optimization using evolutionary algorithms - A comparative case study,” Lecture

Notes in Computer Science, Vol. 1498 LNCS, 1998. https://doi.org/10.1007/bfb0056872.

[14] Riquelme, N., Lücken, C. V., and Barán, B., “Performance metrics in multi-objective optimization,” 2015. https://doi.org/10.

1109/CLEI.2015.7360024.

[15] Zitzler, E., Brockhoff, D., and Thiele, L., “The hypervolume indicator revisited: On the design of pareto-compliant indicators

via weighted integration,” Lecture Notes in Computer Science, Vol. 4403 LNCS, 2007. https://doi.org/10.1007/978-3-540-

70928-2_64.

[16] Simpson, T. W., Mauery, T. M., Korte, J. J., and Mistree, F., “Comparison of response surface and kriging models

for multidisciplinary design optimization,” 7th AIAA USAF NASA ISSMO Symposium on Multidisciplinary Analysis and

Optimization, 1998. https://doi.org/10.2514/6.1998-4755.

[17] Geuzaine, C., and Remacle, J. F., “Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities,”

International Journal for Numerical Methods in Engineering, Vol. 79, 2009. https://doi.org/10.1002/nme.2579.

[18] Pekardan, C., and Alexeenko, A., “Rarefaction effects for transonic airfoil flows at low reynolds numbers,” AIAA Journal,

Vol. 56, No. 2, 2018. https://doi.org/10.2514/1.J056051.

[19] Hoerner, S. F., Fluid-dynamic drag, Published by the Author, Bakersfield, CA 93390, 1965.

[20] Huynh, H., “A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods,” AIAA Paper

4079, 2007, pp. 1–42.

[21] Kennedy, C. A., Carpenter, M. H., and Lewis, R. M., “Low-storage, explicit Runge-Kutta schemes for the compressible

Navier-Stokes equations,” Applied Numerical Mathematics, Vol. 35, No. 3, 2000, pp. 177–219. https://doi.org/10.1016/S0168-

9274(99)00141-5.

[22] Vincent, P., Witherden, F., Vermeire, B., Park, J. S., and Iyer, A., “Towards Green Aviation with Python at Petascale,” SC ’16:

Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2016, pp.

1–11. https://doi.org/10.1109/SC.2016.1.

[23] Park, J. S., Witherden, F. D., and Vincent, P. E., “High-order implicit large-eddy simulations of flow over a NACA0021 aerofoil,”

AIAA Journal, Vol. 55, No. 7, 2017. https://doi.org/10.2514/1.J055304.

[24] Buxton, O., Laizet, S., and Ganapathisubramani, B., “The effects of resolution and noise on kinematic features of fine-scale

turbulence,” Experiments in Fluids, Vol. 51, No. 5, 2011, pp. 1417–1437. https://doi.org/10.1007/s00348-011-1159-2.

19

https://doi.org/10.1016/b978-0-08-050684-5.50008-2
https://doi.org/10.1145/1276958.1277190
https://doi.org/10.1007/bfb0056872
https://doi.org/10.1109/CLEI.2015.7360024
https://doi.org/10.1109/CLEI.2015.7360024
https://doi.org/10.1007/978-3-540-70928-2_64
https://doi.org/10.1007/978-3-540-70928-2_64
https://doi.org/10.2514/6.1998-4755
https://doi.org/10.1002/nme.2579
https://doi.org/10.2514/1.J056051
https://doi.org/10.1016/S0168-9274(99)00141-5
https://doi.org/10.1016/S0168-9274(99)00141-5
https://doi.org/10.1109/SC.2016.1
https://doi.org/10.2514/1.J055304
https://doi.org/10.1007/s00348-011-1159-2


[25] Bergmann, M., Morsbach, C., Ashcroft, G., and Kugeler, E., “Statistical Error Estimation Methods for Engineering-Relevant

Quantities From Scale-Resolving Simulations,” Journal of Turbomachinery, Vol. 144, 2022. https://doi.org/10.1115/1.4052402.

[26] Rogers, M. M., and Moser, R. D., “The three-dimensional evolution of a plane mixing layer: The Kelvin-Helmholtz rollup,”

Journal of Fluid Mechanics, Vol. 243, 1992, pp. 183–226. https://doi.org/10.1017/S0022112092002696.

[27] Lin, J. C., and Pauley, L. L., “Low-Reynolds-number separation on an airfoil,” AIAA Journal, Vol. 34, 1996. https:

//doi.org/10.2514/3.13273.

[28] Counsil, J. N., and Boulama, K. G., “Low-reynolds-number aerodynamic performances of the NACA 0012 and Selig-Donovan

7003 airfoils,” Journal of Aircraft, Vol. 50, 2013. https://doi.org/10.2514/1.C031856.

[29] Genc, I. K. M. S., “Numerical Study on Low Reynolds Number Flows Over an Aerofoil,” Journal of Applied Mechanical

Engineering, Vol. 02, 2013. https://doi.org/10.4172/2168-9873.1000131.

[30] Anyoji, M., Nonomura, T., Aono, H., Oyama, A., Fujii, K., Nagai, H., and Asai, K., “Computational and experimental

analysis of a high-performance airfoil under low-reynolds-number flow condition,” Journal of Aircraft, Vol. 51, 2014.

https://doi.org/10.2514/1.C032553.

[31] Cabral, B., and Leedom, L., “Imaging vector fields using line integral convolution,” 1993. https://doi.org/10.1145/166117.

166151.

20

https://doi.org/10.1115/1.4052402
https://doi.org/10.1017/S0022112092002696
https://doi.org/10.2514/3.13273
https://doi.org/10.2514/3.13273
https://doi.org/10.2514/1.C031856
https://doi.org/10.4172/2168-9873.1000131
https://doi.org/10.2514/1.C032553
https://doi.org/10.1145/166117.166151
https://doi.org/10.1145/166117.166151


0 0.2 0.4 0.6 0.8 1
−6
−4
−2

0
2

·10−2

𝑥

𝐶
𝑓

(a) Group 1

0 0.2 0.4 0.6 0.8 1
−6
−4
−2

0
2

·10−2

𝑥
𝐶

𝑓
(b) Group 2

0 0.2 0.4 0.6 0.8 1
−6
−4
−2

0
2

·10−2

𝑥

𝐶
𝑓

(c) Group 3

0 0.2 0.4 0.6 0.8 1
−6
−4
−2

0
2

·10−2

𝑥

𝐶
𝑓

(d) Group 4

0 0.2 0.4 0.6 0.8 1
−6
−4
−2

0
2

·10−2

𝑥

𝐶
𝑓

(e) Reference Airfoil

Fig. 10 Time-averaged velocity magnitude |𝑣 | in a span-wise constant plane, with superimposed time-averaged
velocity LICs (left), and mid-span 𝐶 𝑓 distributions on the suction surface as a function of 𝑥 (right), for a
representative airfoil from each group on the Pareto front, and the Reference Airfoil. The dashed lines show the
position of the apex for each airfoil.
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Fig. 11 Plots of 𝚫/𝜼 in the mid-span plane as a function of y at x = 3, x = 5 and x = 7 (a) and as a function of x
at y = 0.2 (b) for a representative airfoil from Group 1.
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Fig. 12 Plots of 𝚫/𝜼 in the mid-span plane as a function of y at x = 3, x = 5 and x = 7 (a) and as a function of x
at y = 0.2 (b) for a representative airfoil from Group 2.
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Fig. 13 Plots of 𝚫/𝜼 in the mid-span plane as a function of y at x = 3, x = 5 and x = 7 (a) and as a function of x
at y = 0.2 (b) for a representative airfoil from Group 3.
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Fig. 14 Plots of 𝚫/𝜼 in the mid-span plane as a function of y at x = 3, x = 5 and x = 7 (a) and as a function of x
at y = 0.2 (b) for a representative airfoil from Group 4.
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